8543BGI [IDT]

Low Skew Clock Driver, 8543 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20;
8543BGI
型号: 8543BGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 8543 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20

光电二极管
文件: 总18页 (文件大小:855K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-LVDS  
FANOUT BUFFER  
ICS8543I  
General Description  
Features  
The ICS8543I is a low skew, high performance  
Four differential LVDS output pairs  
S
IC  
1-to-4 Differential-to-LVDS Clock Fanout Buffer and  
a member of the HiPerClockS™ family of High  
Performance Clock Solutions from IDT. Utilizing Low  
Voltage Differential Signaling (LVDS) the ICS8543I  
Selectable differential CLK/nCLK or LVPECL clock inputs  
HiPerClockS™  
CLK/nCLK pair can accept the following differential input levels:  
LVPECL, LVDS, LVHSTL, SSTL, HCSL  
PCLK/nPCLK pair can accept the following differential input  
provides a low power, low noise, solution for distributing clock  
signals over controlled impedances of 100. The ICS8543I has  
two selectable clock inputs. The CLK, nCLK pair can accept most  
standard differential input levels. The PCLK, nPCLK pair can  
accept LVPECL, CML, or SSTL input levels. The clock enable is  
internally synchronized to eliminate runt pulses on the outputs  
during asynchronous assertion/deassertion of the clock enable  
pin.  
levels: LVPECL, CML, SSTL  
Maximum output frequency: 650MHz  
Translates any single-ended input signals to LVDS levels with  
resistor bias on nCLK input  
Additive phase Jitter, RMS: 0.164ps (typical)  
Output skew: 40ps (maximum)  
Part-to-part skew: 600ps (maximum)  
Propagation delay: 2.6ns (maximum)  
Full 3.3Vsupply mode  
Guaranteed output and part-to-part skew characteristics make the  
ICS8543I ideal for those applications demanding well defined  
performance and repeatability.  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pin Assignment  
Block Diagram  
GND  
CLK_EN  
CLK_SEL  
CLK  
1
2
20 Q0  
Pullup  
CLK_EN  
D
19  
nQ0  
Q
3
4
18  
17  
VDD  
Q1  
LE  
Pulldown  
Pullup  
CLK  
nCLK  
0
nCLK  
PCLK  
nPCLK  
5
6
7
8
9
16 nQ1  
Q0  
15  
14  
13  
Q2  
nQ2  
GND  
nQ0  
Pulldown  
Pullup  
PCLK  
nPCLK  
1
Q1  
nQ1  
OE  
GND  
VDD 10  
12 Q3  
11  
nQ3  
Pulldown  
CLK_SEL  
Q2  
nQ2  
ICS8543I  
Q3  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.925mm  
package body  
nQ3  
Pullup  
OE  
G Package  
Top View  
IDT™ / ICS™ LVDS FANOUT BUFFER  
1
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 9, 13  
GND  
Power  
Input  
Power supply ground.  
Synchronizing clock enable. When HIGH, clock outputs follows clock input.  
When LOW, Qx outputs are forced low, nQx outputs are forced high.  
LVCMOS / LVTTL interface levels.  
2
CLK_EN  
Pullup  
Clock select input. When HIGH, selects PCLK/nPCLK inputs.  
When LOW, selects CLK/nCLK inputs. LVCMOS / LVTTL interface levels.  
3
4
CLK_SEL  
CLK  
Input  
Input  
Pulldown  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential LVPECL clock input.  
5
6
7
nCLK  
PCLK  
nPCLK  
Input  
Input  
Input  
Pullup  
Inverting differential LVPECL clock input.  
Output enable. Controls enabling and disabling of outputs Q0/nQ0 through  
Q3/nQ3. LVCMOS/LVTTL interface levels.  
8
OE  
Input  
Pullup  
10, 18  
11, 12  
14, 15  
16, 17  
19, 20  
VDD  
Power  
Output  
Output  
Output  
Output  
Positive supply pins.  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
RPULLUP  
RPULLDOWN  
51  
51  
k  
kΩ  
IDT™ / ICS™ LVDS FANOUT BUFFER  
2
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
OE  
0
CLK_EN  
CLK_SEL  
Selected Source  
Q0:Q3  
Hi-Z  
nQ0:nQ3  
Hi-Z  
X
0
0
1
1
X
0
1
0
1
1
CLK/nCLK  
PCLK/nPCLK  
CLK/nCLK  
Disabled; Low  
Disabled; Low  
Enabled  
Disabled; High  
Disabled; High  
Enabled  
1
1
1
PCLK/nPCLK  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK/nCLK and PCLK/nPCLK inputs as described in Table 3B.  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
CLK_EN  
nQ0:nQ3  
Q0:Q3  
Figure 1. CLK_EN Timing Diagram  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
CLK or PCLK  
nCLK or nPCLK  
Q[0:3]  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQ[0:3]  
HIGH  
LOW  
Input to Output Mode  
Polarity  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Inverting  
0
1
Differential to Differential  
Differential to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
1
0
0
Biased; NOTE 1  
HIGH  
LOW  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information section, Wiring the Differential Input to Accept Single-Ended Levels.  
IDT™ / ICS™ LVDS FANOUT BUFFER  
3
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θJA  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Symbol Parameter  
VDD Positive Supply Voltage  
IDD Power Supply Current  
Test Conditions  
Minimum  
Typical  
Maximum  
3.465  
50  
Units  
V
3.135  
3.3  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
Input Low Voltage  
-0.3  
0.8  
5
V
OE, CLK_EN  
CLK_SEL  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
µA  
µA  
µA  
µA  
IIH  
Input High Current  
150  
OE, CLK_EN  
CLK_SEL  
V
-150  
-5  
IIL  
Input Low Current  
VDD = 3.465V, VIN = 0V  
IDT™ / ICS™ LVDS FANOUT BUFFER  
4
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Table 4C. Differential DC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
CLK  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
IIH Input High Current  
nCLK  
CLK  
V
-5  
IIL  
Input Low Current  
nCLK  
VDD = 3.465V, VIN = 0V  
-150  
0.15  
VPP  
Peak-to-Peak Voltage; NOTE 1  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
0.5  
VDD – 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4D. LVPECL DC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
DD = 3.465V, VIN = 0V  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
PCLK  
150  
5
IIH Input High Current  
nPCLK  
PCLK  
V
V
-5  
IIL  
Input Low Current  
nPCLK  
-150  
0.3  
VPP  
Peak-to-Peak Voltage; NOTE 1  
1
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
1.5  
VDD  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4E. LVDS DC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
200  
280  
0
360  
40  
VOD  
VOS  
1.125  
1.25  
5
1.375  
25  
VOS  
IOz  
VOS Magnitude Change  
High Impedance Leakage  
Power Off Leakage  
mV  
µA  
µA  
mA  
mA  
V
-10  
-20  
+10  
+20  
-5  
IOFF  
IOSD  
IOS  
1
Differential Output Short Circuit Current  
Output Short Circuit Current  
Output Voltage High  
-3.5  
-3.5  
1.34  
1.06  
-5  
VOH  
1.6  
VOL  
Output Voltage Low  
0.9  
V
IDT™ / ICS™ LVDS FANOUT BUFFER  
5
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
AC Electrical Characteristics  
Table 5. AC Characteristics, VDD = 3.3V 5%, TA = -40°C to 85°C  
Parameter  
Symbol  
Test Conditions  
Minimum Typical  
Maximum  
Units  
fMAX  
Maximum Output Frequency  
650  
MHz  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
153.6MHz, Integration Range:  
12kHz – 20MHz  
tjit  
0.164  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time  
ƒ650MHz  
1.5  
2.6  
40  
ns  
ps  
ps  
ps  
%
tsk(o)  
tsk(pp)  
tR / tF  
odc  
600  
450  
55  
20% to 80% @ 50MHz  
150  
Output Duty Cycle  
odc  
45  
50  
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the differential output cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions.  
Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
IDT™ / ICS™ LVDS FANOUT BUFFER  
6
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Additive Phase Jitter  
The spectral purity in a band at a specific offset from the  
to the power in the fundamental. When the required offset is  
specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz band  
Additive Phase Jitter @ 153.6MHz  
12kHz to 20MHz = 0.164ps (typical)  
Offset from Carrier Frequency (Hz)  
As with most timing specifications, phase noise measurements  
has issues relating to the limitations of the equipment. Often the  
noise floor of the equipment is higher than the noise floor of the  
device. This is illustrated above. The device meets the noise floor  
of what is shown, but can actually be lower. The phase noise is  
dependent on the input source and measurement equipment.  
IDT™ / ICS™ LVDS FANOUT BUFFER  
7
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Parameter Measurement Information  
V
DD  
SCOPE  
Qx  
nCLK,  
nPCLK  
V
DD  
3.3V 5%  
POWER SUPPLY  
VPP  
VCMR  
Cross Points  
+
Float GND –  
LVDS  
CLK,  
PCLK  
nQx  
GND  
3.3V LVDS Output Load AC Test Circuit  
Differential Input Level  
V
DD  
nQx  
Qx  
nQ[0:3]  
VOD  
Cross Points  
nQy  
Q[0:3]  
GND  
Qy  
VOS  
tsk(o)  
Differential Output Level  
Output Skew  
Part 1  
nQx  
nCLK,  
nPCLK  
Qx  
CLK,  
PCLK  
Part 2  
nQy  
nQ[0:3]  
Qy  
Q[0:3]  
tsk(pp)  
tPD  
Part-to-Part Skew  
Propagation Delay  
IDT™ / ICS™ LVDS FANOUT BUFFER  
8
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Parameter Measurement Information, continued  
nQ[0:3]  
Q[0:3]  
nQ[0:3]  
Q[0:3]  
80%  
tF  
80%  
tR  
VOD  
tPW  
20%  
20%  
tPERIOD  
VOS  
GND  
tPW  
odc =  
x 100%  
tPERIOD  
Output Rise/Fall Time  
Output Duty Cycle/Pulse Width/Period  
VDD  
VDD  
out  
out  
out  
DC Input  
LVDS  
LVDS  
V
OD/VOD  
DC Input  
100  
out  
VOS/VOS  
Offset Voltage Setup  
Differential Output Voltage Setup  
VDD  
out  
out  
IOZ  
3.3V 5% POWER SUPPLY  
Float GND  
DC Inpu  
t
LVDS  
_
+
IOSD  
DC Input  
LVDS  
out  
out  
IOZ  
High Impedance Leakage Current Setup  
Differential Output Short Circuit Setup  
IDT™ / ICS™ LVDS FANOUT BUFFER  
9
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Parameter Measurement Information, continued  
VDD  
out  
IOS  
DC Input  
LVDS  
LVDS  
VDD  
IOSB  
IOFF  
out  
Power Off Leakage Setup  
Output Short Circuit Current Setup  
Application Information  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VDD/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VDD = 3.3V, V_REF should be 1.25V and  
R2/R1 = 0.609.  
VDD  
R1  
1K  
CLK_IN  
+
-
V_REF  
C1  
0.1uF  
R2  
1K  
Figure 2. Single-Ended Signal Driving Differential Input  
IDT™ / ICS™ LVDS FANOUT BUFFER  
10  
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both signals must meet the VPP and  
VCMR input requirements. Figures 3A to 3F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example, in Figure 3A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
nCLK  
LVPECL  
HiPerClockS  
LVHSTL  
R1  
50  
R2  
50  
Input  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
Figure 3A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter  
HiPerClockS LVHSTL Driver  
Figure 3B. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
LVPECL  
Receiver  
LVDS  
R1  
84  
R2  
84  
Figure 3C. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 3D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVDS Driver  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Figure 3F. HiPerClockS CLK/nCLK Input  
Driven by a 2.5V SSTL Driver  
IDT™ / ICS™ LVDS FANOUT BUFFER  
11  
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other  
differential signals. Both signals must meet the VPP and VCMR input  
requirements. Figures 4A to 4F show interface examples for the  
HiPerClockS PCLK/nPCLK input driven by the most common  
driver types. The input interfaces suggested here are examples  
only. If the driver is from another vendor, use their termination  
recommendation. Please consult with the vendor of the driver  
component to confirm the driver termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50Ω  
R1  
50  
R2  
50  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
PCLK  
R1  
100  
nPCLK  
Zo = 50Ω  
nPCLK  
HiPerClockS  
CML Built-In Pullup  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
CML  
Figure 4A. HiPerClockS PCLK/nPCLK Input  
Driven by a CML Driver  
Figure 4B. HiPerClockS PCLK/nPCLK Input  
Driven by a Built-In Pullup CML Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
R3  
84  
R4  
84  
Zo = 50Ω  
Zo = 50Ω  
C1  
C2  
Zo = 50Ω  
Zo = 50Ω  
3.3V LVPECL  
PCLK  
PCLK  
nPCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
HiPerClockS  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84  
R2  
84  
Figure 4C. HiPerClockS PCLK/nPCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 4D. HiPerClockS PCLK/nPCLK Input Driven by  
a 3.3V LVPECL Driver with AC Couple  
2.5V  
3.3V  
2.5V  
R3  
R4  
120  
120  
3.3V  
3.3V  
Zo = 60Ω  
Zo = 60Ω  
Zo = 50Ω  
PCLK  
PCLK  
nPCLK  
R1  
HiPerClockS  
PCLK/nPCLK  
100  
SSTL  
nPCLK  
R1  
120  
R2  
120  
Zo = 50Ω  
HiPerClockS  
LVDS  
Figure 4E. HiPerClockS PCLK/nPCLK Input  
Driven by an SSTL Driver  
Figure 4F. HiPerClockS PCLK/nPCLK Input Driven by  
a 3.3V LVDS Driver  
IDT™ / ICS™ LVDS FANOUT BUFFER  
12  
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK/nCLK Inputs  
LVDS Outputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to  
ground.  
All unused LVDS output pairs can be either left floating or  
terminated with 100across. If they are left floating, there should  
be no trace attached.  
PCLK/nPCLK Inputs  
For applications not requiring the use of the differential input, both  
PCLK and nPCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from PCLK to  
ground.  
LVCMOS Control Pins  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
3.3V LVDS Driver Termination  
A general LVDS interface is shown in Figure 5. In a 100Ω  
differential transmission line environment, LVDS drivers require a  
matched load termination of 100across near the receiver input.  
For a multiple LVDS outputs buffer, if only partial outputs are used,  
it is recommended to terminate the unused outputs.  
3.3V  
50Ω  
3.3V  
LVDS Driver  
+
R1  
100Ω  
50Ω  
100Differential Transmission Line  
Figure 5. Typical LVDS Driver Termination  
IDT™ / ICS™ LVDS FANOUT BUFFER  
13  
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8543I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8543I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 50mA = 173.25mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 73.2°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.173W * 73.2°C/W = 97.7°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 6. Thermal Resitance θJA for 20 Lead TSSOP, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
IDT™ / ICS™ LVDS FANOUT BUFFER  
14  
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 20 Lead TSSOP  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
Transistor Count  
The transistor count for ICS8543I is: 636  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 20 Lead TSSOP  
Table 8. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT™ / ICS™ LVDS FANOUT BUFFER  
15  
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
8543BGI  
8543BGIT  
8543BGILF  
8543BGILFT  
Marking  
Package  
20 Lead TSSOP  
20 Lead TSSOP  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS8543BGI  
ICS8543BGI  
ICS8543BGILF  
ICS8543BGILF  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT  
product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ LVDS FANOUT BUFFER  
16  
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Revision History Sheet  
Rev  
A
Table  
Page  
Description of Change  
Date  
3
3
Updated Figure 1, CLK_EN Timing Diagram.  
Updated Figure 1, CLK_EN Timing Diagram.  
10/17/01  
11/2/01  
A
1
Features section, Bullet 6 to read 3.3V LVDS levels instead of LVPECL.  
Updated Parameter Measurement Information figures.  
A
B
5/6/02  
6 - 10  
1
Features - deleted bullet ""Designed to meet or exceed the requirements of  
ANSI TIA/EIA-644"".  
9/19/02  
4E  
T2  
5
LVDS Table - changed VOD typical value from 350mV to 280mV.  
2
4
Pin Characteristics - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings - changed Output rating.  
Added Differential Clock Input Interface section.  
Added LVPECL Clock Input Interface section.  
Added LVDS Driver Termination section.  
9
C
1/5/04  
10  
11  
Updated format throughout data sheet.  
1
3
4
Features section - added lead-free bullet.  
Updated Figure 1, CLK_EN Timing Diagram.  
T4B  
LVCMOS DC Characteristics Table - corrected typo in VIH max. from VDD - 0.3V to  
VDD + 0.3V.  
Updated Differential Clock Input Interface section.  
10  
11  
12  
13  
15  
D
2/27/08  
Updated LVPECL Clock Input Interface section.  
Added Recommendation for Unused Input and Output Pins section.  
Added Power Considerations section.  
Ordering Information Table - added lead-free Part/Order Number, Marking and note.  
Updated format throughout the datasheet.  
T9  
T5  
1
6
7
9
Features Section - added Additive Phase Jitter bullet.  
AC Characteristics Table - added Additive Phase Jitter spec.  
Added Additive Phase Jitter Plot.  
E
9/9/08  
Parameter Measurement Information - updated Output Rise/Fall Time diagram.  
IDT™ / ICS™ LVDS FANOUT BUFFER  
17  
ICS8543BGI REV. E SEPTEMBER 9, 2008  
ICS8543I  
LOW SKEW, 1-TO-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contactIDT  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

8543BGILF

Low Skew Clock Driver, 8543 Series, 8 True Output(s), 0 Inverted Output(s), PDSO20
RENESAS

8543BGILFT

Low Skew Clock Driver, 8543 Series, 8 True Output(s), 0 Inverted Output(s), PDSO20
RENESAS

8543BGIT

Low Skew Clock Driver, 8543 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

8543BGT

Low Skew Clock Driver, 8543 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

8544

INDUCTORS Inductors Designed for Nationals 150 KHz SIMPLE SWITCHERTM
FILTRAN

854435--1

Ribbon Cable Notcher
MACOM

854438--1

Ribbon Cable Notcher
MACOM

854443--1

Ribbon Cable Notcher
MACOM

854449--1

Ribbon Cable Notcher
MACOM

854449--2

Ribbon Cable Notcher
MACOM

854449--3

Ribbon Cable Notcher
MACOM

854449--4

Ribbon Cable Notcher
MACOM