854S202AYIT [IDT]

Clock Driver;
854S202AYIT
型号: 854S202AYIT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Driver

文件: 总17页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
ICS854S202I  
GENERAL DESCRIPTION  
FEATURES  
The ICS854S202I is a 12:2 Differential-to-LVDS  
Two differential 3.3V LVDS clock outputs  
ICS  
Clock Multiplexer which can operate >3GHz and  
is a member of the HiPerClockS™ family of High  
Performance Clock Solutions from IDT. The  
ICS854S202I has 12 selectable differential clock  
Twelve selectable differential clock inputs  
HiPerClockS™  
• CLKx, nCLKx pairs can accept the following differential input  
levels: LVPECL, LVDS, HSTL, SSTL, HCSL  
inputs, any of which can be independently routed to either of  
the two LVDS outputs. The CLKx, nCLKx input pairs can  
accept LVPECL, LVDS, CML or SSTL levels. The fully differen-  
tial architecture and low propagation delay make it ideal for  
use in clock distribution circuits.  
Maximum output frequency: >3GHz  
Propagation delay: 660ps (typical)  
Input skew: TBD  
Output skew: 25ps (typical)  
Part-to-part skew: TBD  
Additive phase jitter, RMS: 0.16ps (typical)  
Full 3.3V operating supply mode  
-40°C to 85°C ambient operating temperature  
BLOCK DIAGRAM  
4
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pulldown  
SELA_[3:0]  
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK2  
nCLK2  
QA  
nQA  
OEA  
CLK3  
PIN ASSIGNMENT  
nCLK3  
CLK4  
nCLK4  
CLK5  
48 47 46 45 44 43 42 41 40 39 38 37  
nCLK5  
CLK2  
nCLK2  
SELA_0  
SELA_1  
VDD  
CLK9  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
nCLK9  
SELB_0  
SELB_1  
VDD  
CLK6  
3
nCLK6  
4
ICS854S202I  
5
48-Pin LQFP  
7mm x 7mm x 1.4mm  
package body  
CLK7  
QA  
QB  
nQB  
6
nCLK7  
nQA  
7
CLK8  
GND  
8
GND  
QB  
nQB  
OEB  
Y Package  
nCLK8  
SELA_2  
SELA_3  
CLK3  
SELB_2  
SELB_3  
CLK8  
9
Top View  
10  
11  
12  
CLK9  
nCLK9  
nCLK3  
nCLK8  
13 14 15 16 17 18 19 20 21 22 23 24  
CLK10  
nCLK10  
CLK11  
nCLK11  
4
Pulldown  
SELB_[3:0]  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICSLVDS MULTIPLEXER  
1
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS (CONTINUED ON NEXT PAGE)  
Number  
Name  
Type  
Pullup  
Description  
1
CLK2  
Input  
Input  
Non-inverting differential clock input.  
Pullup/  
Pulldown  
2
nCLK2  
Inverting differential clock input. VDD/2 default when left floating.  
3,  
4,  
9,  
SELA_0,  
SELA_1,  
SELA_2,  
SELA_3  
Clock select pins for Bank A outputs. See Control Input  
Pulldown Function Table. LVCMOS/LVTTL interface levels.  
See Table 3B.  
Input  
10  
5, 18, 32, 43  
VDD  
QA, nQA  
GND  
Power  
Output  
Power  
Input  
Positive supply pins.  
6, 7  
8, 15, 22, 29, 39, 46  
11  
Clock outputs. LVDS interface levels.  
Power supply ground.  
CLK3  
Pullup  
Non-inverting differential clock input.  
Pullup/  
Pulldown  
Pullup/  
12  
nCLK3  
Input  
Inverting differential clock input. VDD/2 default when left floating.  
13  
14  
16  
17  
19  
20  
21  
23  
24  
nCLK4  
CLK4  
nCLK5  
CLK5  
OEA  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Inverting differential clock input. VDD/2 default when left floating.  
Non-inverting differential clock input.  
Pulldown  
Pullup  
Pullup/  
Pulldown  
Inverting differential clock input. VDD/2 default when left floating.  
Non-inverting differential clock input.  
Pullup  
Pullup  
Pullup  
Output enable pin. Controls enabling and disabling of QA/nQA  
outputs. LVCMOS/LVTTL internface levels.  
CLK6  
nCLK6  
CLK7  
nCLK7  
Non-inverting differential clock input.  
Pullup/  
Pulldown  
Inverting differential clock input. VDD/2 default when left floating.  
Non-inverting differential clock input.  
Pullup  
Pullup/  
Pulldown  
Pullup/  
Inverting differential clock input. VDD/2 default when left floating.  
25  
26  
nCLK8  
CLK8  
Input  
Input  
Inverting differential clock input. VDD/2 default when left floating.  
Non-inverting differential clock input.  
Pulldown  
Pullup  
27,  
28,  
33,  
34  
SELB_3,  
SELB_2,  
SELB_1,  
SELB_0  
Clock select pins for Bank B outputs. See Control Input  
Pulldown Function Table. LVCMOS/LVTTL interface levels.  
See Table 3C.  
Input  
30, 31  
nQB, QB  
nCLK9  
CLK9  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Clock outputs. LVDS interface levels.  
Pullup/  
35  
Inverting differential clock input. VDD/2 default when left floating.  
Pulldown  
36  
Pullup  
Non-inverting differential clock input.  
Pullup/  
Pulldown  
37  
nCLK10  
CLK10  
nCLK11  
CLK11  
Inverting differential clock input. VDD/2 default when left floating.  
Non-inverting differential clock input.  
38  
Pullup  
Pullup/  
Pulldown  
40  
Inverting differential clock input. VDD/2 default when left floating.  
41  
Pullup  
Non-inverting differential clock input.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
IDT/ ICSLVDS MULTIPLEXER  
2
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS (CONTINUED ON NEXT)  
Number  
42  
Name  
OEB  
Type  
Pullup  
Description  
Output enable pin. Controls enabling and disabling of QB/nQB  
outputs. LVCMOS/LVTTL internface levels. See Table 3A.  
Input  
Input  
Input  
Input  
Input  
44  
CLK0  
nCLK0  
CLK1  
nCLK1  
Pullup  
Non-inverting differential clock input.  
Pullup/  
Pulldown  
45  
Inverting differential clock input. VDD/2 default when left floating.  
Non-inverting differential clock input.  
47  
Pullup  
Pullup/  
Pulldown  
48  
Inverting differential clock input. VDD/2 default when left floating.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Units  
pF  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
TABLE 3B. OEA, OEB CONTROL INPUT FUNCTION TABLE  
Input  
Output  
QA/nQA, QB/nQB  
Disabled (Logic LOW)  
Active  
OEA, OEB  
0
1
IDT/ ICSLVDS MULTIPLEXER  
3
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
TABLE 3B. SEL_A CONTROL INPUT FUNCTION TABLE  
Control Input  
Input Selected to QA/nQA  
SELA_3  
SELA_2  
SELA_1  
SELA_0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CLK0, nCLK0  
CLK1, nCLK1  
CLK2, nCLK2  
CLK3, nCLK3  
CLK4, nCLK4  
CLK5, nCLK5  
CLK6, nCLK6  
CLK7, nCLK7  
CLK8, nCLK8  
CLK9, nCLK9  
CLK10, nCLK10  
CLK11, nCLK11  
L/H  
L/H  
L/H  
L/H  
TABLE 3C. SEL_B CONTROL INPUT FUNCTION TABLE  
Control Input  
Input Selected to QB/nQB  
SELB_3  
SELB_2  
SELB_1  
SELB_0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CLK0, nCLK0  
CLK1, nCLK1  
CLK2, nCLK2  
CLK3, nCLK3  
CLK4, nCLK4  
CLK5, nCLK5  
CLK6, nCLK6  
CLK7, nCLK7  
CLK8, nCLK8  
CLK9, nCLK9  
CLK10, nCLK10  
CLK11, nCLK11  
L/H  
L/H  
L/H  
L/H  
IDT/ ICSLVDS MULTIPLEXER  
4
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5 V  
I
Outputs, IO (LVDS)  
Continuous Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θJA 70.2°C/W (0 lfpm)  
Storage Temperature, T -65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VDD  
IDD  
Core Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
V
115  
mA  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
SELA_0:3,  
SELB_0:3  
V
DD = 3.3V 5ꢀ  
VDD = 3.3V 5ꢀ  
DD = 3.3V 5ꢀ  
VDD = 3.3V 5ꢀ  
150  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
OEA, OEB  
SELA_0:3,  
SELB_0:3  
V
-5  
IIL  
Input Low Current  
OEA, OEB  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum Typical Maximum Units  
CLK0:CLK11  
nCLK0:nCLK11  
CLK0:CLK11  
nCLK0:nCLK11  
VDD = VIN = 3.465V  
150  
150  
µA  
µA  
µA  
µA  
V
V
DD = VIN = 3.465V  
VDD = 3.465V, VIN = 0V  
DD = 3.465V, VIN = 0V  
-5  
IIL  
Input Low Current  
V
-150  
0.15  
VPP  
Peak-to-Peak Input Voltage  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
GND + 0.5  
V
DD - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLKx, nCLKx is VDD + 0.3V.  
IDT/ ICSLVDS MULTIPLEXER  
5
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
TABLE 4D. LVDS DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
410  
50  
Maximum Units  
VOD  
Differential Output Voltage  
mV  
mV  
V
Δ VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
1.3  
Δ VOS  
VOS Magnitude Change  
50  
mV  
NOTE: Please refer to Parameter Measurement Information for output information.  
TABLE 5. AC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
>3  
GHz  
Propagation Delay, Low to High;  
NOTE 1  
Propagation Delay, High to Low;  
NOTE 1  
tpLH  
tpHL  
660  
660  
ps  
ps  
tsk(o)  
tsk(i)  
Output Skew; NOTE 2, 3  
Input Skew; NOTE 3  
25  
ps  
ps  
ps  
TBD  
TBD  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section,  
NOTE 5  
155.52MHz,  
Integration Range:  
12kHz - 20MHz  
tjit  
0.16  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
110  
50  
ps  
MUXISOLATION MUX Isolation  
fOUT < 1.2GHz  
45  
dB  
All parameters measured at 500MHz, unless noted otherwise.  
NOTE 1: Measured from VDD/2 of the input to VDD/2 of the output.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDD/2.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltages and  
with equal load conditions. Using the same type of input on each device, the output is measured at VDD/2.  
NOTE 5: Driving only one input clock.  
IDT/ ICSLVDS MULTIPLEXER  
6
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
ADDITIVE PHASE JITTER  
band to the power in the fundamental. When the required offset  
is specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications.Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz  
Additive Phase Jitter @ 155.5MHz  
(12kHz to 20MHz) = 0.16ps (typical)  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements  
have issues. The primary issue relates to the limitations of the  
equipment. Often the noise floor of the equipment is higher than  
the noise floor of the device. This is illustrated above. The device  
meets the noise floor of what is shown, but can actually be lower.  
The phase noise is dependant on the input source and  
measurement equipment.  
IDT/ ICSLVDS MULTIPLEXER  
7
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
VDD  
SCOPE  
nCLK0,  
nCLK11  
Qx  
VDD  
3.3V 5ꢀ  
POWER SUPPLY  
VPP  
VCMR  
Cross Points  
CLK0,  
CLK11  
+
Float GND –  
LVDS  
nQx  
GND  
3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
Part 1  
nQx  
nQx  
Qx  
Qx  
Part 2  
nQy  
nQy  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nCLK0:  
nCLK11  
CLK0:  
CLK11  
80ꢀ  
80ꢀ  
nQA, nQB  
VOD  
Clock  
20ꢀ  
20ꢀ  
QA, QB  
Outputs  
tPD  
tF  
tR  
PROPAGATION DELAY  
OUTPUT RISE/FALL TIME  
IDT/ ICSLVDS MULTIPLEXER  
8
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
nCLK0:  
nCLK11  
CLK0:  
CLK11  
nQA, nQB  
nQA, nQB  
QA, QB  
QA, QB  
tPD1  
tPW  
tPERIOD  
tPW  
odc =  
x 100ꢀ  
nCLKy  
CLKy  
tPERIOD  
nQA, nQB  
QA, QB  
tPD2  
tsk(i) = |tPD1 - tPD2  
|
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
INPUT SKEW  
VDD  
VDD  
out  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/Δ VOD  
out  
VOS/Δ VOS  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
OFFSET VOLTAGE SETUP  
IDT/ ICSLVDS MULTIPLEXER  
9
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
APPLICATION INFORMATION  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
CLK/nCLK INPUT:  
LVDS OUTPUT  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required, but  
for additional protection, a 1kΩ resistor can be tied from CLK to  
ground.  
All unused LVDS output pairs can be either left floating or  
terminated with 100Ω across. If they are left floating, we  
recommend that there is no trace attached.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias DcDircuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
DD  
VDD  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
IDT/ ICSLVDS MULTIPLEXER  
10  
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 2A to 2E show interface  
examples for the HiPerClockS CLK/nCLK input driven by the  
most common driver types.The input interfaces suggested here  
are examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example in Figure 2A, the input termination applies for IDT  
HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 2A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
IDT HIPERCLOCKS LVHSTL DRIVER  
FIGURE 2B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 2C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 2E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
IDT/ ICSLVDS MULTIPLEXER  
11  
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
3.3V LVDS DRIVER TERMINATION  
input. For a multiple LVDS outputs buffer, if only partial outputs  
are used, it is recommended to terminate the unused outputs.  
A general LVDS interface is shown in Figure 3. In a 100Ω  
differential transmission line environment, LVDS drivers require  
a matched load termination of 100Ω across near the receiver  
3.3V  
3.3V  
LVDS  
+
R1  
100  
-
100 Ohm Differential Transmission Line  
FIGURE 3. TYPICAL LVDS DRIVER TERMINATION  
IDT/ ICSLVDS MULTIPLEXER  
12  
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS854S202I-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS854S202I-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
DD  
Power (core) = V  
* I  
= 3.465V * 115mA = 398.48mW  
DD_MAX  
MAX  
DD_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 60.4°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.399W * 60.4°C/W = 109.1°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and  
the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θ FOR 48-LEAD LQFP, FORCED CONVECTION  
JA  
θ vs. Air Flow (Linear Feet per Minute)  
JA  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
70.2°C/W  
60.4°C/W  
56.9°C/W  
IDT/ ICSLVDS MULTIPLEXER  
13  
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 48 LEAD LQFP  
JA  
θ vs. Air Flow (Linear Feet per Minute)  
JA  
0
200  
60.4°C/W  
500  
56.9°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
70.2°C/W  
TRANSISTOR COUNT  
The transistor count for ICS854S202I is: 8,485  
IDT/ ICSLVDS MULTIPLEXER  
14  
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
PACKAGE OUTLINE - Y SUFFIX FOR 48 LEAD LQFP  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBC  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
48  
--  
--  
--  
1.60  
0.15  
1.45  
0.27  
0.20  
A1  
A2  
b
0.05  
1.35  
0.17  
0.09  
1.40  
0.22  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
0.50 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
IDT/ ICSLVDS MULTIPLEXER  
15  
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS854S202AYI  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
ICS854S202AI  
ICS854S202AI  
ICS54S202AIL  
ICS54S202AIL  
48 Lead LQFP  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS854S202AYIT  
ICS854S202AYILF  
ICS854S202AYILFT  
48 Lead LQFP  
1000 tape & reel  
tray  
48 Lead "Lead-Free" LQFP  
48 Lead "Lead-Free" LQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICSLVDS MULTIPLEXER  
16  
ICS854S202AYI REV. A JANUARY 26, 2007  
ICS854S202I  
12:2, DIFFERENTIAL-LVDS MULTIPLEXER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

854S204BGILF

Low Skew, Dual, Programmable 1-to-2 Differential-to-LVDS, LVPECL Fanout Buffer
IDT

854S204BGILFT

Low Skew, Dual, Programmable 1-to-2 Differential-to-LVDS, LVPECL Fanout Buffer
IDT

854S54AKI-01LF

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S54AKI-01LFT

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S54AKI-02LF

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S54AKI-02LFT

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S712

1:2 Fanout Buffer with Pre-Emphasis
IDT

854S712AKILF

1:2 Fanout Buffer with Pre-Emphasis
IDT

854S712AKILFT

1:2 Fanout Buffer with Pre-Emphasis
IDT

854S713AKILFT

VFQFPN-24, Reel
IDT

854SG

Backlight LEDs
ETC

854SO

Backlight LEDs
ETC