HA16114FPJ [HITACHI]

Switching Regulator for Chopper Type DC/DC Converter; 开关稳压器型DC / DC转换器
HA16114FPJ
型号: HA16114FPJ
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Switching Regulator for Chopper Type DC/DC Converter
开关稳压器型DC / DC转换器

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总38页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Switching Regulator for Chopper Type DC/DC Converter  
Description  
The HA16114P/FP/FPJ and HA16120FP/FPJ are single-channel PWM switching regulator controller ICs  
suitable for chopper-type DC/DC converters. Integrated totem-pole output circuits enable these ICs to  
drive the gate of a power MOSFET directly. The output logic of the HA16120 is designed to control a  
DC/DC step-up (boost) converter using an N-channel power MOS FET. The output logic of the HA16114  
is designed to control a DC/DC step-down (buck) converter or inverting converter using a P-channel power  
MOS FET.  
These ICs can operate synchronously with external pulse, a feature that makes them ideal for power  
supplies that use a primary-control AC/DC converter to convert commercial AC power to DC, then use one  
or more DC/DC converters on the secondary side to obtain multiple DC outputs. Synchronization is with  
the falling edge of the ‘sync’ pulse, which can be the secondary output pulse from a flyback transformer.  
Synchronization eliminates the beat interference that can arise from different operating frequencies of the  
AC/DC and DC/DC converters, and reduces harmonic noise. Synchronization with an AC/DC converter  
using a forward transformer is also possible, by inverting the ‘sync’ pulse.  
Overcurrent protection features include a pulse-by-pulse current limiter that can reduce the width of  
individual PWM pulses, and an intermittent operating mode controlled by an on-off timer. Unlike the  
conventional latched shutdown function, the intermittent operating function turns the IC on and off at  
controlled intervals when pulse-by-pulse current limiting continues for a programmable time. This results  
in sharp vertical settling characteristics. Output recovers automatically when the overcurrent condition  
subsides.  
Using these ICs, a compact, highly efficient DC/DC converter can be designed easily, with a reduced  
number of external components.  
Functions  
2.5 V voltage reference  
Sawtooth oscillator (Triangle wave)  
Overcurrent detection  
External synchronous input  
Totem-pole output  
Undervoltage lockout (UVL)  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Error amplifier  
Vref overvoltage protection (OVP)  
Features  
Wide supply voltage range: 3.9 V to 40 V*  
Maximum operating frequency: 600 kHz  
Able to drive a power MOS FET (±1 A maximum peak current) by the built-in totem-pole gate pre-  
driver circuit  
Can operate in synchronization with an external pulse signal, or with another controller IC  
Pulse-by-pulse overcurrent limiting (OCL)  
Intermittent operation under continuous overcurrent  
Low quiescent current drain when shut off by grounding the ON/OFF pin  
HA16114: IOFF = 10 µA (max)  
HA16120: IOFF = 150 µA (max)  
Externally trimmable reference voltage (Vref): ±0.2 V  
Externally adjustable undervoltage lockout points (with respect to VIN)  
Stable oscillator frequency  
Soft start and quick shut function  
Note: The reference voltage 2.5 V is under the condition of VIN 4.5 V.  
Ordering Information  
Hitachi Control ICs for Chopper-Type DC/DC Converters  
Product  
Channel Control Functions  
Overcurrent  
Channels Number  
No.  
Step-Up  
Step-Down  
Inverting  
Output Circuits  
Protection  
Dual  
HA17451  
Ch 1  
Ch 2  
Open collector  
SCP with timer (latch)  
Single  
HA16114  
HA16120  
HA16116  
Totem pole  
Pulse-by-pulse  
power MOS FET current limiter and  
Dual  
Ch 1  
Ch 2  
Ch 1  
Ch 2  
driver  
intermittent operation  
by on/off timer  
HA16121  
2
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Pin Arrangement  
GND*1  
SYNC  
RT  
1
2
3
4
5
6
7
8
16 Vref  
15 ADJ  
14 DB  
CT  
13 ON/OFF  
12 TM  
IN()  
E/O  
11 CL()  
10 VIN  
IN(+)  
P.GND*1  
9
OUT  
(Top view)  
Note: 1. Pin 1 (GND) and Pin 8 (P.GND) must be connected each other with external wire.  
Pin Description  
Pin No.  
Symbol  
GND  
SYNC  
RT  
Function  
1
Signal ground  
2
External sync signal input (synchronized with falling edge)  
Oscillator timing resistor connection (bias current control)  
Oscillator timing capacitor connection (sawtooth voltage output)  
Inverting input to error amplifier  
Error amplifier output  
3
4
CT  
5
IN(–)  
E/O  
6
7
IN(+)  
P.GND  
OUT  
VIN  
Non-inverting input to error amplifier  
Power ground  
8
9
Output (pulse output to gate of power MOS FET)  
Power supply input  
10  
11  
12  
CL(–)  
TM  
Inverting input to current limiter  
Timer setting for intermittent shutdown when overcurrent is detected (sinks  
timer transistor current)  
13  
14  
15  
16  
ON/OFF  
DB  
IC on/off control (off below approximately 0.7 V)  
Dead-band duty cycle control input  
ADJ  
Reference voltage (Vref) adjustment input  
2.5 V reference voltage output  
Vref  
3
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Block Diagram  
Vref  
16  
ADJ  
15  
DB  
14  
ON/OFF  
13  
TM  
12  
CL()  
VIN  
10  
OUT  
9
11  
0.2 V  
CL  
+
1k  
from  
UVL  
ON/OFF  
VIN  
ADJ  
Vref  
0.3V  
2.5V  
bandgap  
reference  
voltage  
UVL  
H
UVL  
output  
Latch  
L
VL VH  
OVP  
S
R
Q
generator  
from  
UVL  
PWM COMP  
*1  
VIN  
+
+
OUT  
Triangle waveform  
NAND (HA16114)  
generator  
1.6 V  
1.0 V  
0.3 V  
1k  
Latch reset pulses  
from  
UVL  
+
EA  
1.1 V  
R T  
Bias  
current  
1
2
3
4
5
6
7
8
GND  
SYNC  
RT  
CT  
IN()  
E/O  
IN(+)  
P.GND  
Note: 1. The HA16120 has an AND gate.  
4
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Timing Waveforms  
Generation of PWM pulse output from sawtooth wave (during steady-state operation)  
T =  
1
fOSC  
Dead-band  
voltage (at DB)  
1.6 V typ  
Sawtooth wave  
(at CT)  
1.0 V  
typ  
Error amplifier  
output (at E/O)  
VIN  
HA16114 PWM  
pulse output  
Off  
Off  
Off  
Off  
Off  
(drives gate of  
P-channel  
power MOS FET)  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
0 V  
VIN  
HA16120 PWM  
pulse output  
(drives gate of  
N-channel  
power MOS FET)  
Off  
Off  
Off  
Off  
Off  
Time t  
0 V  
tON  
T
Note: On duty =  
5
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Guide to the Functional Description  
The description covers the topics indicated below.  
Vref adjustment,  
undervoltage  
lockout, and  
overcurrent  
Oscillator  
frequency  
(fOSC) control and  
synchronization  
GND*1  
SYNC  
RT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Vref  
1.  
5.  
ADJ  
DB  
protection  
DC/DC output  
voltage setting  
and error  
ON/OFF pin  
usage  
6.  
7.  
2.  
3.  
4.  
CT  
ON/OFF  
TM  
amplifier usage  
IN()  
E/O  
Intermittent  
mode timing  
during  
Dead-band and  
soft-start settings  
CL()  
VIN  
overcurrent  
IN(+)  
P.GND*1  
Setting of  
current limit  
OUT  
8.  
Output stage and  
power MOS FET  
driving method  
(Top view)  
Note: 1. P.GND is a high-current (±1 A maximum peak) ground pin connected to the totem-pole output circuit.  
GND is a low-current ground pin connected to the Vref voltage reference. Both pins must be grounded.  
1. Sawtooth Oscillator (Triangle Wave)  
1.1 Operation and Frequency Control  
The sawtooth wave is a voltage waveform from which the PWM pulses are created (See figure 1). The  
sawtooth oscillator operates as follows. A constant current IO determined by an external timing resistor RT  
is fed continuously to an external timing capacitor CT. When the CT pin voltage exceeds a comparator  
threshold voltage VTH, the comparator output opens a switching transistor, allowing a 3IO discharge current  
to flow from CT. When the CT pin voltage drops below a threshold voltage VTL, the comparator output  
closes the switching transistor, stopping the 3IO discharge. Repetition of these operations generates a  
sawtooth wave.  
The value of IO is 1.1 V/RT . The IO current mirror has a limited current capacity, so RT should be at least  
5 k(IO 220 µA).  
Internal resistances RA, RB, and RC set the peak and valley voltages VTH and VTL of the sawtooth waveform  
at approximately 1.6 V and 1.0 V.  
6
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
The oscillator frequency fOSC can be calculated as follows.  
1
fOSC  
=
t1 + t2 + t3  
CT × (VH VL)  
Here, t1 =  
1.1 V/RT  
CT × (VH VL)  
3 × 1.1 V/RT  
t =  
2
t 0.8 µs (comparator delay time)  
3
Since VH VL = 0.6 V  
1
fOSC  
(Hz)  
0.73 × CT × RT + 0.8 (µs)  
At high frequencies the comparator delay causes the sawtooth wave to overshoot the 1.6 V threshold and  
undershoot the 1.0 V threshold, and changes the dead-band thresholds accordingly. Select constants by  
testing under implementation conditions.  
3.2 V  
(Internal voltage)  
Vref  
2.5 V  
Current  
mirror  
CT charging  
IO  
RA  
RB  
Oscillator  
comparator  
RC  
1.1 V  
Discharg  
-ing 3IO  
1 : 4  
Sync  
circuit  
RT  
IO  
CT  
SYNC  
External circuit  
VH = 1.6 V typ  
VL = 1.0 V typ  
t1 : t2 = 3 : 1  
t2  
t1  
Figure 1.1 Equivalent Circuit of Oscillator  
7
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
1.2 External Synchronization  
These ICs have a sync input pin so that they can be synchronized to a primary-control AC/DC converter.  
Pulses from the secondary winding of the switching transformer should be dropped through a resistor  
voltage divider to the sync input pin. Synchronization takes place at the falling edge, which is optimal for  
multiple-output power supplies that synchronize with a flyback AC/DC converter.  
The sync input pin (SYNC) is connected internally through a synchronizing circuit to the sawtooth  
oscillator to synchronize the sawtooth waveform (see figure 1.2).  
Synchronization is with the falling edge of the external sync signal.  
The frequency of the external sync signal must be in the range fOSC < fSYNC < fOSC × 2.  
The duty cycle of the external sync signal must be in the range 5% < t1/t2 < 50% (t1 = 300 ns Min).  
With external synchronization, VTH' can be calculated as follows.  
fOSC  
fSYNC  
VTH’ = (VTH VTL) ×  
+ VTL  
Note: When not using external synchronization, connect the SYNC pin to the Vref pin.  
VTH (1.6 V typ)  
Sawtooth wave  
VTH  
Vref  
(fOSC  
)
VTL  
(1.0 V typ)  
SYNC pin  
(fSYNC  
)
1 V  
t1  
t2  
Synchronized  
at falling edge  
Figure 1.2 External Synchronization  
8
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
2. DC/DC Output Voltage Setting and Error Amplifier Usage  
2.1 DC/DC Output Voltage Setting  
(1) Positive Output Voltage (VO > Vref)  
HA16114 with step-down topology  
HA16120 with step-down (boost) topology  
CL  
CL  
VIN  
VIN  
EA  
EA  
IN()  
IN()  
OUT  
VO  
IN(+)  
IN(+)  
VO  
+
+
OUT  
+
GND  
GND  
+
Vref  
Vref  
R2  
R1  
R2  
R1  
R1 + R2  
VO = Vref ×  
R2  
Figure 2.1 Output Voltage Setting (1)  
(2) Negative Output Voltage (VO < 0 V)  
HA16114 with inverting topology  
CL  
VIN  
EA  
OUT  
IN()  
+
IN(+)  
Vref  
+
R3  
R4  
R2  
VO = Vref ×  
R1  
R1 + R2  
R2  
R3  
×
1  
R3 + R4  
Figure 2.2 Output Voltage Setting (2)  
9
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
2.2 Error Amplifier Usage  
Figure 2.3 shows an equivalent circuit of the error amplifier. The error amplifier in these ICs is a simple  
NPN-transistor differential amplifier with a constant-current-driven output circuit.  
The amplifier combines a wide bandwidth (fT = 4 MHz) with a low open-loop gain (50 dB Typ), allowing  
stable feedback to be applied when the power supply is designed. Phase compensation is also easy.  
IC internal VIN  
IN()  
E/O  
IN(+)  
To internal PWM  
comparator  
80 µA  
40 µA  
Figure 2.3 Error Amplifier Equivalent Circuit  
3. Dead-Band Duty Cycle and Soft-Start Settings  
3.1 Dead-Band Duty Cycle Setting  
The dead-band duty cycle (the maximum duty cycle of the PWM pulse output) can be programmed by the  
voltage VDB at the DB pin. A convenient way to obtain VDB is to divide the IC’s Vref output by two  
external resistors. The dead-band duty cycle (DB) and VDB can be calculated as follows.  
V
V
TH VDB  
DB =  
× 100 (%)  
This applies when VDB > VTL  
If VDB < VTL, there is no PWM output.  
.
TH VTL  
R2  
R1 + R2  
VDB = Vref ×  
Note: VDB is the voltage at the DB pin.  
VTH: 1.6 V (Typ)  
VTL: 1.0 V (Typ)  
Vref is typically 2.5 V. Select R1 and R2 so that 1.0 V VDB 1.6 V.  
Sawtooth  
wave  
Sawtooth wave  
Voltage at DB pin  
To Vref  
R1  
PWM  
COMP  
VTH  
VDB  
+
+
E/O  
DB  
VDB  
VTL  
Dead band  
from  
UVL  
R2  
Note: VTH and VTL vary depending on the oscillator.  
Select constants by testing under implementation  
conditions.  
Figure 3.1 Dead-Band Duty Cycle Setting  
10  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
3.2 Soft-Start Setting  
Soft-start avoids overshoot at power-up by widening the PWM output pulses gradually, so that the  
converted DC output rises slowly. Soft-start is programmed by connecting a capacitor between the DB pin  
and ground. The soft-start time is determined by the time constant of this capacitor and the resistors that  
set the voltage at the DB pin.  
VX  
VDB  
tsoft = C1 × R × ln (1 −  
R1 × R2  
)
R =  
R1 + R2  
R2  
VDB = Vref ×  
R1 + R2  
Note: VX is the voltage at the DB pin after time t (VX < VDB).  
Undervoltage  
lockout released  
Sawtooth wave  
Sawtooth  
wave  
1.6 V  
VTH  
VDB  
To Vref  
R1  
PWM  
COMP  
+
+
E/O  
VTL  
VX  
C1  
DB  
1.0 V  
VX  
from  
UVL  
R2  
UVL sink  
transistor  
t
Soft-start time  
tsoft  
Figure 3.2 Soft-Start Setting  
3.3 Quick Shutdown  
The quick shutdown function resets the voltages at all pins when the IC is turned off, to assure that PWM  
pulse output stops quickly. Since the UVL pull-down resistor in the IC remains on even when the IC is  
turned off, the sawtooth wave output, error amplifier output, and DB pin are all reset to low voltage.  
This feature helps in particular to discharge capacitor C1 in figure 3.2, which has a comparatively large  
capacitance. In intermittent mode (explained on a separate page), this feature enables the IC to soft-start in  
each on-off cycle.  
11  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
4. PWM Output Circuit and Power MOSFET Driving Method  
These ICs have built-in totem-pole push-pull drive circuits that can drive a power MOS FET as shown in  
figure 4.1. The power MOS FET can be driven directly through a gate protection resistor.  
If VIN exceeds the gate breakdown voltage of the power MOS FET additional protective measures should  
be taken, e.g. by adding Zener diodes as shown in figure 4.2.  
To drive a bipolar power transistor, the base should be protected by voltage and current dividing resistors  
as shown in figure 4.3.  
VIN  
To CL  
Example:  
P-channel power MOSFET  
RG  
OUT  
Bias  
circuit  
Gate protection  
resistor  
VO  
Totem-pole output circuit  
P.GND  
Figure 4.1 Connection of Output Stage to Power MOS FET  
VIN  
VO  
RG  
OUT  
GND  
DZ  
Example: N-channel power MOSFET  
Figure 4.2 Gate Protection by Zener Diodes  
VIN  
Base current  
limiting resistor  
VO  
OUT  
GND  
Base discharging resistor  
Example: NPN power transistor  
Figure 4.3 Driving a Bipolar Power Transistor  
12  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
5. Voltage Reference (Vref = 2.5 V)  
5.1 Voltage Reference  
A bandgap reference built into the IC (see figure 5.1) outputs 2.5 V ± 50 mV. The sawtooth oscillator,  
PWM comparator, latch, and other internal circuits are powered by this 2.5 V and an internally-generated  
voltage of approximately 3.2 V.  
The voltage reference section shut downs when the IC is turned off at the ON/OFF pin as described later,  
saving current when the IC is not used and when it operates in intermittent mode during overcurrent.  
VIN  
ON/OFF  
+
3.2 V  
Vref  
1.25 V  
2.5 V  
25 kΩ  
25 kΩ  
Sub bandgap circuit  
1.25 V  
ADJ  
Main bandgap circuit  
Figure 5.1 Vref Reference Circuit  
5.2 Trimming the Reference Voltage (Vref and ADJ pins)  
Figure 5.2 shows a simplified circuit equivalent to figure 5.1. The ADJ pin in this circuit is provided for  
trimming the reference voltage (Vref). The output at the ADJ pin is a voltage VADJ of 1.25 V (Typ)  
generated by the bandgap circuit. Vref is determined by VADJ and the ratio of internal resistors R1 and R2 as  
follows:  
R1 + R2  
Vref = VADJ  
×
R2  
The design values of R1 and R2 are 25 kwith a tolerance of ±25%.  
If trimming is not performed, the ADJ pin open can be left open.  
VIN  
Vref  
25 kΩ  
(typ)  
R1  
ADJ  
+
25 kΩ  
(typ)  
R2  
VBG (bandgap voltage)  
1.25 V (typ)  
Figure 5.2 Simplified Diagram of Voltage Reference Circuit  
13  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
The relation between Vref and the ADJ pin enables Vref to be trimmed by inserting one external resistor  
(R3) between the Vref and ADJ pins and another (R4) between the ADJ pin and ground, to change the  
resistance ratio. Vref is then determined by the combined resistance ratio of the internal R and R2 and  
1
external R3 and R4.  
RA + RB  
Vref = VADJ  
×
RB  
Where, RA: parallel resistance of R1 and R3  
RB: parallel resistance of R2 and R4  
Although Vref can be trimmed by R3 or R4 alone, to decrease the temperature dependence of Vref it is  
better to use two resistors having identical temperature coefficients. Vref can be trimmed in the range of  
2.5 V ± 0.2 V. Outside this range, the bandgap circuit will not operate and the IC may shut down.  
Vref  
R1 R3  
RA =  
R3  
R4  
R1  
R2  
R1 + R3  
ADJ  
External  
resistors  
Internal  
resistors  
R2 R4  
RB =  
R2 + R4  
Figure 5.3 Trimming of Reference Voltage  
5.3 Vref Undervoltage Lockout and Overvoltage Protection  
The undervoltage lockout (UVL) function turns off PWM pulse output when the input voltage (VIN) is low.  
In these ICs, this is done by monitoring the Vref voltage, which normally stays constant at approximately  
2.5 V. The UVL circuit operates with hysteresis: it shuts PWM output off when Vref falls below 1.7 V,  
and turns PWM output back on when Vref rises above 2.0 V. Undervoltage lockout also provides  
protection in the event that Vref is shorted to ground.  
The overvoltage protection circuit shuts PWM output off when Vref goes above 6.8 V. This provides  
protection in case the Vref pin is shorted to VIN or another high-voltage source.  
PWM  
output  
PWM  
output  
off  
PWM output on  
PWM output off  
Vref (V)  
1.7 2.0 2.5  
5.0  
6.8  
10  
Figure 5.4 Vref Undervoltage Lockout and Overvoltage Protection  
UVL Voltage Vref (V typ) VIN (V typ)  
Description  
VH  
VL  
2.0 V  
1.7 V  
3.6 V  
3.3 V  
VIN increasing: UVL releases; PWM output starts  
VIN decreasing: undervoltage lockout; PWM output stops  
14  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
6. Usage of ON/OFF Pin  
This pin is used for the following purposes:  
To shut down the IC while its input power remains on (power management)  
To externally alter the UVL release voltage  
With the timer (TM) pin, to operate in intermittent mode during overcurrent (see next section)  
6.1 Shutdown by ON/OFF Pin Control  
The IC can be shut down safely by bringing the voltage at the ON/OFF pin below about 0.7 V (the internal  
VBE value). This feature can be used in power supply systems to save power. When shut down, the  
HA16114 draws a maximum current (IOFF) of 10 µA, while the HA16120 draws a maximum 150 µA. The  
ON/OFF pin sinks 290 µA (Typ) at 5 V, so it can be driven by TTL and other logic ICs. If intermittent  
mode will also be employed, use a logic IC with an open-collector or open-drain output.  
IIN  
VIN  
RA  
RB  
VIN  
External logic IC  
To other circuitry  
Off On  
TM  
To latch  
10 kΩ  
Q1  
Vref  
Vref  
output  
reference  
Switch  
ON/OFF  
+
3VBE  
CON/OFF  
Q2  
Q3  
On/off hysteresis circuit  
GND  
HA16114,  
HA16120  
Figure 6.1 Shutdown by ON/OFF Pin Control  
6.2 Adjustment of UVL Voltages (when not using intermittent mode)  
These ICs permit external adjustment of the undervoltage lockout voltages. The adjustment is made by  
changing the undervoltage lockout thresholds VTH and VTL relative to VIN, using the relationships shown in  
the accompanying diagrams.  
When the IC is powered up, transistor Q3 is off, so VON is 2VBE, or about 1.4 V. Connection of resistors RC  
and RD in the diagram makes undervoltage lockout release at:  
RC + RD  
V
IN = 1.4 V ×  
RD  
This VIN is the supply voltage at which undervoltage lockout is released. At the release point Vref is still  
below 2.5 V. To obtain Vref = 2.5 V, VIN must be at least about 4.3 V.  
Since VON/OFF operates in relation to the base-emitter voltage of internal transistors, VON has a temperature  
coefficient of approximately –4 mV/°C. Keep this in mind when designing the power supply unit.  
When undervoltage lockout and intermittent mode are both used, the intermittent-mode time constant is  
shortened, so the constants of external components may have to be altered.  
15  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
IIN  
VIN  
VIN  
TM  
(open)  
To other circuitry  
Vref output  
RC  
To latch  
ON/OFF  
Q1  
Vref  
10 kΩ  
3VBE  
GND  
generation  
circuit  
RD  
Q3  
Q2  
On/off hysteresis circuit  
3
2.5 V  
VIN 4.5 V  
2
1
0
Vref  
VOFF  
0.7 V  
VON  
1.4 V  
0
1
2
3
4
5
VON/OFF  
Figure 6.2 Adjustment of UVL Voltages  
7. Timing of Intermittent Mode during Overcurrent  
7.1 Principle of Operation  
These ICs provide pulse-by-pulse overcurrent protection by sensing the current during each pulse and  
shutting off the pulse if overcurrent is detected. In addition, the TM and ON/OFF pins can be used to  
operate the IC in intermittent mode if the overcurrent state continues. A power supply with sharp settling  
characteristics can be designed in this way.  
Intermittent mode operates by making use of the hysteresis of the ON/OFF pin threshold voltages VON and  
VOFF (VON – VOFF = VBE). The timing can be programmed as explained below.  
When not using intermittent mode, leave the TM pin open, and pull the ON/OFF pin up to VON or higher.  
The VBE is base emitter voltage of internal transistors.  
VIN  
RA  
Current  
Latch limiter  
390 kΩ  
CL  
S
R
TM  
Q
2.2 kΩ  
2.2 µF  
RB  
ON/OFF  
Vref  
reference  
+
CON/OFF  
Figure 7.1 Connection Diagram (example)  
16  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
7.2 Intermittent Mode Timing Diagram (VON/OFF only)  
*1  
3VBE  
c
c
2VBE  
VBE  
0 V  
VON/OFF  
On  
On  
Off  
IC is on  
IC is off  
b
a
t
TON  
2TON  
TOFF  
a. Continuous overcurrent is detected  
b. Intermittent operation starts (IC is off)  
c. Voltage if overcurrent ends (thick dotted line)  
Note: 1. VBE is the base-emitter voltage of internal transistors, and is approximately 0.7 V.  
(See the figure 6.1.)  
For details, see the overall waveform timing diagram.  
Figure 7.2 Intermittent Mode Timing Diagram (VON/OFF only)  
7.3 Calculation of Intermittent Mode Timing  
Intermittent mode timing is calculated as follows.  
(1) TON (time until the IC shuts off when continuous overcurrent occurs)  
1
2VBE  
VBE  
TON = CON/OFF × RB × ln  
×
1 On duty*  
1
= CON/OFF × RB × ln2 ×  
0.69 × CON/OFF × RB ×  
1 On duty*  
1
1 On duty*  
(2) TOFF (time from when the IC shuts off until it next turns on)  
V
IN VBE  
TOFF = CON/OFF × (RA + RB) × ln  
Where VBE 0.7 V  
V
IN 2VBE  
The greater the overload, the sooner the pulse-by-pulse current limiter operates, the smaller tON becomes,  
and from the first equation (1) above, the smaller TON becomes. From the second equation (2), TOFF  
depends on VIN. Note that with the connections shown in the diagram, when VIN is switched on the IC does  
not turn on until TOFF has elapsed.  
Dead-band voltage  
Sawtooth wave  
Point at which the current  
limiter operates  
PWM output  
(In case of HA16114)  
tON  
T
On duty =  
× 100 (%)  
tON  
Where T = t/fOSC  
T
Note: On duty is the percent of time the IC output is on during one PWM cycle  
when the pulse-by-pulse current limiter is operating.  
Figure 7.3  
17  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
7.4 Examples of Intermittent Mode Timing (calculated values)  
8
6
4
2
0
(1) TON  
TON = T1 × CON/OFF × RB  
Here, coefficient  
1
T1 = 0.69 ×  
1 On duty  
from section 7.3 (1) previously.  
T1  
Example: If CON/OFF = 2.2 µF,  
R = 2.2 k , and the on duty  
B
of the current limiter is 75%,  
then TON = 13 ms.  
0
20  
40  
60  
80  
100  
(PWM) On duty (%)  
Figure 7.4 Examples of Intermittent Mode Timing (1)  
(2) TOFF  
TOFF= T2 × CON/OFF × (RA + RB)  
0.1  
Here, coefficient  
IN VBE  
IN 2VBE  
V
V
T2 = ln  
T2  
0.05  
from section 7.3 (2) previously.  
Example: If CON/OFF = 2.2 µF, RB = 2.2 k,  
RA = 390 k, V = 12 V,  
IN  
0
then TOFF= 55 ms.  
0
10  
20  
VIN (V)  
30  
40  
Figure 7.5 Examples of Intermittent Mode Timing (2)  
18  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Sawtooth wave VCT  
Dead band VDB  
Example of step-up circuit  
VIN  
CF  
RF  
RCS  
Error output VE/O  
PWM pulse output  
(In case of HA16120)  
CL  
Inductor  
L
IC  
OUT  
VOUT  
Power MOS FET  
drain current (ID)  
(dotted line shows  
inductor current)  
ID  
F.B.  
VIN  
Determined by L and VIN  
Determined by RCS and RF  
Current limiter  
pin (CL)  
V
TH (CL)  
VIN 0.2 V  
Figure 7.6  
8. Setting the Overcurrent Detection Threshold  
The voltage drop VTH at which overcurrent is detected in these ICs is typically 0.2 V. The bias current is  
typically 200 µA. The power MOS FET peak current value before the current limiter goes into operation is  
given as follows.  
V
TH (RF + RCS) × IBCL  
ID =  
RCS  
Where, VTH = VIN – VCL = 0.2 V, VCL is a voltage refered on GND.  
Note that RF and CF form a low-pass filter with a cutoff frequency determined by their RC time constant.  
This filter prevents incorrect operation due to current spikes when the power MOS FET is switched on or  
off.  
VIN  
CF  
1800 pF  
IBCL  
RCS  
VIN  
0.05 Ω  
To other  
circuitry  
RF  
CL  
240 Ω  
G
OUT  
1 k  
S
Detector  
200 µA  
D
VO  
output  
(internal)  
+
+
IN()  
Note: This circuit is an example for step-down use.  
Figure 8.1 Example for Step-Down Use  
With the values shown in the diagram, the peak current is:  
0.2 V (240 + 0.05 ) × 200 µA  
0.05 Ω  
ID =  
= 3.04 A  
The filter cutoff frequency is calculated as follows:  
1
1
fC =  
=
= 370 kHz  
2π CF RF 6.28 × 1800 pF × 240 Ω  
19  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Absolute Maximum Ratings (Ta = 25°C)  
Rating  
HA16114P/FP,  
HA16120FP  
HA16114PJ/FPJ,  
HA16120FPJ  
Item  
Symbol  
VIN  
Unit  
V
Supply voltage  
Output current (DC)  
Output current (peak)  
40  
40  
IO  
±0.1  
±0.1  
A
IO peak  
±1.0  
±1.0  
A
Current limiter input voltage VCL  
Error amplifier input voltage VIEA  
VIN  
VIN  
V
VIN  
VIN  
V
E/O input voltage  
RT source current  
TM sink current  
VIE/O  
IRT  
Vref  
Vref  
V
500  
500  
µA  
mA  
V
ITM  
3
3
SYNC voltage  
VSYNC  
ISYNC  
PT  
Vref  
Vref  
SYNC current  
±250  
680*1, *2  
–20 to +85  
125  
±250  
680*1, *2  
–40 to +85  
125  
µA  
mW  
°C  
°C  
°C  
Power dissipation  
Operating temperature  
Junction temperature  
Storage temperature  
Topr  
TjMax  
Tstg  
–55 to +125  
–55 to +125  
Note: 1. This value is for an SOP package (FP) and is based on actual measurements on a 40 × 40 × 1.6  
mm glass epoxy circuit board. With a 10% wiring density, this value is permissible up to Ta =  
45°C and should be derated by 8.3 mW/°C at higher temperatures. With a 30% wiring density,  
this value is permissible up to Ta = 64°C and should be derated by 11.1 mW/°C at higher  
temperatures.  
2. For the DILP package.  
This value applies up to Ta = 45°C; at temperatures above this, 8.3 mW/°C derating should be  
applied.  
800  
10% wiring density  
680 mW  
30% wiring density  
600  
447 mW  
400  
348 mW  
200  
45°C  
64°C  
85°C  
125°C  
0
20  
0
20  
40  
60  
80  
100  
120  
140  
Operating ambient temperature Ta (°C)  
20  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Electrical Characteristics (Ta = 25°C, VIN = 12 V, fOSC = 100 kHz)  
Item  
Symbol  
Vref  
Min Typ Max Unit  
Test Conditions  
IO = 1 mA  
Notes  
Voltage  
reference  
section  
Output voltage  
Line regulation  
Load regulation  
2.45 2.50 2.55  
V
Line  
10  
2
60  
30 60  
24  
mV  
mV  
mA  
4.5 V VIN 40V  
0 IO 10 mA  
Vref = 0 V  
1
Load  
IOS  
Short-circuit output  
current  
Vref overvoltage  
protection threshold  
Vrovp  
6.2  
6.8 7.4  
100 —  
V
Temperature stability Vref/Ta  
ppm/°C  
of output voltage  
Vref adjustment  
voltage  
VADJ  
1.225 1.25 1.275 V  
Sawtooth  
oscillator  
section  
Maximum frequency  
Minimum frequency  
fmax  
fmin  
f/f01  
600  
1
kHz  
Hz  
%
Frequency stability  
with input voltage  
±1 ±3  
4.5 V VIN 40 V  
(f01 = (fmax + fmin)/2)  
Frequency stability  
with temperature  
f/f02  
fOSC  
VTL  
±5  
%
–20°C Ta 85°C  
(f02 = (fmax + fmin)/2)  
Oscillator frequency  
90  
0.9  
1.5  
100 110 kHz  
RT = 10 kΩ  
CT = 1300 pF  
Dead-band Low level threshold  
adjustment voltage  
1.0 1.1  
1.6 1.7  
V
V
Output duty cycle:  
0% on  
section  
High level threshold  
voltage  
VTH  
Output duty cycle:  
100% on  
Threshold difference  
VTH  
0.5  
0.6 0.7  
V
VTH = VTH – VTL  
DB pin: 0 V  
Output source current Isource  
170 250 330 µA  
PWM  
comparator voltage  
Low level threshold  
VTL  
0.9  
1.5  
0.5  
1.0 1.1  
1.6 1.7  
0.6 0.7  
V
V
V
Output duty cycle:  
0% on  
section High level threshold  
VTH  
Output duty cycle:  
100% on  
voltage  
Threshold difference  
VTH  
VTH = VTH – VTL  
Note: 1. Resistors connected to ON/OFF pin:  
VIN pin  
10  
12  
13  
390 kΩ  
2 kΩ  
TM pin  
ON/OFF pin  
21  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Electrical Characteristics (Ta = 25°C, VIN = 12 V, fOSC = 100 kHz) (cont)  
Test  
Item  
Symbol Min  
Typ  
2
Max  
10  
Unit Conditions  
Notes  
Error  
Input offset voltage VIO  
Input bias current IB  
Output sink current IOsink  
28  
28  
mV  
amplifier  
section  
0.5  
40  
40  
2.0  
52  
µA  
µA  
µA  
VO = 2.5 V  
VO = 1.0 V  
Output source  
current  
IOsource  
52  
Common-mode  
VCM  
1.1  
3.7  
V
input voltage range  
Voltage gain  
AV  
40  
50  
4
dB  
f = 10 kHz  
Unity gain  
bandwidth  
BW  
MHz  
High level output  
voltage  
VOH  
VOL  
3.5  
4.0  
0.2  
V
V
IO = 10 µA  
IO = 10 µA  
Low level output  
voltage  
0.5  
Overcurrent Threshold voltage VTH  
VIN –0.22 VIN –0.2 VIN –0.18 V  
detection  
section  
CL(–) bias current IBCL(–)  
140  
200  
200  
500  
2.0  
260  
300  
600  
2.3  
µA  
CL(–) = VIN  
Turn-off time  
tOFF  
ns  
1
2
UVL section Vref high level  
threshold voltage  
VTH  
VTL  
1.7  
1.4  
0.1  
3.3  
3.0  
V
V
V
V
V
Vref low level  
threshold voltage  
1.7  
0.3  
3.6  
3.3  
2.0  
0.5  
3.9  
3.6  
Threshold  
difference  
VTH = VTH – VTL  
VTH  
VIN high level  
threshold voltage  
VINH  
VINL  
VIN low level  
threshold voltage  
Notes: 1. HA16114 only.  
2. HA16120 only.  
22  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Electrical Characteristics (Ta = 25°C, VIN = 12 V, fOSC = 100 kHz) (cont)  
Item  
Test Conditions  
Symbol Min  
Typ  
Max  
1.5  
Unit  
V
Notes  
Output  
stage  
Output low voltage  
Output high voltage  
VOL  
0.9  
IOsink = 10 mA  
VOH1  
VIN –2.2 VIN –1.6  
VIN –2.2 VIN –1.6  
V
IOsource = 10 mA  
High voltage when off VOH2  
V
IOsource = 1 mA  
ON/OFF pin: 0 V  
1
2
Low voltage when off VOL2  
0.9  
1.5  
V
IOsink = 1 mA  
ON/OFF pin: 0 V  
Rise time  
Fall time  
tr  
50  
200  
200  
240  
ns  
ns  
µA  
CL = 1000 pF  
CL = 1000 pF  
SYNC pin: 0 V  
tf  
50  
External SYNC source  
ISYNC  
120  
180  
sync  
current  
section  
Sync input  
fSYNC  
fOSC  
fOSC × 2 kHz  
frequency range  
External sync  
VSYNC  
Vref –1.0 —  
Vref –0.5 V  
initiation voltage  
Minimum pulse  
width of sync input  
PWmin 300  
PW  
ION/ OFF 1 60  
ION/ OFF 2 220  
ns  
%
Input sync pulse  
duty cycle  
5
50  
3
On/off  
section  
ON/OFF sink  
current 1  
90  
290  
120  
380  
µA  
µA  
ON/OFF pin: 3 V  
ON/OFF pin: 5 V  
ON/OFF sink  
current 2  
IC on threshold  
IC off threshold  
VON  
1.1  
0.4  
1.4  
0.7  
0.7  
1.7  
1.0  
0.9  
V
V
V
VOFF  
ON/OFF threshold  
difference  
VON/OFF 0.5  
Total  
Operating current  
Quiescent current  
IIN  
6.0  
0
8.5  
11.0  
10  
mA CL = 1000 pF  
device  
IOFF  
µA  
µA  
ON/OFF pin: 0 V 1  
ON/OFF pin: 0 V 2  
120  
150  
Notes: 1. HA16114 only.  
2. HA16120 only.  
3. PW = t1 / t2 × 100  
External  
sync pulse  
t1  
t2  
23  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Characteristic Curves  
Reference Voltage vs. Supply Voltage  
Reference Voltage vs. Ambient Temperature  
4.0  
3.0  
2.0  
1.0  
0.0  
2.54  
Ta = 25°C  
VIN = 12 V  
2.55 max  
2.52  
2.50  
2.48  
2.46  
2.5V  
SPEC  
2.45 min  
0
1
2
3
4
5
40  
20  
0
20  
40  
60  
80  
4.3V  
Supply voltage (V)  
Ambient temperature (°C)  
Low Level Threshold Voltage of Sawtooth Wave vs.  
High Level Threshold Voltage of Sawtooth Wave vs.  
Frequency  
Frequency  
2.5  
2.5  
Ta = 25°C  
Ta = 25°C  
VIN = 12 V  
VIN = 12 V  
RT = 10 kΩ  
RT = 10 kΩ  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
200  
300  
400  
500  
600  
100  
200  
300  
400  
500  
600  
Frequency (kHz)  
Frequency (kHz)  
24  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Oscillator Frequency Change  
with Ambient Temperature (1)  
Oscillator Frequency Change  
with Ambient Temperature (2)  
10  
5
10  
VIN = 12 V  
fOSC = 100 kHz  
VIN = 12 V  
fOSC = 350 kHz  
5
SPEC  
0
0
5  
5  
10  
10  
20  
0
20  
40  
60  
80  
20  
0
20  
40  
60  
80  
Ambient temperature (°C)  
Ambient temperature (°C)  
Error Amplifier Gain, Error Amplifier Phase vs. Error Amplifier Input Frequency  
60  
40  
20  
0
AVO  
0
φ
45  
90  
135  
180  
BW  
3 M  
1 k  
3 k  
10 k  
30 k  
100 k  
300 k  
1 M  
10 M  
Error amplifier input frequency fIN (Hz)  
25  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Current Limiter Turn-Off Time vs.  
Current Limiter Threshold Voltage Note  
Error Amplifier Voltage Gain vs. Ambient Temperature  
60  
500  
400  
300  
200  
100  
VIN = 12 V  
f = 10 kHz  
HA16114  
Ta = 25°C  
VIN = 12 V  
CL= 1000 pF  
55  
50 dB typ  
50  
300 ns max  
45  
40 dB min  
40  
40  
20  
0
20  
60  
80  
0.1  
0.2  
0.3  
0.4  
0.5  
Ambient temperature (°C)  
CL voltage VINVCL (V)  
Note: Approximatery 300 ns greater than this  
in the case of the HA16120.  
Current Limiter Threshold Voltage vs.  
Ambient Temperature  
Current Limiter Turn-Off Time vs.  
Ambient Temperature Note  
0.22  
300  
0.22 max  
300 ns max  
VIN = 12 V  
HA16114  
0.21  
0.20  
0.19  
0.18  
250  
200  
150  
100  
200 ns typ  
VIN = 12 V  
VCL = VTH 0.3 V  
CL= 1000 pF  
0.18 min  
40  
20  
0
20  
60  
80  
20  
0
20  
40  
60  
80  
Ambient temperature (°C)  
Ambient temperature (°C)  
Note: Approximatery 300 ns greater than this  
in the case of the HA16120.  
26  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Reference Voltage vs. IC On/Off Voltages  
IC On/Off Voltages vs. Ambient Temperature  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
2.0  
Ta = 25°C  
VIN = 12 V  
VIN = 12 V  
fOSC = 100 kHz  
SPEC  
1.5  
1.0  
0.5  
0.0  
IC on voltage  
IC off voltage  
IC off voltage IC on voltage  
SPEC  
SPEC  
SPEC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
20  
0
20  
40  
60  
80  
IC on/off voltage (V)  
Ambient temperature (°C)  
Peak Output Current vs. Load Capacitance  
Operating Current vs. Supply Voltage  
600  
500  
400  
300  
200  
100  
0
20  
15  
10  
5
Ta = 25°C  
VIN = 12 V  
fOSC = 100 kHz  
Ta = 25°C  
fOSC = 100 kHz  
On duty = 50%  
CL= 1000 pF  
SPEC  
0
0
1000 2000 3000 4000 5000  
Load capacitance (pF)  
0
10  
20  
30  
40  
Supply voltage (V)  
27  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Operating Current vs. Output Duty Cycle  
20  
Ta = 25°C  
VIN = 12 V  
fOSC = 100 kHz  
CL= 1000 pF  
15  
10  
5
SPEC  
0
0
20  
40  
60  
80  
100  
Output duty cycle (%)  
PWM Comparator Input vs. Output Duty Cycle (1)  
PWM Comparator Input vs. Output Duty Cycle (2)  
100  
100  
HA16114  
HA16120  
80  
60  
80  
60  
fOSC  
600 kHz  
40  
40  
fOSC  
600 kHz  
50 kHz  
50 kHz  
300 kHz  
20  
20  
300 kHz  
0
0
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VDB or VE/O (V)  
VDB or VE/O (V)  
Note: The on-duty of the HA16114 is the proportion  
of one cycle during which output is low.  
Note: The on-duty of the HA16120 is the proportion  
of one cycle during which output is high.  
28  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Output pin (Output Resistor) Characteristics  
12  
HA16114  
VGS  
(P-channel  
Power MOS FET)  
Output high voltage  
when on  
11  
10  
9
Output high voltage  
when off  
HA16120  
3
2
1
0
Output low voltage  
when on  
Output low voltage  
when off  
VGS  
(N-channel  
Power MOS FET)  
0
2
4
6
8
10  
Io sink or Io source (mA)  
29  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Output Waveforms: Rise of Output Voltage VOUT  
15  
10  
VOUT  
(V)  
5
Vref DB CL() VIN  
OUT  
0
CL  
400  
200  
0
1000 pF  
IN(+) RT CT  
IO  
10 kΩ  
1300 pF  
IO  
(mA)  
Test Circuit  
200  
400  
200 ns/div  
Output Waveforms: Fall of Output Voltage VOUT  
15  
10  
VOUT  
(V)  
5
Vref DB CL() VIN  
0
OUT  
CL  
1000 pF  
400  
200  
0
IN(+) RT CT  
IO  
10 kΩ  
1300 pF  
IO  
(mA)  
Test Circuit  
200  
400  
200 ns/div  
30  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Oscillator Frequency vs. Timing Capacitance  
1000  
100  
10  
RT = 3kΩ  
RT = 10kΩ  
RT = 30kΩ  
RT = 100kΩ  
RT = 300kΩ  
RT = 1MΩ  
1
0.1  
101  
102  
103  
104  
105  
106  
Timing capacitance CT (pF)  
31  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Application Examples (1)  
32  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Application Examples (2)  
External Synchronization with Primary-Control AC/DC Converter  
(1) Combination with a flyback AC/DC converter (simplified schematic)  
HRA83  
Transformer  
HRP24  
SBD  
Commer-  
cial AC  
1S2076A  
+
+
1S2076A  
D
+
+
Main DC  
output  
R1  
R2  
VIN  
Error amp.  
+
OUT  
2
CL(CS)  
SYNC  
HA16114,  
HA16120  
10  
11  
VIN  
CL  
GND OUT P.GND  
1
9
8
Primary AC/DC converter IC  
(HA16107, HA17384, etc.)  
To A of SBD  
2SJ296  
SBD  
+
Step-down  
output  
(HA16114)  
+
K
A
Sub DC  
output  
HRP24  
This is one example of a circuit that uses the features of the HA16114/120 by operating in  
synchronization with a flyback AC/DC converter. Note the following design points concerning the  
circuit from the secondary side of the transformer to the SYNC pin of the HA16114/120.  
Diode D prevents reverse current. Always insert a diode here. Use a general-purpose switching  
diode.  
Resistors R1 and R2 form a voltage divider to ensure that the input voltage swing at the SYNC pin  
does not exceed Vref (2.5 V). To maintain operating speed, R1 + R2 should not exceed 10 k.  
33  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Application Examples (3)  
External Synchronization with Primary-Control AC/DC Converter (cont.)  
(2) Combination with a forward AC/DC converter (simplified schematic)  
DFG1C8  
D
HRW26F  
HA17431 and optocoupler  
+
Input  
Main DC  
output  
Feedback  
section  
C
SBD  
module  
A
B
HA16107,  
HA16666 etc.  
FB  
VIN  
2SC458  
R3  
390Ω  
2
10  
R1  
R2  
6.2kΩ  
Q
Switching transformer  
SYNC  
VIN  
HA16114,  
HA16120  
GND  
1
9
OUT  
Coil A Primary, for main  
Coil B Secondary, for output  
Coil C Tertiary, for IC  
Coil D For reset  
ZD  
Other parts as  
on previous page  
510Ω  
This circuit illustrates the combination of the HA16114/120 with a forward AC/DC converter. The  
HA16114/120 synchronizes with the falling edge of the external sync signal, so with a forward  
transformer, the sync pulses must be inverted. In the diagram, this is done by an external circuit  
consisting of the following components:  
Q:  
Transistor for inverting the pulses. Use a small-signal transistor.  
R1 and R2: These resistors form a voltage divider for driving the base of transistor Q. R2 also provides  
a path for base discharge, so that the transistor can turn off quickly.  
Load resistor for transistor Q.  
Zener diode for protecting the SYNC pin.  
R3:  
ZD:  
34  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Overall Waveform Timing Diagram (for Application Example (1))  
12 V  
0 V  
V
IN  
VTM  
,
2.1 V  
1.4 V  
VON/OFF  
VTM  
VON/OFF  
,
1.4 V  
0.7 V  
0.0 V  
On  
On  
(V)  
3.0  
On  
On  
On  
VE/O  
Off Off Off Off  
Off  
VCT  
sawtooth wave  
2.0  
1.0  
0.0  
VE/O  
VCT  
VDB  
,
,
VDB  
12 V  
VCL  
11.8 V  
0 V  
Pulse-by-pulse  
current limiting  
*1 12 V  
VOUT  
PWM  
pulse  
0 V  
DC/DC output  
(example for  
positive  
voltage)  
Soft start  
Steady state  
Overcurrent  
detected;  
intermittent  
operation  
Overcurrent Quick  
subsides;  
steady-state  
operation  
shutdown  
IC operation  
status  
Power-up IC on  
Power supply off,  
IC off  
Note: 1. This PWM pulse is on the step-down/inverting control channel (HA16114).  
The booster control channel (HA16120) output consists of alternating L and H of the IC on cycle.  
35  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Application Examples (4) (Some Pointers on Use)  
1. Inductor, Power MOS FET, and Diode Connections  
1. Step-up topology  
VIN  
2. Step-down topology  
VIN  
CF  
CF  
RCS Applicable only  
to HA16120  
RCS Applicable only  
to HA16114  
RF  
VIN  
VIN  
RF  
CL  
CL  
OUT  
VO  
VO  
OUT  
GND  
GND  
FB  
FB  
3. Inverting topology  
CF  
4. Step-down/step-up (buck-boost) topology  
CF  
RCS  
RCS  
Applicable only  
to HA16114  
Applicable only  
to HA16114  
RF  
RF  
VIN  
CL  
VIN  
CL  
OUT  
GND  
OUT  
VO  
GND  
FB  
FB  
Vref  
2. Turning Output On and Off while the IC is On  
To turn only one channel off, ground the DB pin or the E/O pin.  
In the case of E/O, however, there will be no soft start  
when the output is turned back on.  
DB  
E/O  
OFF  
36  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Package Dimensions  
Unit: mm  
19.20  
20.00 Max  
16  
1
9
8
1.3  
1.11 Max  
7.62  
+ 0.13  
– 0.05  
0.25  
2.54 ± 0.25  
0.48 ± 0.10  
0° – 15°  
Hitachi Code  
DP-16  
JEDEC  
EIAJ  
Mass (reference value)  
Conforms  
Conforms  
1.07 g  
Unit: mm  
10.06  
10.5 Max  
9
16  
1
8
+ 0.20  
7.80  
– 0.30  
0.80 Max  
1.15  
0° – 8°  
1.27  
0.70 ± 0.20  
*0.42 ± 0.08  
0.40 ± 0.06  
0.15  
M
0.12  
Hitachi Code  
JEDEC  
FP-16DA  
EIAJ  
Conforms  
0.24 g  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value)  
37  
HA16114P/PJ/FP/FPJ, HA16120FP/FPJ  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
Electronic components Group  
Dornacher Straβe 3  
D-85622 Feldkirchen, Munich  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
38  

相关型号:

HA16114FPJ-E

1A SWITCHING CONTROLLER, 600kHz SWITCHING FREQ-MAX, PDSO16, SOP-16
RENESAS

HA16114FPJ-EL

暂无描述
RENESAS

HA16114P

Switching Regulator for Chopper Type DC/DC Converter
HITACHI

HA16114P

Switching Regulator for Chopper Type DC/DC Converter
RENESAS

HA16114P-E

1A SWITCHING CONTROLLER, 600kHz SWITCHING FREQ-MAX, PDIP16, DIP-16
RENESAS

HA16114P/PJ/FP/FPJ/

HA16114P/PJ/FP/FPJ/ HA16120FP/FPJ Datasheet 504K/SEP.18.03
ETC

HA16114PJ

Switching Regulator for Chopper Type DC/DC Converter
HITACHI

HA16114PJ

Switching Regulator for Chopper Type DC/DC Converter
RENESAS

HA16116

Switching Regulator for Chopper Type DC/DC Converter
HITACHI

HA16116

Switching Regulator for Chopper Type DC/DC Converter
RENESAS

HA16116FP

Switching Regulator for Chopper Type DC/DC Converter
HITACHI