ICE3DS01LG [INFINEON]

Off-Line SMPS Current Mode Controller with integrated 500V Startup Cell; 离线式开关电源电流模式控制器,集成500V启动电池
ICE3DS01LG
型号: ICE3DS01LG
厂家: Infineon    Infineon
描述:

Off-Line SMPS Current Mode Controller with integrated 500V Startup Cell
离线式开关电源电流模式控制器,集成500V启动电池

稳压器 开关式稳压器或控制器 电源电路 电池 开关式控制器 光电二极管
文件: 总27页 (文件大小:614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet, V2.0, 15 May 2003  
PWM-FF IC  
ICE3DS01L  
ICE3DS01LG  
Off-Line SMPS Current Mode  
Controller with integrated 500V  
Startup Cell  
Power Management & Supply  
N e v e r s t o p t h i n k i n g .  
ICE3DSO1L(G)  
Revision History:  
2003-05-15  
Datasheet  
Previous Version:  
Page  
Subjects (major changes since last revision)  
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or  
the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://  
www.infineon.com  
CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG.  
Edition 2003-05-15  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München  
© Infineon Technologies AG 1999.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted char-  
acteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Infin-  
eon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
F3  
ICE3DS01L  
ICE3DS01LG  
Off-Line SMPS Current Mode Controller  
with integrated 500V Startup Cell  
Product Highlights  
P-DIP-8-6  
• Active Burst Mode to reach the lowest  
Standby Power Requirements < 100mW  
• Latched Off Mode to increase Robustness  
and Safety of the System  
• Adjustable Blanking Window for High Load  
Jumps to increase Reliability  
P-DSO-8-8  
Features  
Description  
The F3 Controller provides Active Burst Mode to reach the  
lowest Standby Power Requirements <100mW at no load.  
Active Burst Mode for lowest Standby Power  
@ light load controlled by Feedback Signal  
Fast Load Jump Response in Active Burst Mode As during Active Burst Mode the controller is always active  
500V Startup Cell switched off after Start Up  
110kHz internally fixed Switching Frequency  
there is an immediate response on load jumps possible  
without any black out in the SMPS. In Active Burst Mode  
Latched Off Mode for Overtemperature Detection the ripple of the output voltage can be reduced <1%.  
Latched Off Mode for Overvoltage Detection  
Latched Off Mode for Short Winding Detection  
Furthermore Latched Off Mode is entered in case of  
Overtemperature, Overvoltage or Short Winding. If  
Auto Restart Mode for Overload and Open Loop Latched Off Mode is entered only the disconnection from  
Auto Restart Mode for VCC Undervoltage  
User defined Soft Start  
Minimum of external Components required  
Max Duty Cycle 72%  
Overall Tolerance of Current Limiting < ±5%  
Internal Leading Edge Blanking  
Soft Switching for Low EMI  
the main line can reset the Controller. Auto Restart Mode  
is entered in case of failure modes like open loop or  
overload. By means of the internal precise peak current  
limitation the dimension of the transformer and the  
secondary diode can be lower which leads to more cost  
efficiency. An adjustable blanking window prevents the IC  
from entering Auto Restart Mode or Active Burst Mode in  
case of high Load Jumps.  
Typical Application  
+
Converter  
Snubber  
CBulk  
DC Output  
85 ... 270 VAC  
-
CVCC  
HV  
Startup Cell  
VCC  
PWM Controller  
Current Mode  
Gate  
CS  
Precise Low  
Tolerance Peak  
Current Limitation  
Power  
Management  
RSense  
Control Unit  
Active Burst Mode  
Latched Off Mode  
Auto Restart Mode  
FB  
GND  
SoftS  
CSoftS  
ICE3DS01/G  
Type  
Ordering Code  
FOSC  
Package  
ICE3DS01L  
ES Samples available  
Q67040-S4549-A102  
110kHz  
110kHz  
P-DIP-8-6  
P-DSO-8-8  
ICE3DS01LG  
Version 2.0  
3
15 May 2003  
F3  
ICE3DS01L/LG  
Table of Contents  
Page  
1
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Configuration with P-DIP-8-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Configuration with P-DSO-8-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
1.1  
1.2  
1.3  
2
Representative Blockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3
3.1  
3.2  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Startup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
PWM Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
PWM-Latch FF1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Leading Edge Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Propagation Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Adjustable Blanking Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Entering Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Working in Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Leaving Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Protection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Latched Off Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Auto Restart Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.5  
3.5.1  
3.5.2  
3.6  
3.6.1  
3.6.2  
3.6.2.1  
3.6.2.2  
3.6.2.3  
3.6.3  
3.6.3.1  
3.6.3.2  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
PWM Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Driver Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5
6
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Version 2.0  
4
15 May 2003  
F3  
ICE3DS01L/LG  
Pin Configuration and Functionality  
1
Pin Configuration and Functionality  
1.1 Pin Configuration with P-DIP-8-6  
1.2 Pin Configuration with P-DSO-8-8  
Pin  
Symbol Function  
Pin  
Symbol Function  
1
2
3
4
5
6
7
8
SoftS  
FB  
Soft-Start  
1
2
3
4
5
6
7
8
SoftS  
FB  
Soft-Start  
Feedback  
Feedback  
CS  
Current Sense  
CS  
Current Sense  
HV  
High Voltage Input  
High Voltage Input  
Driver Stage Output  
Controller Supply Voltage  
Controller Ground  
Gate  
HV  
Driver Stage Output  
High Voltage Input  
Not connected  
HV  
Gate  
VCC  
GND  
N.C.  
VCC  
GND  
Controller Supply Voltage  
Controller Ground  
Package P-DIP-8-6  
Package P-DSO-8-8  
SoftS  
1
8
7
6
5
GND  
VCC  
Gate  
HV  
SoftS  
1
8
7
6
5
GND  
VCC  
N.C.  
HV  
FB  
CS  
HV  
2
FB  
CS  
2
3
4
3
4
Gate  
Figure 1  
Note: Pin  
package.  
Pin Configuration P-DIP-8-6(top view)  
Figure 2  
Pin Configuration P-DSO-8-8(top view)  
4
and are shorted within the DIP  
5
Version 2.0  
5
15 May 2003  
F3  
ICE3DS01L/LG  
Pin Configuration and Functionality  
1.3  
Pin Functionality  
SoftS (Soft Start & Auto Restart Control)  
The SoftS pin combines the function of Soft Start in  
case of Start Up and Auto Restart Mode and the  
controlling of the Auto Restart Mode in case of error  
detection. Furthermore the blanking window for high  
load jumps is adjusted by means of the external  
capacitor connected to SoftS.  
FB (Feedback)  
The information about the regulation is provided by the  
FB Pin to the internal Protection Unit and to the internal  
PWM-Comparator to control the duty cycle. The FB-  
Signal controls in case of light load the Active Burst  
Mode of the controller.  
CS (Current Sense)  
The Current Sense pin senses the voltage developed  
on the series resistor inserted in the source of the  
external PowerMOS. If CS reaches the internal  
threshold of the Current Limit Comparator, the Driver  
output is immediately switched off. Furthermore the  
current information is provided for the PWM-  
Comparator to realize the Current Mode.  
Gate  
The Gate pin is the output of the internal driver stage  
connected to the Gate of an external PowerMOS.  
HV (High Voltage)  
The HV pin is connected to the rectified DC input  
voltage. It is the input for the integrated 500V Startup  
Cell.  
VCC (Power supply)  
The VCC pin is the positive supply of the IC. The  
operating range is between 8.5V and 21V.  
GND (Ground)  
The GND pin is the ground of the controller.  
Version 2.0  
6
15 May 2003  
F3  
ICE3DS01L/LG  
Representative Blockdiagram  
2
Representative Blockdiagram  
Figure 3  
Representative Blockdiagram  
Version 2.0  
7
15 May 2003  
F3  
ICE3DS01L/LG  
Functional Description  
3
Functional Description  
All values which are used in the functional description SMPS. There is no need for an extra over sizing of the  
are typical values. For calculating the worst cases the SMPS, e.g. the transformer or PowerMOS.  
min/max values which can be found in section 4  
Electrical Characteristics have to be considered.  
3.2  
Power Management  
3.1  
Introduction  
Startup Cell  
HV  
VCC  
The F3 is the further development of the F2 to meet the  
requirements for the lowest Standby Power at  
minimum load and no load conditions. A new fully  
integrated Standby Power concept is implemented into  
the IC in order to keep the application design easy.  
Compared to F2 no further external parts are needed to  
achieve the lowest Standby Power. An intelligent  
Active Burst Mode is used for this Standby Mode. After  
entering this mode there is still a full control of the  
power conversion by the secondary side via the same  
optocoupler that is used for the normal PWM control.  
The response on load jumps is optimized. The voltage  
ripple on Vout is minimized. Vout is further on well  
controlled in this mode.  
Power Management  
Undervoltage Lockout  
15V  
Internal Bias  
8.5V  
Latched Off Mode  
Reset  
The usually external connected RC-filter in the  
feedback line after the optocoupler is integrated in the  
IC to reduce the external part count.  
VVCC < 6V  
6.5V  
Voltage  
Power-Down Reset  
Furthermore a high voltage startup cell is integrated  
into the IC which is switched off once the Undervoltage  
Lockout on-threshold of 15V is exceeded. The external  
startup resistor is no longer necessary. Power losses  
are therefore reduced. This increases the efficiency  
under light load conditions dramatically.  
Reference  
Auto Restart Mode  
The Soft-Start capacitor is also used for providing an  
adjustable blanking window for high load jumps. During  
this time window the overload detection is disabled.  
With this concept no further external components are  
necessary to adjust the blanking window.  
Active Burst Mode  
Latched Off Mode  
T1  
A new Latched Off Mode is implemented into the IC in  
order to increase the robustness and safety of the  
system. Latched Off Mode is only entered if very  
dangerous conditions occur that damage the SMPS if  
not switched off immediately. A restart of the system  
can then only be done by disconnecting the AC line.  
SoftS  
Figure 4  
Power Management  
The Undervoltage Lockout monitors the external  
supply voltage VVCC. When the SMPS is plugged to the  
main line the internal Startup Cell is biased and starts  
to charge the external capacitor CVCC which is  
connected to the VCC pin. The VCC charge current  
that is provided by the Startup Cell from the HV pin is  
1.05mA. When VVCC exceeds the on-threshold  
Auto Restart Mode reduces the average power  
conversion to a minimum. In this mode malfunctions  
are covered that could lead to a destruction of the  
SMPS if no dramatically reduced power limitation is  
provided over time. Once the malfunction is removed  
normal operation is immediately started after the next  
Start Up Phase.  
V
CCon=15V the internal voltage reference and bias  
The internal precise peak current limitation reduces the  
costs for the transformer and the secondary diode. The  
influence of the change in the input voltage on the  
power limitation can be avoided together with the  
circuit are switched on. Then the Startup Cell is  
switched off by the Undervoltage Lockout and therefore  
also the power losses are switched off caused by the  
Startup Cell which is connected to the bus voltage  
(HV). To avoid uncontrolled ringing at switch-on a  
hysteresis is implemented. The switch-off of the  
integrated  
Propagation  
Delay  
Compensation.  
Therefore the maximum power is nearly independent  
on the input voltage that is required for wide range  
Version 2.0  
8
15 May 2003  
F3  
ICE3DS01L/LG  
Functional Description  
controller can only take place after Active Mode was capacitor CSofts in combination with the internal pull up  
entered and VVCC falls below 8.5V.  
resistor RSoftS determines the duty cycle until VSoftS  
exceeds 4V.  
The maximum current consumption before the  
controller is activated is about 170µA.  
In the beginning CSoftS is immediately charged up to  
approx. 1V by T2. Therefore the Soft Start Phase takes  
place between 1V and 4V. Above VSoftsS = 4V there is  
no longer duty cycle limitation DCmax is controlled by  
comparator C7 as comparator C2 blocks the gate G7  
(see Figure 6).The maximum charge current in the very  
first phase when VSoftS is below 1V is limited to 1.9mA.  
When VVCC falls below the off-threshold VCCoff=8.5V the  
internal reference is switched off and the Power Down  
reset let T1 discharging the soft-start capacitor CSoftS at  
pin SoftS. Thus it is ensured that at every startup cycle  
the voltage ramp at pin SoftS starts at zero.  
The internal Voltage Reference is switched off if  
Latched Off Mode or Auto Restart Mode is entered.  
The current consumption is then reduced to 300µA.  
VSoftS  
When Active Burst Mode is entered the internal Bias is  
switched off in order to reduce the current consumption  
below 1.1mA while keeping the Voltage Reference still  
active as this is necessary in this mode.  
max. Startup Phase  
5.4V  
4V  
In case Latched Off Mode is entered VCC needs to be  
lowered below 6V to reset the Latched Off Mode. This  
is done usually by disconnecting the SMPS from the  
AC line.  
1V  
max. Soft Start Phase  
3.3  
Startup Phase  
DCmax  
t
6.5V  
DC  
1
3.25k  
DC  
2
R
T2  
SoftS  
T3  
1V  
t1  
t2 t  
SoftS  
Figure 6  
Startup Phase  
C
SoftS  
By means of this extra charge stage there is no delay  
in the beginning of the Startup Phase when there is still  
no switching. Furthermore Soft Start is finished at 4V to  
have faster the maximum power capability. The duty  
cycles DC1 and DC2 are depending on the mains and  
the primary inductance of the transformer. The  
limitation of the primary current by DC2 is related to  
VSoftS = 4V. But DC1 is related to a maximum primary  
current which is limited by the internal Current Limiting  
with CS = 1V. Therefore the maximum Startup Phase  
is divided into a Soft Start Phase until t1 and a phase  
from t1 until t2 where maximum power is provided if  
demanded by the FB signal.  
Soft Start  
Soft-Start  
Comparator  
Gate Driver  
C7  
&
G7  
C2  
4V  
0.85V  
CS  
x3.7  
PWM OP  
Figure 5  
Soft Start  
During the Startup Phase a Soft Start is provided. A  
signal VSoftS which is generated by the external  
Version 2.0  
9
15 May 2003  
F3  
ICE3DS01L/LG  
Functional Description  
3.4  
PWM Section  
VCC  
0.72  
PWM Section  
Oscillator  
PWM-Latch  
Duty Cycle  
max  
1
Gate  
Z1  
Clock  
Soft Start  
FF1  
Comparator  
Gate Driver  
&
S
R
1
PWM  
Comparator  
Q
G8  
Figure 8  
Gate Driver  
G9  
The driver-stage is optimized to minimize EMI and to  
provide high circuit efficiency. This is done by reducing  
the switch on slope when exceeding the external  
Power Switch threshold. This is achieved by a slope  
control of the rising edge at the driver’s output (see  
Figure 9).  
Current  
Limiting  
Comparator  
C3  
Gate  
ca. t = 130ns  
VGate  
Figure 7  
3.4.1  
PWM Section  
Oscillator  
CLoad = 1nF  
The oscillator generates a frequency fswitch = 110kHz. A  
resistor, a capacitor and a current source and current  
sink which determine the frequency are integrated. The  
charging and discharging current of the implemented  
oscillator capacitor are internally trimmed, in order to  
achieve a very accurate switching frequency. The ratio  
of controlled charge to discharge current is adjusted to  
reach a maximum duty cycle limitation of Dmax=0.72.  
5V  
t
Figure 9  
Gate Rising Slope  
Thus the leading switch on spike is minimized. When  
the external Power Switch is switched off, the falling  
shape of the driver is slowed down when reaching 2V  
to prevent an overshoot below ground. Furthermore the  
driver circuit is designed to eliminate cross conduction  
of the output stage.  
3.4.2  
PWM-Latch FF1  
The oscillator clock output provides a set pulse to the  
PWM-Latch when initiating the external Power Switch  
conduction. After setting the PWM-Latch can be reset  
by the PWM comparator, the Soft Start comparator, the  
Current-Limit comparator or comparator C3. In case of  
resetting the driver is shut down immediately.  
3.4.3  
Gate Driver  
The Gate Driver is a fast totem pole gate drive which is  
designed to avoid cross conduction currents and which  
is equipped with a zener diode Z1 (see Figure 8) in  
order to improve the control of the Gate attached power  
transistors as well as to protect them against  
undesirable gate overvoltages.  
The Gate Driver is active low at voltages below the  
undervoltage lockout threshold VVCCoff  
.
Version 2.0  
10  
15 May 2003  
F3  
ICE3DS01L/LG  
Functional Description  
The output of comparator C12 is activated by the Gate  
G10 if Active Burst Mode is entered. Once activated the  
current limiting is thereby reduced to 0.257V. This  
voltage level determines the power level when the  
Active Burst Mode is left if there is a higher power  
demand.  
3.5  
Current Limiting  
PWM Latch Latched Off  
FF1 Mode  
Current Limiting  
Spike  
Blanking  
190ns  
1.66V  
C11  
3.5.1  
Leading Edge Blanking  
VSense  
Propagation-Delay  
Compensation  
Vcsth  
tLEB = 220ns  
V
csth  
Leading  
Edge  
C10  
C12  
Blanking  
220ns  
PWM-OP  
&
t
G10  
Figure 11  
Leading Edge Blanking  
0.257V  
Each time when the external Power Switch is switched  
on a leading edge spike is generated due to the  
primary-side capacitances and secondary-side rectifier  
1pF  
10k  
Active Burst  
Mode  
reverse recovery time. To avoid  
a
premature  
D1  
termination of the switching pulse this spike is blanked  
out with a time constant of tLEB = 220ns. During that  
time there can’t be an accidentally switch off of the gate  
drive.  
CS  
Figure 10  
Current Limiting  
3.5.2  
Propagation Delay Compensation  
There is a cycle by cycle Current Limiting realized by  
the Current-Limit comparator C10 to provide an  
overcurrent detection. The source current of the  
external Power Switch is sensed via an external sense  
resistor RSense . By means of RSense the source current  
is transformed to a sense voltage VSense which is fed  
into the pin CS. If the voltage VSense exceeds the  
internal threshold voltage Vcsth the comparator C10  
immediately turns off the gate drive by resetting the  
PWM Latch FF1. A Propagation Delay Compensation  
is added to support the immediate shut down without  
delay of the Power Switch in case of Current Limiting.  
The influence of the AC input voltage on the maximum  
output power can thereby be avoided.  
In case of overcurrent detection the shut down of the  
external Power Switch is delayed due to the  
propagation delay of the circuit. This delay causes an  
overshoot of the peak current Ipeak which depends on  
the ratio of dI/dt of the peak current (see Figure 12).  
Signal2  
IO vershoot2  
Signal1  
tPropagation  
ISense  
Ipeak2  
Ipeak1  
ILim it  
Delay  
To prevent the Current Limiting from distortions caused  
by leading edge spikes a Leading Edge Blanking is  
integrated in the current sense path for the  
comparators C10, C12 and the PWM-OP.  
IO vershoot1  
A further comparator C11 is implemented to detect  
dangerous current levels which could occur if there is a  
short winding in the transformer or the secondary diode  
is shorten. To ensure that there is no accidentally  
entering of the Latched Mode by the comparator C11 a  
spike blanking with 190ns is integrated in the output  
path of comparator C11.  
t
Figure 12  
Current Limiting  
The overshoot of Signal2 is bigger than of Signal1 due  
to the steeper rising waveform. This change in the  
slope is depending on the AC input voltage.  
Propagation Delay Compensation is integrated to limit  
Version 2.0  
11  
15May 2003  
F3  
ICE3DS01L/LG  
Functional Description  
the overshoot dependency on dI/dt of the rising primary  
current. That means the propagation delay time  
between exceeding the current sense threshold Vcsth  
and the switch off of the external Power Switch is  
compensated over temperature within a wide range.  
Current Limiting is now possible in a very accurate way  
(see Figure 13).  
3.6  
Control Unit  
The Control Unit contains the functions for Active Burst  
Mode, Auto Restart Mode and Latched Off Mode. The  
Active Burst Mode and the Auto Restart Mode are  
combined with an Adjustable Blanking Window which is  
depending on the external Soft Start capacitor. By  
means of this Adjustable Blanking Window an  
accidentally entering of the Active Burst Mode is  
avoided. Furthermore the overload detection can be  
deactivated for a certain time.  
E.g. Ipeak = 0.5A with RSense = 2. Without Propagation  
Delay Compensation the current sense threshold is set  
to a static voltage level Vcsth=1V. A current ramp of  
dI/dt = 0.4A/µs, that means dVSense/dt = 0.8V/µs, and a  
propagation delay time of i.e. tPropagation  
=180ns  
Delay  
3.6.1  
Adjustable Blanking Window  
leads then to an Ipeak overshoot of 12%. By means of  
propagation delay compensation the overshoot is only  
about 2% (see Figure 13).  
SoftS  
with compensation  
without compensation  
6.5V  
V
1,3  
R
SoftS  
5k  
1,25  
1,2  
4.4V  
1,15  
1,1  
1
&
1,05  
1
S1  
G2  
G4  
0,95  
0,9  
0
0,2  
0,4  
0,6  
0,8  
1
1,2  
1,4  
1,6  
1,8  
2
V
dVSense  
dt  
µs  
C3  
C4  
5.4V  
Figure 13  
Overcurrent Shutdown  
Auto  
Restart  
Mode  
The Propagation Delay Compensation is realized by  
means of a dynamic threshold voltage Vcsth (see Figure  
14). In case of a steeper slope the switch off of the  
driver is earlier to compensate the delay.  
&
4.8V  
G5  
VO SC  
Active  
Burst  
Mode  
m ax. Duty Cycle  
&
off tim e  
FB  
G6  
C6  
VSense  
t
Propagation Delay  
1.32V  
Vcsth  
Control Unit  
Adjustable Blanking Window  
Figure 15  
VSoftS is clamped at 4.4V by the closed switch S1 after  
the SMPS is settled. If overload occurs VFB is  
exceeding 4.8V. Auto Restart Mode can’t be entered as  
the gate G5 is still blocked by the comparator C3. But  
after VFB has exceeded 4.8V the switch S1 is opened  
via the gate G2. The external Soft Start capacitor can  
now be charged further by the integrated pull up  
resistor RSoftS. The comparator C3 releases the gates  
Signal1  
Signal2  
t
Figure 14  
Dynamic Voltage Threshold Vcsth  
Version 2.0  
12  
15 May 2003  
F3  
ICE3DS01L/LG  
Functional Description  
G5 and G6 once VSofts has exceeded 5.4V. Therefore The Active Burst Mode is located in the Control Unit.  
there is no entering of Auto Restart Mode possible Figure 16 shows the related components.  
during this charging time of the external capacitor  
CSoftS. The same procedure happens to the external 3.6.2.1  
Entering Active Burst Mode  
Soft Start capacitor if a low load condition is detected  
The FB signal is always observed by the comparator  
C6 if the voltage level falls below 1.32V. In that case the  
switch S1 is released which allows the capacitor CSoftS  
to be charged starting from the clamped voltage level  
at 4.4V in normal operating mode. The gate G11 is  
blocked before entering Active Burst Mode. If VSoftS  
exceeds 5.4V the comparator C3 releases the gate G6  
to enter the Active Burst Mode. The time window that is  
generated by combining the FB and SoftS signals with  
gate G6 avoids a sudden entering of the Active Burst  
Mode due to large load jumps. This time window can be  
by comparator C6 when VFB is falling below 1.32V.  
Only after VSoftS has exceeded 5.4V and VFB is still  
below 1.32V Active Burst Mode is entered. Once Active  
Burst Mode is entered gate G4 is blocked to ensure  
that the blanking window is only active before entering  
the Active Burst Mode.  
3.6.2  
The controller provides Active Burst Mode for low load  
conditions at VOUT Active Burst Mode increases  
Active Burst Mode  
.
adjusted by the external capacitor CSoftS  
.
significantly the efficiency at light load conditions while  
supporting a low ripple on VOUT and fast response on  
load jumps. During Active Burst Mode which is  
controlled only by the FB signal the IC is always active  
and can therefore immediately response on fast  
changes at the FB signal. The Startup Cell is kept  
switched off to avoid increased power losses for the  
self supply.  
After entering Active Burst Mode a burst flag is set  
which blocks the gate G4 and the internal bias is  
switched off in order to reduce the current consumption  
of the IC down to ca. 1.1mA. In this Off State Phase the  
IC is no longer self supplied so that therefore CVCC has  
to provide the VCC current (see Figure 17).  
Furthermore gate G11 is then released to start the next  
burst cycle once 1.32V is again exceeded.  
SoftS  
It has to be ensured by the application that the VCC  
remains above the Undervoltage Lockout Level of 8.5V  
to avoid that the Startup Cell is accidentally switched  
on. Otherwise power losses are significantly increased.  
The minimum VCC level during Active Burst Mode is  
depending on the load conditions and the application.  
The lowest VCC level is reached at no load conditions  
6.5V  
R
SoftS  
5k  
Internal Bias  
4.4V  
&
at VOUT  
.
G4  
S1  
3.6.2.2  
Working in Active Burst Mode  
Current  
Limiting  
After entering the Active Burst Mode the FB voltage  
rises as VOUT starts to decrease due to the inactive  
PWM section. Comparator C5 observes the FB signal  
if the voltage level 4V is exceeded. In that case the  
internal circuit is again activated by the internal Bias to  
start with switching. As now in Active Burst Mode the  
gate G10 is released the current limit is only 0.257V to  
reduce the conduction losses and to avoid audible  
noise. If the load at VOUT is still below the starting level  
for the Active Burst Mode the FB signal decreases  
down to 1.32V. At this level C6 deactivates again the  
internal circuit by switching off the internal Bias. The  
gate G11 is released as after entering Active Burst  
Mode the burst flag is set. If working in Active Burst  
Mode the FB voltage is changing like a saw tooth  
between 1.32V and 4V (see figure 17).  
&
C3  
G10  
5.4V  
4.8V  
C4  
Active  
Burst  
Mode  
C5  
FB  
4.0V  
&
G6  
C6  
3.6.2.3  
Leaving Active Burst Mode  
1.32V  
&
The FB voltage immediately increases if there is a high  
load jump. This is observed by comparator C4. As the  
current limit is ca. 26% during Active Burst Mode a  
certain load jump is needed that FB can exceed 4.8V.  
At this time C4 resets the Active Burst Mode which also  
G11  
Control Unit  
Figure 16  
Active Burst Mode  
Version 2.0  
13  
15 May 2003  
F3  
ICE3DS01L/LG  
Functional Description  
blocks C12 by the gate G10. Maximum current can now 3.6.3  
Protection Modes  
be provided to stabilize VOUT  
.
The IC provides several protection features which are  
separated into two categories. Some enter Latched Off  
Mode, the others enter Auto Restart Mode. The  
Latched Off Mode can only be reset if VCC is falling  
below 6V. Both modes prevent the SMPS from  
destructive states. The following table shows the  
relationship between possible system failures and the  
chosen protection modes.  
V
FB  
Entering Active  
Leaving Active  
Burst Mode  
Burst Mode  
4.80V  
4.00V  
1.32V  
VCC Overvoltage  
Overtemperature  
Latched Off Mode  
Latched Off Mode  
V
t
SoftS  
Blanking Window  
Short Winding/Short Diode Latched Off Mode  
5.40V  
Overload  
Auto Restart Mode  
Auto Restart Mode  
Auto Restart Mode  
Auto Restart Mode  
Open Loop  
4.40V  
VCC Undervoltage  
Short Optocoupler  
VCS  
t
t
t
t
3.6.3.1  
Latched Off Mode  
Current limit level during  
ActiveBurst Mode  
1.00V  
CS  
Latched Off  
Mode Reset  
0.257V  
VVCC < 6V  
V
VCC  
Spike  
Blanking  
190ns  
1
Latched  
Off Mode  
C11  
G3  
1.66V  
8.5V  
VCC  
Spike  
Blanking  
8.0us  
&
IVCC  
C1  
C4  
21V  
G1  
7.2mA  
4.8V  
1.1mA  
Voltage  
Reference  
Thermal Shutdown  
VOUT  
T >140°C  
j
Max. Ripple < 1%  
Control Unit  
FB  
Figure 18  
Latched Off Mode  
The VCC voltage is observed by comparator C1 if 21V  
is exceeded. The output of C1 is combined with the  
output of C4 which observes FB signal if 4.8V is  
t
Figure 17  
Signals in Active Burst Mode  
Version 2.0  
14  
15 May 2003  
F3  
ICE3DS01L/LG  
Functional Description  
exceeded. Therefore the overvoltage detection is only short winding or short diode C10 is no longer able to  
activated if the FB signal is outside the operating range limit the CS signal at 1V. C11 detects then the over  
> 4.8V, e.g. when Open Loop happens. Therewith current and enters immediately the Latched Off Mode  
small voltage overshoots of VVCC during normal to keep the SMPS in a safe stage.  
operating can not start the Latched Off Mode.  
3.6.3.2  
Auto Restart Mode  
The internal Voltage Reference is switched off once  
Latched Off Mode is entered in order to reduce the  
current consumption of the IC as much as possible.  
Latched Off Mode can only be reset by decreasing  
VVCC < 6V. In this stage only the UVLO is working which  
SoftS  
6.5V  
R
SoftS  
controls the Startup Cell by switching on/off at VVCCon  
/
5k  
VVCCoff. In this phase the average current consumption  
is only 300µA. As there is no longer a self supply by the  
auxiliary winding VCC drops. The Undervoltage  
Lockout switches on the integrated Startup Cell when  
VCC falls below 8.5V. The Startup Cell is switched off  
again when VCC has exceeded 15V. As the Latched  
Off Mode was entered there is no Start Up Phase after  
VCC has exceeded the switch-on level of the  
Undervoltage Lockout. Therefore VCC changes  
between the switch-on and switch-off levels of the  
Undervoltage Lockout with a saw tooth shape (see  
Figure 19).  
4.4V  
1
S1  
G2  
Voltage  
Reference  
C3  
5.4V  
V
VCC  
Auto  
Restart  
Mode  
&
G5  
4.8V  
FB  
C4  
15V  
Control Unit  
8.5V  
Figure 20  
Auto Restart Mode  
IVCCStart  
t
In case of Overload or Open Loop FB exceeds 4.8V  
which will be observed by C4. At this time S1 is  
released that VSoftS can increase. If VSoftS exceeds 5.4V  
which is observed by C3 Auto Restart Mode is entered  
as both inputs of the gate G5 are high. In combining the  
FB and SoftS signals there is a blanking window  
generated which prevents the system to enter Auto  
Restart Mode due to large load jumps. This time  
window is the same as for the Active Burst Mode and  
1.05mA  
VOUT  
t
can therefore be adjusted by the external CSoftS  
.
In case of VCC undervoltage the UVLO starts a new  
startup cycle.  
Figure 19  
Signals in Latched Off Mode  
After detecting a junction temperature higher than  
140°C Latched Off Mode is entered.  
Short Optocoupler leads to VCC undervoltage as there  
is now self supply after activating the internal reference  
and bias.  
The signals coming from the temperature detection and  
VCC overvoltage detection are fed into  
blanking with a time constant of 8.0µs to ensure system  
reliability.  
a spike  
In contrast to the Latched Off Mode there is always a  
Startup Phase with switching cycles in Auto Restart  
Mode. After this Start Up Phase the conditions are  
again checked whether the failure is still present.  
Normal operation is proceeded once the failure mode  
is removed that leads to Auto Restart Mode.  
Furthermore short winding and short diode on the  
secondary side can be detected by the comparator C11  
which is in parallel to the propagation delay  
compensated current limit comparator C10. In normal  
operating mode comparator C10 keeps the maximum  
level of the CS signal at 1V. If there is a failure such as  
Version 2.0  
15  
15 May 2003  
F3  
ICE3DS01L/LG  
Electrical Characteristics  
4
Electrical Characteristics  
Note: All voltages are measured with respect to ground (Pin 8). The voltage levels are valid if other ratings are  
not violated.  
4.1  
Absolute Maximum Ratings  
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction  
of the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 7  
(VCC) is discharged before assembling the application circuit.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
500V  
22  
HV Voltage  
VHV  
-
V
VCC Supply Voltage  
FB Voltage  
VVCC  
VFB  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
-55  
-
V
6.5  
V
SoftS Voltage  
VSoftS  
VGate  
VCS  
6.5  
V
Gate Voltage  
22  
V
Internally clamped at 11.5V  
CS Voltage  
6.5  
V
Junction Temperature  
Storage Temperature  
Total Power Dissipation  
Tj  
150  
150  
0.45  
0.90  
185  
90  
°C  
°C  
W
W
K/W  
K/W  
kV  
TS  
PtotDSO8  
PtotDIP8  
RthJADSO8  
RthJADIP8  
VESD  
P-DSO-8-8, Tamb < 50°C  
P-DIP-8-6, Tamb < 50°C  
P-DSO-8-8  
-
Thermal Resistance  
Junction-Ambient  
-
-
P-DIP-8-6  
ESD Capability (incl. Pin HV)  
-
3
Human body model1)  
1)  
According to EIA/JESD22-A114-B (discharging a 100pF capacitor through a 1.5kseries resistor)  
4.2  
Operating Range  
Note: Within the operating range the IC operates as described in the functional description.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
20  
VCC Supply Voltage  
VVCC  
TjCon  
VVCCoff  
-25  
V
Junction Temperature of  
Controller  
130  
°C  
Max value limited due to thermal  
shut down of controller  
Version 2.0  
16  
15 May 2003  
F3  
ICE3DS01L/LG  
Electrical Characteristics  
4.3  
Characteristics  
4.3.1  
Supply Section  
Note: The electrical characteristics involve the spread of values guaranteed within the specified supply voltage  
and junction temperature range TJ from – 25 °C to 130 °C. Typical values represent the median values,  
which are related to 25°C. If not otherwise stated, a supply voltage of VCC = 15 V is assumed.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
170  
-1.05  
-0.88  
2
max.  
Start Up Current  
IVCCstart  
-
220  
-0.55  
-
µA  
VVCC =14V  
VVCC = 0V  
VVCC =14V  
VVCC>16V  
VCC Charge Current  
IVCCcharge1  
IVCCcharge2  
IStartLeak  
-1.60  
mA  
mA  
µA  
-
-
-
Start Up Cell Leakage Current  
20  
Supply Current with Inactive  
Gate  
IVCCsup1  
6.0  
7.5  
mA  
Supply Current with Active Gate IVCCsup2  
(CLoad=1nF)  
-
-
-
7.2  
8.7  
mA  
µA  
µA  
VSoftS = 4.4V  
IFB = 0  
Supply Current in  
Latched Off Mode  
IVCClatch  
300  
300  
-
-
IFB = 0  
ISofts = 0  
Supply Current in  
Auto Restart Mode  
with Inactive Gate  
IVCCrestart  
IFB = 0  
ISofts = 0  
Supply Current in  
Active Burst Mode  
with Inactive Gate  
IVCCburst1  
IVCCburst2  
-
-
1.1  
1.0  
1.3  
1.2  
mA  
mA  
VFB = 2.5V  
VSoftS = 4.4V  
VVCC = 9V  
VFB = 2.5V  
VSoftS = 4.4V  
VCC Turn-On Threshold  
VCC Turn-Off Threshold  
VCC Turn-On/Off Hysteresis  
VVCCon  
VVCCoff  
VVCChys  
14.2  
8.0  
-
15.0  
8.5  
6.5  
15.8  
9.0  
-
V
V
V
4.3.2  
Internal Voltage Reference  
Symbol  
Parameter  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
6.63  
Trimmed Reference Voltage  
VREF  
6.37  
6.50  
V
measured at pin FB  
IFB = 0  
Version 2.0  
17  
15 May 2003  
F3  
ICE3DS01L/LG  
Electrical Characteristics  
4.3.3  
PWM Section  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
98  
102  
0.67  
0
typ.  
110  
110  
0.72  
-
max.  
Fixed Oscillator Frequency  
fOSC1  
fOSC2  
Dmax  
Dmin  
119  
117  
0.77  
-
kHz  
kHz  
Tj = 25°C  
Max. Duty Cycle  
Min. Duty Cycle  
VFB < 0.3V  
PWM-OP Gain  
AV  
3.5  
-
3.7  
0.85  
0.7  
-
3.9  
-
Max. Level of Voltage Ramp  
VMax-Ramp  
V
V
V
VFB Operating Range Min Level VFBmin  
VFB Operating Range Max level VFBmax  
0.3  
-
-
4.75  
CS=1V limited by  
Comparator C41)  
Feedback Pull-Up Resistor  
RFB  
16  
39  
20  
50  
27  
62  
kΩ  
kΩ  
Soft-Start Pull-Up Resistor  
RSoftS  
1)  
Design characteristic (not meant for production testing)  
4.3.4  
Parameter  
Control Unit  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Deactivation Level for SoftS  
Comparator C7 by C2  
VSoftSC2  
VSoftSclmp  
VSoftSC3  
3.85  
4.00  
4.15  
V
V
V
VFB > 5V  
VFB < 4.5V  
VFB > 5V  
Clamped VSoftS Voltage during  
Normal Operating Mode  
4.23  
5.20  
4.40  
5.40  
4.57  
5.60  
Activation Limit of  
Comparator C3  
SoftS Startup Current  
ISoftSstart  
VFBC6  
-
1.9  
-
mA  
V
VSoftS = 0V  
Active Burst Mode Level for  
Comparator C6  
1.23  
1.32  
1.40  
VSoftS > 5.6V  
Active Burst Mode Level for  
Comparator C5  
VFBC5  
VFBC4  
3.85  
4.62  
4.00  
4.80  
4.15  
4.98  
V
V
After Active Burst  
Mode is entered  
Over Load & Open Loop  
Detection Limit for  
Comparator C4  
VSoftS > 5.6V  
Overvoltage Detection Limit  
Latched Thermal Shutdown  
Spike Blanking  
VVCCOVP  
TjSD  
20  
130  
-
21  
22  
150  
-
V
VFB > 5V  
140  
8.0  
6.0  
°C  
µs  
V
guaranteed by design  
tSpike  
Power Down Reset for Latched VVCCPD  
Mode  
4.0  
7.5  
After Latched Off Mode  
is entered  
Note: The trend of all the voltage levels in the Control Unit is the same regarding the deviation except VVCCOVP  
and VVCCPD  
Version 2.0  
18  
15 May 2003  
F3  
ICE3DS01L/LG  
Electrical Characteristics  
4.3.5  
Current Limiting  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Peak Current Limitation (incl.  
Propagation Delay Time)  
(see Figure 7)  
Vcsth  
0.950  
1.000  
1.050  
V
dVsense / dt = 0.6V/µs  
Over Current Detection for  
Latched Off Mode  
VCS1  
1.570  
0.232  
1.66  
1.764  
0.282  
V
V
Peak Current Limitation during VCS2  
Active Burst Mode  
0.257  
VFB < 1.2V  
Leading Edge Blanking  
tLEB  
-
-
220  
190  
-
-
ns  
ns  
VSoftS = 4.4V  
CS Spike Blanking for  
Comparator C11  
tCSspike  
CS Input Bias Current  
ICSbias  
-1.0  
-0.2  
0
µA  
VCS =0V  
4.3.6  
Driver Section  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
GATE Low Voltage  
VGATElow  
-
-
1.2  
V
V
VVCC = 5 V  
IGate = 5 mA  
-
-
1.5  
VVCC = 5 V  
IGate = 20 mA  
-
0.8  
-
V
V
V
V
IGate = 0 A  
-
1.6  
2.0  
IGate = 20 mA  
IGate = -20 mA  
-0.2  
-
0.2  
-
-
GATE High Voltage  
VGATEhigh  
11.5  
VVCC = 20V  
CL = 4.7nF  
-
10.5  
7.5  
150  
55  
-
-
V
VVCC = 11V  
CL = 4.7nF  
-
-
V
VVCC = VVCCoff + 0.2V  
CL = 4.7nF  
GATE Rise Time  
trise  
-
-
ns  
ns  
A
VGate = 2V ...9V1)  
CL = 4.7nF  
(incl. Gate Rising Slope)  
GATE Fall Time  
tfall  
-
-
VGate = 9V ...2V1)  
CL = 4.7nF  
GATE Current, Peak,  
Rising Edge  
IGATE  
IGATE  
-0.5  
-
-
CL = 4.7nF2)  
GATE Current, Peak,  
Falling Edge  
-
0.7  
A
CL = 4.7nF2)  
1)  
Transient reference value  
2)  
Design characteristic (not meant for production testing)  
Version 2.0  
19  
15 May 2003  
F3  
ICE3DS01L/LG  
Typical Performance Characteristics  
5
Typical Performance Characteristics  
190  
186  
182  
178  
174  
170  
166  
162  
158  
154  
150  
8,0  
7,5  
7,0  
6,5  
6,0  
5,5  
5,0  
4,5  
4,0  
3,5  
3,0  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 21  
Start Up Current IVCCstart  
Figure 24  
VCC Supply Current IVCCsup1  
1,5  
1,4  
1,3  
1,2  
1,1  
1,0  
0,9  
0,8  
0,7  
0,6  
0,5  
9,0  
8,5  
8,0  
7,5  
7,0  
6,5  
6,0  
5,5  
5,0  
4,5  
4,0  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 22  
VCC Charge Current IVCCcharge1  
Figure 25  
VCC Supply Current IVCCsup2  
1,5  
1,4  
1,3  
1,2  
1,1  
1,0  
0,9  
0,8  
0,7  
0,6  
0,5  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 23  
VCC Charge Current IVCCcharge2  
Figure 26  
VCC Supply Current IVCClatch  
Version 2.0  
20  
15 May 2003  
F3  
ICE3DS01L/LG  
Typical Performance Characteristics  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
16,0  
15,8  
15,6  
15,4  
15,2  
15,0  
14,8  
14,6  
14,4  
14,2  
14,0  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 27  
VCC Supply Current IVCCrestart  
Figure 30  
VCC Turn-On Threshold VVCCon  
1,20  
1,17  
1,14  
1,11  
1,08  
1,05  
1,02  
0,99  
0,96  
0,93  
0,90  
9,0  
8,9  
8,8  
8,7  
8,6  
8,5  
8,4  
8,3  
8,2  
8,1  
8,0  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 28  
VCC Supply Current IVCCburst1  
Figure 31  
VCC Turn-Off Threshold VVCCoff  
1,20  
1,17  
1,14  
1,11  
1,08  
1,05  
1,02  
0,99  
0,96  
0,93  
0,90  
7,0  
6,9  
6,8  
6,7  
6,6  
6,5  
6,4  
6,3  
6,2  
6,1  
6,0  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 29  
VCC Supply Current IVCCburst2  
Figure 32  
VCC Turn-On/Off Hysteresis VVCChys  
Version 2.0  
21  
15 May 2003  
F3  
ICE3DS01L/LG  
Typical Performance Characteristics  
6,60  
6,58  
6,56  
6,54  
6,52  
6,50  
6,48  
6,46  
6,44  
6,42  
6,40  
3,90  
3,86  
3,82  
3,78  
3,74  
3,70  
3,66  
3,62  
3,58  
3,54  
3,50  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 33  
Reference Voltage VREF  
Figure 36  
PWM-OP Gain AV  
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
1,10  
1,05  
1,00  
0,95  
0,90  
0,85  
0,80  
0,75  
0,70  
0,65  
0,60  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 34  
Oscillator Frequency fOSC1  
Figure 37  
Max. Level Voltage Ramp VMax-Ramp  
0,750  
0,745  
0,740  
0,735  
0,730  
0,725  
0,720  
0,715  
0,710  
0,705  
0,700  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 35  
Max. Duty Cycle Dmax  
Figure 38  
Feedback Pull-Up Resistor RFB  
Version 2.0  
22  
15 May 2003  
F3  
ICE3DS01L/LG  
Typical Performance Characteristics  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
5,65  
5,60  
5,55  
5,50  
5,45  
5,40  
5,35  
5,30  
5,25  
5,20  
5,15  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 39  
Soft-Start Pull-Up Resistor RSoftS  
Figure 42  
Threshold Comparator C3 VSoftSC3  
4,20  
4,16  
4,12  
4,08  
4,04  
4,00  
3,96  
3,92  
3,88  
3,84  
3,80  
1,360  
1,352  
1,344  
1,336  
1,328  
1,320  
1,312  
1,304  
1,296  
1,288  
1,280  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 40  
Threshold Comparator C2 VSoftSC2  
Figure 43  
Threshold Comparator C6 VFBC6  
4,60  
4,56  
4,52  
4,48  
4,44  
4,40  
4,36  
4,32  
4,28  
4,24  
4,20  
4,20  
4,16  
4,12  
4,08  
4,04  
4,00  
3,96  
3,92  
3,88  
3,84  
3,80  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 41  
Clamped SoftS Voltage VSoftSclmp  
Figure 44  
Threshold Comparator C5 VFBC5  
Version 2.0  
23  
15 May 2003  
F3  
ICE3DS01L/LG  
Typical Performance Characteristics  
5,00  
4,96  
4,92  
4,88  
4,84  
4,80  
4,76  
4,72  
4,68  
4,64  
4,60  
1,05  
1,04  
1,03  
1,02  
1,01  
1,00  
0,99  
0,98  
0,97  
0,96  
0,95  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Peak Current Limitation Vcsth  
Junction Temperature [°C]  
Figure 45  
Threshold Comparator C4 VFBC4  
Figure 48  
22,0  
21,8  
21,6  
21,4  
21,2  
21,0  
20,8  
20,6  
20,4  
20,2  
20,0  
1,700  
1,688  
1,676  
1,664  
1,652  
1,640  
1,628  
1,616  
1,604  
1,592  
1,580  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 46  
Overvoltage Detection Limit VVCCOVP  
Figure 49  
Over Current Detection VCS1  
8,0  
7,6  
7,2  
6,8  
6,4  
6,0  
5,6  
5,2  
4,8  
4,4  
4,0  
0,270  
0,267  
0,264  
0,261  
0,258  
0,255  
0,252  
0,249  
0,246  
0,243  
0,240  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 47  
Threshold Power Down Reset VVCCPD  
Figure 50  
Peak Current Limitation VCS2  
Version 2.0  
24  
15 May 2003  
F3  
ICE3DS01L/LG  
Typical Performance Characteristics  
400  
370  
340  
310  
280  
250  
220  
190  
160  
130  
100  
12,0  
11,7  
11,4  
11,1  
10,8  
10,5  
10,2  
9,9  
9,6  
9,3  
9,0  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 51  
Leading Edge Blanking tLEB  
Figure 54  
GATE High Voltage VGATEhigh  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 52  
CS Spike Blanking for C11 tCSspike  
Figure 55  
GATE Rise Time trise  
1,3  
1,2  
1,1  
1,0  
0,9  
0,8  
0,7  
0,6  
0,5  
0,4  
0,3  
80  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
-25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 53  
GATE Low Voltage VGATElow  
Figure 56  
GATE Fall Time tfall  
Version 2.0  
25  
15 May 2003  
F3  
ICE3DS01L/LG  
Outline Dimension  
6
Outline Dimension  
P-DIP-8-6  
(Plastic Dual In-Line Outline)  
Figure 57  
P-DSO-8-8  
(Plastic Dual Small Outline)  
Figure 58  
Dimensions in mm  
Version 2.0  
26  
15 May 2003  
Total Quality Management  
Qualität hat für uns eine umfassende  
Bedeutung. Wir wollen allen Ihren  
Ansprüchen in der bestmöglichen  
Weise gerecht werden. Es geht uns also  
nicht nur um die Produktqualität –  
unsere Anstrengungen gelten  
gleichermaßen der Lieferqualität und  
Logistik, dem Service und Support  
sowie allen sonstigen Beratungs- und  
Betreuungsleistungen.  
Quality takes on an allencompassing  
significance at Semiconductor Group.  
For us it means living up to each and  
every one of your demands in the best  
possible way. So we are not only  
concerned with product quality. We  
direct our efforts equally at quality of  
supply and logistics, service and  
support, as well as all the other ways in  
which we advise and attend to you.  
Dazu gehört eine bestimmte  
Part of this is the very special attitude of  
our staff. Total Quality in thought and  
deed, towards co-workers, suppliers  
and you, our customer. Our guideline is  
“do everything with zero defects”, in an  
open manner that is demonstrated  
beyond your immediate workplace, and  
to constantly improve.  
Geisteshaltung unserer Mitarbeiter.  
Total Quality im Denken und Handeln  
gegenüber Kollegen, Lieferanten und  
Ihnen, unserem Kunden. Unsere  
Leitlinie ist jede Aufgabe mit „Null  
Fehlern“ zu lösen – in offener  
Sichtweise auch über den eigenen  
Arbeitsplatz hinaus – und uns ständig  
zu verbessern.  
Throughout the corporation we also  
think in terms of Time Optimized  
Processes (top), greater speed on our  
part to give you that decisive  
competitive edge.  
Unternehmensweit orientieren wir uns  
dabei auch an „top“ (Time Optimized  
Processes), um Ihnen durch größere  
Schnelligkeit den entscheidenden  
Wettbewerbsvorsprung zu verschaffen.  
Give us the chance to prove the best of  
performance through the best of quality  
– you will be convinced.  
Geben Sie uns die Chance, hohe  
Leistung durch umfassende Qualität zu  
beweisen.  
Wir werden Sie überzeugen.  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

ICE3DS01L_05

Off-Line SMPS Current Mode Controller with integrated 500V Startup Cell
INFINEON

ICE3GS03LJG

Of f-Line SMPS Current Mode Controller wi th integrated 500V Startup Cell
INFINEON

ICE3GS03LJGXUMA1

Switching Controller, Current-mode, 147kHz Switching Freq-Max, BICMOS, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

ICE3PCS01G

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM)
INFINEON

ICE3PCS02G

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM)
INFINEON

ICE3PCS02GXUMA1

Power Factor Controller, Current-mode, 250kHz Switching Freq-Max, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

ICE3PCS03G

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM)
INFINEON

ICE3PCS03GXUMA1

Power Factor Controller, Current-mode, 250kHz Switching Freq-Max, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

ICE3PCS0XG

Infineon Solution for LED TV SMPS
INFINEON

ICE3RBR1765JG

ICE3RBR1765JG(ICE3RBRxx65JG 系列)是采用 DSO-16/12 封装的 ICE3RBRxx65Jx 的新成员。出色的性能包括 BICMOS 技术,有源突发模式,内置频率抖动,软栅极驱动,传播延迟补偿,内置软启动时间,内置消隐时间和可延长消隐时间,用于过载保护,外部自动重启启用功能等。 CoolSET™  650 V 带有内置启动单元,雪崩能力强
INFINEON

ICE3RBR1765JZ

离线 SMPS 电流模式控制器 IC 配备集成 650V CoolMOS™ 和 启动单元 DIP-7 封装。它具有更坚固的设计,可在 -40°C 的温度下工作。出色的性能包括 BICMOS 技术,有源突发模式,内置频率抖动,软栅极驱动,传播延迟补偿,内置软启动时间,内置消隐时间和可延长消隐时间,用于过载保护,外部自动重启启用功能。 适配器、充电器、蓝光、DVD 播放器, 机顶盒, 数码相框以及辅助电源适用于 服务器, 电脑、打印机, 电视、 家庭影院/音响系统, 白色家电 等.
INFINEON

ICE3RBR4765JG

ICE3RBR4765JG(ICE3RBRxx65JG 系列)采用 DSO-16/12 封装的 ICE3BRxx65J 进行了改进。它具有更坚固的设计,可在 -40°C 的温度下工作。出色的性能包括 BICMOS 技术,有源突发模式,内置频率抖动,软栅极驱动,传播延迟补偿,内置软启动时间,内置消隐时间和可延长消隐时间,用于过载保护,外部自动重启启用功能等。    
INFINEON