854S14AKILFT [IDT]

Low Skew Clock Driver, 854S Series, 4 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VQFN-24;
854S14AKILFT
型号: 854S14AKILFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 854S Series, 4 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VQFN-24

驱动 逻辑集成电路
文件: 总14页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-  
LVDS FANOUT BUFFER  
ICS854S14I  
GENERAL DESCRIPTION  
FEATURES  
The ICS854S14I is a high speed 1-to-4 Differential-  
Four differential LVDS outputs  
ICS  
HiPerClockS™  
to-LVDS Fanout Buffer and is a member of the  
HiPerClockS™ family of high performance clock  
IN, nIN pair can accept the following differential input levels:  
LVPECL, LVDS, SSTL  
solutions from IDT. The ICS854S14I is optimized  
for high speed and very low output skew, making  
50Ω internal input termination to VT  
Output frequency: 1.5GHz  
it suitable for use in demanding applications such as SONET,  
1 Gigabit and 10 Gigabit Ethernet, and Fibre Channel. The  
internally terminated differential input and VREF_AC pin allow  
other differential signal families such as LVPECL, LVDS, and  
SSTL to be easily interfaced to the input with minimal use of  
external components. The device also has output enable pins  
which may be useful for system test and debug purposes.  
Output skew: 30ps (typical)  
Part-to-part skew: TBD  
Additive phase jitter, RMS: 0.135ps (typical)  
Propagation delay: 1.1ns (typical)  
2.5V operating supply  
APPLICATIONS:  
-40°C to 85°C ambient operating temperature  
Processor clock distribution  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
622MHz central office clock distribution  
High speed network routing  
Wireless basestations  
Serdes LVPECL output to FPGA LVDS input translator  
Fibre channel clock distribution  
AMC clock driver for ATCA systems  
Gigabit ethernet clock distibution  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
OE0  
24 23 22 21 20 19  
Q0  
nQ0  
1
2
3
18  
17  
16  
GND  
Q0  
VDD  
Q3  
OE1  
nQ0  
nQ3  
IN  
nQ1  
Q1  
4
15 nQ2  
14 Q2  
Q1  
50Ω  
5
6
VT  
nQ1  
50Ω  
13  
VDD  
GND  
nIN  
OE2  
7
8
9 10 11 12  
Q2  
VREF_AC  
nQ2  
ICS854S14I  
OE3  
24-Lead VFQFN  
Q3  
4mm x 4mm x 0.95 package body  
K Package  
nQ3  
Top View  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICSLVDS FANOUT BUFFER  
1
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
GND  
Type  
Power  
Description  
1, 12, 13, 24  
Power supply ground.  
2, 3  
Q0, nQ0  
nQ1, Q1  
VDD  
Output  
Output  
Power  
Input  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Positive supply pins.  
4, 5  
6, 7, 18, 19  
8
9
nIN  
Inverting differential clock input. 50Ω internal input termination to VT.  
Termination input.  
VT  
Input  
10  
IN  
Input  
Non-inverting differential clock input. 50Ω internal input termination to VT.  
Reference voltage for AC-coupled applications.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
11  
VREF_AC  
Q2, nQ2  
nQ3, Q3  
Output  
Output  
Output  
14, 15  
16, 17  
Active high output enable. When logic HIGH, the output pair is enabled.  
When logic LOW, the output pair is in a high impedance state. The OEx  
pins have an internal pullup resistor so the default power-up state of the  
outputs are enabled. LVCMOS/LVTTL interface levels.  
20, 21,  
22, 23  
OE3, OE2,  
OE1, OE0  
Input  
Pullup  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
RPULLUP  
Input Pullup Resistor  
51  
kΩ  
IDT/ ICSLVDS FANOUT BUFFER  
2
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
TABLE 3. OEX TRUTH TABLE  
Inputs  
Outputs  
IN  
0
nIN  
1
OE0  
Q0  
0
nQ0  
1
1
1
0
1
0
1
0
X
IN  
0
X
HI-Z  
Q1  
0
HI-Z  
nQ1  
1
nIN  
1
OE1  
1
1
0
1
1
0
X
IN  
0
X
0
HI-Z  
Q2  
0
HI-Z  
nQ2  
1
nIN  
1
OE2  
1
1
0
1
1
0
X
IN  
0
X
0
HI-Z  
Q3  
0
HI-Z  
nQ3  
1
nIN  
1
OE3  
1
1
0
1
1
0
X
X
0
HI-Z  
HI-Z  
IN  
nIN  
Enabled  
Disabled  
OE[0:3]  
Q[0:3]  
High Impedance State  
nQ[0:3]  
FIGURE 1. OE TIMING DIAGRAM  
IDT/ ICSLVDS FANOUT BUFFER  
3
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Supply Voltage, V  
4.6V  
DD  
Inputs, V  
-0.5V to VDD + 0.5 V  
I
Outputs, IO (LVDS)  
Continuous Current  
Surge Current  
10mA  
15mA  
Input Current, IN, nIN  
50mA  
VT Current, IVT  
100mA  
Input Sink/Source, IREF_AC  
Operating Temperature Range, TA  
Storage Temperature, TSTG  
0.5mA  
-40°C to +85°C  
-65°C to 150°C  
50.2°C (0 mps)  
Package Thermal Impedance, θJA  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 2.5V 5ꢀ% TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
2.5  
Maximum Units  
VDD  
IDD  
Positive Supply Voltage  
Power Supply Current  
2.375  
2.625  
V
88  
mA  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VDD = 2.5V 5ꢀ% TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
1.7  
0
VDD + 0.3  
V
V
Input Low Voltage  
0.7  
5
Input High Current OE[0:3]  
VDD = VIN = 2.625V  
µA  
µA  
IIL  
Input Low Current  
OE[0:3]  
VDD = 2.625V, VIN = 0V  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = 2.5V 5ꢀ% TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
IN-to-VT  
Minimum  
Typical  
50  
Maximum Units  
RIN  
Differential Input Resistance (IN, nIN)  
40  
1.2  
0
60  
VDD  
Ω
V
VIH  
Input High Voltage  
Input Low Voltage  
Input Voltage Swing  
Reference Voltage  
(IN, nIN)  
(IN, nIN)  
VIL  
VIH - 0.15  
2.8  
V
VIN  
0.15  
V
VREF_AC  
VDIFF_IN  
IIN  
VDD - 1.42 VDD - 1.37 VDD - 1.32  
V
Differential Input Voltage Swing  
Input Current% NOTE 1 (IN, nIN)  
0.3  
3.4  
35  
V
mA  
NOTE 1: Guaranteed by design.  
IDT/ ICSLVDS FANOUT BUFFER  
4
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
TABLE 4D. LVDS DC CHARACTERISTICS, VDD = 2.5V 5ꢀ% TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
350  
50  
Maximum Units  
VOD  
Differential Output Voltage  
mV  
mV  
V
Δ VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
1.2  
Δ VOS  
VOS Magnitude Change  
50  
mV  
TABLE 5. AC CHARACTERISTICS, VDD = 2.5V 5ꢀ% TA = -40°C TO 85°C  
Symbol Parameter  
Condition  
Minimum Typical Maximum Units  
fMAX  
Maximum Output Frequency  
1.5  
GHz  
Propagation Delay% (Differential)%  
NOTE 1  
tPD  
1.1  
ns  
tsk(o)  
Output Skew% NOTE 2, 4  
30  
ps  
ps  
tsk(pp)  
Part-to-Part Skew% NOTE 3, 4  
TBD  
Buffer Additive Phase Jitter, RMS%  
refer to Additive Phase Jitter section  
200MHz, Integration Range:  
12kHz - 20MHz  
tjit  
0.135  
170  
ps  
ps  
tR/tF  
Output Rise/Fall Time  
20ꢀ to 80ꢀ  
All parameters are measured at 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICSLVDS FANOUT BUFFER  
5
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
VDD  
SCOPE  
Qx  
VDD  
nIN  
2.5V 5ꢀ  
POWER SUPPLY  
VIN  
+
Float GND –  
VIH  
LVDS  
Cross Points  
VIL  
IN  
nQx  
GND  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nIN  
IN  
80ꢀ  
tF  
80ꢀ  
VOD  
Clock  
20ꢀ  
20ꢀ  
nQ0:nQ3  
Outputs  
tR  
Q0:Q3  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
IDT/ ICSLVDS FANOUT BUFFER  
6
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
VDD  
out  
out  
VIN, VOUT  
VDIFF_IN, VDIFF_OUT  
DC Input  
LVDS  
400mV  
(typical)  
800mV  
(typical)  
VOS/Δ VOS  
SINGLE ENDED & DIFFERENTIAL INPUT VOLTAGE SWING  
OFFSET VOLTAGE SETUP  
VDD  
out  
LVDS  
DC Input  
100  
V
OD/Δ VOD  
out  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
IDT/ ICSLVDS FANOUT BUFFER  
7
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
APPLICATION INFORMATION  
LVPECL INPUT WITH BUILT-IN 50ΩTERMINATIONS INTERFACE  
The IN /nIN with built-in 50Ω terminations accepts LVDS,  
common driver types. The input interfaces suggested here are  
examples only. If the driver is from another vendor, use their  
termination recommendation. Please consult with the vendor  
of the driver component to confirm the driver termination  
requirements.  
LVPECL, LVHSTL, CML, SSTL and other differential signals.  
The signal must meet the V and V  
input requirements.  
PP  
CMR  
Figures 2A to 2F show interface examples for the HiPerClockS  
IN/nIN input with built-in 50Ω terminations driven by the most  
2.5V  
2.5V  
3.3V or 2.5V  
2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
nIN  
VT  
nIN  
Receiver  
With  
Receiver  
With  
Built-In  
50 Ohm  
2.5V LVPECL  
LVDS  
R1  
18  
Built-In  
50 Ohm  
FIGURE 2A. HIPERCLOCKS IN/nIN INPUT WITH BUILT-IN 50Ω  
FIGURE 2B. HIPERCLOCKS IN/nIN INPUT WITH BUILT-IN 50Ω  
DRIVEN BY AN LVDS DRIVER  
DRIVEN BY AN LVPECL DRIVER  
2.5V  
2.5V  
2.5V  
2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
nIN  
VT  
nIN  
Receiver  
With  
Receiver  
With  
CML - Built-in 50 Ohm Pull-up  
CML - Open Collector  
Built-In  
50 Ohm  
Built-In  
50 Ohm  
FIGURE 2D. HIPERCLOCKS IN/nIN INPUT WITH BUILT-IN 50Ω  
DRIVEN BY A CML DRIVER WITH  
FIGURE 2C. HIPERCLOCKS IN/nIN INPUT WITH BUILT-IN 50Ω  
DRIVEN BY AN OPEN COLLECTOR CML DRIVER  
BUILT-IN 50Ω PULLUP  
2.5V  
2.5V  
3.3V  
3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
C1  
C2  
3.3V LVPECL  
3.3V CML with  
Built-In Pullup  
Zo = 50 Ohm  
Zo = 50 Ohm  
C1  
C2  
IN  
IN  
50 Ohm  
50 Ohm  
50 Ohm  
50 Ohm  
VT  
VT  
nIN  
nIN  
REF_AC  
Receiver with Built-In 50Ω  
REF_AC  
Receiver with Built-In 50Ω  
R5  
100 - 200 Ohm  
R5  
100 - 200 Ohm  
FIGURE 2E. HIPERCLOCKS IN/nIN INPUT WITH BUILT-IN 50Ω  
FIGURE 2F. HIPERCLOCKS IN/nIN INPUT WITH BUILT-IN 50Ω  
DRIVEN BY A 3.3V CML DRIVER WITH  
BUILT-IN PULLUP  
DRIVEN BY A 3.3V LVPECL DRIVER  
IDT/ ICSLVDS FANOUT BUFFER  
8
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
LVCMOS CONTROL PINS:  
OUTPUTS:  
LVDS Output  
All control pins have internal pull-ups; additional resistance is  
not required but can be added for additional protection. A 1kΩ  
resistor can be used.  
All unused LVDS outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
2.5V LVDS DRIVER TERMINATION  
Figure 3 shows a typical termination for LVDS driver in  
characteristic impedance of 100Ω differential (50Ω single)  
transmission line environment. For buffer with multiple LVDS  
driver, it is recommended to terminate the unused outputs.  
2.5V  
2.5V  
LVDS_Driv er  
+
R1  
100  
-
100Ω DifferentialTransmission Line  
FIGURE 3. TYPICAL LVDS DRIVER TERMINATION  
THERMAL RELEASE PATH  
The expose metal pad provides heat transfer from the device to  
the P.C. board. The expose metal pad is ground pad connected  
to ground plane through thermal via. The exposed pad on the  
device to the exposed metal pad on the PCB is contacted through  
solder as shown in Figure 4. For further information, please refer  
to the Application Note on Surface Mount Assembly of Amkor’s  
Thermally /Electrically Enhance Leadframe Base Package, Amkor  
Technology.  
EXPOSED PAD  
SOLDER  
SOLDER MASK  
SIGNAL  
TRACE  
SIGNAL  
TRACE  
GROUND PLANE  
Expose Metal Pad  
(GROUND PAD)  
THERMAL VIA  
FIGURE 4. P.C. BOARD FOR EXPOSED PAD THERMAL RELEASE PATH EXAMPLE  
IDT/ ICSLVDS FANOUT BUFFER  
9
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS854S14I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS854S14I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 2.5V + 5ꢀ = 2.625V, which gives worst case results.  
DD  
Power_ = V  
* I  
= 2.625V * 88mA = 231mW  
DD_MAX  
MAX  
DD_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 43.9°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.231W * 43.9°C/W = 95.1°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and  
the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θ FOR 24-PIN VFQFN, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
39.3°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50.2°C/W  
43.9°C/W  
IDT/ ICSLVDS FANOUT BUFFER  
10  
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 24 LEAD VFQFN  
JA  
θ vs. 0 Air Flow (Meters per Second)  
JA  
0
1
2.5  
39.3°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
50.2°C/W  
43.9°C/W  
TRANSISTOR COUNT  
The transistor count for ICS854S14I is: 288  
IDT/ ICSLVDS FANOUT BUFFER  
11  
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
PACKAGE OUTLINE - K SUFFIX FOR 24 LEAD VFQFN  
TABLE 8. PACKAGE DIMENSIONS FOR 24 LEAD VFQFN  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
24  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
NE  
D
6
6
4
D2  
E
2.30  
2.55  
4
E2  
L
2.30  
0.30  
2.55  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
IDT/ ICSLVDS FANOUT BUFFER  
12  
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
854S14AKI  
Marking  
TBD  
Package  
Shipping Packaging  
tube  
Temperature  
24 Lead VFQFN,  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
854S14AKT  
TBD  
24 Lead VFQFN  
2500 tape & reel  
tube  
854S14AKILF  
854S14AKILFT  
S14AIL  
S14AIL  
24 Lead "Lead-Free" VFQFN  
24 Lead "Lead-Free" VFQFN  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICSLVDS FANOUT BUFFER  
13  
ICS854S14AKI REV. A FEBRUARY 23, 2007  
ICS854S14I  
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

854S14AKT

Low Skew Clock Driver, 854S Series, 4 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.95 MM HEIGHT, MO-220, VQFN-24
IDT

854S202AYI

Clock Driver
IDT

854S202AYI-01

Differential Multiplexer, 2 Func, 12 Channel, PQFP48
IDT

854S202AYI-01T

Differential Multiplexer, 2 Func, 12 Channel, PQFP48
IDT

854S202AYIFT

Low Skew Clock Driver, 854S Series, 4 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026BBC-HD, LQFP-48
IDT

854S202AYILFT

TQFP-48, Reel
IDT

854S202AYIT

Clock Driver
IDT

854S204BGILF

Low Skew, Dual, Programmable 1-to-2 Differential-to-LVDS, LVPECL Fanout Buffer
IDT

854S204BGILFT

Low Skew, Dual, Programmable 1-to-2 Differential-to-LVDS, LVPECL Fanout Buffer
IDT

854S54AKI-01LF

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S54AKI-01LFT

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S54AKI-02LF

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT