HA16113 [HITACHI]

Dual Watchdog Timers; 双看门狗定时器
HA16113
型号: HA16113
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Dual Watchdog Timers
双看门狗定时器

文件: 总18页 (文件大小:103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA16113FPJ  
Dual Watchdog Timers  
The HA16113FPJ is a multifunction device that provides microprocessor systems with the necessary  
regulated power supply, monitors the supply voltage, and generates power-on reset and watchdog reset  
signals. It is ideally suited for battery-operated systems such as instrumentation systems.  
Functions  
Regulated power supply  
Power-on reset  
Two built-in auto-reset circuits  
Two built-in watchdog timer circuits (WDT)  
Output voltage monitoring (LVI)  
Features  
Simultaneous or independent control of auto-reset outputs.  
Precisely regulated output voltage and accurate NMI trigger voltage (both ±2%).  
Low-voltage control with NMI, simultaneous RES1 and RES2, andSTBY outputs.  
Independently selectable durations for power-on reset and auto-reset: power-on duration is common to  
both reset outputs; auto-reset durations can be selected independently.  
Reset command input pin (CONT) for second reset output (RES2).  
WDT filter function detects minimum pulse width and maximum period of P-RUN input pulses.  
HA16113FPJ  
Pin Arrangement  
P-RUN1  
Cf1  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P-RUN2  
Cf2  
2
Rf  
3
RR  
CR1  
4
CR2  
STBYadj  
STBY  
RES1  
NMI  
5
SW  
6
CONT  
RES2  
CRES  
VOUT  
VCONT  
CS  
7
8
NMIadj  
Re1  
9
10  
11  
12  
Re2  
GND  
VCC  
(Top view)  
Pin Description  
Pin No. Symbol  
Function  
1
2
3
P-RUN1  
Cf1  
Input from main CPU to watchdog timer 1 (WDT1)  
For connecting capacitor Cf1 to determine WDT1 filter characteristic (frequency band)  
Rf  
For connecting common bias resistor Rf to determine WDT1 and WDT2 filter  
characteristics (frequency band), power-on reset time (ton, common to RES1 and  
RES2), clock-off time of auto-reset circuits 1 and 2, reset high time (tRH1 and tRH2),reset  
low time (tRL1 and tRL2), and reset pulse delay at voltage drop and recovery. Use the  
resistor value from 100 kto 500 k.  
4
5
CR1  
For connecting capacitor CR1 to determine ton for power-on reset and toff1, tRH1, and tRL1  
of auto-reset circuit 1.  
STBY adj For adjusting standby trigger voltage (insert a resistor between this pin and ground)  
Recommended range: VH2 = 2.8 to 4.0 V  
6
7
8
STBY  
RES1  
NMI  
Standby signal output  
Reset signal output to main CPU  
Low-voltage interrupt signal output for memory backup  
2
HA16113FPJ  
Pin Description (cont)  
Pin No. Symbol  
Function  
9
NMI adj  
For fine adjustment of Vout trigger level for NMI signal (insert a resistor between this  
pin and Vout or ground)  
Recommended range: VH1 = 4.4 to 5.2 V  
10  
11  
Re1  
Re2  
For connecting resistor Re1 to determine voltage Vout for microprocessor and IC  
internal circuits (insert between this pin and Re2)  
For connecting resistor Re2 to determine voltage Vout for microprocessor and IC  
internal circuits (insert between this pin and ground)  
12  
13  
14  
15  
16  
GND  
VCC  
Ground  
Power supply input pin (operating range: 6 to 40 V)  
Input for detecting power supply current  
For base control of external pnp transistor  
CS  
VC  
Vout  
Regulated voltage supplied to microprocessor and IC internal circuits Connect to  
collector of external pnp transistor  
17  
CRES  
Determines reset pulse delay at voltage drop and recovery. NMI output goes low as  
soon as Vout drops below NMI trigger level. If Vout remains below this level for time  
t
RES, both reset outputs also go low. When Vout recovers above NMI trigger level, first  
NMI output goes high, then after time tr both reset outputs also go high. Times tRES and  
tr are adjusted by capacitor CRES inserted between this pin and ground.  
18  
19  
RES2  
CONT  
Reset signal output to sub CPU  
Input pin for resetting sub CPU on command, or when sub CPU crashes Low input at  
CONT causes low output at RES2  
20  
SW  
Selects simultaneous control, in which main and sub CPUs are both reset when main  
CPU crashes, or independent control, in which sub CPU is reset independently of  
main CPU  
Open—independent control; connected to ground—simultaneous control  
21  
22  
CR2  
RR  
For connecting capacitor CR2 to determine toff2, tRH2, and tRL2 of auto-reset circuit 2  
For connecting bias resistor RR to determine toff1, toff2, tRH1, tRH2, tRL1, and tRL2. Use the  
resistor value from 100 kto 500 k.  
23  
24  
Cf2  
For connecting capacitor Cf2 to determine WDT2 filter characteristic (frequency band)  
Input from sub CPU to watchdog timer 2 (WDT2)  
P-RUN2  
3
HA16113FPJ  
Block Diagram  
16  
15  
14  
13  
VCC  
VOUT  
VCONT  
CS  
Over  
Detection  
block  
STBYdetection  
voltage  
detection  
block  
block  
3.3 k  
71 k  
+
STBY  
31.2 k  
adj  
Re1  
NMI detection  
Reference  
voltage  
circuit  
10  
5
3.3 k  
block  
2 k  
Re2  
11  
36.8 k  
80 k  
NMI  
69.7k  
+
+
adj  
9
Regulator block  
25 k  
CR1  
8
6
NMI  
4
STBY  
Auto-reset circuit 1  
19 k  
I
2
19*I  
RES1  
7
8.4 k  
3.3 k  
Cf1  
+
I/6  
33 k  
1
+
20 k  
I*4/3  
P-RUN1  
20  
+
CRES  
17  
SW  
Delay circuit block  
CR2  
21  
RES2  
18  
3.3 k  
Auto-reset circuit 2  
24  
23  
P-RUN2  
Cf2  
I1  
I2  
12  
3
22  
19  
GND  
Rf  
RR  
CONT  
4
HA16113FPJ  
Timing Waveforms  
VBATT  
4.7 V  
4.6 V (VNMI  
)
4.6 V  
4.7 V  
4.5 V  
Vout  
3.0 V (VSTBY  
)
NMI  
STBY  
P-RUN1  
Crash  
Crash  
P-RUN2  
RES1  
tOFF1  
tRES  
t
on  
t
r
CONT  
RES2  
tRL1  
tRH1  
tOFF1  
tOFF2  
tRES  
t
on  
t
r
Note: SW pin is connected to ground.  
5
HA16113FPJ  
Absolute Maximum Ratings (Ta = 25°C)  
Item  
Symbol  
VCC  
Value  
Unit  
V
VCC power supply voltage  
CS voltage  
40  
VCS  
40  
V
Control pin voltage  
Control pin current  
Vout voltage  
VC  
40  
V
IC  
20  
mA  
V
Vout  
VPRUN  
VSW  
10  
P-RUN voltage  
SW voltage  
Vout  
V
Vout  
V
CONT voltage  
RES current  
VCONT  
IRES  
Vout  
V
5
mA  
mA  
mA  
mW  
°C  
°C  
NMI current  
INMI  
5
STBY current  
ISTBY  
PT  
5
Power dissipationNote  
Operating temperature  
Storage temperature  
600  
Topr  
Tstg  
–40 to +85  
–50 to +125  
Note: At ambient temperatures up to Ta = 60°C. Derated by 9.8 mW/°C above this point.  
6
HA16113FPJ  
Electrical Characteristics (Ta = 25°C, Rf = 180 k , Cf1 = Cf2 = 0.01 µF, CR1 = CR2 = 0.1 µF)  
Item  
Symbol Min  
Typ Max Unit Test Conditions  
10 15 mA  
4.875 5.00 5.125 V  
Chip  
Power supply current  
Output voltage  
ICC  
Regulator  
Vo1  
VCC = 6 to 17.5 V  
VC current = 5 mA  
Vo2  
4.80 5.00 5.20  
V
VCC = 6 to 17.5 V  
VC current = 10 mA  
Stability with respect to line Voline  
voltage  
–50  
–100  
45  
75  
50  
mV  
mV  
dB  
V
VCC = 6 to 17.5 V  
VC current = 10 mA  
Stability with respect to  
load current  
Voload  
RREJ  
Vos  
100  
VC current = 0.1 to 15  
mA  
Ripple rejection  
Vi = 0.5 Vrms  
fi = 1 kHz  
Short-circuit detection  
voltage  
0.08 0.14 0.20  
Temperature coeffi-  
cient of output voltage  
σVo/σT  
Vomax  
–40  
ppm/  
°C  
Maximum adjustable  
output voltage  
7.0  
V
P-RUN1/2  
input section  
Low input voltage  
High input voltage  
High input current  
Power-on time  
VIL1, 2  
VIH1, 2  
IIH1, 2  
ton  
2.0  
25  
80  
15  
40  
25  
4
0.8  
V
V
0.3  
40  
0.5  
60  
mA  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
V
VIH = VOL  
Watchdog  
section (both  
RES1 and  
Clock-off time (1)  
Reset low time (1)  
Reset high time (1)  
Clock-off time (2)  
Reset low time (2)  
Reset high time (2)  
NMI trigger voltage  
toff1  
130 190  
RR: open  
tRL1  
20  
60  
40  
6
30  
90  
60  
9
RR: open  
RES2 outputs)  
tRH1  
toff2  
RR: open  
RR: = 75 kΩ  
RR: = 75 kΩ  
RR: = 75 kΩ  
tRL2  
tRH2  
VNMI  
15  
20  
30  
LVI section  
4.45 4.60 4.75  
25 50 100  
Hysteresis width of above VHYSN  
STBY trigger voltage VSTBY  
Hysteresis width of above VHYSS  
mV  
V
2.70 3.00 3.30  
1.35 1.50 1.65  
V
RES pulse  
delay time  
Drop  
tRES  
tr  
200  
200  
µs  
µs  
CRES = 1500 pF  
CRES = 1500 pF  
Recovery  
7
HA16113FPJ  
Electrical Characteristics (Ta = 25°C, Rf = 180 k , Cf1 = Cf2 = 0.01 µF, CR1 = CR2 = 0.1 µF) (cont)  
Item  
Symbol Min  
Typ Max Unit Test Conditions  
NMI output  
section  
NMI low voltage  
NMI high voltage  
VOL1  
VOH1  
0.4  
V
V
V
V
V
V
IOL1 = 2 mA  
VO1  
0.7  
NMI function initial voltage VSTN  
1.0  
0.4  
STBY output  
section  
STBY low voltage  
STBY high voltage  
VOL2  
VOH2  
VSTS  
IOL2 = 2 mA  
VO1  
0.7  
STBY function initial  
voltage  
1.0  
RES1/2 output RES1/2 low voltage  
VOL3  
VOH3  
VSTR  
0.4  
V
V
V
IOL3, 4 = 2 mA  
section  
RES1/2 high voltage  
VO1  
0.7  
RES1/2 function initial  
voltage  
1.0  
CONT and SW Low input voltage  
VIL3  
VIH3  
IIL3  
0.8  
V
input section  
High input voltage  
2.0  
V
Low input current  
High input current  
–120 –60  
µA  
mA  
VIL3 = 0 V  
VIH3 = VOL  
IIH3  
0.3  
0.5  
LVI section  
Temperature coefficient of δVH1/δT  
100  
ppm/  
NMI trigger voltage  
°C  
Temperature coefficient of δVH2/δT  
200  
ppm/  
STBY trigger voltage  
°C  
8
HA16113FPJ  
External Circuit Constant Calculations  
Equations for the various functions are given below. CR1 and Cf1 are for RES1. CR2 and Cf2 are for RES2. (Values  
given in equations are for reference.)  
Item  
Equation  
Remarks  
Vout  
Regulated  
output voltage  
If the desired Vout is 5 V  
± 2.5%, recommended  
values are Re1 = 1.5 kΩ  
and Re2 = 9.1 kΩ  
Re2  
Re1  
HA16113FPJ  
Vout = 0.388 ×  
+ 2.63  
Re1  
Iout  
Re2  
Short-circuit  
detection  
voltage  
VCS < Iout × RCS  
When this function  
operates, VCONT stops  
drawing current from the  
base of the external  
transistor, so Vout output  
stops  
RCS  
VCC C S VC Vout  
Re1 Re2  
GND  
Maximum  
output voltage  
Vout Max < 7.0 V  
Prevents microprocessor damage that would result if  
the output voltage were raised too high by mistake.  
The maximum output voltage is fixed.  
tRL  
tRH, tRL (for  
both RES1  
and RES2)  
Determines the  
frequency and duty cycle  
of the reset pulse  
1
+
tRH = 3.2× CR × R’ R’ =  
tRL = 1.1× CR × R’  
1
Rf  
1
RR  
RES  
Vout  
tRH  
tON (for both  
RES1 and  
RES2)  
tON = 2.2 × CR × Rf  
Sets the time from the  
rise of Vout to the  
clearing of RES output  
tON  
RES  
tOFF (for both  
RES1 and  
RES2)  
Sets the time from when  
P-RUN pulses stop until  
the reset pulse is output  
1
+
P-RUN  
tOFF = 6.1 ×CR × R’ R’ =  
1
Rf  
1
RR  
tOFF  
RES  
tr, tRES (for  
both RES1  
and RES2)  
tr = 0.75 × CRES × Rf  
RES = 0.625 × CRES × Rf  
tr sets the time from the rise of NMI to the rise of  
RES, when Vout drops by more than the STBY trigger  
voltage, then recovers. tRES is the time from the fall of  
NMI to the fall of RES.  
t
4.65 V (typ)  
4.6 V (typ)  
Vout  
NMI  
tr  
tRES  
RES  
9
HA16113FPJ  
External Circuit Constant Calculations (cont)  
Item  
Equation  
Remarks  
VNMI  
Voltage at which the NMI signal is output when Vout  
drops. The NMI trigger voltage and NMI recovery voltage  
can be trimmed by connecting resistors between the  
NMIadj pin and Vout (R1), and between NMIadj and GND  
(R2).  
(R1 // 71.7)  
(R2 // 25)  
VNMI = 1.2× 1 +  
NMI recovery voltage  
(VNMI high) is:  
VNMI high =  
VNMI high  
Vout  
86.65  
R1  
86.65  
R2 // 25  
Vout  
NMI  
+
+ 1.2  
VNMI  
R1  
NMI  
73.8  
R1  
NMIadj  
R2  
1 +  
t
(R1 and R2 are in k)  
VSTBY  
=
VSTBY  
Voltage at which the STBY signal is output when Vout  
drops. The STBY trigger voltage can be adjusted by  
connecting a resistor (R3) between the STBYadj pin and  
GND. The STBY recovery voltage cannot be adjusted.  
71  
1.47× 1 +  
31.2 + (36.8 // R3)  
VSTBY high  
Vout  
Vout  
VSTBY  
STBY  
STBYadj  
R3  
STBY  
t
(R3 is in k)  
WDT.  
The watchdog timer function determines whether the P-  
RUN pulse is normal or not. A reset pulse is output if P-  
RUN is determined to be abnormal. The normal region is  
the part bounded by Line1 to Line3 (or Line4) in the  
diagram. Line4 applies in certain cases, depending on  
CR, Cf, and the state of P-RUN.  
0.31×(Du – 24)  
Line1 =  
×
Cf Rf  
Line2 = Du (= 25%)*  
0.015  
Line3 =  
×
Cf Rf  
(Hz)  
1 – Du  
Line1  
Line4 =  
×
2.1 tRH  
Line5 = 99%*  
Du is the duty cycle of the P-RUN  
pulse.  
Normal area  
Frequency  
tRH  
Du =  
tRL + tRH  
Line2  
Line3  
Note: Line2 and Line5 are fixed.  
Line5  
(%)  
Line4  
Duty  
10  
HA16113FPJ  
Operating Interconnections (example)  
VCC  
RES  
MAIN  
CPU  
STBY  
NMI  
PORT  
PORT  
GND Re2 Re1 NMI NMI RES1 STBY STBY CR1  
Rf  
Cf1 P-RUN1  
Cf2 P-RUN2  
adj  
adj  
HA16113  
VCC CS  
VC Vout CRES RES2 CONT SW CR2 RR  
SYSTEM  
VCC  
PORT VCC  
Batt.  
NMI  
SUB  
CPU  
STBY  
RES  
11  
HA16113FPJ  
Characteristic Curves  
Watchdog timer characteristic  
10 k  
1 k  
Normal area  
P-RUN1  
P-RUN2  
100  
R F CR CF  
0.01 µF  
180 k0.1 µF  
Test circuit  
10  
0
20  
40  
60  
80 100 (%)  
Vout characteristic  
5.4  
5.3  
5.2  
Re1 = 1 kΩ  
Re1 = 1.5 kΩ  
Re1 = 2 kΩ  
5.1  
Regulated  
output  
voltage (V)  
5.0  
4.9  
4.8  
4.7  
ICONT  
5 mA  
RL  
VCC VCONT VOUT  
HA16113FPJ  
Re1  
Re2  
4
6
8
10  
12  
14  
16  
Re2 resistance (k)  
12  
HA16113FPJ  
t
characteristic  
on  
Vary the external capacitance (CR) and  
resistance (Rf) that determine the t time  
140  
120  
100  
80  
on  
and measure the variation in t  
(Same for RES1 and RES2)  
.
12 V  
on  
RES1, RES2  
CR1, CR2  
Cf = 0.22 µF  
Rf NMI  
Measure with  
oscilloscope  
t
(ms)  
on  
60  
Cf = 0.1 µF  
Cf = 0.047 µF  
260  
40  
20  
0
60  
100  
140  
180  
Rf resistance (k)  
220  
t
characteristic  
off  
400  
300  
200  
100  
0
Vary the external capacitance (CR) and  
resistance (Rf) and measure the variation  
in toff . (Same for RES1 and RES2)  
RES1  
RES2  
CR = 0.22 µF  
t
(ms)  
off  
CR = 0.1 µF  
CR = 0.047 µF  
220 260  
60  
100  
140  
180  
Rf resistance (k)  
13  
HA16113FPJ  
tRL characteristic  
Vary the external capacitance (CR) and  
resistance (Rf) and measure the variation  
in tRL. (Same for RES1 and RES2)  
RES1  
RES2  
60  
CR = 0.22 µF  
40  
tRL (ms)  
CR = 0.1 µF  
20  
CR = 0.047 µF  
0
60  
100  
140  
180  
220  
260  
Rf resistance (k)  
tRH characteristic  
180  
140  
RES1  
RES2  
Vary the external capacitance (CR) and  
resistance (Rf) and measure the variation  
in tRH. (Same for RES1 and RES2)  
CR = 0.22 µF  
100  
tRH (ms)  
60  
CR = 0.1 µF  
CR = 0.047 µF  
20  
60  
100  
140  
180  
220  
260  
Rf resistance (k)  
14  
HA16113FPJ  
t characteristic (for both RES1 and RES2)  
r
800  
600  
400  
200  
0
12 V  
RES2  
NMI  
CRES R f  
Measure with  
CRES = 740 pF  
oscilloscope  
t (µs)  
r
CRES = 1500 pF  
CRES = 3300 pF  
260  
60  
100  
140  
180  
220  
Rf resistance (k)  
tRES characteristic (for both RES1 and RES2)  
600  
500  
400  
300  
200  
100  
0
12 V  
RES2  
NMI  
CRES R f  
Measure with  
oscilloscope  
CRES = 740 pF  
CRES = 1500 pF  
tRES (µs)  
CRES = 3300 pF  
260  
60  
100  
140  
180  
Rf resistance (k)  
220  
15  
HA16113FPJ  
Precautions  
If the IC’s ground potential varies suddenly by several volts due to wiring impedance (see figure 7), a false  
RES pulse may be output. The reason for this is that potentials in the RES pulse generating circuit change  
together with the Vout-GND potential. The reference potential of the comparator in figure 8 and the  
potential of the external capacitor have different impedances as seen from the comparator, causing a  
momentary inversion. The solution is to stabilize the ground potential. Two ways of stabilizing the IC’s  
ground line are:  
Separate the IC’s ground line from high-current ground lines.  
Increase the capacitance (Co) used to smooth the Vout output.  
Wiring impedance  
SW2  
SW1  
Co  
HA16113FPJ  
RL  
VIGN  
Relay or other load  
Wiring impedance  
Figure 1 Typical Circuit  
Vout  
VCC Vcont  
Wiring impedance  
CRES  
RES  
+
GND  
Figure 2 RES Comparator  
16  
HA16113FPJ  
Package Dimensions  
Unit: mm  
15.8  
16.2 Max  
13  
24  
1
12  
11.8 ± 0.3  
1.12 Max  
1.7  
0° – 8°  
1.27  
1.0 ± 0.2  
0.15  
*0.40 ± 0.08  
0.38 ± 0.06  
M
0.20  
Hitachi Code  
FP-24D  
JEDEC  
EIAJ  
Conforms  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value)  
0.6 g  
17  
HA16113FPJ  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
Electronic components Group  
Dornacher Straβe 3  
D-85622 Feldkirchen, Munich  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
18  

相关型号:

HA16113FPJ

Dual Watchdog Timers
HITACHI

HA16113FPJ-EL

Power Supply Support Circuit, 2 Channel, PDSO24, SOP-24
HITACHI

HA16114

Switching Regulator for Chopper Type DC/DC Converter
RENESAS

HA16114FP

Switching Regulator for Chopper Type DC/DC Converter
HITACHI

HA16114FP

Switching Regulator for Chopper Type DC/DC Converter
RENESAS

HA16114FP-E

暂无描述
RENESAS

HA16114FP-EL

Switching Regulator, 600kHz Switching Freq-Max, PDSO16, 0.300 INCH, 1.27 MM PITCH, EIAJ, SOP-16
HITACHI

HA16114FPJ

Switching Regulator for Chopper Type DC/DC Converter
HITACHI

HA16114FPJ

Switching Regulator for Chopper Type DC/DC Converter
RENESAS

HA16114FPJ-E

1A SWITCHING CONTROLLER, 600kHz SWITCHING FREQ-MAX, PDSO16, SOP-16
RENESAS

HA16114FPJ-EL

暂无描述
RENESAS

HA16114P

Switching Regulator for Chopper Type DC/DC Converter
HITACHI