FSCM0565RCYDTU [FAIRCHILD]

Green Mode Fairchild Power Switch (FPS); 绿色模式飞兆功率开关( FPS )
FSCM0565RCYDTU
型号: FSCM0565RCYDTU
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Green Mode Fairchild Power Switch (FPS)
绿色模式飞兆功率开关( FPS )

开关
文件: 总20页 (文件大小:347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FSCM0565R  
TM  
Green Mode Fairchild Power Switch (FPS )  
Table 1. Maximum Output Power  
Features  
• Internal Avalanche Rugged Sense FET  
OUTPUT POWER TABLE  
(3)  
230VAC ±15%  
85-265VAC  
• Low startup current (max 40uA)  
• Low power consumption under 1 W at 240VAC & 0.4W  
load  
• Precise Fixed Operating Frequency (66kHz)  
• Frequency Modulation for low EMI  
• Pulse by Pulse Current Limiting (Adjustable)  
• Over Voltage Protection (OVP)  
• Over Load Protection (OLP)  
PRODUCT  
Adapt-  
er  
Open  
Frame  
Adapt-  
er  
Open  
(1)  
(2)  
(1)  
(2)  
Frame  
50W  
60W  
70W  
85W  
FSCM0565RD  
FSCM0765RD  
FSCM0565RC  
FSCM0765RC  
50W  
65W  
70W  
85W  
65W  
70W  
85W  
95W  
40W  
50W  
60W  
70W  
• Thermal Shutdown Function (TSD)  
• Auto-Restart Mode  
• Under Voltage Lock Out (UVLO) with hysteresis  
• Built-in Soft Start (15ms)  
Notes:  
1. Typical continuous power in a non-ventilated enclosed  
adapter measured at 50°C ambient.  
2. Maximum practical continuous power in an open frame  
design at 50°C ambient.  
3. 230 VAC or 100/115 VAC with doubler.  
Application  
• SMPS for VCR, SVR, STB, DVD & DVCD  
• Adaptor  
• SMPS for LCD Monitor  
Typical Circuit  
Description  
The FSCM0565R is an integrated Pulse Width Modulator  
(PWM) and Sense FET specifically designed for high  
performance offline Switch Mode Power Supplies (SMPS)  
with minimal external components. This device is an  
integrated high voltage power switching regulator which  
combine an avalanche rugged Sense FET with a current  
mode PWM control block. The PWM controller includes  
integrated fixed frequency oscillator, under voltage lockout,  
leading edge blanking (LEB), optimized gate driver, internal  
soft start, temperature compensated precise current sources  
for a loop compensation and self protection circuitry.  
Compared with discrete MOSFET and PWM controller  
solution, it can reduce total cost, component count, size and  
weight simultaneously increasing efficiency, productivity, and  
system reliability. This device is a basic platform well suited  
for cost effective designs of flyback converters.  
DC  
OUT  
AC  
IN  
Drain  
PWM  
Ilimit  
Vfb  
Vcc GND  
Figure 1. Typical Flyback Application  
Rev.1.0.0  
©2005 Fairchild Semiconductor Corporation  
FSCM0565R  
Internal Block Diagram  
Vcc  
3
Drain  
1
Vcc good  
Internal  
Bias  
Vref  
8V/12V  
+
0.3/0.5V  
Freq.  
Modulation  
-
Vcc  
Idelay  
Vcc  
OSC  
IFB  
PWM  
S
Q
Q
2.5R  
FB  
4
5
Gate  
driver  
R
R
Ilimit  
Soft start  
0.3K  
LEB  
VSD  
Vcc  
Vovp  
TSD  
2
GND  
S
Q
Q
R
Vcc good  
Vcc UV reset  
Figure 2. Functional Block Diagram of FSCM0565R  
2
FSCM0565R  
Pin Definitions  
Pin Number  
Pin Name  
Pin Function Description  
This pin is the high voltage power SenseFET drain. It is designed to drive the  
transformer directly.  
1
2
Drain  
GND  
This pin is the control ground and the SenseFET source.  
This pin is the positive supply voltage input. Initially, During start up, the power is  
supplied through the startup resistor from DC link. When Vcc reaches 12V, the  
power is supplied from auxiliary transformer winding.  
3
4
5
Vcc  
This pin is internally connected to the inverting input of the PWM comparator.  
The collector of an optocoupler is typically tied to this pin. For stable operation, a  
Feedback (FB) capacitor should be placed between this pin and GND. If the voltage of this pin  
reaches 6.0V, the over load protection is activated resulting in shutdown of the  
FPS.  
This pin is for the pulse by pulse current limit level programming. By using a  
resistor to GND on this pin, the current limit level can be changed. If this pin is  
left floating, the typical current limit will be 2.5A.  
I_limit  
Pin Configuration  
FSCM0565RC  
TO-220-5L  
FSCM0565RD  
D2-PAK-5L  
5. I_limit  
4. FB  
5 : I_limit  
4 : FB  
3 : Vcc  
3. Vcc  
2. GND  
2 : GND  
1. Drain  
1 : Drain  
Figure 3. Pin Configuration (Top View)  
3
FSCM0565R  
Absolute Maximum Ratings  
(Ta=25°C, unless otherwise specified)  
Parameter  
Drain-Source (GND) Voltage (1)  
Symbol  
Value  
650  
650  
±30  
20  
Unit  
V
V
DSS  
Drain-Gate Voltage (R =1M)  
V
DGR  
V
GS  
Gate-Source (GND) Voltage  
Drain Current Pulsed (2)  
Continuous Drain Current (TO-220)  
@ Tc = 25°C  
V
V
GS  
DM  
I
A
DC  
I
I
5
A
A
D
D
DC  
@ T =100°C  
C
3.2  
DC  
Continuous Drain Current (D2-PAK)  
@ Tc = 25°C  
I
I
2.9  
1.9  
A
DC  
A
DC  
V
D
@ T =100°C  
C
D
Supply Voltage  
V
20  
CC  
Analog Input Voltage Range  
V
-0.3 to V  
75  
V
FB  
CC  
P
W
W/°C  
W
D
Total Power Dissipation (D2-PAK)  
Total Power Dissipation (TO-220)  
Derating  
0.6  
P
120  
D
Derating  
0.96  
W/°C  
°C  
Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature Range  
T
Internally limited  
-25 to +85  
J
T
°C  
A
STG  
-
T
-55 to +150  
°C  
ESD Capability, HBM Model (All pins  
excepts for Vstr and Vfb)  
2.0  
kV  
(Vcc-Vfb=1.0kV)  
ESD Capability, Machine Model (All pins  
excepts for Vstr and Vfb)  
300  
V
-
(Vcc-Vfb=100V)  
Notes:  
1. T = 25°C to 150°C  
j
2. Repetitive rating: Pulse width limited by maximum junction temperature  
3. L = 30mH, V = 50V, R = 25, starting T = 25°C  
DD  
G
j
4. L = 13uH, starting T = 25°C  
j
4
FSCM0565R  
Electrical Characteristics  
(Ta = 25°C unless otherwise specified)  
Parameter  
Sense FET SECTION  
Symbol  
Condition  
Min. Typ. Max. Unit  
Drain source breakdown voltage  
BV  
DSS  
V
= 0V, I = 250µA  
650  
-
-
-
V
µA  
GS  
D
V
V
= Max, Rating  
= 0V  
DS  
GS  
Zero gate voltage drain current  
Static drain source on resistance  
I
-
-
500  
2.2  
DSS  
R
V
GS  
= 10V, I = 2.3A  
1.76  
DS(ON)  
D
V
= 0V, V = 25V,  
DS  
GS  
f = 1MHz  
Output capacitance  
C
-
78  
-
pF  
OSS  
Turn on delay time  
Rise time  
T
V
= 325V, I = 5A  
-
-
-
-
22  
52  
95  
50  
-
-
-
-
D(ON)  
DD  
D
(MOSFET switching  
time is essentially  
independent of  
T
R
ns  
Turn off delay time  
Fall time  
T
D(OFF)  
operating temperature)  
T
F
CONTROL SECTION  
Initial frequency  
F
V
=14V, V =5V  
60  
-
66  
±3  
4
72  
-
kHz  
kHz  
ms  
%
OSC  
CC FB  
Modulated frequency range  
Frequency modulation cycle  
Voltage stability  
F  
-
-
mod  
T
-
-
mod  
F
10VV 17V  
0
1
3
STABLE  
CC  
Temperature stability  
Maximum duty cycle  
Minimum duty cycle  
Start threshold voltage  
Stop threshold voltage  
Feedback source current  
Soft-start time  
F  
25°CTa+85°C  
-
±5  
80  
-
±10  
85  
0
%
OSC  
D
MAX  
MIN  
-
-
75  
-
%
D
%
V
V
FB  
V
FB  
V
FB  
=GND  
=GND  
=GND  
11  
7
12  
8
13  
9
V
START  
V
V
STOP  
I
0.7  
10  
0.9  
15  
1.1  
20  
mA  
ms  
FB  
T
-
SS  
BURST MODE SECTION  
V
Vcc=14V  
Vcc=14V  
0.4  
0.5  
0.3  
0.6  
V
V
BH  
Burst Mode Voltages  
VB  
0.24  
0.36  
L
5
FSCM0565R  
PROTECTION SECTION  
Peak current limit  
I
V
=14V, V =5V  
2.2  
18  
2.5  
19  
2.8  
20  
A
V
LIM  
CC FB  
Over voltage protection  
Thermal shutdown temperature  
Shutdown delay current  
Shutdown feedback voltage  
TOTAL DEVICE SECTION  
Startup current  
V
-
OVP  
T
130  
3.5  
5.5  
145  
5.3  
6
160  
7
°C  
µA  
V
SD  
DELAY  
I
V
V
=4V  
FB  
V
>5.5V  
6.5  
SD  
FB  
I
-
-
20  
40  
5
µA  
start  
I
V
V
=10V, V =0V  
FB  
OP(MIN)  
CC  
Operating supply current  
2.5  
mA  
I
=20V, V =0V  
FB  
OP(MAX)  
CC  
Notes:  
1. Pulse test : Pulse width 300µS, duty 2%  
2. These parameters, although guaranteed at the design, are not tested in mass production.  
3. These parameters, although guaranteed, are tested in EDS (wafer test) process.  
4. These parameters indicate the inductor current.  
5. This parameter is the current flowing into the control IC.  
6
FSCM0565R  
Comparison Between FSDM0565RB and FSCM0565R  
Function  
FSDM0565RB  
FSCM0565R  
Frequency modulation  
N.A.  
Available  
• Modulated frequency range (DF  
• Frequency modulation cycle (T  
mod  
) = ±3kHz  
mod  
) = 4ms  
Pulse-by-pulse current limit • Internally fixed (2.25A)  
Internal Startup Circuit • Available  
• Programmable using external resistor (2.5A max)  
• N.A. (Requires startup resistor)  
• Startup current : 40uA (max)  
7
FSCM0565R  
Typical Performance Characteristics  
(These Characteristic Graphs are Normalized at Ta= 25°C)  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Junction Temperature(  
)
Junction Temperature(  
)
Startup Current vs. Temp  
Start Threshold Voltage vs. Temp  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Junction Temperature(  
)
Junction Temperature(  
)
Stop Threshold Voltage vs. Temp  
Initial Freqency vs. Temp  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Junction Temperature(  
)
Junction Temperature(  
)
Maximum Duty Cycle vs. Temp  
Feedback Source Current vs. Temp  
8
FSCM0565R  
Typical Performance Characteristics (Continued)  
(These Characteristic Graphs are Normalized at Ta= 25°C)  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Junction Temperature(  
)
Junction Temperature(  
)
ShutDown Feedback Voltage vs. Temp  
ShutDown Delay Current vs. Temp  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Junction Temperature(  
)
Junction Temperature(  
)
Bust Mode Enable Volage vs. Temp  
Burst Mode Disable Voltage vs. Temp  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Junction Temperature(  
)
Junction Temperature(  
)
Mavimum Drain Current vs. Temp  
Operating Supply Current vs. Temp  
9
FSCM0565R  
The minimum current supplied through the startup resistor is  
given by  
Functional Description  
1. Startup : Figure 4 shows the typical startup circuit and  
transformer auxiliary winding for FSCM0565R application.  
Before FSCM0565R begins switching, FSCM0565R  
consumes only startup current (typically 25uA) and the  
current supplied from the DC link supply ccurrent consumed  
min  
1
-----------  
I
= (  
2
Vlinemin Vstart  
)
sup  
R
str  
min  
where V  
is the minimum input voltage, V is the  
start  
line  
by FPS (Icc) and charges the external capacitor (C ) that is  
a
start voltage (12V) and R is the startup resistor. The startup  
str  
connected to the Vcc pin. When Vcc reaches start voltage of  
12V (VSTART), FSCM0565R begins switching, and the  
current consumed by FSCM0565R increases to 3mA. Then,  
FSCM0565R continues its normal switching operation and  
the power required for this device is supplied from the  
transformer auxiliary winding, unless Vcc drops below the  
stop voltage of 8V (VSTOP). To guarantee the stable operation  
of the control IC, Vcc has under voltage lockout (UVLO)  
with 4V hysteresis. Figure 5 shows the relation between the  
current consumed by FPS (Icc) and the supply voltage (Vcc).  
min  
resistor should be chosen so that I  
sup  
is larger than the  
maximum startup current (40uA). If not, Vcc can not be  
charged to the start voltage and FPS will fail to start up.  
2. Feedback Control : FSCM0565R employs current mode  
control, as shown in Figure 6. An opto-coupler (such as the  
H11A817A) and shunt regulator (such as the KA431) are  
typically used to implement the feedback network.  
Comparing the feedback voltage with the voltage across the  
Rsense resistor makes it possible to control the switching  
duty cycle. When the reference pin voltage of the KA431  
exceeds the internal reference voltage of 2.5V, the  
H11A817A LED current increases, thus pulling down the  
feedback voltage and reducing the duty cycle. This event  
typically happens when the input voltage is increased or the  
output load is decreased.  
CDC  
AC line  
2.1 Pulse-by-pulse current limit: Because current mode  
control is employed, the peak current through the Sense FET  
is determined by the inverting input of PWM comparator  
(Vfb*) as shown in Figure 6. When the current through the  
opto transistor is zero and the current limit pin (#5) is left  
min  
max  
(Vline  
- Vline  
)
Isup  
Rstr  
Da  
Vcc  
Icc  
floating, the feedback current source (I ) of 0.9mA flows  
FB  
FSCM0565R  
only through the internal resistor (R+2.5R=2.8k). In this  
case, the cathode voltage of diode D2 and the peak drain  
current have maximum values of 2.5V and 2.5A, respec-  
tively. The pulse-by-pulse current limit can be adjusted using  
a resistor to GND on current limit pin (#5). The current limit  
Ca  
level using an external resistor (R  
) is given by  
LIM  
Figure 4. Startup circuit  
RLIM 2.5A  
ILIM = ------------------------------------  
2.8k+ RLIM  
Icc  
Vcc  
Idelay  
Vref  
IFB 0.9mA  
Vfb  
Vo  
SenseFET  
3mA  
OSC  
4
5
H11A817A  
D1  
D2  
+
CB  
2.5R  
R
0.3k  
Gate  
driver  
Power Up  
Vfb*  
Power Down  
KA431  
-
25uA  
Vcc  
RLI M  
OLP  
Vstop=8V  
Vstart=12V  
Vz  
Rsense  
VSD  
Figure 5. Relation between operating supply current and  
Vcc voltage  
Figure 6. Pulse width modulation (PWM) circuit  
10  
FSCM0565R  
even when the SMPS is in the normal operation, the over  
load protection circuit can be activated during the load  
transition. In order to avoid this undesired operation, the over  
load protection circuit is designed to be activated after a  
specified time to determine whether it is a transient situation  
or an overload situation. Because of the pulse-by-pulse  
current limit capability, the maximum peak current through  
the Sense FET is limited, and therefore the maximum input  
power is restricted with a given input voltage. If the output  
consumes beyond this maximum power, the output voltage  
(Vo) decreases below the set voltage. This reduces the  
current through the opto-coupler LED, which also reduces  
the opto-coupler transistor current, thus increasing the  
feedback voltage (Vfb). If Vfb exceeds 2.5V, D1 is blocked  
2.2 Leading edge blanking (LEB) : At the instant the  
internal Sense FET is turned on, there usually exists a high  
current spike through the Sense FET, caused by primary-side  
capacitance and secondary-side rectifier reverse recovery.  
Excessive voltage across the Rsense resistor would lead to  
incorrect feedback operation in the current mode PWM  
control. To counter this effect, the FSCM0565R employs a  
leading edge blanking (LEB) circuit. This circuit inhibits the  
PWM comparator for a short time (T  
is turned on.  
) after the Sense FET  
LEB  
3. Protection Circuit : The FSCM0565R has several self  
protective functions such as over load protection (OLP), over  
voltage protection (OVP) and thermal shutdown (TSD).  
Because these protection circuits are fully integrated into the  
IC without external components, the reliability can be  
improved without increasing cost. Once the fault condition  
occurs, switching is terminated and the Sense FET remains  
off. This causes Vcc to fall. When Vcc reaches the UVLO  
stop voltage of 8V, the current consumed by FSCM0565R  
reduces to the startup current (typically 25uA) and the  
current supplied from the DC link charges the external  
and the 5.3uA current source (I  
delay  
) starts to charge C  
B
slowly up to Vcc. In this condition, Vfb continues increasing  
until it reaches 6V, when the switching operation is  
terminated as shown in Figure 8. The delay time for  
shutdown is the time required to charge C from 2.5V to  
B
6.0V with 5.3uA (I  
). In general, a 10 ~ 50 ms delay time  
delay  
is typical for most applications.  
capacitor (C ) that is connected to the Vcc pin. When Vcc  
a
VFB  
reaches the start voltage of 12V, FSCM0565R resumes its  
normal operation. In this manner, the auto-restart can  
alternately enable and disable the switching of the power  
Sense FET until the fault condition is eliminated (see Figure  
7).  
Over load protection  
6.0V  
2.5V  
Fault  
occurs  
Fault  
removed  
Power  
on  
Vds  
T12= Cfb*(6.0-2.5)/Idelay  
T1  
Figure 8. Over load protection  
T2  
t
3.2 Over voltage Protection (OVP) : If the secondary side  
feedback circuit were to malfunction or a solder defect  
caused an open in the feedback path, the current through the  
opto-coupler transistor becomes almost zero. Then, Vfb  
climbs up in a similar manner to the over load situation,  
forcing the preset maximum current to be supplied to the  
SMPS until the over load protection is activated. Because  
more energy than required is provided to the output, the  
output voltage may exceed the rated voltage before the over  
load protection is activated, resulting in the breakdown of the  
devices in the secondary side. In order to prevent this  
situation, an over voltage protection (OVP) circuit is  
employed. In general, Vcc is proportional to the output  
voltage and the FSCM0565R uses Vcc instead of directly  
Vcc  
12V  
8V  
t
Normal  
operation  
Fault  
situation  
Normal  
operation  
Figure 7. Auto restart operation  
monitoring the output voltage. If V exceeds 19V, an OVP  
CC  
3.1 Over Load Protection (OLP) : Overload is defined as  
the load current exceeding a pre-set level due to an  
unexpected event. In this situation, the protection circuit  
should be activated in order to protect the SMPS. However,  
circuit is activated resulting in the termination of the  
switching operation. In order to avoid undesired activation of  
OVP during normal operation, Vcc should be designed to be  
below 19V.  
11  
FSCM0565R  
3.3 Thermal Shutdown (TSD) : The Sense FET and the  
control IC are built in one package. This makes it easy for  
the control IC to detect the heat generation from the Sense  
FET. When the temperature exceeds approximately 145°C,  
the thermal protection is triggered resulting in shutdown of  
FPS.  
device automatically enters into burst mode when the  
feedback voltage drops below V (300mV). At this point  
BL  
switching stops and the output voltages start to drop at a rate  
dependent on standby current load. This causes the feedback  
voltage to rise. Once it passes V  
(500mV) switching  
BH  
resumes. The feedback voltage then falls and the process  
repeats. Burst mode operation alternately enables and  
disables switching of the power Sense FET thereby reducing  
switching loss in standby mode.  
4. Frequency Modulation : EMI reduction can be  
accomplished by modulating the switching frequency of a  
switched power supply. Frequency modulation can reduce  
EMI by spreading the energy over a wider frequency range  
than the band width measured by the EMI test equipment.  
The amount of EMI reduction is directly related to the depth  
of the reference frequency. As can be seen in Figure 9, the  
frequency changes from 63KHz to 69KHz in 4ms.  
Vo  
Voset  
VFB  
0.5V  
0.3V  
Drain current  
Ids  
Ts  
Ts  
Vds  
Ts  
fs  
69kHz  
66kHz  
63kHz  
time  
Switching  
Switching  
disabled  
disabled  
T4  
T2 T3  
T1  
Figure 10. Waveforms of burst operation  
4ms  
t
Figure 9. Frequency Modulation  
5. Soft Start : The FSCM0565R has an internal soft start  
circuit that increases PWM comparator inverting input  
voltage together with the Sense FET current slowly after it  
starts up. The typical soft start time is 15msec, The pulse  
width to the power switching device is progressively  
increased to establish the correct working conditions for  
transformers, rectifier diodes and capacitors. The voltage on  
the output capacitors is progressively increased with the  
intention of smoothly establishing the required output  
voltage. It also helps to prevent transformer saturation and  
reduce the stress on the secondary diode during startup.  
6. Burst operation : In order to minimize power dissipation  
in standby mode, the FSCM0565R enters into burst mode  
operation at light load condition. As the load decreases, the  
feedback voltage decreases. As shown in Figure 10, the  
12  
FSCM0565R  
Typical application circuit  
Application  
Output power  
40W  
Input voltage  
Universal input  
(85-265Vac)  
Output voltage (Max current)  
5V (2.0A)  
LCD Monitor  
12V (2.5A)  
Features  
• High efficiency (>81% at 85Vac input)  
• Low standby mode power consumption (<1W at 240Vac input and 0.4W load)  
• Low component count  
• Enhanced system reliability through various protection functions  
• Low EMI through frequency modulation  
• Internal soft-start (15ms)  
Key Design Notes  
• The delay time for over load protection is designed to be about 50ms with C106 of 47nF. If a faster triggering of OLP is  
required, C106 can be reduced to 22nF.  
• Using a resistor R106 on the current limit pin (#5), the pule-by-pulse current limit level is reduced to about 2A.  
• Zener diode ZD102 is used for a safety test such as UL. When the drain pin and feedback pin are shorted, the zener diode  
fails and remains short, which causes the fuse (F1) blown and prevents explosion of the opto-coupler (IC301). This zener  
diode also increases the immunity against line surge.  
1. Schematic  
D202  
MBRF10100  
T1  
EER3016  
L201  
12V, 2.5A  
10  
1
2
C202  
1000uF  
25V  
C201  
1000uF  
R102  
500k  
25V  
8
C104  
2.2nF  
1kV  
R103  
56kΩ  
2W  
R105  
D101 500kΩ  
UF 4007  
C103  
100uF  
400V  
3
BD101  
2
2KBP06M3N257  
FSCM0565RC  
1
5
1
3
3
Drain  
Vcc  
Ilimit  
C106  
47nF  
50V  
D201  
MBRF1045  
ZD102  
10V  
L202  
5V, 2A  
R106  
10kΩ  
1/4W  
4
Vfb  
4
7
4
D102  
TVR10G  
R104  
5Ω  
C204  
1000uF  
10V  
GND  
2
C105  
22uF  
50V  
C203  
1000uF  
C102  
220nF  
275VAC  
ZD101  
22V  
10V  
6
5
C301  
4.7nF  
LF101  
23mH  
R201  
1kΩ  
R101  
560kΩ  
1W  
R204  
5.6kΩ  
R202  
1.2kΩ  
R203  
10kΩ  
C205  
47nF  
IC301  
H11A817A  
IC201  
KA431  
F1  
C101  
220nF  
275VAC  
RT1  
5D-9  
FUSE  
250V  
2A  
R205  
5.6kΩ  
13  
FSCM0565R  
2. Transformer Schematic Diagram  
EER3016  
1
2
3
10  
9
Np/2  
Np/2  
N12V  
8
4
5
7
N5V  
6
Na  
3.Winding Specification  
No  
Pin (sf)  
4 5  
Wire  
0.2φ × 1  
Turns  
Winding Method  
Na  
8
Center Winding  
Insulation: Polyester Tape t = 0.050mm, 2Layers  
Np/2 2 1  
0.4φ × 1  
Insulation: Polyester Tape t = 0.050mm, 2Layers  
10 8  
0.3φ × 3  
Insulation: Polyester Tape t = 0.050mm, 2Layers  
N5V 7 6  
0.3φ × 3  
Insulation: Polyester Tape t = 0.050mm, 2Layers  
Np/2 3 2  
0.4φ × 1  
18  
7
Solenoid Winding  
Center Winding  
Center Winding  
Solenoid Winding  
N
12V  
3
18  
Outer Insulation: Polyester Tape t = 0.050mm, 2Layers  
4.Electrical Characteristics  
Pin  
Specification  
570uH ± 10%  
10uH Max  
Remarks  
100kHz, 1V  
2nd all short  
Inductance  
1 - 3  
1 - 3  
Leakage Inductance  
5. Core & Bobbin  
Core : EER 3016  
Bobbin : EER3016  
Ae(mm2) : 96  
14  
FSCM0565R  
6.Demo Circuit Part List  
Part  
F101  
Value  
2A/250V  
5D-9  
Note  
Part  
Value  
Note  
Fuse  
NTC  
C301  
4.7nF  
Polyester Film Cap.  
Inductor  
RT101  
L201  
L202  
5uH  
5uH  
Wire 1.2mm  
Wire 1.2mm  
Resistor  
R101  
R102  
R103  
R104  
R105  
R106  
R201  
R202  
R203  
R204  
R205  
560K  
500K  
56K  
5
1W  
1/4W  
2W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
Diode  
500K  
10K  
1K  
D101  
D102  
D201  
D202  
UF4007  
TVR10G  
MBRF1045  
10K  
1.2K  
5.6K  
5.6K  
MBRF10100  
ZD101 22V Zener diode  
ZD102 10V Zener diode  
Bridge Diode  
BD101 2KBP06M 3N257  
Bridge Diode  
Wire 0.4mm  
Capacitor  
C101  
C102  
C103  
C104  
C105  
C106  
C201  
C202  
C203  
C204  
C205  
220nF/275VAC  
220nF/275VAC  
100uF/400V  
10nF/1kV  
Box Capacitor  
Line Filter  
Box Capacitor  
LF101  
23mH  
Electrolytic Capacitor  
Ceramic Capacitor  
Electrolytic Capacitor  
Ceramic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Ceramic Capacitor  
IC  
IC101  
IC201  
IC301  
FSCM0565RC  
KA431(TL431)  
H11A817A  
FPSTM(7A,650V)  
Voltage reference  
Opto-coupler  
22uF/50V  
47nF/50V  
1000uF/25V  
1000uF/25V  
1000uF/10V  
1000uF/10V  
47nF/50V  
15  
FSCM0565R  
7. Layout  
Figure 11. Layout Considerations for FSCM0565RC  
Figure 12. Layout Considerations for FSCM0565RC  
16  
FSCM0565R  
Package Dimensions  
D2-PAK-5L  
17  
FSCM0565R  
Package Dimensions (Continued)  
TO-220-5L(Forming)  
18  
FSCM0565R  
Ordering Information  
Product Number  
FSCM0565RD  
Package  
D2-PAK-5L  
TO-220-5L  
Marking Code  
CM0565RD  
CM0565RC  
BVdss  
650V  
Rds(on)Max.  
2.2 Ω  
2.2 Ω  
FSCM0565RCYDTU  
650V  
19  
FSCM0565R  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
1/13/05 0.0m 001  
2005 Fairchild Semiconductor Corporation  

相关型号:

FSCM0565RCYDTU_NL

Switching Regulator, Current-mode, 20A, 72kHz Switching Freq-Max, PZFM6, TO-220, 6PIN
FAIRCHILD

FSCM0565RD

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RG

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RGWDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RI

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RIWDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0565RJ

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765R

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RC

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RCYDTU

7 A SWITCHING REGULATOR, PZFM5, TO-220, 5 PIN
ROCHESTER

FSCM0765RCYDTU_NL

Switching Regulator, Current-mode, 21A, 72kHz Switching Freq-Max, PSFM6, TO-220, 6 PIN
FAIRCHILD

FSCM0765RD

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD