ICE3PCS02G [INFINEON]

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM); 单机功率因数校正( PFC )控制器在连续导通模式( CCM )
ICE3PCS02G
型号: ICE3PCS02G
厂家: Infineon    Infineon
描述:

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM)
单机功率因数校正( PFC )控制器在连续导通模式( CCM )

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 功率因数校正 光电二极管
文件: 总20页 (文件大小:438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Version 2.0, 5 May 2010  
CCM-PFC  
ICE3PCS02G  
Standalone Power Factor  
Correction (PFC) Controller in  
Continuous Conduction Mode  
(CCM)  
Power Management & Supply  
CCM-PFC  
Revision History:  
Datasheet  
Edition 2010-05-05  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© Infineon Technologies AG 05/05/10.  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
CCM-PFC  
ICE3PCS02G  
Standalone Power Factor Correction  
(PFC) Controller in Continuous  
Conduction Mode (CCM)  
Product Highlights  
High efficiency over the whole load range  
Lowest count of external components  
Accurate and adjustable switching frequency  
Integrated digital voltage loop compensation  
Fast output dynamic response during load jump  
External synchronization  
ICE3PCS02G  
PG-DSO-8  
Low peak current limitation  
Features  
Description  
Continuous current operation mode PFC  
Wide input range of Vcc up to 25V  
The ICE3PCS02G is a 8-pins wide input range controller  
IC for active power factor correction converters. It is de-  
Enhanced dynamic response without input current signed for converters in boost topology, and requires few  
distortion  
external components. Its power supply is recommended to  
External current loop compensation for greater be provided by an external auxiliary supply which will  
user flexibility  
switch on and off the IC.  
Open loop protection  
Second over bulk voltage protection  
Maximum duty cycle of 95% (typical)  
DBYP  
DB  
LBoost  
RGATE  
RBVS  
RBVS 4  
1
Line  
Filter  
CB  
90 ~ 270 Vac  
CE  
RGS  
RBVS  
RBVS 5  
2
3
RSHUNT  
RBVS  
RBVS 6  
RCS  
ISENSE  
GND  
GATE  
VSENSE  
OVP  
FREQ  
ICOMP VCC  
VCC  
RFREQ  
CVCC  
CICOMP  
Type  
Package  
ICE3PCS02G  
PG-DSO-8  
Version 2.0  
3
5 May 2010  
CCM-PFC  
ICE3PCS02G  
1
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
1.1  
1.2  
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Frequency Setting and External Synchronization . . . . . . . . . . . . . . . . . . . . .8  
Frequency Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
External Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Voltage Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Notch Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Voltage Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Average Current Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Complete Current Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Current Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
PWM Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
System Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Peak Current Limit (PCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Open Loop Protection (OLP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
First Over-Voltage Protection (OVP1) . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Second Over Voltage Protection (OVP2) . . . . . . . . . . . . . . . . . . . . . . . .12  
Output Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Protection Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.1  
3.2  
3.3  
3.4  
3.4.1  
3.4.2  
3.5  
3.5.1  
3.5.2  
3.6  
3.6.1  
3.6.2  
3.6.3  
3.7  
3.8  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.9  
3.10  
4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Variable Frequency Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
PWM Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
External Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
System Protection Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Current Loop Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Voltage Loop Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Driver Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Gate Drive Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.9  
5
Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Notes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Version 2.0  
4
5 May 2010  
CCM-PFC  
Preliminary Datasheet ICE3PCS02G  
Pin Configuration and Functionality  
1
Pin Configuration and Functionality  
ratings. Therefore a series resistor (RCS) of around 50Ω  
1.1  
Pin Configuration  
is recommended in order to limit this current into the IC.  
GND (IC Ground)  
Pin Symbol  
Function  
The ground potential of the IC.  
1
2
3
4
5
6
7
8
ISENSE  
GND  
Current Sense Input  
ICOMP (Current Loop Compensation)  
IC Ground  
Low pass filter and compensation of the current control  
loop. The capacitor which is connected at this pin  
integrates the output current of OTA6 and averages the  
current sense signal.  
ICOMP  
FREQ  
OVP  
Current Loop Compensation  
Switching Frequency Setting  
Over Voltage Protection  
VSENSE Bulk Voltage Sense  
FREQ (Frequency Setting)  
This pin allows the setting of the operating switching  
frequency by connecting a resistor to ground. The  
frequency range is from 21kHz to 250kHz.  
VCC  
IC Supply Voltage  
Gate Drive  
GATE  
OVP  
A resistive voltage divider from bulk voltage to GND  
can set the over voltage protection threshold. This  
additional OVP is able to ensure system safety  
operation.  
Package PG-DSO-8  
VSENSE  
VSENSE is connected via a resistive divider to the bulk  
voltage. The voltage of VSENSE relative to GND  
represents the output voltage. The bulk voltage is  
monitored for voltage regulation, over voltage  
protection and open loop protection.  
ISENSE  
GATE  
VCC  
GND  
ICOMP  
FREQ  
P-DSO-8  
VSENSE  
OVP  
VCC  
VCC provides the power supply of the ground related  
to IC section.  
GATE  
GATE is the output for driving the PFC MOSFET.Its  
gate drive voltage is clamped at 15V (typically).  
Figure 1 Pin Configuration (top view)  
1.2  
Pin Functionality  
ISENSE (Current Sense Input)  
The ISENSE Pin senses the voltage drop at the  
external sense resistor (RSHUNT). This is the input signal  
for the average current regulation in the current loop. It  
is also fed to the peak current limitation block.  
During power up time, high inrush currents cause high  
negative voltage drop at RSHUNT, driving currents out of  
pin 1 which could be beyond the absolute maximum  
Version 2.0  
5
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Block Diagram  
2
Block Diagram  
A functional block diagram is given in Figure 2. Note that the figure only shows the brief functional block and does  
not represent the implementation of the IC.  
Figure 2 Block Diagram  
Version 2.0  
6
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Block Diagram  
Table 1  
Bill Of Material  
Component  
Rectifier Bridge  
CE  
LBoost  
QB  
DBYP  
DB  
CB  
Rshunt  
Cisense  
RCS  
Parameters  
GBU8J  
100nF/X2/275V  
750uH  
IPP60R199CP  
MUR360  
IDT04S60C  
220µF/450V  
60mΩ  
1nF  
50Ω  
RGATE  
RFREQ  
CICOMP  
RBVS1...2  
RBVS3  
RBVS4...5  
RBVS6  
3.3Ω  
67kΩ  
4.7nF/25V  
1.5MΩ  
18.85kΩ  
2MΩ  
23kΩ  
Version 2.0  
7
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Functional Description  
3
Functional  
Description  
VBULK  
100%  
95%  
20%  
3.1  
General  
VCC  
The ICE3PCS02G is a 8-pins control IC for power  
factor correction converters. It is suitable for wide range  
line input applications from 85 to 265 VAC with overall  
efficiency above 90%. The IC supports converters in  
boost topology and it operates in continuous  
conduction mode (CCM) with average current control.  
The IC operates with a cascaded control; the inner  
current loop and the outer voltage loop. The inner  
current loop of the IC controls the sinusoidal profile for  
the average input current. It uses the dependency of  
the PWM duty cycle on the line input voltage to  
determine the corresponding input current. This means  
the average input current follows the input voltage as  
long as the device operates in CCM. Under light load  
condition, depending on the choke inductance, the  
system may enter into discontinuous conduction mode  
(DCM) resulting in a higher harmonics but still meeting  
the Class D requirement of IEC 1000-3-2.  
26V  
12V  
IVCC  
<6.4mA  
with 1nF external cap. at gate drive pin  
3.5mA  
1.4mA  
Standby mode  
(VVSENSE < 0.5V)  
Bulk voltage rises to 95% rated value  
within 200ms  
Normal  
UVLO  
operation  
Figure 3 State of Operation respect to VCC  
3.3  
Start-up  
During power up when the Vout is less than 95% of the  
rated level, internal voltage loop output increases from  
initial voltage under the soft-start control. This results in  
a controlled linear increase of the input current from 0A  
thus reducing the stress in the external components.  
Once Vout has reached 95% of the rated level, the soft-  
start control is released to achieve good regulation and  
dynamic response in normal operation.  
The outer voltage loop controls the output bulk voltage,  
integrated digitally within the IC. Depending on the load  
condition, internal PI compensation output is converted  
to an appropriate DC voltage which controls the  
amplitude of the average input current.  
The IC is equipped with various protection features to  
ensure safe operating condition for both the system  
and device.  
3.4  
Frequency Setting and External  
Synchronization  
3.2  
Power Supply  
The IC can provide external switching frequency  
setting by an external resistor RFREQ and the online  
synchronization by external pulse signal at FREQ pin.  
An internal under voltage lockout (UVLO) block  
monitors the VCC power supply. As soon as it exceeds  
12.0V and voltage at pin 6 (VSENSE) >0.5V, the IC  
begins operating its gate drive and performs its startup  
as shown in Figure 3.  
3.4.1  
Frequency Setting  
If VCC drops below 11V, the IC is off. The IC will then  
be consuming typically 1.4mA, whereas consuming  
6.4mA during normal operation  
The switching frequency of the PFC converter can be  
set with an external resistor RFREQ at FREQ pin as  
shown Figure 2. The pin voltage at VFREQ is typical 1V.  
The corresponding capacitor for the oscillator is  
integrated in the device and the RFREQ/frequency is  
given in Figure 4. The recommended operating  
frequency range is from 21kHz to 250kHz. As an  
example, a RFREQ of 67kat pin FREQ will set a  
switching frequency FSW of 65kHz typically.  
The IC can be turned off and forced into standby mode  
by pulling down the voltage at pin 6 (VSENSE) below  
0.5V.  
Version 2.0  
8
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Functional Description  
3.5  
Voltage Loop  
Frequency vs Resistance  
The voltage loop is the outer loop of the cascaded  
control scheme which controls the PFC output bus  
voltage VOUT. This loop is closed by the feedback  
sensing voltage at VSENSE which is a resistive divider  
tapping from VOUT. The pin VSENSE is the input of  
sigma-delta ADC which has an internal reference of  
2.5V and sampling rate of 3.55kHz (typical). The  
voltage loop compensation is integrated digitally for  
better dynamic response and saving design effort.  
Figure 6 shows the important blocks of this voltage  
loop.  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
Resistance  
/kohm  
Frequency  
/kHz  
Resistance  
/kohm  
Frequency  
/kHz  
40  
36  
15  
17  
20  
30  
40  
50  
60  
70  
80  
90  
278  
249  
211  
141  
106  
86  
74  
62  
55  
49  
110  
120  
130  
140  
150  
169  
191  
200  
210  
221  
34  
31.5  
29.5  
26.2  
25  
23  
21.2  
20.2  
60  
100  
43  
232  
19.2  
40  
20  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250  
Resistance/kohm  
LBoost  
DB  
RBVS1  
Figure 4  
3.4.2  
Frequency Versus RFREQ  
External Synchronization  
QB  
Rectified  
RGATE  
RBVS2  
Input Voltage  
CB  
The switching frequency can be synchronized to the  
external pulse signal after 6 external pulses delay once  
the voltage at the FREQ pin is higher than 2.5V. The  
synchronization means two points. Firstly, the PFC  
switching frequency is tracking the external pulse  
signal frequency. Secondly, the falling edge of the PFC  
signal is triggered by the rising edge of the external  
pulse signal. Figure 5 shows the blocks of frequency  
setting and synchronization. The external RSYN  
combined with RFREQ and the external diode DSYN can  
ensure pin voltage to be kept between 1.0V (clamped  
externally) and 5V (maximum pin voltage). If the  
external pulse signal has disappeared longer than  
108µs (typical) the switching frequency will be  
synchronized to internal clock set by the external  
RBVS3  
Gate Driver  
Current Loop  
+
PWM Generation  
GATE  
VIN  
Sigma-  
delta  
ADC  
Nonlinear  
Gain  
Notch  
Filter  
PI Filter  
Av(IIN  
)
2.5V  
VSENSE  
t
500 ns  
OLP  
OVP  
C2a  
C1a  
C1b  
0.5V  
2.5V  
2.7V  
OVP  
Q
R
resistor RFREQ  
.
Q
S
Syn. clock  
IOSC  
1. 0V  
Figure 6  
3.5.1  
Voltage Loop  
Notch Filter  
DSYN  
OTA7  
In the PFC converter, an averaged current through the  
output diode of rectified sine waveform charges the  
output capacitor and results in a ripple voltage at the  
output capacitor with a frequency two times of the line  
frequency. In this digital PFC, a notch filter is used to  
remove the ripple of the sensed output voltage while  
keeping the rest of the signal almost uninfluenced. In  
this way, an accurate and fast output voltage regulation  
without influence of the output voltage ripple is  
achieved.  
RSYN  
C9  
SYN  
R
FREQ  
FREQ  
2.5V/1.25V  
Figure 5  
Frequency Setting and  
Synchronization  
3.5.2  
Voltage Loop Compensation  
The Proportion-Integration (PI) compensation of the  
voltage loop is integrated digitally inside the IC. The  
digital data out of the PI compensator is converted to  
analog voltage for current loop control.  
Version 2.0  
9
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Functional Description  
The nonlinear gain block controls the amplitude of the  
regulated inductor current. The input of this block is the  
LBoost  
DB  
output voltage of integrated PI compensator. This block  
has been designed to reduce the voltage loop  
dependency on the input voltage in order to support the  
wide input voltage range (85VAC-265VAC). Figure 7  
gives the relative output power transfer curve versus  
the digital word from the integrated PI compensator.  
The output power at the input voltage of 85VAC and  
maximum digital word of 256 from PI compensator is  
set as the normative power and the power curves at  
different input voltage present the relative power to the  
normative one.  
QB  
Rectified  
RGATE  
Input Voltage  
CB  
Rshunt  
GATE  
RCS  
Current Loop  
voltage  
proportional to  
averaged  
Gate  
Inductor current  
Driver  
ISENSE  
ICOMP  
Current Loop  
Compensation  
PWM  
power at 85V  
power at 265V  
Comparator  
Q
R
S
10.00000  
1.00000  
0.10000  
0.01000  
0.00100  
0.00010  
0.00001  
C10  
OTA6  
5.0mS  
PWM Logic  
CICOMP  
+/-50uA (linear range)  
S2  
5V  
Input From  
Nonlinear  
Gain  
Voltage Loop  
Fault  
Figure 8  
3.6.2  
Complete System Current Loop  
Current Loop Compensation  
0
18  
37  
55  
73  
91 110 128 146 165 183 201 219 238 256  
The compensation of the current loop is implemented  
at the ICOMP pin. This is OTA6 output and a capacitor  
CICOMP has to be installed at this node to ground (see  
Figure 8). Under normal mode of the operation, this pin  
gives a voltage which is proportional to the averaged  
inductor current. This pin is internally shorted to 5V in  
the event of standby mode.  
PI digital output  
Figure 7  
Power Transfer Curve  
3.6  
Average Current Control  
The choke current is sensed through the voltage  
across the shunt resistor and averaged by the ICOMP  
pin capacitor so that the IC can control the choke  
current to track the instant variation of the input voltage.  
3.6.3  
Pulse Width Modulation (PWM)  
The IC employs an average current control scheme in  
continuous mode (CCM) to achieve the power factor  
correction. Assuming the loop voltage is working and  
output voltage is kept constant, the off duty cycle DOFF  
for a CCM PFC system is given as:  
3.6.1  
Complete Current Loop  
The complete system current loop is shown in Figure 8.  
It consists of the current loop block which averages the  
voltage at ISENSE pin resulted from the inductor  
current flowing across Rshunt. The averaged waveform  
is compared with an internal ramp in the ramp  
generator and PWM block. Once the ramp crosses the  
average waveform, the comparator C10 turns on the  
driver stage through the PWM logic block. The  
Nonlinear Gain block defines the amplitude of the  
inductor current. The following sections describe the  
functionality of each individual blocks.  
DOFF=VIN/VOUT  
From the above equation, DOFF is proportional to VIN.  
The objective of the current loop is to regulate the  
average inductor current such that it is proportional to  
the off duty cycle DOFF, and thus to the input voltage  
VIN. Figure 9 shows the scheme to achieve the  
objective.  
Version 2.0  
10  
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Functional Description  
immediately and maintained in off state for the current  
PWM cycle. The signal TOFFMIN resets (highest priority,  
overriding other input signals) both the current limit  
latch and the PWM on latch as illustrated in Figure 11.  
Ramp Profile  
Ave(Iin) at ICOMP  
Current  
Toff_min  
limit Latch  
600ns  
R
S
Q
Q
High = turn on Gate  
Peak current limit  
Gate  
Drive  
t
PWM on  
Latch  
R
Q
Current loop  
PWM on signal  
Figure 9  
Average Current Control in CCM  
S
Q
The PWM is performed by the intersection of a ramp  
signal with the averaged inductor current at pin 3  
(ICOMP). The PWM cycles starts with the Gate turn off  
for a duration of TOFFMIN (600ns typ.) and the ramp is  
kept discharged. The ramp is allowed to rise after the  
TOFFMIN expires. The off time of the boost transistor  
ends at the intersection of the ramp signal and the  
averaged current waveform. This results in the  
proportional relationship between the average current  
Figure 11  
PWM LOGIC  
3.8  
System Protection  
The IC provides numerous protection features in order  
to ensure the PFC system in safe operation.  
and the off duty cycle DOFF  
.
Figure 10 shows the timing diagrams of the TOFFMIN and  
3.8.1  
Peak Current Limit (PCL)  
the gate waveforms.  
The IC provides a cycle by cycle peak current limitation  
(PCL). It is active when the voltage at pin 1 (ISENSE)  
reaches -0.4V. This voltage is amplified by a factor of -  
2.5 and connected to comparator with a reference  
voltage of 1.0V as shown in Figure 12. A deglitcher with  
200ns after the comparator improves noise immunity to  
the activation of this protection.  
T
off_min 600 ns  
Clock  
PWM Cycle  
(1 )  
VC,ref  
Vramp  
Full-wave  
rectifier  
Ramp  
Released  
ISENSE  
RCS  
GATE  
G=-2.5  
200ns  
AO2  
PCL  
t
Rshunt  
Iin  
C5  
(1)  
Vc,ref is a function of VICOMP  
1V  
Figure 10  
Ramp and PWM waveforms  
SGND  
3.7  
PWM Logic  
The PWM logic block prioritizes the control input signal  
and generates the final logic signal to turn on the driver  
stage. The speed of the logic gates in this block,  
together with the width of the reset pulse TOFFMIN, are  
designed to meet a maximum duty cycle DMAX of 95%  
at the GATE output under 65kHz of operation.  
Figure 12 Peak Current Limit (PCL)  
3.8.2 Open Loop Protection (OLP)  
Whenever VSENSE voltage falls below 0.5V, or  
equivalently VOUT falls below 20% of its rated value, it  
indicates an open loop condition (i.e. VSENSE pin not  
connected) or an insufficient input voltage VIN for  
normal operation. It is implemented using comparator  
In case of high input currents which results in Peak  
Current Limitation, the GATE will be turned off  
Version 2.0  
11  
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Functional Description  
C2a with a threshold of 0.5V as shown in the IC block  
diagram in Figure 6.  
VCC  
Reg (17V)  
3.8.3  
First Over-Voltage Protection (OVP1)  
Whenever VOUT exceeds the rated value by 8%, the  
over-voltage protection OVP1 is active as shown in  
Figure 6. This is implemented by sensing the voltage at  
VSENSE pin with respect to a reference voltage of  
2.7V. A VSENSE voltage higher than 2.7V will  
immediately turn off the gate, thereby preventing  
damage to bus capacitor. After bulk voltage falls below  
the rated value, gate drive resumes switching again.  
Gate Driver  
PWM Logic  
HIGH to  
turn on  
LV  
Z1  
External  
MOS  
GATE  
3.8.4  
Second Over Voltage Protection (OVP2)  
* LV: Level Shift  
The second OVP is provided in case that the first one  
fails due to the aging or incorrect resistors connected to  
the VSENSE pin. This is implemented by sensing the  
voltage at pin OVP with respect to a reference voltage  
of 2.5V. When voltage at OVP pin is higher than 2.5V,  
the IC will immediately turn off the gate, thereby  
preventing damage to bus capacitor.  
Figure 13 Gate Driver  
When the bulk voltage drops out of the hysteresis the  
IC will begin auto soft-start.  
In normal operation the trigger level of second OVP  
should be designed higher than the first OVP. However  
in the condition of mains transient overshoot the bulk  
voltage may be pulled up to the peak value of mains  
that is higher than the threshold of OVP1 and OVP2. In  
this case the OVP1 and OVP2 are triggered in the  
same time the IC will shut down the gate drive until bulk  
voltage falls out of the two protection hysteresis, then  
resume the gate drive again.  
3.9  
Output Gate Driver  
The output gate driver is a fast totem pole gate drive. It  
has an in-built cross conduction currents protection and  
a Zener diode Z1 (see Figure 13) to protect the external  
transistor switch against undesirable over voltages.  
The maximum voltage at pin 8 (GATE) is typically  
clamped at 15V.  
The output is active HIGH and at VCC voltages below  
the under voltage lockout threshold VCCUVLO, the gate  
drive is internally pull low to maintain the off state.  
Version 2.0  
12  
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Functional Description  
3.10  
Protection Function  
Description of Fault  
Fault-Type Min. Duration Consequence  
of Effect  
Voltage at Pin ISENSE <  
-400mV  
PCL  
200 ns  
Gate Driver is turned off immediately during  
current switching cycle  
Voltage at Pin VSENSE < 0.5V OLP  
1 µs  
Power down. Soft-restart after VSENSE voltage  
> 0.5V  
Voltage at Pin VSENSE >  
108% of rated level  
OVP1  
12 µs  
12 µs  
Gate Driver is turned off until VSENSE voltage <  
2.5V.  
Voltage at Pin OVP > 2.5V and OVP1 and  
Voltage at Pin VSENSE >  
108% of rated level  
Gate Driver is turned off until bulk voltage drops  
out of both OVP hysteresis  
OVP2  
Voltage at Pin OVP > 2.5V  
OVP2  
(auto-  
restart  
mode)  
12 µs  
Gate Driver is turned off. Soft-restart after OVP  
voltage < 2.3V  
Version 2.0  
13  
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Electrical Characteristics  
4
Electrical Characteristics  
All voltages are measured with respect to ground (pin 2). The voltage levels are valid if other ratings are not  
violated.  
4.1  
Absolute Maximum Ratings  
Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the  
integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 7 (VCC) is  
discharged before assembling the application circuit.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
-0.3  
-0.3  
Max.  
26  
VCC Supply Voltage  
GATE Voltage  
VVCC  
V
VGATE  
17  
V
Clamped at 15V if  
driven internally.  
1)  
ISENSE Voltage  
ISENSE Current  
VSENSE Voltage  
VSENSE Current  
ICOMP Voltage  
VISENSE  
IISENSE  
VVSENSE  
IVSENSE  
VICOMP  
VFREQ  
VOVP  
-20  
-1  
5.3  
1
V
mA  
V
-0.3  
-1  
5.3  
1
mA  
V
-0.3  
-0.3  
-0.3  
-40  
-55  
5.3  
5.3  
5.3  
150  
150  
185  
260  
2
FREQ Voltage  
V
OVP Voltage  
V
Junction Temperature  
Storage Temperature  
Thermal Resistance  
Soldering Temperature  
TJ  
°C  
°C  
TA,STO  
RTHJA  
TSLD  
K/W Junction to Air  
°C Wave Soldering2)  
kV Human Body Model3)  
ESD Capability  
VESD  
1)  
2)  
3)  
Absolute ISENSE current should not be exceeded  
According to JESD22A111  
According to EIA/JESD22-A114-B (discharging an 100 pF capacitor through an 1.5kseries resistor)  
Version 2.0  
14  
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Electrical Characteristics  
4.2  
Operating Range  
Note: Within the operating range the IC operates as described in the functional description.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
VVCC,OFF  
-25  
Max.  
25  
VCC Supply Voltage @ 25°C  
Junction Temperature  
VVCC  
TJ  
V
TJ=25°C  
125  
250  
°C  
PFC switching frequency  
FPFC  
21  
kHz  
4.3  
Characteristics  
Note: The electrical Characteristics involve the spread of values given within the specified supply voltage and  
junction temperature range TJ from -25 °C to 125 °C. Typical values represent the median values, which  
are related to 25 °C. If not otherwise stated, a supply voltage of VVCC = 18V, a typical switching frequency  
of ffreq=65kHz are assumed and the IC operates in active mode. Furthermore, all voltages are referring to  
GND if not otherwise mentioned.  
4.3.1  
Supply Section  
Parameter  
Symbol  
Limit Values  
Unit Note/Test Condition  
Min.  
Typ.  
Max.  
VCC Turn-On Threshold  
VCCon  
11.5  
12  
12.9  
11.9  
1.45  
V
V
V
VCC Turn-Off Threshold/  
Under Voltage Lock Out  
VCCUVLO  
VCChy  
10.5  
11.0  
1
VCC Turn-On/Off Hysteresis  
0.7  
Start Up Current  
Before VCCon  
ICCstart1  
ICCstart2  
ICCHG  
-
-
380  
1.4  
6.4  
3.5  
680 µA  
VCCon-1.2V  
Start Up Current  
Before VCCon  
2.4  
8.5  
4.7  
mA VCCon-0.2V  
mA CL= 1nF  
Operating Current with active GATE  
-
Operating Current during Standby  
ICCStdby  
-
mA VVSENSE= 0.4V  
V
ICOMP= 4V  
Version 2.0  
15  
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Electrical Characteristics  
4.3.2  
Variable Frequency Section  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
Min.  
Typ.  
Max.  
67.5 kHz R5 = 67kΩ  
Switching Frequency (Typical)  
Switching Frequency (Min.)  
Switching Frequency (Max.)  
Voltage at FREQ pin  
FSWnom  
FSWmin  
FSWmax  
VFREQ  
Dmax  
62.5  
65  
-
-
21  
250  
1
-
kHz R5 = 212kΩ  
kHz R5 = 17kΩ  
V
-
-
-
Max. Duty Cycle  
93  
95  
98.5  
%
fSW=fSWnom  
(RFRE=67k)  
4.3.3  
PWM Section  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
Min.  
Typ.  
Max.  
Min. Duty Cycle  
Min. Off Time  
DMIN  
0
%
VVSENSE= 2.5V  
ICOMP= 4.3V  
V
TOFFMIN  
310  
600  
920  
ns  
VVSENSE= 2.5V  
ISENSE= 0V  
(R5 = 67k)  
V
4.3.4  
External Synchronization  
Parameter  
Symbol  
Values  
Typ.  
2.5  
Unit Note / Test Condition  
Min.  
Max.  
150  
Detection threshold of external clock  
Synchronization range  
Vthr_EXT  
V
fEXT_range  
50  
kHz  
Synchronization frequency ratio  
fEXT:fPFC  
1:1  
propagation delay from rising edge of  
external clock to falling edge of PFC  
gate drive  
TEXT2GATE  
500  
ns  
%
fEXT=65kHz  
Allowable external duty on time  
TD_on  
10  
70  
Version 2.0  
16  
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Electrical Characteristics  
4.3.5  
System Protection Section  
Parameter  
Symbol  
Values  
Typ.  
2.7  
Unit Note / Test Condition  
Min.  
Max.  
Over Voltage Protection (OVP1) Low to VOVP1_L2H  
High  
2.65  
2.77  
V
V
108%VBULKRated  
Over Voltage Protection (OVP1) High to VOVP1_H2L  
Low  
2.45  
150  
2.5  
2.55  
270  
Over Voltage Protection (OVP1)  
Hysteresis  
VOVP1_HYS  
200  
mV  
Blanking time for OVP1  
TOVP1  
12  
µs  
Over Voltage Protection (OVP2) Low to VOVP2_L2H  
High  
2.45  
2.25  
2.5  
2.55  
2.35  
V
Over Voltage Protection (OVP2) High to IOVP2_H2L  
Low  
2.3  
V
Blanking time for OVP2  
TOVP2  
12  
0.5  
5
µs  
OVP2 mode detection threshold  
VOVP2_mode  
IOVP2_mode  
V
comparator at VBTHL pin  
Current source for OVP2 mode  
detection1)  
4
6
µA current source at VBTHL  
pin  
Peak Current Limitation (PCL) ISENSE VPCL  
Threshold  
-365  
-400  
-435 mV  
Blanking time for PCL turn_on  
TPCLon  
200  
ns  
1)  
The parameter is not subject to production test - verified by design/characterization  
4.3.6  
Current Loop Section  
Parameter  
Symbol  
Values  
Typ.  
5.0  
Unit Note / Test Condition  
Min.  
Max.  
OTA6 Transconductance Gain  
OTA6 Output Linear Range1)  
GmOTA6  
IOTA6  
3.5  
6.35  
mS At Temp = 25°C  
± 50  
5.0  
µA  
ICOMP Voltage during OLP  
VICOMPF  
4.8  
5.2  
V
VVSENSE= 0.4V  
1)  
The parameter is not subject to production test - verified by design/characterization  
4.3.7  
Voltage Loop Section  
Parameter  
Symbol  
Values  
Typ.  
2.5  
Unit Note / Test Condition  
Min.  
2.47  
0.45  
Max.  
2.53  
0.55  
Trimmed Reference Voltage  
VVSREF  
V
V
±1.2%  
Open Loop Protection (OLP) VSENSE VVS_OLP  
Threshold  
0.5  
VSENSE Input Bias Current  
IVSENSE  
-1  
-
1
µA  
VVSENSE= 2.5V  
Version 2.0  
17  
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Electrical Characteristics  
4.3.8  
Driver Section  
Parameter  
Symbol  
Values  
Typ.  
-
Unit Note / Test Condition  
Min.  
Max.  
GATE Low Voltage  
VGATEL  
-
1.2  
V
VCC =10V  
I
I
I
I
GATE = 5 mA  
-
0.4  
-
-
1.4  
-
V
V
V
V
GATE = 0 A  
-
GATE = 20 mA  
GATE = -20 mA  
-0.2  
-
0.8  
15  
GATE High Voltage  
VGATEH  
-
V
CC = 25V  
CL = 1nF  
-
12.4  
-
-
-
V
V
V
CC = 15V  
CL = 1nF  
8.0  
V
CC = VVCCoff + 0.2V  
CL = 1nF  
4.3.9  
Gate Drive Section  
Parameter  
Symbol  
Values  
Typ.  
30  
Unit Note / Test Condition  
Min.  
Max.  
GATE Rise Time  
GATE Fall Time  
tr  
tf  
-
-
ns  
ns  
V
Gate = 20% - 80%  
VGATEH CL = 1nF  
-
25  
-
V
Gate = 80% - 20%  
VGATEH CL = 1nF  
Version 2.0  
18  
5 May 2010  
CCM-PFC  
ICE3PCS02G  
Outline Dimension  
5
Outline Dimension  
PG-DSO-8 Outline Dimension  
±0.08  
0.33  
x 45˚  
1)  
4-0.2  
1.27  
C
0.1  
±0.25  
0.64  
+0.1  
-0.05  
0.41  
M
0.2 A C x8  
±0.2  
6
8
1
5
Index  
Marking  
4
A
1)  
5-0.2  
Index Marking (Chamfer)  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
Notes:  
1. You can find all of our packages, sorts of packing and others in our Infineon  
Internet Page “Products”: http://www.infineon.com/products.  
2. Dimensions in mm.  
Version 2.0  
19  
5 May 2010  
Total Quality Management  
Qualität hat für uns eine umfassende  
Bedeutung. Wir wollen allen Ihren  
Ansprüchen in der bestmöglichen  
Weise gerecht werden. Es geht uns also  
nicht nur um die Produktqualität –  
unsere Anstrengungen gelten  
gleichermaßen der Lieferqualität und  
Logistik, dem Service und Support  
sowie allen sonstigen Beratungs- und  
Betreuungsleistungen.  
Quality takes on an allencompassing  
significance at Semiconductor Group.  
For us it means living up to each and  
every one of your demands in the best  
possible way. So we are not only  
concerned with product quality. We  
direct our efforts equally at quality of  
supply and logistics, service and  
support, as well as all the other ways in  
which we advise and attend to you.  
Dazu gehört eine bestimmte  
Part of this is the very special attitude of  
our staff. Total Quality in thought and  
deed, towards co-workers, suppliers  
and you, our customer. Our guideline is  
“do everything with zero defects”, in an  
open manner that is demonstrated  
beyond your immediate workplace, and  
to constantly improve.  
Throughout the corporation we also  
think in terms of Time Optimized  
Processes (top), greater speed on our  
part to give you that decisive  
competitive edge.  
Geisteshaltung unserer Mitarbeiter.  
Total Quality im Denken und Handeln  
gegenüber Kollegen, Lieferanten und  
Ihnen, unserem Kunden. Unsere  
Leitlinie ist jede Aufgabe mit „Null  
Fehlern“ zu lösen – in offener  
Sichtweise auch über den eigenen  
Arbeitsplatz hinaus – und uns ständig  
zu verbessern.  
Unternehmensweit orientieren wir uns  
dabei auch an „top“ (Time Optimized  
Processes), um Ihnen durch größere  
Schnelligkeit den entscheidenden  
Wettbewerbsvorsprung zu verschaffen.  
Geben Sie uns die Chance, hohe  
Leistung durch umfassende Qualität zu  
beweisen.  
Give us the chance to prove the best of  
performance through the best of quality  
– you will be convinced.  
Wir werden Sie überzeugen.  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

ICE3PCS02GXUMA1

Power Factor Controller, Current-mode, 250kHz Switching Freq-Max, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

ICE3PCS03G

Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM)
INFINEON

ICE3PCS03GXUMA1

Power Factor Controller, Current-mode, 250kHz Switching Freq-Max, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

ICE3PCS0XG

Infineon Solution for LED TV SMPS
INFINEON

ICE3RBR1765JG

ICE3RBR1765JG(ICE3RBRxx65JG 系列)是采用 DSO-16/12 封装的 ICE3RBRxx65Jx 的新成员。出色的性能包括 BICMOS 技术,有源突发模式,内置频率抖动,软栅极驱动,传播延迟补偿,内置软启动时间,内置消隐时间和可延长消隐时间,用于过载保护,外部自动重启启用功能等。 CoolSET™  650 V 带有内置启动单元,雪崩能力强
INFINEON

ICE3RBR1765JZ

离线 SMPS 电流模式控制器 IC 配备集成 650V CoolMOS™ 和 启动单元 DIP-7 封装。它具有更坚固的设计,可在 -40°C 的温度下工作。出色的性能包括 BICMOS 技术,有源突发模式,内置频率抖动,软栅极驱动,传播延迟补偿,内置软启动时间,内置消隐时间和可延长消隐时间,用于过载保护,外部自动重启启用功能。 适配器、充电器、蓝光、DVD 播放器, 机顶盒, 数码相框以及辅助电源适用于 服务器, 电脑、打印机, 电视、 家庭影院/音响系统, 白色家电 等.
INFINEON

ICE3RBR4765JG

ICE3RBR4765JG(ICE3RBRxx65JG 系列)采用 DSO-16/12 封装的 ICE3BRxx65J 进行了改进。它具有更坚固的设计,可在 -40°C 的温度下工作。出色的性能包括 BICMOS 技术,有源突发模式,内置频率抖动,软栅极驱动,传播延迟补偿,内置软启动时间,内置消隐时间和可延长消隐时间,用于过载保护,外部自动重启启用功能等。    
INFINEON

ICE40

iCE40 LP/HX Family
LATTICE

ICE4000

PICDEM™ CAN-LIN 1, 2 and 3 Demonstration Boards
MICROCHIP

ICE40HX

iCE40 LP/HX Family
LATTICE

iCE40HX1K-CB132

iCE40™ HX-Series Ultra Low-Power FPGA Family
LATTICE

ICE40HX1K-CB225

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family
LATTICE