FSCM0465RJX [FAIRCHILD]

Green Mode Fairchild Power Switch; 绿色模式飞兆功率开关
FSCM0465RJX
型号: FSCM0465RJX
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Green Mode Fairchild Power Switch
绿色模式飞兆功率开关

稳压器 开关式稳压器或控制器 电源电路 开关式控制器
文件: 总20页 (文件大小:445K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 2006  
FSCM0465R  
Green Mode Fairchild Power Switch (FPS™)  
Features  
Description  
„ Internal Avalanche Rugged SenseFET  
The FSCM0465R is an integrated Pulse-Width  
Modulator (PWM) and SenseFET specifically designed  
for high-performance offline Switch Mode Power  
Supplies (SMPS) with minimal external components.  
This device is an integrated high-voltage power-  
switching regulator that combines an avalanche rugged  
SenseFET with a current mode PWM control block. The  
PWM controller includes an integrated fixed-frequency  
oscillator, under-voltage lockout, leading edge blanking  
(LEB), optimized gate driver, internal soft-start,  
temperature-compensated precise current sources for a  
loop compensation, and self-protection circuitry.  
Compared with a discrete MOSFET and PWM controller  
solution, it can reduce total cost, component count, size,  
and weight while simultaneously increasing efficiency,  
productivity, and system reliability. This device is a basic  
platform well suited for cost-effective designs of flyback  
converters.  
„ Low Start-up Current (max. 40µA)  
„ Low Power Consumption; under 1W at 240VAC and  
0.4W Load  
„ Precise Fixed Operating Frequency (66kHz)  
„ Frequency Modulation for Low EMI  
„ Pulse-by-Pulse Current Limiting (Adjustable)  
„ Over-Voltage Protection (OVP)  
„ Overload Protection (OLP)  
„ Thermal Shutdown Function (TSD)  
„ Auto-Restart Mode  
„ Under-Voltage Lock Out (UVLO) with Hysteresis  
„ Built-in Soft-Start (15ms)  
Applications  
„ SMPS for VCR, SVR, STB, DVD, and DVCD  
„ Adaptor  
„ SMPS for LCD Monitor  
Related Application Notes  
„ AN-4137: Design Guidelines for Off-line Flyback  
Converters Using Fairchild Power Switch (FPS)  
„ AN-4140: Transformer Design Consideration for  
Off-line Flyback Converters using Fairchild Power  
Switch  
„ AN-4141: Troubleshooting and Design Tips for  
Fairchild Power Switch Flyback Applications  
„ AN-4148: Audible Noise Reduction Techniques for  
FPS Applications  
Ordering Information  
Packing  
Method  
Product Number  
Package Pb-Free Marking Code  
BV  
R
Max.  
DS(ON)  
DSS  
FSCM0465RJ  
D2-PAK-6L  
D2-PAK-6L  
I2-PAK-6L  
Yes  
Yes  
Yes  
Yes  
Tube  
FSCM0465RJX  
FSCM0465RIWDTU(1)  
FSCM0465RGWDTU(1) TO-220-6L  
Tape & Reel  
Tube  
CM0465R  
650V  
2.6 Ω  
Tube  
Note:  
1. WDTU: Forming Type  
FPSTM is a trademark of Fairchild Semiconductor Corporation.  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
1
Typical Circuit  
DC  
OUT  
AC  
IN  
Drain  
PWM  
Ilimit  
Vfb  
Vcc GND  
FSCM0465R Rev. 00  
Figure 1. Typical Flyback Application  
Output Power Table  
(3)  
230VAC ±15%  
85–265VAC  
Product  
(1)  
(2)  
(1)  
(2)  
Adapter  
40W  
Open Frame  
55W  
Adapter  
30W  
Open Frame  
FSCM0465RJ  
FSCM0565RJ  
FSCM0765RJ  
FSCM0465RI  
FSCM0465RG  
FSCM0565RG  
FSCM0765RG  
40W  
50W  
60W  
50W  
50W  
70W  
85W  
50W  
65W  
40W  
65W  
70W  
50W  
60W  
70W  
40W  
60W  
70W  
40W  
70W  
85W  
60W  
85W  
95W  
70W  
Notes:  
1. Typical continuous power in a non-ventilated enclosed adapter measured at 50°C ambient  
2. Maximum practical continuous power in an open-frame design at 50°C ambient  
3. 230 VAC or 100/115 VAC with doubler  
© 2006 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSCM0465R Rev. 1.0.1  
2
Internal Block Diagram  
VCC  
3
N.C.  
5
Drain  
1
VCC Good  
Internal  
Bias  
Vref  
8V/12V  
+
0.3/0.5V  
Freq.  
Modulation  
-
VCC  
IDELAY  
VCC  
OSC  
IFB  
PWM  
S
R
Q
Q
2.5R  
FB  
4
6
Gate  
Driver  
R
Soft start  
0.3K  
LEB  
I_limit  
VSD  
VCC  
Vovp  
TSD  
2
GND  
S
R
Q
Q
Vcc Good  
VCC UV Reset  
FSCM0465R Rev. 00  
Figure 2. Functional Block Diagram of FSCM0465R  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
3
Pin Configuration  
FSCM0465RJ  
FSCM0465RI  
I2-PAK-6L  
D2-PAK-6L  
6 : I_limit  
5 : N.C.  
4 : FB  
6 : I_limit  
5 : N.C.  
4 : FB  
3 : VCC  
3 : VCC  
2 : GND  
2 : GND  
1 : Drain  
1 : Drain  
FSCM0465RG  
TO-220-6L  
6. I_limit  
5. N.C.  
4. FB  
3. VCC  
2. GND  
1. Drain  
Figure 3. Pin Configuration (Top View)  
Pin Definitions  
Pin Number  
Pin Name  
Drain  
Pin Function Description  
SenseFET Drain. This pin is the high-voltage power SenseFET drain. It is  
designed to drive the transformer directly.  
1
2
GND  
Ground. This pin is the control ground and the SenseFET source.  
Power Supply. This pin is the positive supply voltage input. During startup,  
the power is supplied through the startup resistor from DC link. When VCC  
reaches 12V, the power is supplied from the auxiliary transformer winding.  
3
VCC  
Feedback. This pin is internally connected to the inverting input of the PWM  
comparator. The collector of an opto-coupler is typically tied to this pin. For  
stable operation, a capacitor should be placed between this pin and GND. If  
the voltage of this pin reaches 6.0V, the overload protection is activated, re-  
sulting in shutdown of the FPS.  
4
Feedback (FB)  
5
6
N.C.  
This pin is not connected.  
Current Limit. This pin is for the pulse-by-pulse current limit level program-  
ming. By using a resistor to GND on this pin, the current limit level can be  
changed. If this pin is left floating, the typical current limit is 2.0A.  
I_limit  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
4
Absolute Maximum Ratings  
The “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. The  
device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables  
are not guaranteed at the absolute maximum ratings.  
TA = 25°C unless otherwise specified.  
Symbol  
BVDSS  
VDGR  
VGS  
Parameter  
Drain-Source Breakdown Voltage(1)  
Drain-Gate Voltage (RGS=1MΩ)  
Gate-Source (GND) Voltage  
Drain Current Pulsed(2)  
Value  
Unit  
V
650  
650  
V
±30  
V
IDM  
16  
ADC  
ADC  
ADC  
ADC  
ADC  
V
TC = 25°C  
TC = 100°C  
TC = 25°C  
TC = 100°C  
4.0  
Continuous Drain Current  
(TO-220-6L, I2-PAK-6L)  
2.5  
ID  
2.3  
Continuous Drain Current  
(D2-PAK-6L)  
1.4  
20  
VCC  
VFB  
Supply Voltage  
Feedback Voltage Range  
-0.3 to VCC  
140  
V
PD  
W
Total Power Dissipation (TO-220-6L)  
Total Power Dissipation (I2-PAK-6L)  
Total Power Dissipation (D2-PAK-6L)  
Derating  
PD  
-1.1  
W/°C  
W
75  
Derating  
PD  
-1.5  
W/°C  
W
80  
Derating  
TJ  
-0.64  
W/°C  
°C  
Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature  
Internally limited  
-25 to +85  
-55 to +150  
TA  
°C  
TSTG  
°C  
2.0  
ESD Capability, HBM Model  
(All pins except Vfb)  
(GND-Vfb = 1.5kV)  
(VCC-Vfb = 1.0kV)  
kV  
V
300  
ESD Capability, Machine Model  
(All pins except Vfb)  
(GND-Vfb = 250V)  
(VCC-Vfb = 100V)  
Notes:  
1. Tj = 25°C to 150°C  
2. Repetitive rating: Pulse-width limited by maximum junction temperature  
3. TC: Case back surface temperature with infinite heat sink  
© 2006 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSCM0465R Rev. 1.0.1  
5
Electrical Characteristics  
TA = 25°C unless otherwise specified.  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Unit  
SenseFET SECTION  
IDSS  
Zero Gate Voltage Current  
VDS = Max, Rating VGS = 0V  
VGS = 10V, ID = 2.3A  
-
-
-
-
-
-
-
-
250  
µA  
Ω
RDS(ON) Static Drain Source on Resistance(1)  
2.2  
60  
23  
20  
65  
27  
2.6  
COSS  
td(on)  
tr  
Output Capacitance  
Turn-on Delay Time  
Rise Time  
VGS = 0V, VDS = 25V, f = 1MHz  
-
-
-
-
-
pF  
VDD = 325V, ID = 3.2A(4)  
ns  
td(off)  
tf  
Turn-off Delay Time  
Fall Time  
CONTROL SECTION  
fOSC  
ΔfMOD  
tMOD  
Switching Frequency  
VCC = 14V, VFB = 5V  
60  
-
66  
±3  
4
72  
-
kHz  
kHz  
ms  
%
Switching Frequency Modulation Range  
Switching Frequency Modulation Cycle  
Switching Frequency Stability  
Switching Frequency Variation(2)  
Maximum Duty Cycle  
-
-
fSTABLE  
ΔfOSC  
DMAX  
DMIN  
10V VCC 17V  
0
1
3
25°C TA +85°C  
-
±5  
80  
-
±10  
85  
0
%
75  
-
%
Minimum Duty Cycle  
%
VSTART  
VSTOP  
IFB  
11  
7
12  
8
13  
9
V
UVLO Threshold Voltage  
VFB = GND  
VFB = GND  
V
Feedback Source Current  
Internal Soft-Start Time  
0.7  
10  
0.9  
15  
1.1  
20  
mA  
ms  
tS/S  
BURST MODE SECTION  
VBURH  
VCC = 14V  
VCC = 14V  
0.4  
0.5  
0.3  
0.6  
V
V
Burst Mode Voltages  
VBURL  
0.24  
0.36  
PROTECTION SECTION  
ILIMIT  
VOVP  
TSD  
Peak Current Limit(3)  
VCC = 14V, VFB = 5V  
2.2  
18  
2.5  
19  
2.8  
20  
A
V
Over-Voltage Protection  
Thermal Shutdown Temperature(2)  
130  
3.5  
5.5  
145  
5.3  
6
160  
7
°C  
µA  
V
IDELAY  
VSD  
Shutdown Delay Current  
VFB = 4V  
Shutdown Feedback Voltage  
VFB 5.5V  
6.5  
TOTAL DEVICE SECTION  
Istart  
Startup Current  
-
-
20  
40  
5
µA  
IOP(MIN)  
IOP(MAX)  
Notes:  
1. Pulse Test: Pulse width 300µS, duty 2%  
2. These parameters, although guaranteed at the design, are not tested in mass production.  
VCC = 10V, VFB = 0V  
Operating Supply Current  
2.5  
mA  
VCC = 20V, VFB = 0V  
3. These parameters indicate the inductor current. Where packages are I2PAK or D2PAK, this should be decreased to  
2.0A by external resistor.  
4. MOSFET switching time is essentially independent of operating temperature.  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
6
Comparison Between FSDM0465RB and FSCM0465R  
Function  
FSDM0465RB  
FSCM0465R  
Available  
Frequency Modulation  
N/A  
- Frequency modulation range (ΔfMOD) = ±3kHz  
- Frequency modulation cycle (tMOD) = 4ms  
Pulse-by-pulse Current Limit Internally fixed (2.0A max.) Programmable using external resistor (2.8A max.)  
N/A (Requires a startup resistor)  
Internal Startup Circuit  
Available  
Startup current: 40µA (max.)  
TO-220-6L  
I2-PAK-6L  
D2-PAK-6L  
Packages  
TO-220F-6L  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
7
Typical Performance Characteristics  
These characteristic graphs are normalized at TA= 25°C.  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 4. Startup Current vs. Temp.  
Figure 5. Stop Threshold voltage vs. Temp.  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 6. Maximum Duty Cycle vs. Temp.  
Figure 7. Start Threshold Voltage vs. Temp.  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 8. Initial Frequency vs. Temp.  
Figure 9. Feedback Source Current vs. Temp.  
© 2006 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSCM0465R Rev. 1.0.1  
8
Typical Performance Characteristics (Continued)  
These characteristic graphs are normalized at TA= 25°C.  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 10. Shutdown Feedback voltage vs. Temp.  
Figure 11. Burst Mode Enable Voltage vs. Temp.  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 12. Maximum Drain Current vs. Temp.  
Figure 13. Shutdown Delay Current vs. Temp.  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Junction Temperature [°C]  
Junction Temperature [°C]  
Figure 14. Burst Mode Disable Voltage vs. Temp.  
Figure 15. Operating Supply Current vs. Temp.  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
9
The minimum current supplied through the startup  
resistor is given by:  
Functional Description  
1. Startup: Figure 16 shows the typical startup circuit  
and transformer auxiliary winding for the FSCM0465R  
application. Before the FSCM0465R begins switching, it  
consumes only startup current (typically 20µA) and the  
current supplied from the DC link supply current  
consumed by the FPS (ICC) and charges the external  
1
min  
min  
(1)  
Isup  
=
2 Vline  
Vstar t  
(
)
Rstr  
where Vlinemin is the minimum input voltage, Vstart is the  
start voltage (12V) and Rstr is the startup resistor. The  
startup resistor should be chosen so that Isupmin is larger  
than the maximum startup current (40µA). If not, VCC can  
not be charged to the start voltage and FPS fails to start.  
capacitor (Ca) connected to the VCC pin. When VCC  
reaches start voltage of 12V (VSTART), the FSCM0465R  
begins switching and the current consumed by the  
FSCM0465R increases to 2.5mA. Then the FSCM0465R  
continues its normal switching operation and the power  
required for this device is supplied from the transformer  
auxiliary winding, unless VCC drops below the stop  
2. Feedback Control: The FSCM0465R employs  
current mode control, as shown in Figure 18. An opto-  
coupler (such as the H11A817A) and a shunt regulator  
(such as the KA431) are typically used to implement the  
feedback network. Comparing the feedback voltage with  
the voltage across the Rsense resistor makes it possible  
to control the switching duty cycle. When the reference  
pin voltage of the KA431 exceeds the internal reference  
voltage of 2.5V, the H11A817A LED current increases,  
pulling down the feedback voltage and reducing the duty  
cycle. This event typically happens when the input  
voltage is increased or the output load is decreased.  
voltage of 8V (VSTOP). To guarantee the stable operation  
of the control IC, VCC has under-voltage lockout (UVLO)  
with 4V hysteresis. Figure 17 shows the relationship  
between the current consumed by the FPS (ICC) and the  
supply voltage (VCC).  
CDC  
2.1 Pulse-by-pulse Current Limit: Because current  
mode control is employed, the peak current through the  
SenseFET is determined by the inverting input of the  
PWM comparator (Vfb*) as shown in Figure 18. When  
the current through the opto-transistor is zero and the  
current limit pin (#5) is left floating, the feedback current  
source (IFB) of 0.9mA flows only through the internal  
AC line  
min  
max  
(Vline  
- Vline  
)
ISUP  
Rstr  
resistor (R+2.5R=2.8k). In this case, the cathode voltage  
of diode D2 and the peak drain current have maximum  
values of 2.5V and 2.5A, respectively. The pulse-by-  
pulse current limit can be adjusted using a resistor to  
GND on the current limit pin (#5). The current limit level  
using an external resistor (RLIM) is given by:  
Da  
VCC  
ICC  
FSCM0465R  
Ca  
FSCM0465R Rev. 00  
RLIM 2.5A  
2.8KΩ + RLIM  
Figure 16. Startup Circuit  
(2)  
ILIM =  
ICC  
Vcc Vref  
Idelay  
IFB 0.9mA  
Vfb  
Vo  
3mA  
SenseFET  
OSC  
4
6
H11A817A  
D1  
D2  
CB  
2.5R  
0.3k  
+
Gate  
driver  
Power Up  
Vfb*  
Power Down  
R
KA431  
-
25μA  
VCC  
RLI M  
Vstop=8V  
Vstart=12V  
Vz  
FSCM0465R Rev. 00  
OLP  
Rsense  
VSD  
FSCM0465R Rev. 00  
Figure 17. Relation Between Operating Supply  
Current and VCC Voltage  
Figure 18. Pulse Width Modulation (PWM) Circuit  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
10  
2.2 Constant Power Limit Circuit: Due to the circuit  
delay of FPS, the pulse-by-pulse limit current increases  
a little bit when the input voltage increases. This means  
unwanted excessive power is delivered to the secondary  
side. To compensate, the auxiliary power compensation  
network in Figure 19 can be used. RLIM can adjust pulse-  
2.3 Leading Edge Blanking (LEB): At the instant the  
internal SenseFET is turned on, a high-current spike  
through the SenseFET usually occurs, caused by  
primary-side capacitance and secondary-side rectifier  
reverse recovery. Excessive voltage across the Rsense  
resistor can lead to incorrect feedback operation in the  
current mode PWM control. To counter this effect, the  
FSCM0465R employs a leading edge blanking (LEB)  
circuit. This circuit inhibits the PWM comparator for a  
short time after the SenseFET is turned on.  
by-pulse current by absorbing internal current source  
(IFB: typical value is 0.9mA), depending on the ratio  
between resistors. With the suggested compensation  
circuit, additional current from IFB is absorbed more  
proportionally to the input voltage (VDC) and achieves  
constant power in wide input range. Choose RLIM for  
3. Protection Circuit: The FSCM0465R has several  
self-protective functions, such as overload protection  
(OLP), over-voltage protection (OVP) and thermal  
shutdown (TSD). Because these protection circuits are  
fully integrated into the IC without external components,  
the reliability is improved without increasing cost. Once  
the fault condition occurs, switching is terminated and  
the SenseFET remains off. This causes VCC to fall.  
proper current to the application, then check the pulse-  
by-pulse current difference between minimum and  
maximum input voltage. To eliminate the difference (to  
gain constant power), Ry can be calculated by:  
Na  
Ilim_spec ×Vdc  
×
When VCC reaches the UVLO stop voltage of 8V, the  
Np  
Ifb × ΔIlim_comp  
(3)  
Ry  
current consumed by the FSCM0465R decreases to the  
startup current (typically 20µA) and the current supplied  
from the DC link charges the external capacitor (Ca)  
where, Ilim_spec is the limit current stated on the  
specification; Na and Np are the number of turns for VCC  
and primary side, respectively; Ifb is the internal current  
connected to the VCC pin. When VCC reaches the start  
voltage of 12V, the FSCM0465R resumes normal  
operation. In this manner, the auto-restart can alternately  
enable and disable the switching of the power SenseFET  
until the fault condition is eliminated (see Figure 20).  
source at feedback pin with a typical value of 0.9mA; and  
ΔIlim_comp is the current difference which must be  
eliminated. In case of capacitor in the circuit 1µF, 100V is  
good choice for all applications.  
Fault  
occurs  
Fault  
removed  
Power  
On  
Vds  
VDC  
Np  
L
Vcc  
12V  
8V  
Vfb Drain  
Vcc  
t
Na  
Normal  
Operation  
Fault  
Situation  
Normal  
Operation  
FSCM0465R Rev. 00  
I_lim  
GND  
RLIM  
Figure 20. Auto Restart Operation  
compensation  
network  
-
Na  
Np  
3.1 Overload Protection (OLP): Overload is defined as  
the load current exceeding a preset level due to an  
unexpected event. In this situation, the protection circuit  
should be activated to protect the SMPS. However, even  
when the SMPS is in the normal operation, the overload  
protection circuit can be activated during the load  
RY  
CY  
Vy = VDC ×  
+
FSCM0465R Rev. 00  
Figure 19. Constant power limit circuit  
© 2006 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSCM0465R Rev. 1.0.1  
11  
transition. To avoid this undesired operation, the  
overload protection circuit is designed to be activated  
after a specified time to determine whether it is a  
transient situation or an overload situation. Because of  
the pulse-by-pulse current limit capability, the maximum  
peak current through the SenseFET is limited and the  
maximum input power is restricted with a given input  
voltage. If the output consumes beyond this maximum  
power, the output voltage (VO) decreases below the set  
3.3 Thermal Shutdown (TSD): The SenseFET and the  
control IC are built in one package. This makes it easy  
for the control IC to detect the heat generation from the  
SenseFET.  
When  
the  
temperature  
exceeds  
approximately 145°C, the thermal protection is triggered,  
resulting in shutdown of the FPS.  
4. Frequency Modulation: EMI reduction can be  
accomplished by modulating the switching frequency of  
a switched power supply. Frequency modulation can  
reduce EMI by spreading the energy over a wider  
frequency range than the bandwidth measured by the  
EMI test equipment. The amount of EMI reduction is  
directly related to the depth of the reference frequency.  
As can be seen in Figure 22, the frequency changes  
from 63KHz to 69KHz in 4ms.  
voltage. This reduces the current through the opto-  
coupler LED, which also reduces the opto-coupler  
transistor current, increasing the feedback voltage (Vfb).  
If Vfb exceeds 2.5V, D1 is blocked and the 5.3µA current  
source (Idelay) starts to charge CB slowly up to VCC. In  
this condition, Vfb continues increasing until it reaches  
6V, when the switching operation is terminated as shown  
in Figure 21. The delay time for shutdown is the time  
required to charge CB from 2.5V to 6.0V with 5.3µA  
(Idelay). A 10 ~ 50ms delay time is typical for most  
applications.  
Drain Current  
FSCM0465R Rev. 00  
VFB  
Overload Protection  
Ts  
Ts  
6.0V  
2.5V  
Ts  
T12= CB*(6.0-2.5)/Idelay  
fs  
69kHz  
66kHz  
63kHz  
T1  
T2  
t
Figure 21. Overload Protection  
3.2 Over-Voltage Protection (OVP): If the secondary-  
side feedback circuit were to malfunction or a solder  
defect causes an opening in the feedback path, the  
current through the opto-coupler transistor becomes  
almost zero. In this case, Vfb climbs up in a similar  
manner to the overload situation, forcing the preset  
maximum current to be supplied to the SMPS until the  
overload protection is activated. Because more energy  
than required is provided to the output, the output  
voltage may exceed the rated voltage before the  
overload protection is activated, resulting in the  
breakdown of the devices in the secondary side. To  
prevent this situation, an over- voltage protection (OVP)  
circuit is employed. In general, VCC is proportional to the  
4ms  
FSCM0465R Rev. 00  
t
Figure 22. Frequency Modulation  
5. Soft-Start: The FSCM0465R has an internal soft-start  
circuit that increases PWM comparator inverting input  
voltage, together with the SenseFET current, slowly after  
it starts up. The typical soft-start time is15ms. The pulse  
width to the power switching device is progressively  
increased to establish the correct working conditions for  
transformers, rectifier diodes, and capacitors. The  
voltage on the output capacitors is progressively  
increased with the intention of smoothly establishing the  
required output voltage. Preventing transformer  
saturation and reducing stress on the secondary diode  
during startup is also helpful.  
output voltage and the FSCM0465R uses VCC instead of  
directly monitoring the output voltage. If VCC exceeds  
19V, an OVP circuit is activated, resulting in the  
termination of the switching operation. To avoid  
undesired activation of OVP during normal operation,  
VCC should be designed to be below 19V.  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
12  
6. Burst Operation: To minimize power dissipation in  
standby mode, the FSCM0465R enters into burst-mode  
operation at light load condition. As the load decreases,  
the feedback voltage decreases. As shown in Figure 23,  
the device automatically enters burst mode when the  
feedback voltage drops below VBURL (300mV). At this  
point, switching stops and the output voltages start to  
drop at a rate dependent on standby current load. This  
causes the feedback voltage to rise. Once it passes  
VBURH (500mV), switching resumes. The feedback  
voltage then falls and the process repeats. Burst mode  
operation alternately enables and disables switching of  
the power SenseFET, thereby reducing switching loss in  
standby mode.  
Vo  
Voset  
VFB  
0.5V  
0.3V  
Ids  
Vds  
time  
Switching  
disabled  
Switching  
disabled  
T4  
T2 T3  
FSCM0465R Rev. 00  
T1  
Figure 23. Waveforms of Burst Operation  
© 2006 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSCM0465R Rev. 1.0.1  
13  
Typical Application Circuit  
Application  
Output Power  
40W  
Input Voltage  
Output Voltage (Max. Current)  
Universal Input  
(85-265Vac)  
5V (2.0A)  
12V (2.5A)  
LCD Monitor  
Features  
„ High efficiency (>81% at 85Vac input)  
„ Low standby mode power consumption (<1W at 240Vac input and 0.4W load)  
„ Low component count  
„ Enhanced system reliability through various protection functions  
„ Low EMI through frequency modulation  
„ Internal soft-start (15ms)  
Key Design Notes  
„ Resistors R107 and R108 are employed to prevent startup at low input voltage  
„ The delay time for overload protection is designed to be about 50ms with C106 of 100nF. If a faster triggering of OLP  
is required, C106 can be reduced to 22nF.  
1. Schematic  
D202  
MBRF10H100  
T101  
EER3016  
L201  
12V / 3.0A  
10  
1
2
C202  
1000μF  
25V  
C201  
1000μF  
25V  
C104  
3.3nF  
630V  
R103  
56kΩ  
2W  
8
L101  
Ferrite Bead  
D101  
UF 4007  
C103  
100μF  
400V  
3
BD101  
2
IC101  
FSCM0465R  
2KBP06M  
Ilimit  
1
6
4
1
3
3
Drain  
D102  
UF4004  
D201  
MBRF1060  
L202  
VCC  
5V / 2.8A  
FB  
4
7
4
GND  
R104  
C204  
1000μF  
10V  
C105  
C203  
1000μF  
10V  
C106  
100nF  
50V  
C102  
220nF  
275VAC  
20Ω  
22μF  
2
50V  
6
5
C301  
4.7nF  
LF101  
23mH  
R108  
330kΩ  
R107  
330kΩ  
R201  
1kΩ  
R101  
560kΩ  
0.5W  
R204  
5.6kΩ  
R202  
1.2kΩ  
R203  
10kΩ  
C205  
47nF  
IC301  
H11A817A  
IC201  
KA431  
F101  
FUSE  
250V  
2A  
C101  
220nF  
275VAC  
RT101  
5D-9  
R205  
5.6kΩ  
FSCM0465R Rev. 01  
Figure 24. Demo Circuit  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
14  
2. Transformer  
EER3016  
1
10  
9
Np/2  
Np/2  
N12V  
2
3
4
5
8
7
N5V  
6
Na  
Figure 25. Transformer Schematic Diagram  
3. Winding Specification  
No  
Pin (sf)  
4 5  
Wire  
0.2φ × 1  
Turns  
Winding Method  
Na  
8
Center Winding  
Insulation: Polyester Tape t = 0.050mm, 2 Layers  
Np/2 2 1  
0.4φ × 1  
Insulation: Polyester Tape t = 0.050mm, 2 Layers  
N12V 10 8  
0.3φ × 3  
Insulation: Polyester Tape t = 0.050mm, 2 Layers  
N5V 7 6  
0.3φ × 3  
Insulation: Polyester Tape t = 0.050mm, 2 Layers  
Np/2 3 2  
0.4φ × 1  
18  
7
Solenoid Winding  
Center Winding  
Center Winding  
Solenoid Winding  
3
18  
Outer Insulation: Polyester Tape t = 0.050mm, 2 Layers  
4. Electrical Characteristics  
Pin  
Specification  
520µH ± 10%  
10µH Max  
Remarks  
Inductance  
1 - 3  
1 - 3  
100kHz, 1V  
2
nd all Short  
Leakage Inductance  
5. Core & Bobbin  
„ Core: EER 3016  
„ Bobbin: EER3016  
„ Ae(mm2): 96  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
15  
6. Demo Circuit Part List  
Part  
F101  
Value  
2A/250V  
5D-9  
Note  
Part  
Value  
Note  
C301  
4.7nF  
Polyester Film Cap.  
Fuse  
NTC  
Inductor  
Diode  
RT101  
L201  
L202  
5µH  
5µH  
Wire 1.2mm  
Wire 1.2mm  
Resistor  
R101  
R103  
R104  
R107  
R108  
R201  
R202  
R203  
R204  
R205  
560kΩ  
56kΩ  
20Ω  
0.5W  
2W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
330kΩ  
330kΩ  
1kΩ  
D101  
D102  
D201  
D202  
UF4007  
UF4004  
MBRF1060  
1.2kΩ  
10kΩ  
5.6kΩ  
5.6kΩ  
MBRF10H100  
Bridge Diode  
BD101 2KBP06M 3N257  
Bridge Diode  
Wire 0.4mm  
Capacitor  
220nF/275VAC  
C101  
C102  
C103  
C104  
C105  
C106  
C201  
C202  
C203  
C204  
C205  
Box Capacitor  
Line Filter  
IC  
220nF/275VAC  
100µF/400V  
3.3nF/630V  
22µF/50V  
Box Capacitor  
LF101  
23mH  
Electrolytic Capacitor  
Ceramic Capacitor  
Electrolytic Capacitor  
Ceramic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Ceramic Capacitor  
IC101  
IC201  
IC301  
FSCM0465R  
KA431(TL431)  
H11A817A  
FPS™ (2.5A, 650V)  
Voltage Reference  
Opto-coupler  
100nF/50V  
1000µF/25V  
1000µF/25V  
1000µF/10V  
1000µF/10V  
47nF/50V  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
16  
Package Dimensions  
D2-PAK-6L  
Dimensions are in millimeters unless otherwise specified.  
A
10.10  
9.70  
1.40  
1.00  
MIN 9.50  
9.40  
9.00  
MIN 9.00  
(0.75)  
MAX1.10  
10.00  
MAX0.80  
5.10  
4.70  
MIN 4.00  
0.70  
0.50  
MIN 0.85  
2.19  
2.19  
1.75  
1.27  
3.81  
1.27  
1.75  
10.20  
9.80  
B
4.70  
4.30  
(8.58)  
(4.40)  
1.40  
1.25  
R0.45  
(1.75)  
(0.90)  
(7.20)  
15.60  
15.00  
NOTES: UNLESS OTHERWISE SPECIFIED  
A) THIS PACKAGE DOES NOT COMPLY  
TO ANY CURRENT PACKAGING STANDARD.  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,  
MOLD FLASH, AND TIE BAR EXTRUSIONS.  
D) DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M-1994  
MKT-TO263A6  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
17  
Package Dimensions (Continued)  
I2-PAK-6L (Forming)  
Dimensions are in millimeters unless otherwise specified.  
MKT-TO262A6  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
18  
Package Dimensions (Continued)  
TO-220-6L (Forming)  
Dimensions are in millimeters unless otherwise specified.  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
19  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an  
exhaustive list of all such trademarks.  
ACEx™  
FAST®  
FASTr™  
FPS™  
ISOPLANAR™  
LittleFET™  
PowerEdge™  
PowerSaver™  
SuperFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
ActiveArray™  
Bottomless™  
Build it Now™  
CoolFET™  
MICROCOUPLER™ PowerTrench®  
FRFET™  
GlobalOptoisolator™ MicroPak™  
MicroFET™  
QFET®  
QS™  
CROSSVOLT™ GTO™  
MICROWIRE™  
MSX™  
MSXPro™  
OCX™  
QT Optoelectronics™ TCM™  
DOME™  
HiSeC™  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
µSerDes™  
TinyLogic®  
EcoSPARK™  
E2CMOS™  
EnSigna™  
FACT™  
I2C™  
TINYOPTO™  
TruTranslation™  
UHC™  
i-Lo™  
ImpliedDisconnect™ OCXPro™  
IntelliMAX™  
OPTOLOGIC®  
OPTOPLANAR™  
ScalarPump™  
UniFET™  
FACT Quiet Series™  
SILENT SWITCHER® UltraFET®  
Across the board. Around the world.™ PACMAN™  
SMART START™  
SPM™  
VCX™  
Wire™  
The Power Franchise®  
POP™  
Programmable Active Droop™  
Power247™  
Stealth™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS  
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE  
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER  
ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S  
WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
2. A critical component is any component of a life support device  
As used herein:  
or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or sys-  
tem, or to affect its safety or effectiveness.  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, or (c) whose failure to perform when  
properly used in accordance with instructions for use provided  
in the labeling, can be reasonably expected to result in signifi-  
cant injury to the user.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In Design  
This datasheet contains the design specifications for product  
development. Specifications may change in any manner with-  
out notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and supplementary  
data will be published at a later date. Fairchild Semiconductor  
reserves the right to make changes at any time without notice  
to improve design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild Semicon-  
ductor reserves the right to make changes at any time without  
notice to improve design.  
Not In Production  
This datasheet contains specifications on a product that has  
been discontinued by Fairchild semiconductor. The datasheet  
is printed for reference information only.  
Rev. I19  
© 2006 Fairchild Semiconductor Corporation  
FSCM0465R Rev. 1.0.1  
www.fairchildsemi.com  
20  

相关型号:

FSCM0565R

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RC

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RCYDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RCYDTU_NL

Switching Regulator, Current-mode, 20A, 72kHz Switching Freq-Max, PZFM6, TO-220, 6PIN
FAIRCHILD

FSCM0565RD

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RG

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RGWDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RI

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RIWDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RJ

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765R

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RC

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD