8543BGILFT [RENESAS]

Low Skew Clock Driver, 8543 Series, 8 True Output(s), 0 Inverted Output(s), PDSO20;
8543BGILFT
型号: 8543BGILFT
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Low Skew Clock Driver, 8543 Series, 8 True Output(s), 0 Inverted Output(s), PDSO20

驱动 光电二极管 逻辑集成电路
文件: 总18页 (文件大小:781K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8543I  
Low Skew, 1-to-4,  
Differential-to-LVDS Fanout Buffer  
DATA SHEET  
General Description  
Features  
The ICS8543I is a low skew, high performance 1-to-4 Differen-  
tial-to-LVDS Clock Fanout Buffer. Utilizing Low Voltage Differential  
Signaling (LVDS) the ICS8543I provides a low power, low noise, so-  
lution for distributing clock signals over controlled impedances of  
100. The ICS8543I has two selectable clock inputs. The CLK,  
nCLK pair can accept most standard differential input levels. The  
PCLK, nPCLK pair can accept LVPECL, CML, or SSTL input levels.  
The clock enable is internally synchronized to eliminate runt pulses  
on the outputs during asynchronous assertion/deassertion of the  
clock enable pin.  
Four differential LVDS output pairs  
Selectable differential CLK/nCLK or LVPECL clock inputs  
CLK/nCLK pair can accept the following differential input levels:  
LVPECL, LVDS, LVHSTL, SSTL, HCSL  
PCLK/nPCLK pair can accept the following differential input  
levels: LVPECL, CML, SSTL  
Maximum output frequency: 650MHz  
Translates any single-ended input signals to LVDS levels with  
resistor bias on nCLK input  
Additive phase Jitter, RMS: 0.164ps (typical)  
Output skew: 40ps (maximum)  
Part-to-part skew: 600ps (maximum)  
Propagation delay: 2.6ns (maximum)  
Full 3.3Vsupply mode  
Guaranteed output and part-to-part skew characteristics make the  
ICS8543I ideal for those applications demanding well defined perfor-  
mance and repeatability.  
-40°C to 85°C ambient operating temperature  
Available in lead-free packages  
Block Diagram  
Pin Assignment  
Pullup  
GND  
CLK_EN  
CLK_SEL  
CLK  
1
2
20 Q0  
CLK_EN  
D
19  
nQ0  
Q
3
4
18  
17  
VDD  
Q1  
LE  
Pulldown  
Pullup  
CLK  
nCLK  
nCLK  
PCLK  
nPCLK  
5
6
7
8
9
16 nQ1  
0
Q0  
15  
14  
13  
Q2  
nQ2  
GND  
nQ0  
Pulldown  
Pullup  
PCLK  
nPCLK  
OE  
1
Q1  
GND  
VDD 10  
12 Q3  
11  
nQ3  
nQ1  
Pulldown  
CLK_SEL  
Q2  
ICS8543I  
nQ2  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.925mm  
package body  
Q3  
nQ3  
Pullup  
OE  
G Package  
Top View  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 9, 13  
GND  
Power  
Input  
Power supply ground.  
Synchronizing clock enable. When HIGH, clock outputs follows clock input.  
When LOW, Qx outputs are forced low, nQx outputs are forced high.  
LVCMOS / LVTTL interface levels.  
2
CLK_EN  
Pullup  
Clock select input. When HIGH, selects PCLK/nPCLK inputs.  
When LOW, selects CLK/nCLK inputs. LVCMOS / LVTTL interface levels.  
3
4
CLK_SEL  
CLK  
Input  
Input  
Pulldown  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential LVPECL clock input.  
5
6
7
nCLK  
PCLK  
nPCLK  
Input  
Input  
Input  
Pullup  
Inverting differential LVPECL clock input.  
Output enable. Controls enabling and disabling of outputs Q0/nQ0 through  
Q3/nQ3. LVCMOS/LVTTL interface levels.  
8
OE  
Input  
Pullup  
10, 18  
11, 12  
14, 15  
16, 17  
19, 20  
VDD  
Power  
Output  
Output  
Output  
Output  
Positive supply pins.  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
RPULLUP  
RPULLDOWN  
51  
51  
k  
k  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
OE  
0
CLK_EN  
CLK_SEL  
Selected Source  
Q0:Q3  
Hi-Z  
nQ0:nQ3  
Hi-Z  
X
0
0
1
1
X
0
1
0
1
1
CLK/nCLK  
PCLK/nPCLK  
CLK/nCLK  
Disabled; Low  
Disabled; Low  
Enabled  
Disabled; High  
Disabled; High  
Enabled  
1
1
1
PCLK/nPCLK  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK/nCLK and PCLK/nPCLK inputs as described in Table 3B.  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
CLK_EN  
nQ0:nQ3  
Q0:Q3  
Figure 1. CLK_EN Timing Diagram  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
CLK or PCLK  
nCLK or nPCLK  
Q[0:3]  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQ[0:3]  
HIGH  
LOW  
Input to Output Mode  
Differential to Differential  
Differential to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Polarity  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Inverting  
0
1
1
0
0
Biased; NOTE 1  
HIGH  
LOW  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information section, Wiring the Differential Input to Accept Single-Ended Levels.  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress  
specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC  
Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, JA  
73.2C/W (0 lfpm)  
-65C to 150C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol Parameter  
VDD Positive Supply Voltage  
IDD Power Supply Current  
Test Conditions  
Minimum  
Typical  
Maximum  
3.465  
50  
Units  
V
3.135  
3.3  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
Input Low Voltage  
-0.3  
0.8  
5
V
OE, CLK_EN  
CLK_SEL  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
DD = 3.465V, VIN = 0V  
µA  
µA  
µA  
µA  
IIH  
Input High Current  
150  
OE, CLK_EN  
CLK_SEL  
V
V
-150  
-5  
IIL  
Input Low Current  
Table 4C. Differential DC Characteristics, VDD = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
CLK  
VDD = VIN = 3.465V  
150  
5
IIH Input High Current  
nCLK  
CLK  
VDD = VIN = 3.465V  
V
DD = 3.465V, VIN = 0V  
-5  
IIL  
Input Low Current  
nCLK  
VDD = 3.465V, VIN = 0V  
-150  
0.15  
VPP  
Peak-to-Peak Voltage; NOTE 1  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
0.5  
VDD – 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Table 4D. LVPECL DC Characteristics, VDD = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
PCLK  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
IIH  
Input High Current  
nPCLK  
PCLK  
V
-5  
IIL  
Input Low Current  
nPCLK  
VDD = 3.465V, VIN = 0V  
-150  
0.3  
VPP  
Peak-to-Peak Voltage; NOTE 1  
1
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
1.5  
VDD  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4E. LVDS DC Characteristics, VDD = 3.3V ± 5%, TA = -40°C to 85°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
280  
0
Maximum  
360  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
200  
VOD  
VOS  
40  
1.125  
1.25  
5
1.375  
25  
VOS  
IOz  
VOS Magnitude Change  
High Impedance Leakage  
Power Off Leakage  
mV  
µA  
-10  
-20  
+10  
IOFF  
±1  
+20  
µA  
Differential Output Short Circuit  
Current  
IOSD  
-3.5  
-5  
mA  
IOS  
Output Short Circuit Current  
Output Voltage High  
-3.5  
1.34  
1.06  
-5  
mA  
V
VOH  
VOL  
1.6  
Output Voltage Low  
0.9  
V
AC Electrical Characteristics  
Table 5. AC Characteristics, VDD = 3.3V ± 5%, TA = -40°C to 85°C  
Parameter Symbol  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fMAX  
Maximum Output Frequency  
650  
MHz  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
153.6MHz, Integration  
Range: 12kHz – 20MHz  
tjit  
0.164  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time  
ƒ 650MHz  
1.5  
2.6  
40  
ns  
ps  
ps  
ps  
%
tsk(o)  
tsk(pp)  
tR / tF  
odc  
600  
450  
55  
20% to 80% @ 50MHz  
150  
45  
Output Duty Cycle  
odc  
50  
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the differential output crosspoints.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using  
the same type of inputs on each device, the outputs are measured at the differential crosspoints.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Additive Phase Jitter  
The spectral purity in a band at a specific offset from the fundamental  
compared to the power of the fundamental is called the dBc Phase  
Noise. This value is normally expressed using a Phase noise plot  
and is most often the specified plot in many applications. Phase noise  
is defined as the ratio of the noise power present in a 1Hz band at a  
specified offset from the fundamental frequency to the power value of  
the fundamental. This ratio is expressed in decibels (dBm) or a ratio  
of the power in the 1Hz band to the power in the fundamental. When  
the required offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the fundamental.  
By investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the entire  
time record of the signal. It is mathematically possible to calculate an  
expected bit error rate given a phase noise plot.  
Additive Phase Jitter @ 153.6MHz  
12kHz to 20MHz = 0.164ps (typical)  
Offset from Carrier Frequency (Hz)  
As with most timing specifications, phase noise measurements has  
issues relating to the limitations of the equipment. Often the noise  
floor of the equipment is higher than the noise floor of the device. This  
is illustrated above. The device meets the noise floor of what is  
shown, but can actually be lower. The phase noise is dependent on  
the input source and measurement equipment.  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Parameter Measurement Information  
V
DD  
SCOPE  
Qx  
V
nCLK,  
nPCLK  
DD  
3.3V±5%  
POWER SUPPLY  
VPP  
VCMR  
Cross Points  
+
Float GND –  
CLK,  
PCLK  
nQx  
GND  
3.3V LVDS Output Load AC Test Circuit  
Differential Input Level  
V
DD  
nQx  
Qx  
nQ[0:3]  
VOD  
Cross Points  
nQy  
Q[0:3]  
GND  
Qy  
VOS  
tsk(o)  
Differential Output Level  
Output Skew  
nCLK,  
nPCLK  
Part 1  
nQx  
CLK,  
Qx  
PCLK  
Part 2  
nQ[0:3]  
nQy  
Q[0:3]  
Qy  
tPD  
tsk(pp)  
Part-to-Part Skew  
Propagation Delay  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Parameter Measurement Information, continued  
nQ[0:3]  
Q[0:3]  
nQ[0:3]  
80%  
80%  
tR  
tPW  
VOD  
20%  
tPERIOD  
20%  
Q[0:3]  
tPW  
tF  
odc =  
x 100%  
tPERIOD  
Output Rise/Fall Time  
Output Duty Cycle/Pulse Width/Period  
VDD  
VDD  
out  
out  
out  
out  
DC Input  
LVDS  
DC Input  
100  
LVDS  
VOS/Δ VOS  
ä
Offset Voltage Setup  
Differential Output Voltage Setup  
VDD  
out  
out  
out  
IOZ  
3.3V±5% POWER SUPPLY  
Float GND  
+
DC Inpu  
t
LVDS  
_
IOSD  
DC Input  
LVDS  
IOZ  
out  
High Impedance Leakage Current Setup  
Differential Output Short Circuit Setup  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
8
©2012 Integrated Device Technology, Inc.  
Parameter Measurement Information, continued  
VDD  
out  
IOS  
DC Input  
LVDS  
LVDS  
VDD  
IOSB  
out  
IOFF  
Output Short Circuit Current Setup  
Power Off Leakage Setup  
Applications Information  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VCC/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VDD = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VDD are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VDD + 0.3V. Though some  
of the recommended components might not be used, the pads should  
be placed in the layout. They can be utilized for debugging purposes.  
The datasheet specifications are characterized and guaranteed by  
using a differential signal.  
Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and  
other differential signals. Both signals must meet the VPP and VCMR  
input requirements. Figures 3A to 3F show interface examples for the  
CLK/nCLK input driven by the most common driver types. The input  
interfaces suggested here are examples only. Please consult with the  
vendor of the driver component to confirm the driver termination  
requirements. For example, in Figure 3A, the input termination  
applies for IDT open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
Zo = 50Ω  
nCLK  
Differential  
Input  
nCLK  
LVPECL  
Differential  
R1  
R2  
LVHSTL  
50Ω  
50Ω  
Input  
R1  
50Ω  
R2  
50Ω  
IDT  
LVHSTL Driver  
R2  
50Ω  
Figure 3A. CLK/nCLK Input Driven by an  
IDT Open Emitter LVHSTL Driver  
Figure 3B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125Ω  
R4  
125Ω  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100Ω  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
LVPECL  
Receiver  
LVDS  
R1  
R2  
84Ω  
84Ω  
Figure 3C. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 3D. CLK/nCLK Input Driven by a  
3.3V LVDS Driver  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120Ω  
120Ω  
Zo = 50Ω  
*R3  
*R4  
33Ω  
33Ω  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
SSTL  
HCSL  
R1  
50Ω  
R2  
50Ω  
R1  
120Ω  
R2  
120Ω  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
Figure 3F. CLK/nCLK Input Driven by a  
2.5V SSTL Driver  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other  
differential signals. Both signals must meet the VPP and VCMR input  
requirements. Figures 4A to 4F show interface examples for the S  
PCLK/nPCLK input driven by the most common driver types. The  
input interfaces suggested here are examples only. If the driver is  
from another vendor, use their termination recommendation. Please  
consult with the vendor of the driver component to confirm the driver  
termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50Ω  
R1  
R2  
50Ω  
50Ω  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
PCLK  
R1  
100Ω  
nPCLK  
Zo = 50Ω  
nPCLK  
LVPECL  
CML Built-In Pullup  
Input  
LVPECL  
Input  
CML  
Figure 4A. PCLK/nPCLK Input Driven by a  
CML Driver  
Figure 4B. PCLK/nPCLK Input Driven by a  
Built-In Pullup CML Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125Ω  
R4  
125Ω  
3.3V  
R3  
84  
R4  
84  
Zo = 50Ω  
Zo = 50Ω  
C1  
C2  
Zo = 50Ω  
Zo = 50Ω  
3.3V LVPECL  
PCLK  
PCLK  
nPCLK  
nPCLK  
LVPECL  
Input  
LVPECL  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84Ω  
R2  
84Ω  
Figure 4C. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 4D. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver with AC Couple  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
120  
R4  
120  
3.3V  
Zo = 50Ω  
Zo = 60Ω  
Zo = 60Ω  
PCLK  
PCLK  
R1  
100Ω  
nPCLK  
nPCLK  
LVPECL  
Input  
Zo = 50Ω  
SSTL  
LVPECL  
Input  
R1  
120  
R2  
120  
LVDS  
Figure 4E. PCLK/nPCLK Input Driven by an  
SSTL Driver  
Figure 4F. PCLK/nPCLK Input Driven by a  
3.3V LVDS Driver  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK/nCLK Inputs  
LVDS Outputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
All unused LVDS output pairs can be either left floating or terminated  
with 100across. If they are left floating, there should be no trace  
attached.  
PCLK/nPCLK Inputs  
For applications not requiring the use of the differential input, both  
PCLK and nPCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from PCLK to  
ground.  
LVCMOS Control Pins  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
LVDS Driver Termination  
For a general LVDS interface, the recommended value for the  
termination impedance (ZT) is between 90and 132. The actual  
value should be selected to match the differential impedance (Z0) of  
your transmission line. A typical point-to-point LVDS design uses a  
100parallel resistor at the receiver and a 100differential  
transmission-line environment. In order to avoid any  
transmission-line reflection issues, the components should be  
surface mounted and must be placed as close to the receiver as  
possible. IDT offers a full line of LVDS compliant devices with two  
types of output structures: current source and voltage source. The  
standard termination schematic as shown in Figure 5A can be used  
with either type of output structure. Figure 5B, which can also be  
used with both output types, is an optional termination with center tap  
capacitance to help filter common mode noise. The capacitor value  
should be approximately 50pF. If using a non-standard termination, it  
is recommended to contact IDT and confirm if the output structure is  
current source or voltage source type. In addition, since these  
outputs are LVDS compatible, the input receiver’s amplitude and  
common-mode input range should be verified for compatibility with  
the output.  
ZO ZT  
LVDS  
Receiver  
LVDS  
Driver  
ZT  
Figure 5A. Standard Termination  
ZT  
ZO ZT  
LVDS  
Driver  
2
ZT  
2
LVDS  
Receiver  
C
Figure 5B. Optional Termination  
LVDS Termination  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8543I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8543I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 50mA = 173.25mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 73.2°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.173W * 73.2°C/W = 97.7°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (single layer or multi-layer).  
Table 6. Thermal Resitance JA for 20 Lead TSSOP, Forced Convection  
JA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Reliability Information  
Table 7. JA vs. Air Flow Table for a 20 Lead TSSOP  
JA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
Transistor Count  
The transistor count for ICS8543I is: 636  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 20 Lead TSSOP  
Table 8. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 Basic  
0.65 Basic  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
14  
©2012 Integrated Device Technology, Inc.  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
8543BGILF  
8543BGILFT  
Marking  
ICS8543BGILF  
ICS8543BGILF  
Package  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
Shipping Packaging  
Tube  
Temperature  
-40C to 85C  
-40C to 85C  
Tape & Reel  
NOTE: "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
Revision History Sheet  
Rev  
A
Table  
Page  
Description of Change  
Date  
3
3
Updated Figure 1, CLK_EN Timing Diagram.  
Updated Figure 1, CLK_EN Timing Diagram.  
10/17/01  
11/2/01  
A
1
Features section, Bullet 6 to read 3.3V LVDS levels instead of LVPECL.  
Updated Parameter Measurement Information figures.  
A
B
5/6/02  
6 - 10  
1
Features - deleted bullet "Designed to meet or exceed the requirements of  
ANSI TIA/EIA-644".  
9/19/02  
4E  
T2  
5
LVDS Table - changed VOD typical value from 350mV to 280mV.  
2
4
Pin Characteristics - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings - changed Output rating.  
Added Differential Clock Input Interface section.  
Added LVPECL Clock Input Interface section.  
Added LVDS Driver Termination section.  
9
C
1/5/04  
10  
11  
Updated format throughout data sheet.  
1
3
4
Features section - added lead-free bullet.  
Updated Figure 1, CLK_EN Timing Diagram.  
T4B  
LVCMOS DC Characteristics Table - corrected typo in VIH max. from  
VDD - 0.3V to VDD + 0.3V.  
Updated Differential Clock Input Interface section.  
10  
11  
12  
13  
15  
D
2/27/08  
Updated LVPECL Clock Input Interface section.  
Added Recommendation for Unused Input and Output Pins section.  
Added Power Considerations section.  
Ordering Information Table - added lead-free Part/Order Number, Marking and note.  
Updated format throughout the datasheet.  
T9  
T5  
1
6
7
9
Features Section - added Additive Phase Jitter bullet.  
AC Characteristics Table - added Additive Phase Jitter spec.  
Added Additive Phase Jitter Plot.  
E
9/9/08  
Parameter Measurement Information - updated Output Rise/Fall Time diagram.  
All  
Updated format throughout the datasheet.  
1, 10, 11 Deleted HiPerClockS references throughout.  
E
E
11  
12  
15  
Updated figure 4D.  
10/8/12  
Updated LVDS Driver Termination section.  
Deleted quantity from Tape & Reel.  
T9  
T9  
15  
Removed leaded orderable parts from the Ordering Information table  
11/15/12  
ICS8543BGI REVISION E NOVEMBER 15, 2012  
16  
©2012 Integrated Device Technology, Inc.  
1RWLFH  
ꢄꢃ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢅꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀRUꢀLQIRUPDWLRQꢃ  
ꢁꢃ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢅꢀFRS\ULJKWVꢅꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢅꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢅꢀWKHꢀSURGXFWꢀGDWDꢅꢀGUDZLQJVꢅꢀFKDUWVꢅꢀSURJUDPVꢅꢀDOJRULWKPVꢅꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ  
ꢆꢃ 1RꢀOLFHQVHꢅꢀH[SUHVVꢅꢀLPSOLHGꢀRUꢀRWKHUZLVHꢅꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢅꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢃ  
ꢇꢃ <RXꢀVKDOOꢀQRWꢀDOWHUꢅꢀPRGLI\ꢅꢀFRS\ꢅꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢅꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢅꢀPRGLILFDWLRQꢅꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢃ  
ꢈꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢉꢀꢊ6WDQGDUGꢊꢀDQGꢀꢊ+LJKꢀ4XDOLW\ꢊꢃꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢋVꢀTXDOLW\ꢀJUDGHꢅꢀDVꢀLQGLFDWHGꢀEHORZꢃ  
ꢊ6WDQGDUGꢊꢉ  
&RPSXWHUVꢌꢀRIILFHꢀHTXLSPHQWꢌꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢌꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢌꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢌꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢌꢀPDFKLQHꢀWRROVꢌꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢌꢀLQGXVWULDOꢀURERWVꢌꢀHWFꢃ  
ꢊ+LJKꢀ4XDOLW\ꢊꢉ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢍDXWRPRELOHVꢅꢀWUDLQVꢅꢀVKLSVꢅꢀHWFꢃꢎꢌꢀWUDIILFꢀFRQWUROꢀꢍWUDIILFꢀOLJKWVꢎꢌꢀODUJHꢏVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢌꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢌꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢌꢀHWFꢃ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢍDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢌꢀVXUJLFDOꢀLPSODQWDWLRQVꢌꢀHWFꢃꢎꢅꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢍVSDFHꢀV\VWHPꢌꢀ  
XQGHUVHDꢀUHSHDWHUVꢌꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢌꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢌꢀNH\ꢀSODQWꢀV\VWHPVꢌꢀPLOLWDU\ꢀHTXLSPHQWꢌꢀHWFꢃꢎꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢅꢀXVHUꢋVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢃ  
ꢐꢃ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢍGDWDꢀVKHHWVꢅꢀXVHUꢋVꢀPDQXDOVꢅꢀDSSOLFDWLRQꢀQRWHVꢅꢀꢊ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢊꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢅꢀHWFꢃꢎꢅꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢅꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢅꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢅꢀLQVWDOODWLRQꢅꢀHWFꢃꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢅꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢃ  
ꢑꢃ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢅꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢃꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢅꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢅꢀDQGꢒRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢅꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢅꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢃꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢅꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢃ  
ꢓꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢅꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢅꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢅꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃ  
ꢔꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢅꢀXVHꢅꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢃꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢃ  
ꢄꢂꢃ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢅꢀGLVSRVHVꢀRIꢅꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢅꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢃ  
ꢄꢄꢃ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢅꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢅꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢄꢁꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢃ  
ꢍ1RWHꢄꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢊꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢃ  
ꢍ1RWHꢁꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢍVꢎꢊꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢍ5HYꢃꢇꢃꢂꢏꢄꢀꢀ1RYHPEHUꢀꢁꢂꢄꢑꢎ  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date version  
of a document, or your nearest sales office, please visit:  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com/contact/  
www.renesas.com  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property of  
their respective owners.  
‹ꢀꢁꢂ20ꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢃꢀ$OOꢀULJKWVꢀUHVHUYHGꢃ  

相关型号:

8543BGIT

Low Skew Clock Driver, 8543 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

8543BGT

Low Skew Clock Driver, 8543 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

8544

INDUCTORS Inductors Designed for Nationals 150 KHz SIMPLE SWITCHERTM
FILTRAN

854435--1

Ribbon Cable Notcher
MACOM

854438--1

Ribbon Cable Notcher
MACOM

854443--1

Ribbon Cable Notcher
MACOM

854449--1

Ribbon Cable Notcher
MACOM

854449--2

Ribbon Cable Notcher
MACOM

854449--3

Ribbon Cable Notcher
MACOM

854449--4

Ribbon Cable Notcher
MACOM

85449-104

Telecom and Datacom Connector, 17 Contact(s), Female, Right Angle, Surface Mount Terminal, Receptacle
AMPHENOL

85449-105

Telecom and Datacom Connector, 17 Contact(s), Female, Right Angle, Surface Mount Terminal, Receptacle
AMPHENOL