8543AG-09LFT [IDT]

Low Skew, 1-to-4, Differential-to-LVDS Fanout Buffer;
8543AG-09LFT
型号: 8543AG-09LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew, 1-to-4, Differential-to-LVDS Fanout Buffer

驱动 光电二极管 逻辑集成电路
文件: 总17页 (文件大小:996K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Skew, 1-to-4, Differential-to-  
LVDS Fanout Buffer  
ICS8543-09  
DATA SHEET  
General Description  
Features  
The ICS8543-09 is a low skew, high performance  
1-to-4 Differential-to-LVDS Clock Fanout Buffer.  
Utilizing Low Voltage Differential Signaling (LVDS) the  
ICS8543-09 provides a low power, low noise, solution  
for distributing clock signals over controlled  
Four differential LVDS output pairs  
Selectable differential CLK, nCLK or LVPECL clock inputs  
S
IC  
HiPerClockS™  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
PCLK, nPCLK supports the following input types:  
impedances of 100. The ICS8543-09 has two selectable clock  
inputs. The CLK, nCLK pair can accept most standard differential  
input levels. The PCLK, nPCLK pair can accept LVPECL, CML, or  
SSTL input levels. The clock enable is internally synchronized to  
eliminate runt pulses on the outputs during asynchronous  
assertion/deassertion of the clock enable pin.  
LVPECL, CML, SSTL  
Maximum output frequency: 800MHz  
Translates any single-ended input signal to LVDS levels with  
resistor bias on nCLK input  
Additive phase jitter, RMS: 0.146ps (typical)  
Output skew: 100ps (maximum)  
Part-to-part skew: 700ps (maximum)  
Propagation delay: 3.3ns (maximum)  
Full 3.3V supply mode  
Guaranteed output and part-to-part skew characteristics make the  
ICS8543-09 ideal for those applications demanding well defined  
performance and repeatability.  
0°C to 70°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
Industrial temperature information available upon request  
Pin Assignment  
Block Diagram  
GND  
CLK_EN  
CLK_SEL  
CLK  
1
2
20 Q0  
Pullup  
CLK_EN  
D
19  
nQ0  
Q
3
4
18  
17  
VDD  
Q1  
LE  
Pulldown  
Pullup  
CLK  
nCLK  
Q0  
0
nCLK  
PCLK  
nPCLK  
5
6
7
8
9
16 nQ1  
nQ0  
15  
14  
13  
Q2  
Pulldown  
Pullup  
PCLK  
nPCLK  
1
nQ2  
GND  
Q1  
OE  
nQ1  
GND  
12 Q3  
11  
nQ3  
Pulldown  
CLK_SEL  
VDD 10  
Q2  
nQ2  
ICS8543-09  
Q3  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.925mm  
package body  
nQ3  
Pullup  
OE  
G Package  
Top View  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 9, 13  
GND  
Power  
Input  
Power supply ground.  
Synchronizing clock enable. When HIGH, clock outputs follows clock input.  
When LOW, Q outputs are forced low, nQ outputs are forced high.  
LVCMOS / LVTTL interface levels.  
2
CLK_EN  
Pullup  
Clock select input. When HIGH, selects PCLK/nPCLK inputs.  
When LOW, selects CLK/nCLK input. LVCMOS / LVTTL interface levels.  
3
4
CLK_SEL  
CLK  
Input  
Input  
Pulldown  
Pulldown  
Non-inverting differential clock input.  
5
6
7
Input  
Input  
Input  
Pullup  
Pulldown  
Pullup  
Inverting differential clock input.  
nCLK  
PCLK  
Non-inverting differential LVPECL clock input.  
Inverting differential LVPECL clock input.  
nPCLK  
OE  
Output enable. Controls enabling and disabling of outputs Q0/nQ0 through  
Q3/nQ3. LVCMOS/LVTTL interface levels.  
8
Input  
Pullup  
10, 18  
11, 12  
14, 15  
16, 17  
19, 20  
VDD  
Power  
Output  
Output  
Output  
Output  
Positive supply pins.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
RPULLUP  
RPULLDOWN  
51  
51  
k  
kΩ  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
OE  
0
CLK_EN  
CLK_SEL  
Selected Source  
Q0:Q3  
nQ0:nQ3  
Hi-Impedance  
Disabled, High  
Disabled, High  
Enabled  
X
0
0
1
1
X
0
1
0
1
Hi-Impedance  
Disabled, Low  
Disabled, Low  
Enabled  
1
CLK, nCLK  
PCLK, nPCLK  
CLK, nCLK  
1
1
1
PCLK, nPCLK  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK/nCLK and PCLK/nPCLK inputs as described in Table 3B.  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
CLK_EN  
nQ0:nQ3  
Q0:Q3  
Figure 1. CLK_EN Timing Diagram  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
nQ0:nQ3  
Input to Output Mode  
Polarity  
CLK or PCLK  
nCLK or nPCLK  
Q0:Q3  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
0
1
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
Differential to Differential  
Differential to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Inverting  
1
0
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
NOTE 1: Please refer to the Application Information section, Wiring the Differential Input to Accept Single-Ended Levels.  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θJA  
91.1°C/W (0 mps)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
3.465  
50  
Units  
V
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
IDD  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
Input High Voltage  
Input Low Voltage  
2
VDD + 0.3  
VIL  
-0.3  
0.8  
150  
5
V
CLK_SEL  
V
DD = VIN = 3.465V  
µA  
µA  
µA  
µA  
IIH  
Input High Current  
Input Low Current  
OE, CLK_EN  
CLK_SEL  
VDD = VIN = 3.465V  
V
DD = 3.465V, VIN = 0V  
-5  
IIL  
OE, CLK_EN  
VDD = 3.465V, VIN = 0V  
-150  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Table 4C. Differential DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
CLK  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
IIH Input High Current  
nCLK  
CLK  
V
-5  
IIL  
Input Low Current  
nCLK  
VDD = 3.465V, VIN = 0V  
-150  
0.15  
0.5  
VPP  
Peak-to-Peak Input Voltage; NOTE 1  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VDD – 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4D. LVPECL DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
PCLK  
V
DD = VIN = 3.465V  
150  
5
IIH  
Input High Current  
nPCLK  
PCLK  
VDD = VIN = 3.465V  
V
DD = 3.465V, VIN = 0V  
-5  
-150  
0.3  
IIL  
Input Low Current  
nPCLK  
VDD = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage; NOTE 1  
1.0  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
1.5  
VDD  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4E. LVDS DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
360  
40  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
200  
280  
VOD  
VOS  
1.125  
1.25  
5
1.375  
25  
VOS  
IOz  
VOS Magnitude Change  
High Impedance Leakage  
Power Off Leakage  
mV  
µA  
-10  
-20  
+10  
+20  
-5  
IOFF  
1
µA  
IOSD  
IOS  
Differential Output Short Circuit Current  
Output Short Circuit Current  
-3.5  
-3.5  
mA  
mA  
-5  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
AC Electrical Characteristics  
Table 5. AC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
fMAX  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
800  
Units  
MHz  
ns  
Output Frequency  
Propagation Delay; NOTE 1  
tPD  
ƒ800MHz  
1
2.15  
3.3  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter  
Section  
156.25MHz,  
Integration Range: 12kHz – 20MHz  
tjit(Ø)  
0.146  
ps  
tsk(o)  
tsk(pp)  
tR / tF  
odc  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time  
Output Duty Cycle  
100  
700  
350  
55  
ps  
ps  
ps  
%
20% to 80% @ 50MHz  
150  
45  
50  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE: All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the differential output crossing points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using  
the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Additive Phase Jitter  
The spectral purity in a band at a specific offset from the fundamental  
compared to the power of the fundamental is called the dBc Phase  
Noise. This value is normally expressed using a Phase noise plot  
and is most often the specified plot in many applications. Phase noise  
is defined as the ratio of the noise power present in a 1Hz band at a  
specified offset from the fundamental frequency to the power value of  
the fundamental. This ratio is expressed in decibels (dBm) or a ratio  
of the power in the 1Hz band to the power in the fundamental. When  
the required offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the fundamental.  
By investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the entire  
time record of the signal. It is mathematically possible to calculate an  
expected bit error rate given a phase noise plot.  
Additive Phase Jitter @ 156.25MHz  
12kHz to 20MHz = 0.146ps (typical)  
Offset from Carrier Frequency (Hz)  
As with most timing specifications, phase noise measurements has  
issues relating to the limitations of the equipment. Often the noise  
floor of the equipment is higher than the noise floor of the device. This  
is illustrated above. The device meets the noise floor of what is  
shown, but can actually be lower. The phase noise is dependent on  
the input source and measurement equipment.  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Parameter Measurement Information  
V
DD  
SCOPE  
Qx  
V
nQ0:nQ3  
Q0:Q3  
DD  
3.3V 5%  
POWER SUPPLY  
V
V
Cross Points  
PP  
CMR  
+
Float GND –  
LVDS  
nQx  
GND  
3.3V LVDS Output Load AC Test Circuit  
Differential Output Level  
V
DD  
nQx  
Qx  
nCLK, nPCLK  
V
Cross Points  
nQy  
OD  
CLK, PCLK  
GND  
Qy  
V
OS  
tsk(o)  
Differential Input Level  
Output Skew  
Part 1  
nQx  
nCLK, nPCLK  
CLK, PCLK  
Qx  
Part 2  
nQy  
nQ0:nQ3  
Qy  
Q0:Q3  
tPD  
tsk(pp)  
Part-to-Part Skew  
Propagation Delay  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Parameter Measurement Information, continued  
nQ0:nQ3  
Q0:Q3  
nQ0:nQ3  
Q0:Q3  
80%  
80%  
VOD  
20%  
tPW  
tPERIOD  
20%  
tF  
tR  
tPW  
odc =  
x 100%  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
Output Rise/Fall Time  
VDD  
VDD  
out  
out  
out  
DC Input  
LVDS  
LVDS  
100  
V
OD/VOD  
DC Input  
out  
VOS/VOS  
Offset Voltage Setup  
Differential Output Voltage Setup  
out  
IOZ  
3.3V 5% POWER SUPPLY  
Float GND  
+
DC Inpu  
t
LVDS  
_
LVDS  
VDD  
out  
IOFF  
IOZ  
High Impedance Leakage Current Setup  
Power Off Leakage Setup  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Parameter Measurement Information, continued  
VDD  
VDD  
out  
IOS  
out  
DC Input  
LVDS  
IOSD  
DC Input  
LVDS  
IOSB  
out  
out  
Differential Output Short Circuit Setup  
Output Short Circuit Current Setup  
Application Information  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how the differential input can be wired to accept  
single-ended levels. The reference voltage V_REF = VDD/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock swing  
is only 2.5V and VDD = 3.3V, V_REF should be 1.25V and R2/R1 =  
VDD  
R1  
1K  
CLK_IN  
0.609.  
+
-
V_REF  
C1  
0.1uF  
R2  
1K  
Figure 2. Single-Ended Signal Driving Differential Input  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other  
differential signals. Both differential signals must meet the VPP and  
VCMR input requirements. Figures 3A to 3E show interface examples  
for the PCLK/nPCLK input driven by the most common driver types.  
The input interfaces suggested here are examples only. If the driver  
is from another vendor, use their termination recommendation.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R1  
50  
R2  
50  
Zo = 50  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
PCLK  
R1  
100  
nPCLK  
Zo = 50Ω  
nPCLK  
LVPECL  
LVPECL  
Input  
CML  
CML Built-In Pullup  
Input  
Figure 3A. PCLK/nPCLK Input Driven by a CML Driver  
Figure 3B. PCLK/nPCLK Input Driven by a  
Built-In Pullup CML Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
R3  
84  
R4  
84  
Zo = 50Ω  
Zo = 50Ω  
C1  
C2  
Zo = 50Ω  
Zo = 50Ω  
3.3V LVPECL  
PCLK  
PCLK  
nPCLK  
nPCLK  
LVPECL  
Input  
LVPECL  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84  
R2  
84  
Figure 3C. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 3D. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver with AC Couple  
2.5V  
3.3V  
2.5V  
R3  
120  
R4  
120  
Zo = 60Ω  
Zo = 60Ω  
PCLK  
nPCLK  
LVPECL  
Input  
SSTL  
R1  
120  
R2  
120  
Figure 3E. PCLK/nPCLK Input Driven by an SSTL Driver  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and  
other differential signals. Both differential signals must meet the VPP  
and VCMR input requirements. Figures 4A to 4F show interface  
examples for the CLK/nCLK input driven by the most common driver  
types. The input interfaces suggested here are examples only.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements. For example, in Figure 4A, the input  
termination applies for IDT open emitter LVHSTL drivers. If you are  
using an LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
Differential  
nCLK  
LVPECL  
Input  
R1  
50  
R2  
50  
Differential  
LVHSTL  
Input  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
Figure 4B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 4A. CLK/nCLK Input Driven by an IDT Open  
Emitter HiPerClockS LVHSTL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
LVPECL  
Receiver  
LVDS  
R1  
84  
R2  
84  
Figure 4D. CLK/nCLK Input Driven by a 3.3V LVDS Driver  
Figure 4C. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
120  
R4  
120  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
Figure 4E. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
Figure 4F. CLK/nCLK Input Driven by a 2.5V SSTL Driver  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK/nCLK Inputs  
LVDS Outputs  
For applications not requiring the use of the differential input, both  
CLK and PCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
All unused LVDS output pairs can be either left floating or terminated  
with 100across. If they are left floating, there should be no trace  
attached.  
PCLK/nPCLK Inputs  
For applications not requiring the use of a differential input, both the  
PCLK and nPCLK pins can be left floating. Though not required, but  
for additional protection, a 1kresistor can be tied from PCLK to  
ground.  
LVCMOS Control Pins  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
3.3V LVDS Driver Termination  
A general LVDS interface is shown in Figure 5. In a 100differential  
transmission line environment, LVDS drivers require a matched load  
termination of 100across near the receiver input. For a multiple  
LVDS outputs buffer, if only partial outputs are used, it is  
recommended to terminate the unused outputs.  
3.3V  
50Ω  
3.3V  
LVDS Driver  
+
R1  
100Ω  
50Ω  
100Differential Transmission Line  
Figure 5. Typical LVDS Driver Termination  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8543-09.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8543-09 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 50mA = 173.25mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 91.1°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.173W * 91.1°C/W = 85.8°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 6. Thermal Resistance θJA for 20 Lead TSSOP, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
91.1°C/W  
86.7°C/W  
84.6°C/W  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 20 Lead TSSOP  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
91.1°C/W  
86.7°C/W  
84.6°C/W  
Transistor Count  
The transistor count for ICS8543-09 is: 636  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 20 Lead TSSOP  
Table 8. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
15  
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
8543AG-09LF  
Marking  
Package  
Shipping Packaging  
Tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8543AG09L  
ICS8543AG09L  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
8543AG-09LFT  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product  
for use in life support devices or critical medical instruments.  
ICS8543AG-09 REVISION A JANUARY 15, 2010  
16  
©2010 Integrated Device Technology, Inc.  
ICS8543-09 Data Sheet  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2009. All rights reserved.  

相关型号:

8543BGI

Low Skew Clock Driver, 8543 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

8543BGILF

Low Skew Clock Driver, 8543 Series, 8 True Output(s), 0 Inverted Output(s), PDSO20
RENESAS

8543BGILFT

Low Skew Clock Driver, 8543 Series, 8 True Output(s), 0 Inverted Output(s), PDSO20
RENESAS

8543BGIT

Low Skew Clock Driver, 8543 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

8543BGT

Low Skew Clock Driver, 8543 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

8544

INDUCTORS Inductors Designed for Nationals 150 KHz SIMPLE SWITCHERTM
FILTRAN

854435--1

Ribbon Cable Notcher
MACOM

854438--1

Ribbon Cable Notcher
MACOM

854443--1

Ribbon Cable Notcher
MACOM

854449--1

Ribbon Cable Notcher
MACOM

854449--2

Ribbon Cable Notcher
MACOM

854449--3

Ribbon Cable Notcher
MACOM