HA16116 [HITACHI]

Switching Regulator for Chopper Type DC/DC Converter; 开关稳压器型DC / DC转换器
HA16116
型号: HA16116
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Switching Regulator for Chopper Type DC/DC Converter
开关稳压器型DC / DC转换器

转换器 稳压器 开关
文件: 总34页 (文件大小:249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA16116FP/FPJ, HA16121FP/FPJ  
Switching Regulator for Chopper Type DC/DC Converter  
Description  
HA16116FP/FPJ and HA16121FP/FPJ are dual-channel PWM switching regulator controller ICs for use in  
chopper-type DC/DC converters.  
This IC series incorporates totem pole gate drive circuits to allow direct driving of a power MOS FET. The  
output logic is preset for booster, step-down, or inverting control in a DC/DC converter. This logic  
assumes use of an N-channel power MOS FET for booster control, and a P-channel power MOS FET for  
step-down or inverting control.  
HA16116 includes a built-in logic circuit for step-down control only, and one for use in both step-down  
and inverting control. HA16121 has a logic circuit for booster control only and one for both step-down and  
inverting control.  
Both ICs have a pulse-by-pulse current limiter, which limits PWM pulse width per pulse as a means of  
protecting against overcurrent, and which uses an on/off timer for intermittent operation. Unlike  
conventional methods that use a latch timer for shutdown, when the pulse-by-pulse current limiter  
continues operation beyond the time set in the timer, the IC is made to operate intermittently (flickering  
operation), resulting in sharp vertical setting characteristics. When the overcurrent condition subsides, the  
output is automatically restored to normal.  
The dual control circuits in the IC output identical triangle waveforms, for completely synchronous  
configuring a compact, high efficiency dual-channel DC/DC converter, with fewer external components  
than were necessary previously.  
Functions  
2.5 V reference voltage (Vref) regulator  
Triangle wave form oscillator  
Dual overcurrent detector  
Dual totem pole output driver  
UVL (under voltage lock out) system  
Dual error amplifier  
Vref overvoltage detector  
Dual PWM comparator  
HA16116FP/FPJ, HA16121FP/FPJ  
Features  
Wide operating supply voltage range* (3.9 V to 40.0 V)  
Wide operating frequency range (600 kHz maximum operation)  
Direct power MOS FET driving (output current ±1 A peak in maximum rating)  
Pulse-by-pulse overcurrent protection circuit with intermittent operation function (When overcurrent  
state continues beyond time set in timer, the IC operates intermittently to prevent excessive output  
current.)  
Grounding the ON/OFF pin turns the IC off, saving power dissipation. (HA16116: IOFF = 10 µA max.;  
HA16121: IOFF = 150 µA max.)  
Built-in UVL circuit (UVL voltage can be varied with external resistance.)  
Built-in soft start and quick shutoff functions  
Note: The reference voltage 2.5 V is under the condition of VIN 4.5 V.  
Ordering Information  
Hitachi Control ICs for Chopper-Type DC/DC Converters  
Product  
Channel Control Functions  
Overcurrent  
Channels Number  
No.  
Step-Up  
Step-Down  
Inverting  
Output Circuits  
Protection  
Dual  
HA17451  
Ch 1  
Ch 2  
Open collector  
SCP with timer (latch)  
Single  
Dual  
HA16114  
HA16120  
HA16116  
Totem pole  
Pulse-by-pulse  
power MOS FET current limiter and  
Ch 1  
Ch 2  
Ch 1  
Ch 2  
driver  
intermittent operation  
by on/off timer  
HA16121  
2
HA16116FP/FPJ, HA16121FP/FPJ  
Pin Arrangement  
*2  
S.GND*1  
CT  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
S.VIN  
Vref  
RT  
TIM  
IN(+)1  
IN()1  
E/O1  
ON/OFF  
IN()2  
E/O2  
Channel 1  
Channel 2  
DB1  
CL1  
DB2  
CL2  
OUT1  
P.GND*1  
OUT2  
*2  
P.V IN  
(top view)  
1. Pins S.GND (pin 1) and P.GND (pin 10) have no direct internal interconnection.  
Both pins must be connected to ground.  
Notes:  
2. Pins S.V (pin 20) and P.VIN (pin 11) have no direct internal interconnection.  
IN  
Both pins must be connected to VIN.  
3
HA16116FP/FPJ, HA16121FP/FPJ  
Pin Functions  
Pin No.  
Symbol  
S.GND  
CT  
Function  
Signal circuitry*1 ground  
1
2
Timing capacitance (triangle wave oscillator output)  
Timing resistance (for bias current synchronization)  
Error amp. noninverting input (1)  
Error amp. inverting input (1)  
Error amp. output (1)  
3
RT  
4
IN(+)1  
IN(–)1  
E/O1  
DB1  
Channel 1  
5
6
7
Dead band timer off period adjustment input (1)  
Overcurrent detection input (1)  
PWM pulse output (1)  
Output stage*1 ground  
Output stage*1 power supply input  
8
CL1  
9
OUT1  
P.GND  
P.VIN  
OUT2  
CL2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
PWM pulse output (2)  
Channel 2  
Overcurrent detection input (2)  
Dead band timer off period adjustment input (2)  
Error amp. output (2)  
DB2  
E/O2  
IN(–)2  
ON/OFF  
TIM  
Error amp. inverting input (2)*2  
IC on/off switch input (off when grounded)  
Setting of intermittent operation timing when overcurrent is detected  
(collector input of timer transistor)  
19  
20  
Vref  
2.5 V reference voltage output  
Signal circuitry*1 power supply input  
S.VIN  
Notes: 1. Here “output stage” refers to the power MOS FET driver circuits, and “signal circuitry” refers to all  
other circuits on the IC. Note that this IC is not protected against reverse insertion, which can  
cause breakdown of the IC between VIN and GND. Be careful to insert the IC correctly.  
2. Noninverting input of the channel 2 error amp is connected internally to Vref.  
4
HA16116FP/FPJ, HA16121FP/FPJ  
Block Diagram  
5
HA16116FP/FPJ, HA16121FP/FPJ  
Function and Timing Chart  
Relation between triangle wave and PWM output (in steady-state operation)  
CT triangle wave  
1.6 V typ  
1.0 V typ  
Dead band  
voltage  
E/O Error amp output  
VIN (on)  
This pulse  
Booster  
channel  
output  
(HA16121-  
Ch 2) only  
is for  
N-channel  
power MOS  
FET gate  
driving.  
tON  
tOFF  
GND (off)  
PWM  
pulse  
output  
T
Step-down  
or inverting  
output  
(HA16116-  
Ch 1, Ch 2/  
HA16121-Ch 1)  
This pulse  
is for  
P-channel  
power MOS  
FET gate  
driving.  
VIN (off)  
GND (on)  
Note: On duty = tON/T, where T = 1/f OSC  
.
6
HA16116FP/FPJ, HA16121FP/FPJ  
Determining External Component Constants (pin usage)  
Constant settings are explained for the following items.  
S.GND  
CT  
1
2
3
4
5
6
7
8
9
20 S.VIN  
19 Vref  
Vref UVL and  
OVP  
5.  
6.  
Oscillator  
frequency  
(fOSC) setting  
1.  
Setting of inter-  
mittent operation  
timing when  
overcurrent is  
detected  
RT  
18 TIM  
IN(+)1  
IN()1  
E/O1  
DB1  
17 ON/OFF  
16 IN()2  
15 E/O2  
14 DB2  
DC/DC converter  
output voltage  
setting and  
2.  
3.  
4.  
error amp usage  
ON/OFF pin  
usage  
7.  
8.  
Channel 1  
Channel 2  
Dead band duty  
and soft start  
setting  
Overcurrent  
detection value  
setting  
CL1  
13 CL2  
Output stage  
circuit and  
power MOS FET  
driving method  
OUT1  
12 OUT2  
11 P.V IN  
P.GND 10  
1. Oscillator Frequency (fOSC) Setting  
Figure 1.1 shows an equivalent circuit for the triangle wave oscillator.  
VH  
(3.3 V  
IC internal circuits)  
Vref (2.5 V)  
1.6 V typ  
VL  
1.0 V typ  
CT charging  
IO  
RA  
t1  
t2  
Comparator  
RC  
IO  
Discharging  
RB  
CT  
(external)  
CT  
1 : 2  
1.1 V  
RT  
RT  
(external)  
Inside the IC  
Figure 1.1 Equivalent Circuit for the Triangle Wave Oscillator  
7
HA16116FP/FPJ, HA16121FP/FPJ  
The triangle wave is a voltage waveform used as a reference in creating a PWM pulse. This block operates  
according to the following principles. A constant current IO, determined by an external timing resistor RT,  
is made to flow continuously to external timing capacitor CT. When the CT pin voltage exceeds the  
comparator threshold voltage VH, the comparator output causes a switch to operate, discharging a current IO  
from CT. Next, when the CT pin voltage drops below threshold voltage VL, the comparator output again  
causes the switch to operate, stopping the IO discharge. The triangle wave is generated by this repeated  
operation.  
Note that IO = 1.1 V/RT. Since the IO current mirror circuit has a very limited current producing ability, RT  
should be set to 5 k(IO 220 µA).  
With this IC series, VH and VL of the triangle wave are fixed internally at about 1.6 V and 1.0 V by the  
internal resistors RA, RB, and RC. The oscillator frequency can be calculated as follows.  
1
fOSC  
Here,  
=
t1 + t2 + t3  
CT (VH VL)  
CT RT (VH VL)  
t1 =  
=
1.1 V/RT  
1.1 V  
CT (VH VL)  
(2 1) × 1.1 V/RT  
CT RT (VH VL)  
t2 =  
=
= t1  
1.1 V  
V
H VL = 0.6 V  
0.6  
t1 = t2 =  
1.1  
CT RT  
t3 0.8 µs (comparator delay time in the oscillator)  
Accordingly,  
1
1
fOSC  
[Hz]  
2t1 + t3  
1.1 CT RT + 0.8 µs  
Note that the value of fOSC may differ slightly from the above calculation depending on the amount of delay  
in the comparator circuit. Also, at high frequencies this comparator delay can cause triangle wave  
overshoot or undershoot, skewing the dead band threshold. Confirm the actual value in implementation  
and adjust the constants accordingly.  
8
HA16116FP/FPJ, HA16121FP/FPJ  
2. DC/DC Converter Output Voltage Setting and Error Amp Usage  
2.1 Positive Voltage Booster (VO > VIN) or Step-Down (VIN > VO > Vref)  
R1 + R2  
Use VO  
=
Vref (V)  
R2  
Booster output is possible only at channel 2 of HA16121. For step-down output, both channels of  
HA16116 or channel 1 of HA16121 are used.  
VO  
Error amp.  
R1  
IN()1  
CH1  
IN(+)1 +  
R2  
VO  
R1  
IN()2  
CH2  
R2  
+
Vref  
2.5 V  
Vref pin  
(internal connection)  
Figure 2.1  
2.2 Negative Voltage (VO < Vref) for Inverting Output  
R1  
R1 + R2  
R3 + R4  
R3  
Use VO = Vref  
1 (V)  
Channel 1 is used for inverting output on both ICs.  
Vref pin  
Vref 2.5 V  
R1  
IN()1  
CH1  
R
R2  
3
+
IN(+)2  
R4  
Error amp  
VO  
Figure 2.1 Inverting Output  
9
HA16116FP/FPJ, HA16121FP/FPJ  
2.3 Error Amplifier  
Figure 2.3 shows an equivalent circuit of the error amplifier. The error amplifier on these ICs is configured  
of a simple NPN transistor differential input amplifier and the output circuit of a constant-current driver.  
This amplifier features wide bandwidth (fT = 4 MHz) with open loop gain kept to 50 dB, allowing stable  
feedback to be applied when the power supply is designed. Phase compensation is also easy.  
Both HA16116 and HA16121 have a noninverting input (IN(+)) pin, in order to allow use of the channel 1  
error amplifier for inverting control. The channel 2 error amplifier, on the other hand, is used for step-  
down control in HA16116 and booster control in HA16121; so the channel 2 noninverting input is  
connected internally to Vref.  
IC internal VIN  
IN()  
E/O  
IN(+)  
To internal PWM  
comparator  
80 µA  
40 µA  
Figure 2.3 Error Amplifier Equivalent Circuit  
3. Dead Band (DB) Duty and Soft Start Setting (common to both channels)  
3.1 Dead Band Duty Setting  
Dead band duty is set by adjusting the DB pin input voltage (VDB). A convenient means of doing this is to  
connect two external resistors to the Vref of this IC so as to divide VDB (see figure 3.1).  
R2  
R1 + R2  
VDB = Vref  
Duty (DB) =  
Here, T =  
×
(V)  
V
V
TH VDB  
TH VTL  
× 100 (%)  
This applies when VDB > VTL  
.
If VDB < VTL, there is no PWM output.  
1
fOSC  
Note: VTH: 1.6 V (Typ)  
VTL: 1.0 V (Typ)  
Vref is typically 2.5 V. Select R1 and R2 so that 1.0 V VDB 1.6 V.  
10  
HA16116FP/FPJ, HA16121FP/FPJ  
VTH  
VE/O  
VDB  
1.6 V typ  
To Vref  
R1  
PWM  
CT  
VTL  
1.0 V typ  
VIN  
VIN  
comparator  
+
+
E/O  
On  
tON  
VDB  
Booster  
channel  
tOFF  
DB  
Off  
Off  
5k  
GND  
VIN  
PWM  
pulse  
output  
From UVL  
CST  
0.8V  
R2  
Step-down/  
inverting  
channel  
On  
GND  
T
Figure 3.1 Dead Band Duty Setting  
3.2 Soft Start (SST) Setting (each channel)  
When the power is turned on, the soft start function gradually raises VDB (refer to section 3.1), and the  
PWM output pulse width gradually widens. This function is realized by adding a capacitor CST to the DB  
pin. The function is realized as follows.  
In the figure 3.2, the DB pin is clamped internally at approximately 0.8 V, which is 0.2 V lower than the  
triangle wave VTL = 1.0 V typ.  
tA: Standby time until PWM pulse starts widening.  
tB: Time during which SST is in effect.  
During soft start, the DB pin voltage in the figure below is as expressed in the following equation.  
t t0.8  
VSST = VDB  
Here,  
t0.8 = T ln  
tSST = tA + tB  
T
1 e  
,
0.8  
T = CST (R1 // R2)  
1 −  
,
VDB  
How to select values: If the soft start time tSST is too short, the DC/DC converter output voltage will tend to  
overshoot. To prevent this, set tSST to a few tens of ms or above.  
11  
HA16116FP/FPJ, HA16121FP/FPJ  
V
(voltage)  
VSST  
Triangle wave  
VTH  
1.6 V  
1.0 V  
VTL  
Starts from clamp  
voltage of 0.8 V  
PWM output  
pulse starts to  
widen  
Steady-state  
operation  
0 V  
VIN  
t0.8  
tA  
tB  
Booster  
channel  
0 V  
VIN  
PWM pulse  
output  
Step-down/  
inverting  
channel  
0 V  
VO  
DC/DC converter output  
(positive in this example)  
0 V  
t = 0 (here IC is on)  
t = tSST  
Figure 3.2 Soft Start (SST) Setting  
12  
HA16116FP/FPJ, HA16121FP/FPJ  
4. Totem Pole Output Stage Circuit and Power MOS FET Driving Method  
The output stage of this IC series is configured of totem pole circuits, allowing direct connection to a power  
MOS FET as an external switching device, so long as VIN is below the gate breakdown voltage.  
If there is a possibility that VIN will exceed the gate breakdown voltage of the power MOS FET, a Zener  
diode circuit like that shown figure 4.1 or other protective measures should be used. The figure 4.1 shows  
an example using a P-channel power MOS FET.  
P.V IN  
E.g.: VIN = 18 V  
Zener diode for  
gate protection  
Bias  
circuit  
OUT  
Gate  
protection  
resistor  
VO  
+
Drive circuit  
Schottky  
barrier diode  
Figure 4.1 P-channel Power MOS FET (example)  
5. Vref Undervoltage Error Prevention (UVL) and Overvoltage Protection (OVP) Functions  
5.1 Operation Principles  
The reference voltage circuit is equipped with UVL and OVP functions.  
UVL  
In normal operation the Vref output voltage is fixed at 2.5 V. If VIN is lower than normal, the UVL  
circuit detects the Vref output voltage with a hysteresis of 1.7 V and 2.0 V, and shuts off the PWM  
output if Vref falls below this level, in order to prevent malfunction.  
OVP  
The OVP circuit protects the IC from inadvertent application of a high voltage from outside, such as if  
VIN is shorted. A Zener diode (5.6 V) and resistor are used between Vref and GND for overvoltage  
detection. PWM output is shut off if Vref exceeds approximately 7.0 V.  
Note that the PWM output pulse logic and the precision of the switching regulator output voltage are not  
guaranteed at an applied voltage of 2.5 V to 7 V.  
13  
HA16116FP/FPJ, HA16121FP/FPJ  
5.2 Quick Shutoff  
When the UVL circuit goes into operation, a sink transistor is switched on as in the figure below, drawing  
off the excess current. This transistor also functions when the IC is turned off, drawing off current from the  
CT, E/O, and DB pins and enabling quick shutoff.  
PWM  
output  
PWM  
output  
off  
PWM output on  
PWM  
output off  
On  
Off  
Vref (V)  
1.7 2.0 2.5  
5.0  
7.0  
When VIN is  
low  
Abnormal voltage  
applied to Vref  
Relation of Vref to UVL and OVP  
Vref  
VIN  
Vref  
2.0 V and  
1.7 V  
detection  
Vref  
generation  
circuit  
Internal  
pulse  
signal  
line  
ZD  
5.6 V  
UVL  
OUT  
OUT  
R
Sink  
transistor  
10 kΩ  
OVP  
To other circuitry  
Figure 5.1 Quick Shutoff  
14  
HA16116FP/FPJ, HA16121FP/FPJ  
6. Setting of Intermittent Operation Timing when Overcurrent is Detected  
6.1 Operation Principles  
The current limiter on this IC detects overcurrent in each output pulse, providing pulse-by-pulse  
overcurrent protection by limiting pulse output whenever an overcurrent is detected. If the overcurrent  
state continues, the TIM pin and ON/OFF pin can be used to operate the IC intermittently. As a result, a  
power supply with sharp vertical characteristics can be configured.  
The ON/OFF timing for intermittent operation makes use of the hysteresis in the ON/OFF pin threshold  
voltage VON and VOFF, such that VON – VOFF = VBE. Setting method is performed as described on the  
following pages. VBE is based-emitter voltage of internal transistor.  
Note: When an overcurrent is detected in one channel of this IC but not the other, the pulse-by-pulse  
current limiter still goes into operation on both channels. Also, when the intermittent operation  
feature is not used, the TIM pin should be set to open state and the ON/OFF pin pulled up to high  
level (above VON).  
VIN  
RA  
Current  
Latch limiter  
390 kΩ  
CL  
S
R
TM  
Q
4.7 kΩ  
2.2 µF  
RB  
Vref  
generation  
circuit  
ON/OFF  
+
CON/OFF  
Figure 6.1 Connection Diagram (example)  
6.2 Intermittent Operation Timing Chart (VON/OFF only)  
*1  
4VBE  
c
c
3VBE  
2VBE  
VBE  
VON/OFF  
On  
On  
Off  
IC is on  
IC is off  
a
b
0 V  
t
TON  
2TON  
a. Continuous overcurrent detected  
TOFF  
b. Intermittent operation starts (IC is off)  
c. Overcurrent cleared (dotted line)  
1.VBE is the base-emitter voltage in transistors on the IC, and is approximately 0.7 V  
(see the figure 7.1).  
Note:  
For details, see the overall waveform timing diagram.  
Figure 6.2 Intermittent Operation Timing Chart  
15  
HA16116FP/FPJ, HA16121FP/FPJ  
6.3 Calculating Intermittent Operation Timing  
Intermittent operation timing is calculated as follows.  
(1) TON time (the time until the IC is shut off when continuous overcurrent occurs)  
3VBE  
2VBE  
1
TON = CON/OFF × RB × ln  
×
1 On duty*  
1
1
= CON/OFF × RB × ln1.5 ×  
0.4  
C
R
× ×  
B
×
ON/OFF  
1 On duty*  
1 On duty*  
(2) TOFF time (when the IC is off, the time until it next goes on)  
V
V
IN 2VBE  
IN 3VBE  
TOFF = CON/OFF (R + R )  
×
× ln  
A
B
Where, VBE 0.7 V  
Note: 1. On duty is the percent of time the IC is on during one PWM cycle when the pulse-by-pulse  
current limiter is operating.  
From the first equation (1) above, it is seen that the shorter the time TON when the pulse-by-pulse current  
limiter goes into effect (resulting in a larger overload), the smaller the value TON becomes.  
As seen in the second equation (2), TOFF is a function of VIN. Further, according to this setting, when V is  
IN  
switched on, the IC goes on only after TOFF has elapsed.  
Dead band voltage  
Triangle wave  
Point at which current  
limiter operate  
PWM output  
(step-down channel)  
tON  
tON  
On duty =  
T
Where T = 1/fOSC  
T
On duty is the percent of time the IC is on during one PWM cycle when  
the pulse-by-pulse current limiter is operating.  
Note:  
Figure 6.3  
16  
HA16116FP/FPJ, HA16121FP/FPJ  
6.4 Examples of Intermittent Operation Timing (calculated values)  
4
3
2
1
0
(1) TON  
TON = T1 × CON/OFF × RB  
Here, coefficient  
1
T1 = 0.4 ×  
1 On duty  
from section 6.3 (1) previously.  
T1  
Example: If CON/OFF = 2.2 µF,  
R = 4.7 k , and the on duty  
B
of the current limiter is 75%,  
then TON = 16 ms.  
0
20  
40  
60  
80  
100  
(PWM) ON Duty (%)  
Figure 6.4 Examples of Intermittent Operation Timing (1)  
(2) TOFF  
TOFF= T2 × CON/OFF × (RA + RB)  
0.1  
Here, coefficient  
V
V
IN 2VBE  
IN 3VBE  
T2 = ln  
T2  
0.05  
from section 6.3 (2) previously.  
Example: If CON/OFF = 2.2 µF, RB = 4.7 k,  
RA = 390 k, V = 12 V,  
IN  
0
then TOFF= 60 ms.  
0
10  
20  
VIN (V)  
30  
40  
Figure 6.5 Examples of Intermittent Operation Timing (2)  
17  
HA16116FP/FPJ, HA16121FP/FPJ  
Triangle wave VCT  
Dead band VDB  
Example of step-up circuit  
VIN  
CF  
RF  
RCS  
Error output VE/O  
PWM pulse output  
(In case of HA16120)  
CL  
Inductor  
L
IC  
OUT  
VOUT  
Power MOS FET  
drain current (ID)  
(dotted line shows  
inductor current)  
ID  
F.B.  
VIN  
Determined by L and VIN  
Determined by RCS and RF  
Current limiter  
pin (CL)  
V
TH (CL)  
V
IN 0.2 V  
Figure 6.6  
7. ON/OFF Pin Usage  
7.1 IC Shutoff by the ON/OFF Pin  
As shown in the figure 7.1, these ICs can be turned off safely by lowering the voltage at the ON/OFF pin to  
below 2VBE. This feature is used to conserve the power in the power supply system. In off state the IC  
current consumption (IOFF) is 10 µA (Max) for HA16116 and 150 µA (Max) for HA16121.  
The ON/OFF pin can also be used to drive logic ICs such as TTL or CMOS with a sink current of 50 µA  
(Typ) at an applied voltage of 5 V. When it is desired to employ this feature along with intermittent  
operation, an open collector or open drain logic IC should be used.  
VIN  
IIN  
RA  
S.VIN  
P.V IN  
TIM  
External logic IC  
To output  
stage  
To latch  
To other circuitry  
Vref  
Off On  
Switch  
RB  
Q1  
Vref  
generation  
circuit  
50 kΩ  
output  
ON/OFF  
Q2  
Q3  
+
4 VBE  
CON/OFF  
Q4  
GND  
HA16116,  
HA16121  
On/off hysteresis circuit  
Figure 7.1 IC Shutoff by the ON/OFF Pin  
18  
HA16116FP/FPJ, HA16121FP/FPJ  
7.2 Adjusting UVL Voltage (when intermittent operation is not used)  
The UVL voltage setting in this IC series can be adjusted externally as shown below.  
Using the relationships shown in the figure, the UVL voltage in relation to VIN can be adjusted by changing  
the relative values of VTH and VTL.  
When the IC is operating, transistor Q4 is off, so VON = 3VBE 2.1 V. Accordingly, by connecting resistors  
RC and RD, the voltage at which UVL is cancelled is as follows.  
RC + RD  
VIN = 2.1 V ×  
RD  
This VIN is simply the supply voltage at which the UVL stops functioning, so in this state Vref is still below  
2.5 V. In order to restore Vref to 2.5 V, a VIN of approximately 4.3 V should be applied.  
With this IC series, VON/OFF makes use of the VBE of internal transistors, so when designing a power supply  
system it should be noted that VON has a temperature dependency of around –6 mV/°C.  
VIN  
P.VIN  
S.VIN  
To output  
stage  
To other circuitry  
Vref output  
TIM  
(open)  
RC  
To latch  
ON/OFF  
Q1  
Vref  
generation  
circuit  
50 kΩ  
RD  
Q2  
Q3  
Q4  
On/off hysteresis circuit  
GND  
2.5 V  
3
VIN 4.5 V  
2
1
0
Vref  
VOFF  
1.4 V  
VON  
2.1 V  
0
1
2
3
4
5
VON/OFF  
Figure 7.2 Adjusting UVL Voltage  
19  
HA16116FP/FPJ, HA16121FP/FPJ  
Overcurrent Detection Value Setting  
The overcurrent detection value VTH for this IC series is 0.2 V (Typ) and the bias current is 200 µA (Typ)  
The power MOS FET peak current value before the current limiter goes into operation is derived from the  
following equation.  
V
TCL (RF + RCS) IBCL  
ID =  
RCS  
Here VTH = VIN – VCL = 0.2 V, VCL is a voltage referd on GND.  
Note that CF and RCS form a low-pass filter, determined by their time constants, that prevents malfunctions  
from current spikes when the power MOS FET is turned on or off.  
CF 1800 PF  
IBCL  
S.VIN  
RCS  
0.05 Ω  
VIN  
VCL  
To other  
circuitry  
CL  
RF  
240 Ω  
This circuit is an example  
for step-down output use.  
1 k  
G
OUT  
S
D
200 A  
VO  
Detection  
output  
(internal)  
+
+  
IN(—)  
Figure 8.1 Example for Step-Down Use  
The sample values given in this figure are calculated from the following equation.  
0.2 V (240 + 0.05 ) × 200 µA  
ID =  
0.05 Ω  
= 3.04 [A]  
The filter cutoff frequency is calculated as follows.  
1
1
fC =  
=
= 370 [kHz]  
2π CF RF  
6.28 × 1800 pF × 240 Ω  
20  
HA16116FP/FPJ, HA16121FP/FPJ  
Absolute Maximum Ratings (Ta = 25°C)  
Rating  
HA16116FP,  
HA16116FPJ,  
HA16121FPJ  
Item  
Symbol  
VIN  
HA16121FP  
Unit  
V
Supply voltage  
40  
40  
Output current (DC)  
Output current (peak)  
Current limiter pin voltage  
Error amp input voltage  
E/O input voltage  
IO  
±0.1  
±0.1  
A
IO peak  
VCL  
±1.0  
±1.0  
A
VIN  
VIN  
V
VIEA  
VIN  
VIN  
V
VIE/O  
IRT  
Vref  
Vref  
V
RT pin source current  
TIM pin sink current  
Power dissipation*1  
Operation temperature range  
Junction temperature  
Storage temperature range  
500  
500  
µA  
mA  
mW  
°C  
°C  
°C  
ITM  
20  
20  
PT  
680*1,*2  
–20 to +85  
125  
680*1,*2  
–40 to +85  
125  
Topr  
TjMax  
Tstg  
–55 to +125  
–55 to +125  
Note: 1. This value is based on actual measurements on a 40 × 40 × 1.6 mm glass epoxy circuit board.  
At a wiring density of 10%, it is the permissible value up to Ta = 45°C, but at higher temperatures  
this value should be derated by 8.3 mW/°C. At a wiring density of 30% it is the permissible value  
up to Ta = 64°C, but at higher temperatures it should be derated by 11.1 mW/°C.  
2. For the DILP package.  
This value applies up to Ta = 45°C; at temperatures above this, 8.3 mW/°C derating should be  
applied.  
800  
10% wiring density  
680 mW  
30% wiring density  
600  
447 mW  
400  
348 mW  
200  
45°C  
64°C  
85°C  
125°C  
0
20  
0
20  
40  
60  
80  
100  
120  
140  
Operating ambient temperature Ta (°C)  
21  
HA16116FP/FPJ, HA16121FP/FPJ  
Electrical Characteristics (Ta = 25°C, VIN = 12 V, fOSC = 300 kHz)  
Item  
Symbol  
Vref  
Min  
Typ Max Unit  
Test Conditions  
IO = 1 mA  
Reference  
voltage  
block  
Output voltage  
Line regulation  
Load regulation  
2.45 2.50 2.55  
V
Line  
10  
30  
30  
25  
60  
60  
mV  
mV  
mA  
4.5 V VIN 40 V  
0 IO 10 mA  
Vref = 0 V  
Load  
IOS  
Output shorting  
current  
Vref OVP voltage  
Vrovp  
6.2  
6.8  
7.0  
V
Output voltage  
temperature  
dependence  
Vref/Ta —  
100  
ppm/°C  
Triangle  
wave  
Maximum oscillator  
frequency  
fOSCmax  
600  
±1  
±5  
1
kHz  
Hz  
%
oscillator  
block  
Minimum oscillator  
frequency  
fOSCmin  
Oscillator frequency  
input voltage stability  
fOSC/VIN  
fOSC/Ta  
±3  
4.5 V VIN 40 V  
–20°C Ta 85°C  
Oscillator frequency  
temperature stability  
%
Oscillator frequency  
fOSC  
270  
300 330 kHz  
CT = 220 pF, RT = 10 k)  
Dead band Low-level threshold  
adjust block voltage  
VTLDB  
0.87 0.97 1.07  
1.48 1.65 1.82  
0.55 0.65 0.75  
V
V
V
Output on duty 0%  
High-level threshold  
voltage  
VTHDB  
Output on duty 100%  
Threshold differential VTDB  
voltage  
VTH = VTH – VTL  
Output source current IOsource (DB)  
Low-level threshold VTLCMP  
comparator voltage  
block High-level threshold  
oltage  
100  
150 200 µA  
DB pin = 0 V  
PWM  
0.87 0.97 1.07  
1.48 1.65 1.82  
0.55 0.65 0.75  
V
V
V
%
Output on duty = 0%  
VTHCMP  
Output on duty = 100%  
VTH = VTH – VTL  
Threshold differential VTCMP  
voltage  
Dead band precision DBdev  
–5  
0
+5  
Deviation when  
V
EO = (VTL + VTH)/2,  
duty = 50 %  
22  
HA16116FP/FPJ, HA16121FP/FPJ  
Electrical Characteristics (Ta = 25°C, VIN = 12 V, fOSC = 300 kHz) (cont)  
Item  
Error amp Input offset voltage VIOEA  
block Input bias current IBEA  
Symbol Min  
Typ  
2
Max  
10  
2
Unit Test Conditions  
mV  
0.8  
40  
µA  
Output sink current IOsink (EA) 28  
52  
µA  
In open loop,  
VI = 3 V, VO = 2 V  
Output source  
current  
IOsource (EA) 28  
40  
52  
µA  
In open loop,  
VI = 2 V, VO = 1 V  
Voltage gain  
AV  
40  
3
50  
4
dB  
f = 10 kHz  
Unity gain band-  
width  
BW  
MHz  
High-level output VOHEA  
voltage  
2.2  
3.0  
0.2  
V
V
IO = 10 µA  
IO = 10 µA  
Low-level output  
voltage  
VOLEA  
0.5  
Overcurrent Threshold voltage VTCL  
VIN –0.22 VIN –0.2 VIN –0.18  
V
detection  
block  
CL bias current  
Operating time  
IBCL  
150  
200  
200  
500  
250  
300  
600  
µA  
ns  
ns  
CL = VIN  
tOFFCL  
CL = VIN –0.3 V  
Applies only to ch 2  
of HA16121  
Output  
stage  
Output low voltage VOL1  
0.7  
1.6  
1.0  
1.6  
2.2  
1.9  
1.3  
1.9  
V
V
V
V
IOsink = 10 mA  
Applies only to HA16116  
IOsink = 10 mA  
Applies only to HA16121  
IOsink = 0 mA  
Applies only to HA16121  
Off state low  
voltage  
VOL2  
IOsink = 1 mA  
ON/OFF pin = 0 V  
Applies only to ch 2  
of HA16121  
1.0  
1.3  
V
IOsink = 0 mA  
ON/OFF = 0 V  
Applies only to ch 2  
of HA16121  
Output high  
voltage  
VOH1  
VIN –1.9 VIN –1.6 —  
VIN –1.3 VIN –1.0 —  
VIN –1.9 VIN –1.6 —  
V
V
V
IOsource = 10 mA  
IOsource = 0 A  
Off state high  
voltage  
VOH2  
IOsource = 1 mA  
ON/OFF pin = 0 V  
VIN –1.3 VIN –1.0 —  
V
IOsource = 0 A  
ON/OFF pin = 0 V  
23  
HA16116FP/FPJ, HA16121FP/FPJ  
Electrical Characteristics (Ta = 25°C, VIN = 12 V, fOSC = 300 kHz) (cont)  
Item  
Symbol  
Min Typ Max Unit Test Conditions  
Output  
stage  
Rise time  
Fall time  
tr  
70  
70  
3.6  
130 ns  
130 ns  
CL = 1000 pF (to VIN) *1, *2  
CL = 1000 pF (to VIN) *1, *2  
tf  
UVL  
block  
VIN high-level threshold  
voltage  
VTUH1  
3.3  
3.9  
3.6  
0.5  
2.3  
2.0  
0.5  
V
V
V
V
V
V
VIN low-level threshold  
voltage  
VTUL1  
VTU1  
VTUH2  
VTUL2  
VTU2  
3.0  
0.1  
1.7  
1.4  
0.1  
3.3  
0.3  
2.0  
1.7  
0.3  
VIN threshold differential  
voltage  
VTU1 = VTUH1 – VTUL1  
Vref high-level threshold  
voltage  
Vref low-level threshold  
voltage  
Vref threshold differential  
voltage  
VTU2 = VTUH2 – VTUL2  
ON/OFF pin = 5 V  
ON/OFF  
block  
ON/OFF pin sink current  
IC on-state voltage  
IC off-state voltage  
ION/OFF  
VON  
35  
50  
µA  
V
1.8  
1.1  
0.5  
2.1  
1.4  
0.7  
2.4  
1.7  
0.9  
VOFF  
V
ON/OFF threshold  
differential voltage  
VON/OFF  
V
TIM  
block  
TIM pin sink current in  
steady state  
ITIM1  
ITIM2  
IIN  
0
10  
20  
µA  
CL pin = VIN  
VTIM = 0.3 V  
TIM pin sink current at  
overcurrent detection  
10  
15  
8.5  
mA  
CL pin = VIN – 0.3 V  
VTIM = 0.3 V  
Common Operating current  
block  
6.0  
8.5  
11.1 mA  
CL = 0 pF (to VIN) *1, *2  
CL = 500 pF (to VIN) *1, *2  
CL = 1000 pF (to VIN) *1, *2  
HA16116FP ON/OFF  
HA16121FP pin = 0 V  
12.1 15.7 mA  
11.0 15.7 20.5 mA  
Off current  
IOFF  
0
0
10  
µA  
120  
150 µA  
Notes: 1. CL is load capacitor for Power MOS FET’s gate, and CL = 1000 pF to GND in the case of  
HA16121 – ch 2.  
2. CL in channel 2 of HA16121 is connected to GND.  
24  
HA16116FP/FPJ, HA16121FP/FPJ  
Characteristic Curves  
Reference Voltage Block (Vref)  
Reference Voltage vs. Power Supply Input Voltage  
Vref Temperature Characteristics  
2.54  
3
Ta = 25°C  
VIN = 12 V  
R
A = 390 kΩ  
2.5 V  
I
O (Vref) = 1 mA  
(Between the VIN  
and ON/OFF pins)  
2.52  
2.50  
2.48  
2.46  
2
1
UVL release: 3.6 V  
UVL operate: 3.3 V  
3.3 3.6 4.3  
85  
20  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
40  
Ambient temperature Ta (°C)  
Power supply input voltage VIN (V)  
Vref Load Regulation  
3.0  
2.5  
2.0  
1.50  
0
Short  
circuit  
current  
10  
20  
30  
Output current IO sink (mA)  
UVL (Low Input Voltage Malfunction Prevention) Block  
Hysteresis Voltage Temperature Characteristics  
4.5  
High threshold voltage  
Hysteresis  
4.0  
3.5  
3.0  
2.5  
Low threshold voltage  
20  
0
20  
40  
60  
80  
100  
Ambient temperature Ta (°C)  
25  
HA16116FP/FPJ, HA16121FP/FPJ  
Triangle Wave Oscillator Block  
RT pin Output Current Characteristics  
1.1  
Sawtooth Wave Amplitude vs. Oscillator Frequency  
2.0  
VTH  
1.5  
1.0  
0.9  
Sawtooth wave  
amplitude  
VTL  
1.0  
Note: Due to these characteristics, the dead  
band and PWM comparator threshold  
voltages change at high frequencies.  
Reccomended  
usage range  
0.5  
10 (RT 100 k)  
330 (RT 3 k)  
300 400 500  
0.8  
0
100  
200  
IRT (µA)  
0
100  
200  
300  
400  
500  
600  
(DC)  
fOSC (kHz) (linear scale)  
CT, RT Values (VIN = 12V) vs. Oscillator Frequency  
100  
70  
50  
30  
20  
600 kHz  
10  
7
5
3
10  
20  
30  
50  
70 100  
200 300  
500 700 1 M  
Oscillator frequency fOSC (kHz)  
Oscillator Frequency Temperature Stability  
+10  
+5  
0
VIN = 12 V  
A: fOSC = 300 kHz  
B: fOSC = 600 kHz  
B
A
A
B
5  
85  
10  
20  
0
20  
40  
60  
80  
100  
Ambient temperature Ta (°C)  
26  
HA16116FP/FPJ, HA16121FP/FPJ  
Error Amplifier Block  
Open Loop Gain Characteristics  
60  
AVO  
40  
20  
0
φ
45  
90  
135  
180  
BW  
3 M  
0
1 k  
3 k  
10 k  
30 k  
100 k  
300 k  
1 M  
10 M  
Error amplifier input frequency fIN (Hz)  
Common Mode Input Characteristics  
+100  
0
+EA  
V
O
100  
200  
300  
+
VI  
Vref  
0
1
2
3
4
Input voltage VI (V)  
On Duty Characteristics  
On Duty Characteristics  
On Duty Characteristics  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Boost PWM output  
(HA16121-2 ch)  
Step-down  
PWM output  
(HA16116-1, 2ch  
HA16121-1ch)  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VDB or VE/O (V)  
VDB or VE/O (V)  
Notes: 1. The percentage of a single timing cycle  
during which the output is low.  
2. The percentage of a single timing cycle  
during which the output is high.  
27  
HA16116FP/FPJ, HA16121FP/FPJ  
Other Characteristics  
Current Limiter Level Temperature Characteristics IC On Voltage and Off Voltage Temperature Characteristics  
4
3
2
1
0
220  
210  
200  
190  
180  
VON on voltage (about 6mV/°C)  
85°C  
85°C  
VOFF off voltage  
(about 4mV/°C)  
20  
0
20  
40  
60  
80  
100  
20  
0
20  
40  
60  
80  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
IIN vs. VIN Characteristics  
Output pin (Output Resistor) Characteristics  
12  
40  
30  
20  
10  
VGS  
(P-channel  
Power  
fOSC = 300 kHz  
On duty: 50%  
Ta = 25°C  
Output high voltage when on  
11  
10  
9
MOS FET)  
Maximum  
rating at  
Output high voltage  
when off (channels 1  
and 2 in the HA16116  
and channel 1 in the  
HA16121)  
Ta = 25°C:  
680 mW  
Load capacitance:  
1000 pF/ch  
500 pF/ch  
3
2
1
No load  
Output low voltage when on  
Output low voltage  
when off (channels 1  
and 2 in the HA16121)  
VGS  
(N-channel  
Power  
MOS FET)  
10  
20  
30  
40  
2
4
6
8
10  
0
0
Power supply voltage VIN (V)  
IO sink or IO source (mA)  
Output Drive Circuit Power MOS FET  
Direct Drive ability Data  
Gate Drive Waveforms for the 2SJ214  
800  
600  
400  
200  
0
VIN = 12 V  
fOSC = 130 kHz  
2SJ216  
2SJ176  
2SJ214  
Drive voltage:  
5 V/div  
*
Drive current:  
200 mA/div  
1000  
2000  
3000  
4000  
Ciss (pF)  
650 nsec/div  
Note: The solid line is data measured with discrete  
capacitances (for each channel of HA16116).  
Note: * Measured using a current probe.  
(The boost channel (channel 2 in the HA16121)  
load is with respect to ground, and has  
almost identical characteristics.)  
28  
HA16116FP/FPJ, HA16121FP/FPJ  
Application Examples (1)  
29  
HA16116FP/FPJ, HA16121FP/FPJ  
Overall Waveform Timing Diagram (for Application Examples (1))  
12 V  
V
IN  
0 V  
VTIM  
,
2.8 V  
2.1 V  
VON/OFF  
VTIM  
VON/OFF  
,
2.1 V  
1.4 V  
0 V  
On  
On  
(V)  
3.0  
On  
On  
On  
VE/O  
Off Off Off Off  
Off  
VCT  
triangle wave  
2.0  
1.0  
0.0  
VE/O  
VCT  
VDB  
,
,
VDB  
12 V  
VCL  
11.8 V  
0 V  
Pulse-by-pulse  
current limiter  
operates  
12 V  
0 V  
VOUT*1  
PWM  
pulse  
DC/DC output  
(example for  
positive  
voltage)  
Soft start  
Steady-state  
operation  
Overcurrent  
detected;  
Overcurrent Quick  
cleared;  
shut-off  
IC operation  
states  
intermittent  
operation  
steady-state  
operation  
Power  
supply on  
IC on  
Power supply off,  
IC off  
Note: 1.This PWM pulse is on the step-down/inverting control channel.  
The booster control channel output consists of alternating L and H of the IC on cycle.  
30  
HA16116FP/FPJ, HA16121FP/FPJ  
Application Examples (2) (Some Pointers on Use)  
1. Inductor, Power MOS FET, and Diode Connections  
1. Booster specification  
VIN  
2. Step-down specification  
VIN  
CF  
CF  
RCS Applicable to  
HA16116FP and  
to channel 1  
RCS Applicable only  
RF  
VIN  
RF  
VIN  
to channel 2  
of HA16121FP  
CL  
CL  
of HA16121FP  
OUT  
VO  
VO  
OUT  
GND  
GND  
FB  
FB  
3. Inverting specification  
CF  
4. Negative booster specification (Flyback transformer)  
CF  
RCS  
RCS  
Applicable only  
to channel 1  
Applicable only  
to channel 1  
RF  
RF  
VIN  
VIN  
CL  
CL  
OUT  
OUT  
VO  
GND  
GND  
FB  
FB  
Vref  
2. Turning Output On and Off while the IC is On  
1. To turn only one channel off, ground the DB pin  
or the E/O pin. In the case of E/O, however,  
there will be no soft start when the output is  
turned back on.  
2. When only one channel is to be used,  
the channel not used should be connected  
as follows.  
VIN  
DB  
CL  
Connect CL to VIN.  
+
Ground IN(+) and IN().  
Leave other pins open.  
IN  
E/O  
IN  
GND  
OFF  
31  
HA16116FP/FPJ, HA16121FP/FPJ  
Application Examples (3)  
32  
HA16116FP/FPJ, HA16121FP/FPJ  
Package Dimensions  
Unit: mm  
12.6  
13 Max  
11  
10  
20  
1
+ 0.20  
7.80  
– 0.30  
0.80 Max  
1.15  
0° – 8°  
1.27  
0.70 ± 0.20  
*0.42 ± 0.08  
0.40 ± 0.06  
0.15  
0.12 M  
Hitachi Code  
JEDEC  
FP-20DA  
EIAJ  
Conforms  
0.31 g  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value)  
33  
HA16116FP/FPJ, HA16121FP/FPJ  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
Electronic components Group  
Dornacher Straβe 3  
D-85622 Feldkirchen, Munich  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
34  

相关型号:

HA16116FP

Switching Regulator for Chopper Type DC/DC Converter
HITACHI

HA16116FP

Switching Regulator for Chopper Type DC/DC Converter
RENESAS

HA16116FP-EL

Switching Regulator, 600kHz Switching Freq-Max, PDSO20, 0.300 INCH, 1.27 MM PITCH, EIAJ, SOP-20
HITACHI

HA16116FP-EL

SWITCHING REGULATOR, 600kHz SWITCHING FREQ-MAX, PDSO20, 0.300 INCH, 1.27 MM PITCH, EIAJ, SOP-20
RENESAS

HA16116FP-EL-E

SWITCHING REGULATOR, 600kHz SWITCHING FREQ-MAX, PDSO20, 0.300 INCH, 1.27 MM PITCH, EIAJ, SOP-20
RENESAS

HA16116FP-EL-E

SWITCHING REGULATOR, 600kHz SWITCHING FREQ-MAX, PDSO20, 0.300 INCH, 1.27 MM PITCH, EIAJ, SOP-20
HITACHI

HA16116FP/FPJ/

HA16116FP/FPJ/ HA16121FP/FPJ Datasheet 443K/SEP.18.03
ETC

HA16116FPJ

Switching Regulator for Chopper Type DC/DC Converter
HITACHI

HA16116FPJ

Switching Regulator for Chopper Type DC/DC Converter
RENESAS

HA16116FPJ-E

暂无描述
RENESAS

HA16116FPJ-EL

SWITCHING REGULATOR, 600kHz SWITCHING FREQ-MAX, PDSO20, 0.300 INCH, 1.27 MM PITCH, EIAJ, SOP-20
RENESAS