MB3778PFV-XXXE1 [FUJITSU]

Dual Switching Controller, 0.075A, 500kHz Switching Freq-Max, BIPolar, PDSO16, 4.40 X 5 MM, 1.45 MM HEIGHT, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, SSOP-16;
MB3778PFV-XXXE1
型号: MB3778PFV-XXXE1
厂家: FUJITSU    FUJITSU
描述:

Dual Switching Controller, 0.075A, 500kHz Switching Freq-Max, BIPolar, PDSO16, 4.40 X 5 MM, 1.45 MM HEIGHT, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, SSOP-16

光电二极管
文件: 总32页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU MICROELECTRONICS  
DATA SHEET  
DS04-27203-8Ea  
ASSP  
BIPOLAR  
Switching Regulator Controller  
MB3778  
DESCRIPTION  
The MB3778 is a dual switching regulator control IC. It has a two-channel basic circuit that controls PWM system  
switching regulator power. Complete synchronization is achieved by using the same oscillator output wave.  
This IC can accept any two of the following types of output voltage: step-down, step-up, or voltage inversion  
(inverting voltage can be output to only one circuit). The MB3778’s low power consumption makes it ideal for use  
in portable equipment.  
FEATURES  
• Wide input voltage range : 3.6 V to 18 V  
• Low current consumption : 1.7 mA Typ operation, 10 µA Max stand-by  
• Wide oscillation frequency range:1 kHz to 500 kHz  
• Built-in timer latch short-circuit protection circuit  
• Built-in under-voltage lockout circuit  
• Built-in 2.46 V reference voltage circuit : 1.23 V output can be obtained from RT terminal  
• Variable dead-time provides control over total range  
• Built-in stand-by function: power on/off function  
Two types of packages (SOP-16pin :1 type, SSOP-16pin :1 type)  
APPLICATIONS  
• LCD monitor/panel  
• Surveillance camera etc.  
Copyright©1994-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved  
2006.5  
MB3778  
PIN ASSIGNMENT  
(TOP VIEW)  
CT  
RT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VREF  
SCP  
CTL  
+IN1  
IN1  
IN2  
FB2  
FB1  
DTC1  
OUT1  
E/GND  
DTC2  
OUT2  
VCC  
(FPT-16P-M05)  
(FPT-16P-M06)  
2
MB3778  
PIN DESCRIPTION  
No.  
Pin  
Function  
Oscillator timing capacitor terminal (150 pF to 15,000 pF) .  
Oscillator timing resistor terminal (5.1 kto 100 k) .  
1
CT  
2
RT  
VREF × 1/2 voltage is also available at this pin for error amplifier reference input.  
3
4
+IN1 Error amplifier 1 non-inverted input terminal.  
IN1 Error amplifier 1 inverted input terminal.  
Error amplifier 1 output terminal.  
5
6
7
FB1  
A resistor and a capacitor are connected between this terminal and the IN1 terminal to adjust  
gain and frequency.  
OUT1 dead-time control terminal.  
DTC1 Dead-time control is adjusted by an external resistive divider connected to the VREF pin.  
A capacitor connected between this terminal and GND enables soft-start operation.  
Open collector output terminal.  
OUT1 Output transistor has common ground independent of signal ground.  
This output can source or sink up to 50 mA.  
8
9
E/GND Ground terminal.  
VCC  
Power supply terminal (3.6 V to 18 V)  
Open collector output terminal.  
10  
11  
OUT2 Output transistor has common ground independent of signal ground.  
This output can source or sink up to 50 mA.  
Sets the dead-time of OUT2.  
DTC2  
The use of this terminal is the same as that of DTC1.  
Error amplifier 2 output terminal.  
Sets the gain and adjusts the frequency when a resistor and a capacitor are connected  
12  
FB2  
between this terminal and the IN2 terminal.  
Voltage of VREF × 1/2 voltage is internally connected to the non-inverted input of error amplifier  
2. Uses error amplifier 2 for positive voltage output.  
13  
14  
IN2 Error amplifier 2 inverted input terminal.  
Power control terminal.  
The IC is set in the stand-by state when this terminal is set “Low.”  
Current consumption is 10 µA or lower in the stand-by state.  
CTL  
The input can be driven by TTL or CMOS.  
The time constant setting capacitor connection terminal of the timer latch short-circuit  
protection circuit.  
15  
16  
SCP Connects a capacitor between this pin and GND.  
For details, see “HOW TO SET TIME CONSTANT FOR TIMER LATCH SHORT-CIRCUIT  
PROTECTION CIRCUIT”.  
2.46 V reference voltage output terminal which can be obtained up to 1 mA.  
VREF  
This pin is used to set the reference input and idle period of the error amplifiers.  
3
MB3778  
BLOCK DIAGRAM  
9
14  
1
2
1.23 V  
2.46 V  
1.9 V  
1.3 V  
Reference  
16  
Power  
Supply  
Control  
Triangular  
Oscillator  
Voltage  
OUT1  
OUT2  
7
+
+
2.46 V  
Error Amp 1  
PWM Comp.1  
PWM Comp.2  
S.C.P. Comp.  
+
+
+
3
4
10  
+
5
2.1 V  
12  
Error Amp 2  
13  
15  
2.46 V  
+
1 µA  
1.23 V  
R S  
R
Latch  
U. V. L. O.  
+
8
D.T.C. Comp.  
1.1 V  
6
11  
4
MB3778  
OPERATION DESCRIPTION  
1. Reference voltage circuit  
The reference voltage circuit generates a temperature-compensated reference voltage ( =: 2.46 V) from VCC  
terminal (pin 9) . The reference voltage is used as an operation power supply for internal circuit.  
The reference is obtained from the VREF terminal (pin 16).  
2. Triangular wave oscillator  
Triangular waveforms can be generated at any frequency by connecting a timing capacitor and resistor to the  
CT terminal (pin 1) and to the RT terminal (pin 2) .  
The amplitude of this waveform is from 1.3 V to 1.9 V. These waveforms are connected to the non-inverting  
inputs of the PWM comparator and can be output through the CT terminal (pin 1) .  
3. Error amplifiers (Error Amp)  
The error amplifier detects the output voltage of the switching regulator and outputs PWM control signals.The  
in-phase input voltage range is from 1.05 V to 1.45 V.The reference voltage obtained by dividing the reference  
voltage output (recommended value : VREF/2) or the RT terminal (pin 2) voltage (1.23 V) is supplied to the non-  
inverting input. The VREF/2 voltage is internally connected to non-inverting input of the other error amplifier.  
Any loop gain can be chosen by connecting the feedback resistor and capacitor to the inverting input terminal  
from the output terminal of the error amplifier.Stable phase compensation is possible.  
4. Timer latch short circuit protection circuit  
This circuit detects the output levels of each error amplifier. If the output level of one or both of the error amplifiers  
is 2.1 V or higher, the timer circuit begins charging the externally connected protection enable-capacitor.  
If the output level of the error amplifier does not drop below the normal voltage range before the capacitor voltage  
reaches the transistor base-emitter voltage, VBE(=: 0.65 V), the latch circuit turns the output drive transistor off  
and sets the idle period to 100%.  
5. Under voltage lock-out circuit  
The transition state at power-on or a momentary drops in supply voltage may cause the control IC to malfunction,  
which may adversely affect or even destroy the system. The under voltage lockout circuit monitors VCC with  
reference to the internal reference voltage and resets the latch circuit to turn the output drive transistor off. The  
idle period is set to 100%. It also pulls the SCP terminal (pin 15) “Low”.  
6. PWM comparator unit  
Each PWM comparator has one inverting input and two non-inverting inputs. This voltage-to-pulse-width con-  
verter controls the turning on time of the output pulse according to the input voltage.  
The PWM comparator turns the output drive transistor on while triangular waveforms from the oscillator are  
lower than the error amplifier output and the DTC terminal voltage.  
7. Output drive transistor  
The output drive transistors have open collector outputs with common source supply and common grounds  
independent of VCC and signal ground. The output drive transistors for switching can sink or source up to 50 mA.  
8. Power control unit  
The CTL terminal (pin 14) controls power on/off modes(the power supply current in stand-by mode is 10 µA or  
lower).  
5
MB3778  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min  
Max  
20  
Power Supply Voltage  
Error Amp Input Voltage  
Control Input Voltage  
VCC  
VIN  
V
V
0.3  
0.3  
+10  
+20  
20  
VCTL  
VOUT  
IOUT  
V
Collector Output Voltage  
Collector Output Current  
V
75  
mA  
mW  
mW  
°C  
°C  
Ta ≤ +25 °C (SOP)  
620*1  
444*2  
+85  
+125  
Power Dissipation  
PD  
Ta ≤ +25 °C (SSOP)  
Operating Ambient Temperature  
Storage Temperature  
Ta  
30  
55  
Tstg  
*1: The packages are mounted on the epoxy board (4 cm × 4 cm)  
*2: The packages are mounted on the epoxy board (10 cm × 10 cm)  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Min  
3.6  
1.05  
0
Typ  
6.0  
Max  
18  
Power Supply Voltage  
Error Amp Input Voltage  
Control Input Voltage  
Collector Output Voltage  
Collector Output Current  
Timing Capacitor  
VCC  
VIN  
V
V
1.45  
18  
VCTL  
VOUT  
IOUT  
CT  
V
18  
V
0.3  
150  
5.1  
1
50  
mA  
pF  
kΩ  
kHz  
°C  
15000  
100  
500  
+85  
Timing Resistor  
RT  
Oscillator Frequency  
Operating Ambient Temperature  
fOSC  
Ta  
30  
+25  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
representatives beforehand.  
6
MB3778  
ELECTRICAL CHARACTERISTICS  
(Ta = +25 °C, VCC = 6 V)  
Value  
Parameter  
Reference Block  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
Output Voltage  
VREF  
VRTC  
Line  
Load  
IOS  
IOR = −1 mA  
2.41  
2  
2.46  
±0.2  
2
2.51  
+2  
V
Output Temp. Stability  
Input Stability  
Ta = −30 °C to +85 °C  
VCC = 3.6 V to 18 V  
IOR = −0.1 mA to 1 mA  
VREF = 2 V  
%
10  
mV  
mV  
mA  
Load Stability  
1
7.5  
3  
Short Circuit Output Current  
30  
10  
Under Voltage Lockout Protection Block  
VtH  
IOR = −0.1 mA  
IOR = −0.1 mA  
IOR = −0.1 mA  
2.72  
2.60  
120  
1.9  
V
V
Threshold Voltage  
VtL  
Hysteresis Width  
VHYS  
80  
1.5  
mV  
V
Reset Voltage (VCC)  
VR  
Protection Circuit Block (S.C.P.)  
Input Threshold Voltage  
Input Stand by Voltage  
Input Latch Voltage  
VtPC  
VSTB  
VIN  
No pull up  
No pull up  
0.60  
0.65  
50  
0.70  
100  
100  
0.6  
V
mV  
mV  
µA  
V
50  
Input Source Current  
Ibpc  
1.4  
1.0  
2.1  
Comparator Threshold Voltage  
Triangular Waveform Oscillator Block  
Oscillator Frequency  
VtC  
Pin 5, Pin 12  
fOSC  
fdev  
fdV  
CT = 330 pF, RT = 15 kΩ  
CT = 330 pF, RT = 15 kΩ  
VCC = 3.6 V to 18 V  
160  
200  
±5  
240  
kHz  
%
Frequency Deviation  
Frequency Stability (VCC)  
Frequency Stability (Ta)  
Dead-Time Control Block (D.T.C.)  
Input Bias Current  
±1  
%
fdT  
Ta = −30 °C to +85 °C  
4  
+4  
%
Ibdt  
Idt  
Vdt = 2.5 V  
150  
0.2  
500  
1
µA  
µA  
V
Latch Mode Sink Current  
Latch Input Voltage  
Vdt  
Idt = 100 µA  
0.3  
(Continued)  
7
MB3778  
(Continued)  
(Ta = +25 °C, VCC = 6 V)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
Error Amp Block  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
VIO  
IIO  
IB  
VO = 1.6 V  
6  
+6  
+100  
mV  
nA  
nA  
VO = 1.6 V  
VO = 1.6 V  
100  
500  
100  
Common Mode Input Voltage  
Range  
VICR  
VCC = 3.6 V to 18 V  
1.05  
1.45  
V
Voltage Gain  
AV  
BW  
RNF = 200 kΩ  
AV = 0 dB  
70  
60  
80  
1.0  
80  
dB  
MHz  
dB  
Frequency Band Width  
Common Mode Rejection Ratio  
CMRR  
VREF  
0.3  
VOM+  
V
Max Output Voltage Width  
VOM−  
IOM+  
IOM−  
VO = 1.6  
0.7  
1.0  
0.9  
V
Output Sink Current  
mA  
µA  
Output Source Current  
PWM Comparator Block  
VO = 1.6  
60  
Vt100  
Vt0  
Duty Cycle = 100%  
Duty Cycle = 0%  
1.05  
55  
1.9  
1.3  
65  
2.25  
V
V
Input Threshold Voltage  
(fOSC = 10 kHz)  
On duty Cycle  
Dtr  
Vdt = VREF/1.45  
75  
%
Input Sink Current  
Input Source Current  
Control Block  
IIN+  
IIN−  
Pin 5, Pin 12 = 1.6 V  
Pin 5, Pin 12 = 1.6 V  
1.0  
60  
mA  
µA  
Input Off Condition  
Input On Condition  
Control Terminal Current  
Output Block  
VOFF  
VON  
ICTL  
2.1  
0.7  
V
V
VCTL = 10 V  
200  
400  
µA  
Output Leak Current  
Output Saturation Voltage  
All Device Block  
Stand-by Current  
Leak  
VSAT  
VO = 18 V  
IO = 50 mA  
10  
µA  
1.1  
1.4  
V
ICCS  
ICCa  
VCTL = 0 V  
10  
µA  
VCTL = VCC, No Output  
Load  
Average Supply Current  
1.7  
2.4  
mA  
8
MB3778  
TEST CIRCUIT  
VCC = 6 V  
CTL  
INPUT  
TEST  
SW  
4.7 kΩ  
CPE  
OUTPUT 1  
OUTPUT 2  
4.7 kΩ  
16 15 14 13 12 11 10  
9
8
MB3778  
1
2
3
4
5
6
7
330 pF  
15 kΩ  
TEST  
INPUT  
TIMING CHART (Internal Waveform)  
Triangular waveform oscillator output  
Short circuit protection  
comparator Reference  
input  
Dead Time, PWM input  
voltage  
2.1 V  
1.9 V  
1.6 V  
1.3 V  
Error Amp output  
"High"  
"Low"  
"High"  
"Low"  
0.65 V  
0.05 V  
"High"  
"Low"  
PWM comparator  
output  
DEAD TIME 100%  
Output Transistor  
collector waveform  
S.C.P. Terminal  
waveform  
tPE  
Short circuit protection  
comparator output  
Power “ON”  
Power “OFF”  
2.1 V  
Control Input  
voltage  
(VCTL : Min Value)  
0 V  
Power supply voltage  
3.6 V  
(VCC : Min Value)  
Protection Enable Time tPE 0.6 × 106 × CPE (µs)  
0 V  
9
MB3778  
APPLICATION CIRCUIT  
• Chopper Type Step Down/inverting  
VIN (10 V)  
CTL  
820 pF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
8.2 kΩ  
0.1 µF  
56 µH  
1.8 kΩ  
4.7 kΩ  
1.8 kΩ  
150  
kΩ  
4.7 kΩ  
MB3778  
150  
kΩ  
0.033  
0.033  
µF  
µF  
220 µF  
10 kΩ  
4.7 kΩ  
+
10 kΩ  
+
+
1 µF  
1 µF  
5.6 kΩ  
2.4 kΩ  
330 Ω  
330 Ω  
330 Ω  
330 Ω  
120 µH  
120 µH  
− +  
+
9.1 kΩ  
220 µF  
220 µF  
+
VO  
( 5 V)  
VO  
5 V)  
GND  
(
10  
MB3778  
• Chopper Type Step Up/Inverting  
VIN (5 V)  
CTL  
820 pF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
8.2 kΩ  
0.1 µF  
56 µH  
1.8 kΩ  
4.7 kΩ  
1.8 kΩ  
150  
kΩ  
4.7 kΩ  
MB3778  
150  
kΩ  
0.033  
0.033  
µF  
µF  
220 µF  
10 kΩ  
4.7 kΩ  
+
10 kΩ  
+
+
1 µF  
1 µF  
16 kΩ  
4.7 kΩ  
330 Ω  
3.9 kΩ  
100 Ω  
330 Ω  
120 µH  
120 µH  
220 µF  
220 µF  
+
+
9.1 kΩ  
+
VO  
VO  
GND  
(
5 V)  
(
5 V)  
11  
MB3778  
• Multi Output Type (Apply Transformer)  
VIN (10 V)  
CTL  
820 pF  
1
2
3
4
5
6
7
8
16  
0.1 µF  
8.2 kΩ  
15  
14  
13  
12  
11  
10  
9
56 µH  
1.8 kΩ  
MB3778  
4.7 kΩ  
220 µF  
150  
kΩ  
0.033  
µF  
+
10 kΩ  
1.8 kΩ  
220 Ω  
1000 pF  
5.6 kΩ  
+
− +  
+
− +  
220 µF  
220 µF  
220 µF  
220 µF  
+
+
VO1  
( 5 V)  
VO1  
VO2  
VO2  
GND  
(
12 V)  
(
5 V)  
(
12 V)  
12  
MB3778  
HOW TO SET THE OUTPUT VOLTAGE  
The output voltage is set using the connections shown in “Connection of error Amp Output Voltage V0 0” and  
“Connection of Error Amp Output Voltage V0 < 0”.  
The error amplifier power is supplied by the reference voltage circuit as is that of the other internal circuits. The  
common mode input voltage range is from 1.05 V to 1.45 V.  
Set 1.23 V (VREF/2) as the reference input voltage that is connected to either inverting or non-inverting input  
terminals.  
• Connection of Error Amp Output Voltage V0 0  
VREF  
+
VO  
VREF  
R
R
R1  
+
VO  
(R1 + R2)  
=
2 × R2  
+
PIN 5 or PIN 12  
R2  
RNF  
• Connection of Error Amp Output Voltage V0 < 0  
VREF  
V
REF  
O
= −  
V
(R1 + R2) + VREF  
2 × R  
1
R
R
R1  
+
PIN 5  
R2  
RNF  
O
V
13  
MB3778  
HOW TO SET TIME CONSTANT FOR TIMER LATCH SHORT-CIRCUIT  
PROTECTION CIRCUIT  
Below Figure shows the configuration of the protection latch circuit.  
Each error amplifier output is connected to the inverting inputs of the short-circuit protection comparator and is  
always compared with the reference voltage (2.1 V) connected to the non-inverting input.  
When the load condition of the switching regulator is stable, the error amplifier has no output fluctuation. Thus,  
short-circuitprotectioncontrolisalso kept in balance, and the SCPterminal (pin 15)voltage isheld atabout50 mV.  
If the load changes drastically due to a load short-circuit and if the inverting inputs of the short-circuit protection  
comparator go above 2.1 V, the short-circuit protection comparator output goes “Low” to turn off transistor Q1.  
The SCP terminal voltage is discharged, and then the short-circuit protection comparator charges the protection  
enable capacitor CPE according to the following formula :  
VPE = 50 mV + tPE × 10 6 / CPE  
0.65 = 50 mV + tPE × 10 6 / CPE  
CPE = tPE / 0.6 (µF)  
When the protection enable capacitor is charged to about 0.65 V, the protection latch is set to enable the under  
voltage lockout circuit and the output drive transistor is turned off. The idle period is also set to 100% at the  
same time.  
Once the under voltage lockout circuit is enabled, the protection enable is released; however, the protection  
latch is not reset if the power is not turned off.  
The inverting inputs (pin 6 or 11) of the D.T.C. comparator are compared to the reference voltage (about 1.1 V)  
connected to the non-inverting input.  
To prevent malfunction of the short-circuit protection-circuit when the soft-start operation is done by using the  
DTC terminal (pin 6 or 11) , the D.T.C. comparator outputs a “High” level while the DTC terminal (pin 6 or 11)  
goes up to about 1.1 V, and then closes the SCP terminal (pin 15) by turning transistor Q2 on.  
• Protection Latch Circuit  
2.46 V  
1 µA  
S.C.P. Comp.  
SCP  
15  
R1  
Error Amp1  
Error Amp2  
+
S
Latch  
R
CPE  
U.V.L.O.  
Q1  
Q2  
Q
3
2.1 V  
+
6
DTC1  
DTC2  
11  
1.1 V  
D.T.C. Comp.  
14  
MB3778  
SETTING THE IDLE PERIOD  
When voltage step-up, fly-back step-up or inverted output are set, the voltage at the FB terminal may go higher  
than the triangular wave voltage due to load fluctuation, etc. In this case the output transistor will be in full-on  
state(ON duty 100%). This can be prevented by setting the maximum duty for the output transistor. This is done  
by setting the DTC1 terminal (pin 6) voltage using resistance division of the VREF voltage as illustrated below.  
When the DTC1 terminal voltage is higher than the triangular waveform voltage, the output transistor is turned  
on. If the triangular waveform amplitude specified by the maximum duty calculation formula is 0.6 V, and the  
lower voltage limit of the triangular waveform is 1.3 V, the formula would be asfollows (other channels are similar):  
Duty (ON) max (%) =: (Vdt 1.3 V) / 0.6 V × 100, Vdt (V) = Rb / (Ra + Rb) × VREF  
Also, if no output duty setting is required, the voltage should be set greater than the upper limit voltage of the  
triangular waveform, which is 1.9 V.  
• Setting the idle time at DTC1 (DTC2 is similar)  
16  
6
VREF  
Ra  
Rb  
DTC1  
Vdt  
15  
MB3778  
SETTING THE SOFT START TIME  
When power is switched on, the current begins charging the capacitor (CDTC1) connected the DTC1 terminal (pin  
6). The soft start process operates by comparing the soft start setting voltage, which is proportional to the DTC1  
terminal voltage, with the triangular waveform, and varying the ON-duty of the OUT terminal (pin 7).  
The soft start time until the ON duty reaches 50% is determined by the following equation:  
Soft start time (time until output ON duty = 50%) .  
ts (s) =: CDTC1 × Ra × Rb / (Ra + Rb) × ln (1 1.6 (Ra + Rb) / (2.46 Rb) )  
For example, if Ra = 4.7 kand Rb = 10 k, the result is:  
ts (s) =: 0.01 × CDTC1 (µF)  
• Soft Start on DCT1 terminal (DTC2 is similar)  
16  
6
VREF  
Ra  
Rb  
DTC1  
CDTC1  
16  
MB3778  
USING THE RT TERMINAL  
The triangular waves, as shown in Figure “No VREF/2 connection to external circuits from RT terminal”, act to set  
the oscillator frequency by charging and discharging the capacitor connected to the CT terminal using the current  
value of the resistor connected to the RT terminal.  
In addition, when voltage level VREF/2 is output to external circuits from the RT terminal (pin 2) , care must be  
taken in making the external circuit connections to adjust for the fact that I1 is increased by the value of the  
current I2 to the external circuits in determining the oscillator frequency (see Figure “VREF/2 connection to external  
circuits from RT terminal”).  
No VREF/2 connection to external circuits from RT terminal  
Triangular wave  
ICT = IRT  
oscillator  
VREF  
=
2RT  
VREF  
2
(
)
2
1
IRT  
RT  
ICT  
CT  
VREF/2 connection to external circuits from RT terminal  
Triangular wave  
oscillator  
ICT = IRT  
= I1 + I2  
VREF  
2RT  
=
+ I2  
VREF  
2
(
)
2
1
IRT  
I1  
ICT  
To external circuits  
I2  
RT  
CT  
17  
MB3778  
SYNCHRONIZATION OF ICs  
A fixed condenser and resistor are inserted in the CT and RT terminals of IC which becomes a master when  
synchronizing by using plurality of MB3778. As a result, the slave ICs oscillate automatically. The RT terminals  
(pin 2) of the slave ICs are connected to the VREF terminal (pin 16) to disable the charge/discharge circuit for  
triangular wave oscillation. The CT terminals of the master and slave ICs are connected together.  
• Connection of Master, Slave  
VCC  
MB3778  
(MASTER)  
CT  
RT  
MB3778  
(SLAVE)  
MB3778  
(SLAVE)  
18  
MB3778  
TYPICAL CHARACTERISTICS  
Reference voltage vs. Power supply voltage  
Average supply current vs. Power supply voltage  
Ta = +25 °C  
Ta = +25 °C  
2.0  
1.0  
0
5.0  
2.5  
0
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
Power supply voltage VCC (V)  
Power supply voltage VCC (V)  
Reference voltage vs.  
Triangular waveform Upper/Lower Limit voltage vs.  
Timing capacitor  
Operating ambient temperature  
2.47  
2.46  
2.45  
2.44  
2.43  
2.42  
2.41  
2.40  
VCC = VCTL = 6 V  
IOR = −1 mA  
2.2  
2.0  
Upper limit  
1.8  
1.6  
1.4  
1.2  
VCC = 6 V  
RT = 15 kΩ  
Ta = +25 °C  
Lower limit  
1.0  
0.8  
102  
103  
104  
40 20  
0
+20 +40 +60 +80 +100  
Timing capacitor CT (pF)  
Operating ambient temperature Ta (°C)  
Collector saturation voltage vs.  
Sink Current  
Error Amp Max output voltage vs.  
Frequency  
5.0  
4.0  
3.0  
2.0  
1.0  
0
3.0  
2.0  
VCC = 6 V  
Ta = +25 °C  
VCC = 6 V  
Ta = +25 °C  
1.0  
0
100  
500 1 k  
5 k 10 k  
50 k 100 k  
500 k  
Frequency (Hz)  
0
100  
200  
300  
400  
500  
Sink current (mA)  
(Continued)  
19  
MB3778  
Oscillation frequency vs.Timing resistor  
Triangular waveform cycle vs.  
Timing capacitor  
VCC = 6 V  
Ta = +25 °C  
100  
10  
VCC = 6 V  
RT = 15 kΩ  
Ta = +25 °C  
1 M  
100 k  
10 k  
1 k  
CT = 150 pF  
CT = 1500 pF  
1
102  
103  
104  
105  
Timing capacitor CT (pF)  
CT = 15000 pF  
1 k  
5 k 10 k  
50 k100 k  
500 k  
Timing resistor RT ()  
Frequency stability vs.  
Operating ambient temperature  
ON duty cycle vs. Oscillation frequency  
10  
0
100  
80  
60  
40  
20  
0
V
C
R
CC = 6 V  
VCC = 6 V  
T
= 330 pF  
= 15 kΩ  
CT = 330 pF  
RT = 15 kΩ  
Ta = +25 °C  
T
10  
40 20  
0
+20 +40 +60 +80 +100 +120  
5 k 10 k  
50 k 100 k  
500 k 1 M  
Operating ambient temperature Ta (°C)  
Oscillation frequency fOSC (Hz)  
Reference voltage vs. Control voltage  
Control terminal current vs. Control input voltage  
VCC = 6 V  
Ta = +25 °C  
VCC = 6 V  
Ta = +25 °C  
5.0  
500  
2.5  
250  
0
0
0
1
2
3
4
5
0
4
8
12  
16  
20  
Control voltage VCTL (V)  
Control input voltage VCTL (V)  
(Continued)  
20  
MB3778  
Voltage gain/Phase vs. Frequency  
Voltage gain/Phase vs. Frequency  
(Actual Data)  
CNF = OPEN  
AV  
CNF = 0.047 µF  
40  
180  
90  
40  
20  
180  
90  
AV  
20  
0
0
0
0
φ
φ
20  
40  
90  
180  
20  
40  
90  
180  
10  
100  
1 k  
10 k  
100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
Frequency f (Hz)  
Frequency f (Hz)  
Voltage gain/Phase vs. Frequency  
(Actual Data)  
Voltage gain/Phase vs. Frequency  
(Actual Data)  
CNF = 4700 pF  
CNF = 470 pF  
40  
180  
90  
40  
20  
180  
AV  
20  
0
90  
AV  
0
0
0
φ
20  
40  
90  
180  
20  
40  
90  
180  
φ
10  
100  
1 k  
10 k  
100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
Frequency f (Hz)  
Frequency f (Hz)  
Actual Circuit  
VREF  
VREF  
CNF  
4.7 kΩ  
240 kΩ  
4.7 kΩ  
+
OUT  
10 µF  
+
IN  
Error Amp  
4.7 kΩ  
4.7 kΩ  
(Continued)  
21  
MB3778  
(Continued)  
Power Dissipation vs.  
Operating ambient temperature (SOP)  
Power Dissipation vs.  
Operating ambient temperature (SSOP)  
500  
700  
620  
600  
444  
400  
500  
400  
300  
200  
100  
0
300  
200  
100  
0
40  
20  
0
+20  
+40  
+60  
+80 +100  
40  
20  
0
+20  
+40  
+60  
+80 +100  
Operating ambient temperature Ta (°C)  
Operating ambient temperature Ta (°C)  
22  
MB3778  
EQUIVALENT SERIES RESISTOR AND STABILITY OF SMOOTHING CAPACITOR  
The equivalent series resistor (ESR) of the smoothing capacitor in the DC/DC converter greatly affects the loop  
phase characteristic.  
The stability of the system is improved so that the phase characteristic may advance the phase to the ideal  
capacitor by ESR in the high frequency region (see “Voltage gain vs. Frequency” and “Phase vs. Frequency”).  
A smoothing capacitor with a low ESR reduces system stability. Use care when using low ESR electrolytic  
capacitors (OS-CONTM) and tantalum capacitors.  
Note: OS-CON is a trademark of Sanyo Electric Co., Ltd.  
DC/DC Converter Basic Circuit  
L
Tr  
RC  
VIN  
D
RL  
C
Voltage gain vs. Frequency  
Phase vs. Frequency  
0
20  
0
(2)  
(1)  
90  
20  
40  
60  
(2)  
(1) : RC = 0 Ω  
(2) : RC = 31 mΩ  
(1) : RC = 0 Ω  
(2) : RC = 31 mΩ  
(1)  
180  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
23  
MB3778  
• Reference data  
If an aluminum electrolytic smoothing capacitor (RC 1.0 ) is replaced with a low ESR electrolytic capacitor  
(OS-CONTM : RC 0.2 ), the phase margin is reduced by half(see Fig.1 and Fig.2).  
DC/DC Converter AV vs. φ characteristic Test Circuit  
VOUT  
+
VO  
CNF  
AV vs. φ characteristic  
Between these points  
IN  
+IN  
+
VIN  
FB  
R2  
R1  
VREF/2  
Error Amp  
Figure 1 DC/DC Converter +5 V output Voltage gain/Phase vs. Frequency  
60  
40  
VCC = 10 V  
RL = 25 Ω  
CP = 0.1 µF  
180  
AV  
+
VO  
φ
20  
90  
AI Capacitor  
220 µF (16 V)  
RC 1.0 : fOSC = 1 kHz  
+
62 °  
0
0
20  
40  
90  
180  
GND  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
Figure 2 DC/DC Converter +5 V output Voltage gain/Phase vs. Frequency  
60  
40  
V
R
C
CC = 10 V  
AV  
L
= 25 Ω  
180  
90  
P
= 0.1 µF  
+
O
V
20  
OS-CONTM  
22 µF (16 V)  
0.2 : fOSC = 1 kHz  
+
φ
0
0
RC  
27 °  
20  
40  
90  
180  
GND  
10  
100  
1 k  
10 k  
100 k  
Frequency f (Hz)  
24  
MB3778  
NOTES ON USE  
Take account of common impedance when designing the earth line on a printed wiring board.  
Take measures against static electricity.  
- For semiconductors, use antistatic or conductive containers.  
- When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.  
- The work table, tools and measuring instruments must be grounded.  
- The worker must put on a grounding device containing 250 kto 1 Mresistors in series.  
• Do not apply a negative voltage  
- Applying a negative voltage of 0.3 V or less to an LSI may generate a parasitic transistor, resulting in  
malfunction.  
ORDERING INFORMATION  
Part number  
MB3778PFV-■■  
Package  
Remarks  
16-pin plastic SSOP  
(FPT-16P-M05)  
Conventional version  
16-pin plastic SOP  
(FPT-16P-M06)  
MB3778PF-■■  
Conventional version  
Lead Free version  
Lead Free version  
16-pin plastic SSOP  
(FPT-16P-M05)  
MB3778PFV-■■E1  
MB3778PF-■■E1  
16-pin plastic SOP  
(FPT-16P-M06)  
RoHS Compliance Information of Lead (Pb) Free version  
The LSI products of Fujitsu Microelectronics with “E1” are compliant with RoHS Directive , and has observed  
the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB) , and polybro-  
minated diphenyl ethers (PBDE) .  
The product that conforms to this standard is added “E1” at the end of the part number.  
25  
MB3778  
MARKING FORMAT (Lead Free version)  
MB3778  
XXXX XXX  
SOP-16  
(FPT-16P-M06)  
E1  
INDEX  
Lead Free version  
Lead Free version  
3778  
E1XXXX  
XXX  
SSOP-16  
(FPT-16P-M05)  
INDEX  
26  
MB3778  
LABELING SAMPLE (Lead free version)  
lead-free mark  
JEITA logo JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
Lead Free version  
27  
MB3778  
MB3778PF-■■E1, MB3778PFV-■■E1  
RECOMMENDED CONDITIONS OF MOISTURE SENSITIVITY LEVEL  
Item  
Condition  
IR (infrared reflow) , Manual soldering (partial heating method)  
2 times  
Mounting Method  
Mounting times  
Please use it within two years after  
Before opening  
Manufacture.  
From opening to the 2nd  
Less than 8 days  
reflow  
Storage period  
When the storage period after  
opening was exceeded  
Please processes within 8 days  
after baking (125 °C, 24H)  
Storage conditions  
5 °C to 30 °C, 70%RH or less (the lowest possible humidity)  
[Temperature Profile for FJ Standard IR Reflow]  
(1) IR (infrared reflow)  
H rank : 260 °C Max  
260 °C  
255 °C  
170 °C  
to  
190 °C  
(b)  
(c)  
(d)  
(e)  
RT  
(a)  
(d')  
(a) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(b) Preliminary heating : Temperature 170 °C to 190 °C, 60s to 180s  
(c) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(d) Actual heating  
(d’)  
: Temperature 260 °C Max; 255 °C or more, 10s or less  
: Temperature 230 °C or more, 40s or less  
or  
Temperature 225 °C or more, 60s or less  
or  
Temperature 220 °C or more, 80s or less  
(e) Cooling  
: Natural cooling or forced cooling  
Note : Temperature : the top of the package body  
(2) Manual soldering (partial heating method)  
Conditions : Temperature 400 °C Max  
Times  
: 5 s max/pin  
28  
MB3778  
PACKAGE DIMENSIONS  
16-pin plastic SOP  
Lead pitch  
1.27 mm  
Package width  
package length  
×
5.3 × 10.15 mm  
Gullwing  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
2.25 mm MAX  
0.20 g  
Code  
(Reference)  
P-SOP16-5.3×10.15-1.27  
(FPT-16P-M06)  
16-pin plastic SOP  
(FPT-16P-M06)  
Note 1) *1 : These dimensions include resin protrusion.  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
0.17 +00..0043  
*110.15 +00..2205 .400 +..000180  
.007 +..000021  
16  
9
2 5.30±0.30 7.80±0.40  
(.209±.012) (.307±.016)  
*
INDEX  
Details of "A" part  
2.00 +00..1255  
(Mounting height)  
.079 +..000160  
0.25(.010)  
"A"  
1
8
1.27(.050)  
0~8˚  
0.47±0.08  
(.019±.003)  
M
0.13(.005)  
0.50±0.20  
(.020±.008)  
0.10 +00..0150  
.004 +..000024  
0.60±0.15  
(Stand off)  
(.024±.006)  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2002 FUJITSU LIMITED F16015S-c-4-7  
(Continued)  
29  
MB3778  
(Continued)  
16-pin plastic SSOP  
Lead pitch  
0.65 mm  
4.40 × 5.00 mm  
Gullwing  
Package width  
package length  
×
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.45mm MAX  
0.07g  
Code  
(Reference)  
(FPT-16P-M05)  
P-SSOP16-4.4×5.0-0.65  
16-pin plastic SSOP  
Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max).  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
(FPT-16P-M05)  
15.00±0.10(.197±.004)  
*
0.17±0.03  
(.007±.001)  
16  
9
2 4.40±0.10 6.40±0.20  
(.173±.004) (.252±.008)  
*
INDEX  
Details of "A" part  
1.25 +00..1200  
(Mounting height)  
.049 +..000048  
1
8
LEAD No.  
"A"  
0.65(.026)  
0.24±0.08  
(.009±.003)  
M
0.13(.005)  
0~8˚  
0.10±0.10  
(Stand off)  
0.50±0.20  
(.004±.004)  
(.020±.008)  
0.25(.010)  
0.60±0.15  
(.024±.006)  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2003 FUJITSU LIMITED F16013S-c-4-6  
30  
MB3778  
MEMO  
31  
FUJITSU MICROELECTRONICS LIMITED  
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0722, Japan  
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387  
http://jp.fujitsu.com/fml/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://www.fma.fujitsu.com/  
FUJITSU MICROELECTRONICS ASIA PTE LTD.  
151 Lorong Chuan, #05-08 New Tech Park,  
Singapore 556741  
Tel: +65-6281-0770 Fax: +65-6281-0220  
http://www.fujitsu.com/sg/services/micro/semiconductor/  
Europe  
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.  
Rm.3102, Bund Center, No.222 Yan An Road(E),  
Shanghai 200002, China  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen,  
Germany  
Tel: +86-21-6335-1560 Fax: +86-21-6335-1605  
http://cn.fujitsu.com/fmc/  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/microelectronics/  
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road  
Tsimshatsui, Kowloon  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
206 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Hong Kong  
Tel: +852-2377-0226 Fax: +852-2376-3269  
http://cn.fujitsu.com/fmc/tw  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://www.fmk.fujitsu.com/  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS  
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporat-  
ing the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS  
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or  
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising  
in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current  
levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of  
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited Strategic Business Development Dept.  

相关型号:

MB3778_06

Switching Regulator Controller
FUJITSU

MB3780APF

Power Management Circuit, BIPolar, PDSO16
FUJITSU

MB3780APFV

Power Management Circuit, BIPolar, PDSO20
FUJITSU

MB3782

Switching Regulator Controller
FUJITSU

MB3782P

Switching Regulator Controller
FUJITSU

MB3782PF

Switching Regulator Controller
FUJITSU

MB3782PF-XXX

Switching Controller, 0.075A, 500kHz Switching Freq-Max, BIPolar, PDSO20, 5.30 X 12.70 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, PLASTIC, SOP-20
CYPRESS

MB3782PF-XXXE1

Switching Controller, 0.075A, 500kHz Switching Freq-Max, BIPolar, PDSO20, 5.30 X 12.70 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-20
FUJITSU

MB3782_1

ASSP Power Supplies BIPOLAR Switching Regulator Controller
FUJITSU

MB3785

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3785A

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3785APFV

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU