854S015CKI-01LFT [IDT]

Low Skew, 1-to-5, Differential-to-LVDS/LVPECL Fanout Buffer;
854S015CKI-01LFT
型号: 854S015CKI-01LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew, 1-to-5, Differential-to-LVDS/LVPECL Fanout Buffer

驱动 逻辑集成电路
文件: 总27页 (文件大小:940K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Skew, 1-to-5,  
Differential-to-LVDS/LVPECL Fanout Buffer  
ICS854S015I-01  
DATA SHEET  
General Description  
Features  
The ICS854S015I-01 is a low skew, high performance 1-to-5, 2.5V,  
3.3V Differential-to-LVPECL/LVDS Fanout Buffer. The  
ICS854S015I-01 has two selectable differential clock inputs.  
Five differential LVPECL or LVDS output pairs  
Two differential clock input pairs  
CLK, nCLK pair can accept the following differential input levels:  
Guaranteed output and part-to-part skew characteristics make the  
ICS854S015I-01 ideal for those applications demanding well defined  
performance and repeatability.  
LVDS, LVPECL, LVHSTL, HCSL  
PCLK, nPCLK can accept the following input levels: LVPECL,  
LVDS, CML  
Either CLK or PCLK inputs can be configured to accept  
single-ended inputs  
Maximum output frequency: 2GHz  
Additive phase jitter, RMS: 0.065ps (maximum), 3.3V,  
156.25MHz, 12kHz – 5MHz)  
Output Skew: 55ps (maximum)  
Propagation delay: 570ps (typical) @ 3.3V  
Full 3.3V or 2.5V supply modes  
-40°C to 85°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
Block Diagram  
Pin Assignment  
Pulldown  
nCLK_EN  
D
Q
LE  
Pulldown  
PCLK  
nPCLK  
24 23 22 21 20 19  
0
1
Pullup/Pulldown  
PCLK  
1
2
3
4
5
6
nQ1  
VCC  
18  
Q0  
nQ0  
17  
Pulldown  
nPCLK  
VCC  
CLK  
nCLK  
Pullup/Pulldown  
Q1  
16 VEE  
15 Q2  
nQ1  
VCC_TAP  
CLK  
Pulldown  
CLK_SEL  
VCC_TAP  
Q2  
nQ2  
14  
nQ2  
13 Q3  
nCLK  
7
8
9 10 11 12  
Q3  
nQ3  
Q4  
nQ4  
ICS854S015I-01  
24-Lead VFQFN  
Pulldown  
SEL_OUT  
4mm x 4mm x 0.925mm package body  
K Package  
Top View  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
1
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Pulldown  
Description  
1
PCLK  
Input  
Input  
Non-inverting differential LVPECL clock input.  
Pullup/  
Pulldown  
2
nPCLK  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
3, 9, 17  
VCC  
VCC_TAP  
CLK  
Power  
Power  
Input  
Positive supply pins.  
4
5
Power supply pin. See Table 3C.  
Non-inverting differential clock input.  
Pulldown  
Pullup/  
Pulldown  
6
7
nCLK  
Input  
Input  
Inverting differential clock input. VCC/2 default when left floating.  
Output select pin. When LOW, selects LVDS output levels. When HIGH, selects  
LVPECL output levels. See Table 3. LVCMOS/LVTTL interface levels.  
SEL_OUT  
Pulldown  
8
nc  
Unused  
Output  
Output  
Output  
Power  
Output  
Output  
No-connect.  
10, 11  
12, 13  
14, 15  
16, 22  
18, 19  
20, 21  
nQ4, Q4  
nQ3, Q3  
nQ2, Q2  
VEE  
Differential output pair. LVDS or LVPECL interface levels.  
Differential output pair. LVDS or LVPECL interface levels.  
Differential output pair. LVDS or LVPECL interface levels.  
Negative supply pins.  
nQ1, Q1  
nQ0, Q0  
Differential output pair. LVDS or LVPECL interface levels.  
Differential output pair. LVDS or LVPECL interface levels.  
Clock select input. When HIGH, selects CLK, nCLK inputs. When LOW, selects  
PCLK, nPCLK inputs. LVTTL / LVCMOS interface levels.  
23  
CLK_SEL  
Input  
Pulldown  
Pulldown  
Synchronizing clock enable. When LOW, clock outputs follow clock input.  
When HIGH, Qx outputs are forced low, nQx outputs are forced high.  
LVTTL / LVCMOS interface levels.  
24  
nCLK_EN  
Input  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
CIN  
Input Capacitance  
2
RPULLDOWN Input Pulldown Resistor  
RVCC/2 Pullup/Pulldown Resistor  
50  
50  
k  
kΩ  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
2
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
nCLK_EN  
CLK_SEL  
Selected Source  
PCLK, nPCLK  
CLK, nCLK  
Q[0:4]  
nQ[0:4]  
Enabled  
0
0
1
1
0
1
0
1
Enabled  
Enabled  
Enabled  
PCLK, nPCLK  
CLK, nCLK  
Disabled; Low  
Disabled; Low  
Disabled; High  
Disabled; High  
After nCLK_EN switches, the clock outputs are disabled or enabled following a falling input clock edge as shown in Figure 1. In the active  
mode, the state of the outputs are a function of the PCLK, nPCLK and CLK, nCLK inputs as described in Table 3B.  
Enabled  
Disabled  
nPCLK, nCLK  
PCLK, CLK  
nCLK_EN  
nQ[0:4]  
Q[0:4]  
Figure 1. nCLK_EN Timing Diagram  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
PCLK or CLK  
nPCLK or nCLK  
Q[0:4]  
nQ[0:4]  
HIGH  
LOW  
Input to Output Mode  
Differential to Differential  
Differential to Differential  
Polarity  
0
1
1
0
LOW  
Non-Inverting  
Non-Inverting  
HIGH  
Table 3C. VCC_TAP Function Table  
Outputs  
Table 3D. SEL_OUT Function Table  
Input  
SEL_OUT  
0 (default)  
1
Outputs  
Q[0:4], nQ[0:4]  
LVDS  
Q[0:4], nQ[0:4]  
LVPECL  
LVPECL  
LVDS  
Output Level Supply  
VCC_TAP  
2.5V  
3.3V  
2.5V  
3.3V  
2.5V  
3.3V  
2.5V  
Float  
LVPECL  
LVDS  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
3
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Outputs, IO (LVDS)  
Continuous Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θJA  
49.5°C/W (0 mps)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. LVPECL Power Supply DC Characteristics, VCC = VCC_TAP = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
85  
Units  
V
VCC  
Positive Supply Voltage  
VCC_TAP Power Supply Voltage  
3.135  
3.3  
V
IEE  
Power Supply Current  
Power Supply Current  
mA  
mA  
ITAP  
5
Table 4B. LVPECL Power Supply DC Characteristics, VCC = VCC_TAP = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
2.5  
Maximum  
2.625  
2.625  
78  
Units  
V
VCC  
Positive Supply Voltage  
VCC_TAP Power Supply Voltage  
2.375  
2.5  
V
IEE  
Power Supply Current  
Power Supply Current  
mA  
mA  
ITAP  
5
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
4
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Table 4C. LVDS Power Supply DC Characteristics, VCC = 3.3V 5%, TA = -40°C to 85°C  
Symbol Parameter  
VCC Positive Supply Voltage  
ICC Power Supply Current  
Test Conditions  
Minimum  
Typical  
Maximum  
3.465  
Units  
V
3.135  
3.3  
160  
mA  
NOTE: VCC_TAP is left floating for 3.3V operation.  
Table 4D. LVDS Power Supply DC Characteristics, VCC = VCC_TAP = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
2.5  
Maximum  
2.625  
2.625  
150  
Units  
V
VCC  
Positive Supply Voltage  
VCC_TAP Power Supply Voltage  
2.375  
2.5  
V
ICC  
Power Supply Current  
Power Supply Current  
mA  
mA  
ICC_TAP  
5
Table 4E. LVCMOS/LVTTL DC Characteristics, VCC = 3.3V 5% or VCC = VCC_TAP = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
VCC = 3.465V  
VCC = 2.625V  
Minimum  
2.2  
Typical  
Maximum  
VCC + 0.3  
VCC + 0.3  
0.8  
Units  
V
V
V
V
VIH  
VIL  
Input High Voltage  
1.7  
V
CC = 3.465V  
CC = 2.625V  
-0.3  
Input Low Voltage  
Input High Current  
V
-0.3  
0.7  
CLK_SEL,  
SEL_OUT,  
nCLK_EN  
IIH  
VCC = VIN = 3.465V or 2.625V  
150  
µA  
µA  
CLK_SEL,  
SEL_OUT,  
nCLK_EN  
IIL  
Input Low Current  
VCC = 3.465V or 2.625V, VIN = 0V  
-10  
Table 4F. Differential DC Characteristics, VCC = 3.3V 5% or VCC = VCC_TAP = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
Minimum  
Typical  
Maximum  
Units  
µA  
CLK, nCLK  
CLK  
150  
V
-10  
µA  
IIL  
Input Low Current  
nCLK  
VCC = 3.465V, VIN = 0V  
-150  
µA  
Peak-to-Peak Input  
Voltage  
VPP  
CLK, nCLK  
CLK, nCLK  
0.15  
1.3  
V
V
Common Mode Input  
Voltage; NOTE 1  
VCMR  
VEE + 0.5  
VCC – 0.85  
NOTE 1. Common mode voltage is defined as VIH.  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
5
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Table 4G. LVPECL DC Characteristics, VCC = VCC_TAP = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
Minimum  
Typical  
Maximum  
Units  
µA  
PCLK, nPCLK  
PCLK  
150  
V
-10  
µA  
IIL  
Input Low Current  
nPCLK  
VCC = 3.465V, VIN = 0V  
-150  
µA  
Peak-to-Peak Input  
Voltage  
VPP  
PCLK, nPCLK  
PCLK, nPCLK  
0.15  
1.3  
V
V
Common Mode Input  
Voltage; NOTE 1  
VCMR  
VEE + 1.2  
VCC  
VOH  
VOL  
Output High Voltage; NOTE 2  
Output Low Voltage; NOTE 2  
SEL_OUT = 1  
SEL_OUT = 1  
SEL_OUT = 1  
VCC – 1.4  
VCC – 2.0  
0.6  
VCC – 0.9  
VCC – 1.7  
1.0  
V
V
V
VSWING Peak-to-peak Output Voltage Swing  
NOTE 1. Common mode voltage is defined as VIH.  
NOTE 2: Outputs terminated with 50to VCC – 2V.  
Table 4H. LVPECL DC Characteristics, VCC = VCC_TAP = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
PCLK, nPCLK  
PCLK  
VCC = VIN = 2.625V  
CC = 2.625V, VIN = 0V  
CC = 2.625V, VIN = 0V  
150  
V
V
-10  
µA  
IIL  
Input Low Current  
nPCLK  
-150  
µA  
Peak-to-Peak Input  
Voltage  
VPP  
PCLK, nPCLK  
PCLK, nPCLK  
0.15  
1.3  
V
V
Common Mode Input  
Voltage; NOTE 1  
VCMR  
V
EE + 1.2  
VCC  
VOH  
VOL  
Output High Voltage; NOTE 2  
Output Low Voltage; NOTE 2  
SEL_OUT = 1  
SEL_OUT = 1  
SEL_OUT = 1  
VCC – 1.4  
VCC – 2.0  
0.4  
VCC – 0.9  
VCC – 1.5  
1.0  
V
V
V
VSWING Peak-to-peak Output Voltage Swing  
NOTE 1. Common mode voltage is defined as VIH.  
NOTE 2: Outputs terminated with 50to VCC – 2V.  
Table 4I. LVDS DC Characteristics, VCC = 3.3V 5%, TA = -40°C to 85°C  
Symbol  
VOD  
Parameter  
Test Conditions  
SEL_OUT = 0  
SEL_OUT = 0  
SEL_OUT = 0  
SEL_OUT = 0  
Minimum  
Typical  
Maximum  
454  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
247  
VOD  
VOS  
50  
1.125  
1.375  
50  
VOS  
VOS Magnitude Change  
mV  
Table 4J. LVDS DC Characteristics, VCC = VCC_TAP = 2.5V 5%,TA = -40°C to 85°C  
Symbol  
VOD  
Parameter  
Test Conditions  
SEL_OUT = 0  
SEL_OUT = 0  
SEL_OUT = 0  
SEL_OUT = 0  
Minimum  
Typical  
Maximum  
454  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
247  
VOD  
VOS  
50  
1.105  
1.375  
50  
VOS  
VOS Magnitude Change  
mV  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
6
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
AC Electrical Characteristics  
Table 5A. LVPECL AC Characteristics, VCC = VCC_TAP = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fOUT  
Output Frequency  
2
GHz  
Propagation Delay, Low-to-High;  
NOTE 1  
tPD  
300  
800  
ps  
tsk(o)  
Output Skew; NOTE 2, 3  
55  
ps  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
250  
156.25MHz, Integration Range:  
12kHz - 5MHz  
0.046  
0.083  
0.034  
0.068  
0.065  
0.120  
0.059  
0.094  
ps  
ps  
ps  
ps  
156.25MHz, Integration Range:  
12kHz - 20MHz  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
tjit  
245.76MHz, Integration Range:  
12kHz - 5MHz  
245.76MHz, Integration Range:  
12kHz - 20MHz  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
80  
45  
220  
55  
ps  
%
MUXISOLATION MUX Isolation  
@ 100MHz  
85  
dB  
All parameters measured at fOUT 1GHz unless noted otherwise.  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured from the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
Table 5B. LVPECL AC Characteristics, VCC = VCC_TAP = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fOUT  
Output Frequency  
2
GHz  
Propagation Delay, Low-to-High;  
NOTE 1  
tPD  
300  
800  
ps  
tsk(o)  
Output Skew; NOTE 2, 3  
55  
ps  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
250  
156.25MHz, Integration Range:  
12kHz - 5MHz  
0.054  
0.097  
0.050  
0.099  
0.079  
0.134  
0.067  
0.131  
ps  
ps  
ps  
ps  
156.25MHz, Integration Range:  
12kHz - 20MHz  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
tjit  
245.76MHz, Integration Range:  
12kHz - 5MHz  
245.76MHz, Integration Range:  
12kHz - 20MHz  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
80  
45  
210  
55  
ps  
%
MUXISOLATION MUX Isolation  
@ 100MHz  
85  
dB  
For NOTES, see Table 5A above.  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
7
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Table 5C. LVDS AC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fOUT  
Output Frequency  
2
GHz  
Propagation Delay, Low-to-High;  
NOTE 1  
tPD  
300  
800  
ps  
tsk(o)  
Output Skew; NOTE 2, 3  
55  
ps  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
250  
156.25MHz, Integration Range:  
12kHz - 5MHz  
0.048  
0.096  
0.035  
0.074  
0.074  
0.146  
0.054  
0.097  
ps  
ps  
ps  
ps  
156.25MHz, Integration Range:  
12kHz - 20MHz  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
tjit  
245.76MHz, Integration Range:  
12kHz - 5MHz  
245.76MHz, Integration Range:  
12kHz - 20MHz  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
80  
45  
200  
55  
ps  
%
MUXISOLATION MUX Isolation  
@ 100MHz  
85  
dB  
All parameters measured at fOUT 1GHz unless noted otherwise.  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured from the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
Table 5D. LVDS AC Characteristics, VCC = VCC_TAP = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fOUT  
Output Frequency  
2
GHz  
Propagation Delay, Low-to-High;  
NOTE 1  
tPD  
300  
800  
ps  
tsk(o)  
Output Skew; NOTE 2, 3  
55  
ps  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
250  
156.25MHz, Integration Range:  
12kHz - 5MHz  
0.049  
0.098  
0.037  
0.076  
0.074  
0.139  
0.060  
0.102  
ps  
ps  
ps  
ps  
156.25MHz, Integration Range:  
12kHz - 20MHz  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
tjit  
245.76MHz, Integration Range:  
12kHz - 5MHz  
245.76MHz, Integration Range:  
12kHz - 20MHz  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
80  
45  
200  
55  
ps  
%
MUXISOLATION MUX Isolation  
@ 100MHz  
85  
dB  
For NOTES, see Table 5C above.  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
8
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Additive Phase Jitter  
The spectral purity in a band at a specific offset from the fundamental  
compared to the power of the fundamental is called the dBc Phase  
Noise. This value is normally expressed using a Phase noise plot  
and is most often the specified plot in many applications. Phase noise  
is defined as the ratio of the noise power present in a 1Hz band at a  
specified offset from the fundamental frequency to the power value of  
the fundamental. This ratio is expressed in decibels (dBm) or a ratio  
of the power in the 1Hz band to the power in the fundamental. When  
the required offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the fundamental.  
By investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the entire  
time record of the signal. It is mathematically possible to calculate an  
expected bit error rate given a phase noise plot.  
Additive Phase Jitter @  
156.25MHz, 12kHz to 20MHz = 0.08ps (typical)  
Offset from Carrier Frequency (Hz)  
As with most timing specifications, phase noise measurements has  
issues relating to the limitations of the equipment. Often the noise  
floor of the equipment is higher than the noise floor of the device. This  
is illustrated above. The device meets the noise floor of what is  
shown, but can actually be lower. The phase noise is dependent on  
the input source and measurement equipment.  
The source generator used is, “Rhode & Schwarz SMA 100A Signal  
Generator, via the clock synthesis as the external input to drive the  
input clock.”  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
9
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Parameter Measurement Information  
2V  
2V  
SCOPE  
SCOPE  
V
V
Qx  
CC,  
V
V
CC,  
Qx  
CC_TAP  
CC_TAP  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V LVPECL Output Load AC Test Circuit  
2.5V LVPECL Output Load AC Test Circuit  
Float  
SCOPE  
SCOPE  
Qx  
Qx  
V
V
CC,  
V
CC  
2.5V 5%  
POWER SUPPLY  
3.3V 5%  
CC_TAP  
POWER SUPPLY  
V
+
Float GND –  
CC_TAP  
+
Float GND –  
LVDS  
nQx  
nQx  
3.3V LVDS Output Load AC Test Circuit  
2.5V LVDS Output Load AC Test Circuit  
V
CC  
nQx  
Qx  
nPCLK, nCLK  
VPP  
VCMR  
Cross Points  
nQy  
PCLK, CLK  
Qy  
tsk(o)  
V
EE  
Differential Input Level  
Output Skew  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
10  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Parameter Measurement Information, continued  
nPCLK,  
nCLK  
Part 1  
Part 2  
nQx  
Qx  
nQx  
Qx  
PCLK,  
CLK  
nQ[0:4]  
Q[0:4]  
tPD  
tsk(pp)  
Propagation Delay  
Part-to-Part Skew  
nQ[0:4]  
nQ[0:4]  
80%  
tF  
80%  
tR  
80%  
tF  
80%  
tR  
VSWING  
20%  
VOD  
20%  
20%  
20%  
Q[0:4]  
Q[0:4]  
LVPECL Output Rise/Fall Time  
LVDS Output Rise/Fall Time  
Spectrum of Output Signal Q  
MUX selects active  
input clock signal  
A0  
A1  
nQ[0:4]  
Q[0:4]  
tPW  
MUX_ISOL = A0 – A1  
tPERIOD  
MUX selects static input  
tPW  
odc =  
x 100%  
tPERIOD  
ƒ
Frequency  
(fundamental)  
Output Duty Cycle/Pulse Width/Period  
MUX Isolation  
VDD  
VDD  
out  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/VOD  
out  
VOS/VOS  
Differential Output Voltage Setup  
Offset Voltage Setup  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
11  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Applications Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
PCLK/nPCLK Inputs  
LVPECL Outputs  
For applications not requiring the use of a differential input, both the  
PCLK and nPCLK pins can be left floating. Though not required, but  
for additional protection, a 1kresistor can be tied from PCLK to  
ground.  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
LVDS Outputs  
CLK/nCLK Inputs  
All unused LVDS output pairs can be either left floating or terminated  
with 100across. If they are left floating, there should be no trace  
attached.  
For applications not requiring the use of a differential input, both the  
CLK and nCLK pins can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
LVCMOS Control Pins  
All control pins have internal pulldowns; additional resistance is not  
required but can be added for additional protection. A 1kresistor  
can be used.  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VCC/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VCC = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VCC are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VCC + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011 12 ©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
3.3V LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, CML, LVDS and other  
differential signals. Both VSWING and VOH must meet the VPP and  
VCMR input requirements. Figures 3A to 3E show interface examples  
for the PCLK/nPCLK input driven by the most common driver types.  
The input interfaces suggested here are examples only. If the driver  
is from another vendor, use their termination recommendation.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50  
R1  
R2  
50  
50Ω  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
PCLK  
R1  
100Ω  
nPCLK  
nPCLK  
Zo = 50Ω  
LVPECL  
Input  
LVPECL  
CML  
CML Built-In Pullup  
Input  
Figure 3A. PCLK/nPCLK Input Driven by an  
Open Collector CML Driver  
Figure 3B. PCLK/nPCLK Input Driven by a  
Built-In Pullup CML Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125Ω  
R4  
125Ω  
3.3V  
R3  
84  
R4  
84  
Zo = 50Ω  
Zo = 50Ω  
C1  
C2  
Zo = 50Ω  
Zo = 50Ω  
3.3V LVPECL  
PCLK  
PCLK  
nPCLK  
nPCLK  
LVPECL  
Input  
LVPECL  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84Ω  
R2  
84Ω  
Figure 3C. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 3D. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver with AC Couple  
3.3V  
3.3V  
Zo = 50Ω  
PCLK  
R1  
100Ω  
nPCLK  
Zo = 50Ω  
LVPECL  
Input  
LVDS  
Figure 3E. PCLK/nPCLK Input Driven by a LVDS Driver  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
13  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
2.5V LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, CML, LVDS and other  
differential signals. Both VSWING and VOH must meet the VPP and  
VCMR input requirements. Figures 4A to 4E show interface examples  
for the PCLK/nPCLK input driven by the most common driver types.  
The input interfaces suggested here are examples only. If the driver  
is from another vendor, use their termination recommendation.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements.  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
R1  
50Ω  
R2  
50Ω  
Zo = 50  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
PCLK  
R1  
100Ω  
nPCLK  
Zo = 50Ω  
LVPECL  
Input  
CML Built-In Pullup  
nPCLK  
LVPECL  
Input  
CML  
Figure 4B. PCLK/nPCLK Input Driven by a  
Built-In Pullup CML Driver  
Figure 4A. PCLK/nPCLK Input Driven by an  
Open Collector CML Driver  
2.5V  
2.5V  
2.5V  
3.3V  
2.5V  
R3  
R4  
R1  
100  
R3  
100  
250Ω  
250Ω  
C1  
C2  
Zo = 50  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
PCLK  
nPCLK  
Zo = 50  
nPCLK  
LVPECL  
Input  
LVPECL  
3.3V LVPECL Driver  
R1  
R2  
R6  
100-180Ω  
62.5Ω  
62.5Ω  
R7  
100  
R2  
100  
R4  
100  
-180Ω  
Figure 4C. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 4D. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver with AC Couple  
2.5V  
2.5V  
Zo = 50Ω  
PCLK  
R1  
100Ω  
nPCLK  
Zo = 50Ω  
LVPECL  
Input  
LVDS  
Figure 4E. PCLK/nPCLK Input Driven by a LVDS Driver  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
14  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
3.3V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, HCSL and other  
differential signals. Both VSWING and VOH must meet the VPP and  
VCMR input requirements. Figures 5A to 5E show interface examples  
for the CLK/nCLK input driven by the most common driver types. The  
input interfaces suggested here are examples only. Please consult  
with the vendor of the driver component to confirm the driver  
termination requirements. For example, in Figure 5A, the input  
termination applies for IDT open emitter LVHSTL drivers. If you are  
using an LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
Differential  
Input  
nCLK  
LVPECL  
Differential  
Input  
R1  
50Ω  
R2  
50Ω  
LVHSTL  
R1  
50Ω  
R2  
50Ω  
IDT  
LVHSTL Driver  
R2  
50Ω  
Figure 5A. CLK/nCLK Input Driven by an  
IDT Open Emitter LVHSTL Driver  
Figure 5B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
3.3V  
125Ω  
125Ω  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100Ω  
nCLK  
nCLK  
Differential  
Input  
Zo = 50Ω  
LVPECL  
Receiver  
R1  
84Ω  
R2  
84Ω  
LVDS  
Figure 5C. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 5D. CLK/nCLK Input Driven by a 3.3V LVDS Driver  
3.3V  
3.3V  
Zo = 50Ω  
*R3  
*R4  
33Ω  
33Ω  
CLK  
Zo = 50Ω  
nCLK  
Differential  
Input  
HCSL  
R1  
50Ω  
R2  
50Ω  
*Optional – R3 and R4 can be 0Ω  
Figure 5E. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
15  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
2.5V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, HCSL and other  
differential signals. Both VSWING and VOH must meet the VPP and  
VCMR input requirements. Figures 6A to 6E show interface examples  
for the CLK/nCLK input driven by the most common driver types. The  
input interfaces suggested here are examples only. Please consult  
with the vendor of the driver component to confirm the driver  
termination requirements. For example, in Figure 6A, the input  
termination applies for IDT open emitter LVHSTL drivers. If you are  
using an LVHSTL driver from another vendor, use their termination  
recommendation.  
2.5V  
2.5V  
2.5V  
1.8V  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
Differential  
Input  
nCLK  
LVPECL  
R1  
50Ω  
R2  
50Ω  
Differential  
Input  
LVHSTL  
R1  
50Ω  
R2  
50Ω  
IDT Open Emitter  
LVHSTL Driver  
R3  
18Ω  
Figure 6A. CLK/nCLK Input Driven by an  
IDT Open Emitter LVHSTL Driver  
Figure 6B. CLK/nCLK Input Driven by a  
2.5V LVPECL Driver  
2.5V  
2.5V  
2.5V  
2.5V  
R3  
250Ω  
R4  
250Ω  
2.5V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100Ω  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
LVPECL  
Differential  
Input  
LVDS  
R1  
62.5Ω  
R2  
62.5Ω  
Figure 6C. CLK/nCLK Input Driven by a  
2.5V LVPECL Driver  
Figure 6D. CLK/nCLK Input Driven by a 2.5V LVDS Driver  
2.5V  
2.5V  
Zo = 50Ω  
*R3  
*R4  
33Ω  
33Ω  
CLK  
Zo = 50Ω  
nCLK  
Differential  
Input  
HCSL  
R1  
50Ω  
R2  
50Ω  
*Optional – R3 and R4 can be 0Ω  
Figure 6E. CLK/nCLK Input Driven by a  
2.5V HCSL Driver  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
16  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
LVDS Driver Termination  
For a general LVDS interface, the recommended value for the  
termination impedance (ZT) is between 90and 132. The actual  
value should be selected to match the differential impedance (Z0) of  
your transmission line. A typical point-to-point LVDS design uses a  
100parallel resistor at the receiver and a 100differential  
transmission-line environment. In order to avoid any  
transmission-line reflection issues, the components should be  
surface mounted and must be placed as close to the receiver as  
possible. IDT offers a full line of LVDS compliant devices with two  
types of output structures: current source and voltage source. The  
standard termination schematic as shown in Figure 7A can be used  
with either type of output structure. Figure 7B, which can also be  
used with both output types, is an optional termination with center tap  
capacitance to help filter common mode noise. The capacitor value  
should be approximately 50pF. If using a non-standard termination, it  
is recommended to contact IDT and confirm if the output structure is  
current source or voltage source type. In addition, since these  
outputs are LVDS compatible, the input receiver’s amplitude and  
common-mode input range should be verified for compatibility with  
the output.  
ZO • ZT  
LVDS  
Driver  
LVDS  
Receiver  
ZT  
Figure 7A. Standard Termination  
ZT  
ZO • ZT  
LVDS  
Driver  
2
ZT  
2
LVDS  
Receiver  
C
Figure 7B. Optional Termination  
LVDS Termination  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
17  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 8A and 8B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
3.3V  
R3  
R4  
3.3V  
125Ω  
125Ω  
3.3V  
Z
o = 50Ω  
3.3V  
+
_
Z
o = 50Ω  
+
_
Input  
LVPECL  
Zo = 50Ω  
LVPECL  
Input  
R1  
50Ω  
R2  
50Ω  
Zo = 50Ω  
R1  
84Ω  
R2  
84Ω  
VCC - 2V  
1
RTT =  
* Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
Figure 8A. 3.3V LVPECL Output Termination  
Figure 8B. 3.3V LVPECL Output Termination  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
18  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Termination for 2.5V LVPECL Outputs  
Figure 9A and Figure 9B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating 50Ω  
to VCC – 2V. For VCC = 2.5V, the VCC – 2V is very close to ground  
level. The R3 in Figure 9B can be eliminated and the termination is  
shown in Figure 9C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
R1  
R3  
50Ω  
250  
250Ω  
+
50Ω  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
R2  
50Ω  
50Ω  
2.5V LVPECL Driver  
R2  
R4  
62.5Ω  
62.5Ω  
R3  
18Ω  
Figure 9A. 2.5V LVPECL Driver Termination Example  
Figure 9B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
R2  
50Ω  
50Ω  
Figure 9C. 2.5V LVPECL Driver Termination Example  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
19  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 10. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, please refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 10. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
20  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
LVPECL Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS854S015I-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS854S015I-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 85mA = 294.53mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 30mW = 150mW  
Total Power_MAX (3.3V, with all outputs switching) = 294.53mW +150mW = 444.55mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 49.5°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.445W * 49.5°C/W = 107°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 6. Thermal Resistance θJA for 24 Lead VFQFN, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
49.5°C/W  
43.3°C/W  
38.8°C/W  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
21  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 11.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 11. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.9V  
(VCC_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCC_MAX 1.7V  
(VCC_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
22  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
LVDS Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS854S015I-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS854S015I-01 is the sum of the core power plus the analog power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.465V * 150mA = 519.75mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 49.5°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.520W * 49.5°C/W = 110.7°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance θJA for 24 Lead VFQFN, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
49.5°C/W  
43.3°C/W  
38.8°C/W  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
23  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Reliability Information  
Table 8. θJA vs. Air Flow Table for a 24 Lead VFQFN  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
49.5°C/W  
43.3°C/W  
38.8°C/W  
Transistor Count  
The transistor count for ICS854S015I-01 is: 521  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
24  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Package Outline and Package Dimensions  
Package Outline - K Suffix for 24 Lead VFQFN  
(Ref.)  
N & N  
Even  
Seating Plane  
(N -1)x e  
(Ref.)  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
1
Singulation  
2
or  
(N -1)x e  
(Ref.)  
Sawn  
E2  
2
Singulation  
TopView  
D
b
(Ref.)e  
N &N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
Bottom View w/Type A ID  
Bottom View w/Type C ID  
2
1
2
1
CHAMFER  
RADIUS  
N N-1  
N N-1  
4
4
There are 2 methods of indicating pin 1 corner at the back of the VFQFN package are:  
1. Type A: Chamfer on the paddle (near pin 1)  
2. Type C: Mouse bite on the paddle (near pin 1)  
NOTE: The following package mechanical drawing is a generic  
Table 9. K Package Dimensions for 24 Lead VFQFN  
All Dimensions in Millimeters  
drawing that applies to any pin count VFQFN package. This drawing  
is not intended to convey the actual pin count or pin layout of this  
device. The pin count and pinout are shown on the front page. The  
package dimensions are in Table 9.  
Symbol  
Minimum  
Maximum  
N
A
24  
0.80  
0
1.0  
A1  
0.05  
A3  
0.25 Reference  
0.18 0.30  
b
e
0.50 Basic  
4
D, E  
D2, E2  
L
2.30  
0.30  
2.55  
0.50  
ND NE  
6
Reference Document: JEDEC Publication 95, MO-220  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
25  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
854S015CKI-01LF  
854S015CKI-01LFT  
Marking  
15CI01L  
15CI01L  
Package  
“Lead-Free” 24 Lead VFQFN  
“Lead-Free” 24 Lead VFQFN  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
ICS854S015CKI-01 REVISION A OCTOBER 4, 2011  
26  
©2011 Integrated Device Technology, Inc.  
ICS854S015I-01 Data Sheet  
LOW SKEW, 1-TO-5, DIFFERENTIAL-TO-LVDS/LVPECL FANOUT BUFFER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2011. All rights reserved.  

相关型号:

854S01AKILF

2:1 Differential-to-LVDS Multiplexer
IDT

854S01AKILFT

2:1 Differential-to-LVDS Multiplexer
IDT

854S057BGILF

4:1 or 2:1 LVDS Clock Multiplexer with Internal Input Termination
IDT

854S057BGILFT

4:1 or 2:1 LVDS Clock Multiplexer with Internal Input Termination
IDT

854S057B_16

4:1 or 2:1 LVDS Clock Multiplexer with Internal Input Termination
IDT

854S14AKI

Low Skew Clock Driver, 854S Series, 4 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.95 MM HEIGHT, MO-220, VQFN-24
IDT

854S14AKILFT

Low Skew Clock Driver, 854S Series, 4 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VQFN-24
IDT

854S14AKT

Low Skew Clock Driver, 854S Series, 4 True Output(s), 0 Inverted Output(s), 4 X 4 MM, 0.95 MM HEIGHT, MO-220, VQFN-24
IDT

854S202AYI

Clock Driver
IDT

854S202AYI-01

Differential Multiplexer, 2 Func, 12 Channel, PQFP48
IDT

854S202AYI-01T

Differential Multiplexer, 2 Func, 12 Channel, PQFP48
IDT

854S202AYIFT

Low Skew Clock Driver, 854S Series, 4 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026BBC-HD, LQFP-48
IDT