FSCM0565RJ [FAIRCHILD]

Green Mode Fairchild Power Switch (FPS); 绿色模式飞兆功率开关( FPS )
FSCM0565RJ
型号: FSCM0565RJ
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Green Mode Fairchild Power Switch (FPS)
绿色模式飞兆功率开关( FPS )

开关
文件: 总20页 (文件大小:491K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FSCM0765R  
TM  
Green Mode Fairchild Power Switch (FPS )  
Features  
• Internal Avalanche Rugged SenseFET  
• Low Start-up Current (max 40uA)  
• Low Power Consumption under 1 W at 240VAC and  
0.4W Load  
OUTPUT POWER TABLE  
(3)  
230VAC ±15%  
85-265VAC  
PRODUCT  
Adapt-  
er  
Open  
Frame  
Adapt- Open  
er  
(1)  
(2)  
(1)  
(2)  
Frame  
• Precise Fixed Operating Frequency (66kHz)  
• Frequency Modulation for low EMI  
• Pulse by Pulse Current Limiting (Adjustable)  
• Over Voltage Protection (OVP)  
• Over Load Protection (OLP)  
• Thermal Shutdown Function (TSD)  
• Auto-Restart Mode  
• Under Voltage Lock Out (UVLO) with Hysteresis  
• Built-in Soft Start (15ms)  
FSCM0565RJ  
FSCM0765RJ  
FSCM0565RI  
FSCM0765RI  
FSCM0565RG  
FSCM0765RG  
50W  
65W  
50W  
65W  
70W  
85W  
65W  
70W  
65W  
70W  
85W  
95W  
40W  
50W  
40W  
50W  
60W  
70W  
50W  
60W  
50W  
60W  
70W  
85W  
Table 1. Maximum Output Power  
Notes:  
1. Typical continuous power in a non-ventilated enclosed  
adapter measured at 50°C ambient.  
2. Maximum practical continuous power in an open-frame  
Application  
• SMPS for VCR, SVR, STB, DVD and DVCD  
• Adaptor  
design at 50°C ambient.  
• SMPS for LCD Monitor  
3. 230 VAC or 100/115 VAC with doubler.  
Related Application Notes  
AN-4137: Design Guidelines for Off-line Flyback  
Converters Using Fairchild Power Switch (FPS)  
AN-4140: Transformer Design Consideration for off-line  
Flyback Converters using Fairchild Power Switch  
AN-4141: Troubleshooting and Design Tips for Fairchild  
Power Switch Flyback Applications  
Typical Circuit  
DC  
OUT  
AN-4148: Audible Noise Reduction Techniques for FPS  
Applications  
AC  
IN  
Drain  
Description  
PWM  
The FSCM0765R is an integrated Pulse Width Modulator  
(PWM) and SenseFET specifically designed for high  
performance offline Switch Mode Power Supplies (SMPS)  
with minimal external components. This device is an  
integrated high voltage power switching regulator which  
combines an avalanche rugged SenseFET with a current  
mode PWM control block. The PWM controller includes  
integrated fixed frequency oscillator, under voltage lockout,  
leading edge blanking (LEB), optimized gate driver, internal  
soft start, temperature compensated precise current sources  
for a loop compensation, and self protection circuitry.  
Compared with a discrete MOSFET and PWM controller  
solution, it can reduce total cost, component count, size, and  
weight while simultaneously increasing efficiency, productivity,  
and system reliability. This device is a basic platform well  
suited for cost effective designs of flyback converters.  
Ilimit  
Vfb  
Vcc GND  
Figure 1. Typical Flyback Application  
Rev.1.1.0  
©2005 Fairchild Semiconductor Corporation  
FSCM0765R  
Internal Block Diagram  
VCC  
3
N.C  
5
Drain  
1
Vcc Good  
Internal  
Bias  
Vref  
8V/12V  
+
0.3/0.5V  
Freq.  
Modulation  
-
Vcc  
Idelay  
Vcc  
OSC  
IFB  
PWM  
S
Q
Q
2.5R  
FB  
4
6
Gate  
Driver  
R
R
Soft start  
0.3K  
LEB  
I_limit  
VSD  
VCC  
VOVP  
TSD  
2
GND  
S
Q
Q
R
Vcc Good  
Vcc UV Reset  
Figure 2. Functional Block Diagram of FSCM0765R  
2
FSCM0765R  
Pin Definitions  
Pin Number  
Pin Name  
Pin Function Description  
This pin is the high voltage power SenseFET drain. It is designed to drive the  
transformer directly.  
1
2
Drain  
GND  
This pin is the control ground and the SenseFET source.  
This pin is the positive supply voltage input. Initially, During start up, the power is  
supplied through the startup resistor from DC link. When Vcc reaches 12V, the  
power is supplied from the auxiliary transformer winding.  
3
V
CC  
This pin is internally connected to the inverting input of the PWM comparator.  
The collector of an optocoupler is typically tied to this pin. For stable operation, a  
4
Feedback (FB) capacitor should be placed between this pin and GND. If the voltage of this pin  
reaches 6.0V, the over load protection is activated resulting in shutdown of the  
FPS.  
5
6
N.C.  
This pin is not connected.  
This pin is for the pulse by pulse current limit level programming. By using a  
resistor to GND on this pin, the current limit level can be changed. If this pin is  
left floating, the typical current limit will be 3.0A.  
I_limit  
Pin Configuration  
FSCM0765RI  
I2-PAK-6L  
FSCM0765RJ  
D2-PAK-6L  
6 : I_limit  
5 : N.C.  
4 : FB  
3 : Vcc  
2 : GND  
6 : I_limit  
5 : N.C.  
4 : FB  
3 : Vcc  
2 : GND  
1 : Drain  
1 : Drain  
FSCM0765RG  
TO-220-6L  
6. I_limit  
5. N.C.  
4. FB  
3. Vcc  
2. GND  
1. Drain  
Figure 3. Pin Configuration (Top View)Absolute Maximum Ratings  
3
FSCM0765R  
(Ta=25°C, unless otherwise specified.)  
Parameter  
Drain-Source (GND) Voltage (1)  
Symbol  
Value  
650  
650  
±30  
21  
Unit  
V
V
DSS  
Drain-Gate Voltage (R =1MΩ)  
V
V
GS  
DGR  
Gate-Source (GND) Voltage  
Drain Current Pulsed (2)  
V
V
GS  
I
A
DC  
DM  
Continuous Drain Current (D2-PAK, I2-PAK)  
@ Tc = 25°C  
I
I
5.3  
3.4  
A
A
D
D
DC  
@ Tc =100°C  
DC  
Continuous Drain Current (TO-220)  
@ Tc = 25°C  
I
I
7
A
DC  
A
DC  
V
D
@ Tc =100°C  
4.4  
20  
D
Supply Voltage  
V
CC  
Analog Input Voltage Range  
Total Power Dissipation (D2-PAK,I2-PAK)  
Total Power Dissipation (TO-220)  
Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature Range  
V
-0.3 to V  
83  
V
FB  
CC  
P
W
W
D
D
P
145  
T
Internally limited  
-25 to +85  
°C  
°C  
°C  
kV  
J
T
A
STG  
-
T
-55 to +150  
ESD Capability, HBM Model  
(All pins except Vfb)  
2.0  
(GND-Vfb = 1.5kV)  
(Vcc-Vfb = 1.0kV)  
ESD Capability, Machine Model  
(All pins except Vfb)  
300  
V
-
(GND-Vfb = 250V)  
(Vcc-Vfb = 100V)  
Notes:  
1. T = 25°C to 150°C  
j
2. Repetitive rating: Pulse width limited by maximum junction temperature.  
Thermal Impedance  
Parameter  
Symbol  
Value  
-
Unit  
°C/W  
°C/W  
°C/W  
(1)  
Junction-to-Ambient Thermal  
Junction-to-Case Thermal (D2-PAK, I2-PAK)  
Junction-to-Case Thermal (TO-220)  
θJA  
(2)  
θJC  
1.5  
0.9  
(2)  
θJC  
Note:  
1. Free standing with no heat-sink under natural convection  
2. Infinite cooling condition - Refer to the SEMI G30-88.  
4
FSCM0765R  
Electrical Characteristics  
(Ta = 25°C unless otherwise specified.)  
Parameter  
SenseFET SECTION  
Symbol  
Condition  
Min. Typ. Max. Unit  
Drain Source Breakdown Voltage  
BV  
DSS  
V
= 0V, I = 250μA  
650  
-
-
-
V
μA  
Ω
GS  
D
V
V
= Max, Rating  
= 0V  
DS  
GS  
Zero-Gate-Voltage Current  
I
-
-
500  
1.6  
DSS  
Static Drain Source on Resistance (1)  
R
V
= 10V, I = 2.3A  
D
1.4  
DS(ON)  
GS  
V
= 0V, V  
= 25V,  
DS  
GS  
f = 1MHz  
Output Capacitance  
C
-
100  
-
pF  
OSS  
Turn on Delay Time  
Rise Time  
T
V
= 325V, I = 5A  
DD  
-
-
-
-
25  
60  
-
-
-
-
D(ON)  
D
(MOSFET switching  
time is essentially  
independent of  
T
R
ns  
Turn off Delay Time  
Fall Time  
T
115  
65  
D(OFF)  
operating temperature)  
T
F
CONTROL SECTION  
Initial Frequency  
F
V
= 14V, V = 5V  
CC FB  
60  
-
66  
±3  
4
72  
-
kHz  
kHz  
ms  
%
OSC  
Modulated Frequency Range  
Frequency Modulation Cycle  
Voltage Stability  
ΔF  
-
-
mod  
T
-
-
mod  
F
10V V  
17V  
CC  
0
1
3
STABLE  
Temperature Stability (2)  
Maximum Duty Cycle  
Minimum Duty Cycle  
Start Threshold Voltage  
Stop Threshold Voltage  
Feedback Source Current  
Soft-start Time  
ΔF  
25°C Ta +85°C  
-
±5  
80  
-
±10  
85  
0
%
OSC  
DMAX  
DMIN  
-
-
75  
-
%
%
V
V
V
V
= GND  
= GND  
= GND  
11  
7
12  
8
13  
9
V
START  
FB  
FB  
FB  
V
V
STOP  
I
0.7  
10  
-
0.9  
15  
300  
1.1  
20  
-
mA  
ms  
ns  
FB  
T
-
SS  
Initial Frequency  
T
-
LEB  
BURST MODE SECTION  
V
Vcc = 14V  
Vcc = 14V  
0.4  
0.5  
0.3  
0.6  
V
V
BH  
Burst Mode Voltages (2)  
VB  
0.24  
0.36  
L
Notes:  
1. Pulse Test: Pulse width 300μS, duty 2%  
2. These parameters, although guaranteed at the design, are not tested in mass production.  
5
FSCM0765R  
PROTECTION SECTION  
Peak Current Limit(2)  
I
V
= 14V, V = 5V  
FB  
2.64  
18  
3
19  
145  
5.3  
6
3.36  
20  
A
V
LIM  
CC  
Over Voltage Protection  
Thermal Shutdown Temperature(1)  
ShutdownDelay Current  
Shutdown Feedback Voltage  
TOTAL DEVICE SECTION  
Startup Current  
V
-
OVP  
T
130  
3.5  
5.5  
160  
7
°C  
μA  
V
SD  
DELAY  
I
V
V
= 4V  
FB  
FB  
V
> 5.5V  
6.5  
SD  
I
-
-
20  
40  
5
μA  
start  
I
V
V
= 10V, V = 0V  
FB  
OP(MIN)  
CC  
CC  
Operating Supply Current(3)  
2.5  
mA  
I
= 20V, V = 0V  
FB  
OP(MAX)  
Notes:  
1. These parameters, although guaranteed at the design, are not tested in mass production.  
2. These parameters indicate the inductor current.  
3. This parameter is the current flowing into the control IC.  
6
FSCM0765R  
Comparison Between FSDM07652R and FSCM0765R  
Function  
FSDM07652R  
FSCM0765R  
N/A  
Frequency Modulation  
Available  
• Modulated frequency range (DF  
) = ±3kHz  
mod  
) = 4ms  
• Frequency modulation cycle (T  
mod  
Pulse-by-pulse Current Limit • Internally fixed (2.5A) • Programmable using external resistor (3A max)  
Internal Startup Circuit  
• Available  
• N/A (Requires a startup resistor)  
• Startup current: 40uA (max)  
7
FSCM0765R  
Typical Performance Characteristics  
(These Characteristic Graphs are Normalized at Ta= 25°C.)  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125  
Junction Temperature (  
)
Junction Temperature (  
)
Figure 4. Startup Current vs. Temp  
Figure 7. Start Threshold Voltage vs. Temp  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125  
Junction Temperature (  
)
Junction Temperature (  
)
Figure 8. Initial Freqency vs. Temp  
Figure 5. Stop Threshold Voltage vs. Temp  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125  
Junction Temperature (  
)
Junction Temperature (  
)
Figure 9. Feedback Source Current vs. Temp  
Figure 6. Maximum Duty Cycle vs. Temp  
8
FSCM0765R  
Typical Performance Characteristics (Continued)  
(These Characteristic Graphs are Normalized at Ta= 25°C.)  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125  
Junction Temperature (  
)
Junction Temperature (  
)
Figure 10. ShutDown Feedback Voltage vs. Temp  
Figure 13. ShutDown Delay Current vs. Temp  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125  
Junction Temperature (  
)
Junction Temperature (  
)
Figure 11. Burst Mode Enable Voltage vs. Temp  
Figure 14. Burst Mode Disable Voltage vs. Temp  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
1.20  
1.12  
1.04  
0.96  
0.88  
0.80  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125  
Junction Temperature (  
)
Junction Temperature (  
)
Figure 12. Macimum Drain Current vs. Temp  
Figure 15. Operating Supply Current vs. Temp  
9
FSCM0765R  
Functional Description  
1. Startup: Figure 16 shows the typical startup circuit and  
transformer auxiliary winding for the FSCM0765R  
application. Before the FSCM0765R begins switching, it  
consumes only startup current (typically 25uA) and the  
current supplied from the DC link supply current consumed  
min  
1
-----------  
I
= ( 2 Vlinemin Vstart) ⋅  
sup  
R
str  
min  
where V  
is the minimum input voltage, V  
is the  
start  
line  
start voltage (12V) and R is the startup resistor. The startup  
str  
resistor should be chosen so that I  
sup  
maximum startup current (40uA). If not, Vcc can not be  
charged to the start voltage and FPS will fail to start up.  
min  
is larger than the  
by the FPS (Icc), and charges the external capacitor (C ) that  
a
is connected to the Vcc pin. When Vcc reaches start voltage  
of 12V (VSTART), the FSCM0765R begins switching, and the  
current consumed by FSCM0765R increases to 3mA. Then,  
the FSCM0765R continues its normal switching operation  
and the power required for this device is supplied from the  
transformer auxiliary winding, unless Vcc drops below the  
stop voltage of 8V (VSTOP). To guarantee the stable operation  
of the control IC, Vcc has under voltage lockout (UVLO)  
with 4V hysteresis. Figure 17 shows the relation between the  
current consumed by the FPS (Icc) and the supply voltage  
(Vcc).  
2. Feedback Control: The FSCM0765R employs current  
mode control, as shown in Figure 18. An opto-coupler (such  
as the H11A817A) and a shunt regulator (such as the  
KA431) are typically used to implement the feedback  
network. Comparing the feedback voltage with the voltage  
across the Rsense resistor makes it possible to control the  
switching duty cycle. When the reference pin voltage of the  
KA431 exceeds the internal reference voltage of 2.5V, the  
H11A817A LED current increases, thus pulling down the  
feedback voltage and reducing the duty cycle. This event  
typically happens when the input voltage is increased or the  
output load is decreased.  
CDC  
2.1 Pulse-by-pulse Current Limit: Because current mode  
control is employed, the peak current through the SenseFET  
is determined by the inverting input of the PWM comparator  
(Vfb*) as shown in Figure 18. When the current through the  
opto transistor is zero and the current limit pin (#5) is left  
AC line  
min  
max  
(Vline  
- Vline  
)
I
SUP  
Rstr  
floating, the feedback current source (I ) of 0.9mA flows  
FB  
only through the internal resistor (R+2.5R=2.8k). In this  
case, the cathode voltage of diode D2 and the peak drain  
current have maximum values of 2.5V and 3A, respectively.  
The pulse-by-pulse current limit can be adjusted using a  
resistor to GND on the current limit pin (#5). The current  
Da  
VC C  
IC C  
FSCM0765R  
Ca  
limit level using an external resistor (R  
) is given by:  
LIM  
RLIM 3A  
------------------------------------  
ILIM  
=
2.8kΩ + RLIM  
Figure 16. Startup Circuit  
Vcc  
Vref  
IFB 0.9mA  
ICC  
Idelay  
Vfb  
Vo  
SenseFET  
OSC  
4
H11A817A  
D1  
D2  
CB  
2.5R  
R
0.3k  
+
Vfb*  
Gate  
driver  
3mA  
KA431  
6
-
RLI M  
Power Up  
OLP  
Power Down  
Rsense  
VSD  
25uA  
VCC  
Vstop=8V  
Vstart=12V  
Vz  
Figure 18. Pulse Width Modulation (PWM) Circuit  
Figure 17. Relation Between Operating Supply Current  
and Vcc Voltage  
The minimum current supplied through the startup resistor is  
given by  
10  
FSCM0765R  
2.2 Leading Edge Blanking (LEB): At the instant the  
internal SenseFET is turned on, there usually exists a high  
current spike through the SenseFET, caused by primary-side  
capacitance and secondary-side rectifier reverse recovery.  
Excessive voltage across the Rsense resistor can lead to  
incorrect feedback operation in the current mode PWM  
control. To counter this effect, the FSCM0765R employs a  
leading edge blanking (LEB) circuit. This circuit inhibits the  
To avoid this undesired operation, the over load protection  
circuit is designed to be activated after a specified time to  
determine whether it is a transient situation or an overload  
situation. Because of the pulse-by-pulse current limit  
capability, the maximum peak current through the SenseFET  
is limited, and therefore the maximum input power is  
restricted with a given input voltage. If the output consumes  
beyond this maximum power, the output voltage (Vo)  
decreases below the set voltage. This reduces the current  
through the opto-coupler LED, which also reduces the opto-  
coupler transistor current, thus increasing the feedback  
voltage (Vfb). If Vfb exceeds 2.5V, D1 is blocked and the  
PWM comparator for a short time (T  
is turned on.  
) after the SenseFET  
LEB  
3. Protection Circuit: The FSCM0765R has several self  
protective functions such as over load protection (OLP), over  
voltage protection (OVP) and thermal shutdown (TSD).  
Because these protection circuits are fully integrated into the  
IC without external components, the reliability can be  
improved without increasing cost. Once the fault condition  
occurs, switching is terminated and the SenseFET remains  
off. This causes Vcc to fall. When Vcc reaches the UVLO  
stop voltage of 8V, the current consumed by the  
FSCM0765R decreases to the startup current (typically  
25uA) and the current supplied from the DC link charges the  
5.3uA current source (I  
) starts to charge C slowly up to  
B
delay  
Vcc. In this condition, Vfb continues increasing until it  
reaches 6V, when the switching operation is terminated as  
shown in Figure 20. The delay time for shutdown is the time  
required to charge C from 2.5V to 6.0V with 5.3uA (I  
delay  
).  
B
In general, a 10 ~ 50 ms delay time is typical for most  
applications.  
VFB  
external capacitor (C ) that is connected to the Vcc pin.  
a
Over Load Protection  
When Vcc reaches the start voltage of 12V, the FSCM0765R  
resumes its normal operation. In this manner, the auto-restart  
can alternately enable and disable the switching of the power  
SenseFET until the fault condition is eliminated (see Figure  
19).  
6.0V  
2.5V  
Fault  
occurs  
Fault  
removed  
T12= Cfb*(6.0-2.5)/Idelay  
Power  
on  
Vds  
T1  
T2  
t
Figure 20. Over Load Protection  
3.2 Over Voltage Protection (OVP): If the secondary side  
feedback circuit were to malfunction or a solder defect  
caused an open in the feedback path, the current through the  
opto-coupler transistor becomes almost zero. Then, Vfb  
climbs up in a similar manner to the over load situation,  
forcing the preset maximum current to be supplied to the  
SMPS until the over load protection is activated. Because  
more energy than required is provided to the output, the  
output voltage may exceed the rated voltage before the over  
load protection is activated, resulting in the breakdown of the  
devices in the secondary side. To prevent this situation, an  
over voltage protection (OVP) circuit is employed. In  
general, Vcc is proportional to the output voltage and the  
FSCM0765R uses Vcc instead of directly monitoring the  
Vcc  
12V  
8V  
t
Normal  
Operation  
Fault  
Situation  
Normal  
Operation  
Figure 19. Auto Restart Operation  
output voltage. If V  
exceeds 19V, an OVP circuit is  
CC  
activated resulting in the termination of the switching  
operation. To avoid undesired activation of OVP during  
normal operation, Vcc should be designed to be below 19V.  
3.1 Over Load Protection (OLP): Overload is defined as  
the load current exceeding a pre-set level due to an  
unexpected event. In this situation, the protection circuit  
should be activated to protect the SMPS. However, even  
when the SMPS is in the normal operation, the over load  
protection circuit can be activated during the load transition.  
11  
FSCM0765R  
3.3 Thermal Shutdown (TSD): The SenseFET and the  
control IC are built in one package. This makes it easy for  
the control IC to detect the heat generation from the  
SenseFET. When the temperature exceeds approximately  
145°C, the thermal protection is triggered resulting in  
shutdown of the FPS.  
feedback voltage drops below VBL (300mV). At this point  
switching stops and the output voltages start to drop at a rate  
dependent on standby current load. This causes the feedback  
voltage to rise. Once it passes VBH (500mV), switching  
resumes. The feedback voltage then falls, and the process  
repeats. Burst mode operation alternately enables and  
disables switching of the power SenseFET, thereby reducing  
switching loss in standby mode.  
4. Frequency Modulation: EMI reduction can be  
accomplished by modulating the switching frequency of a  
switched power supply. Frequency modulation can reduce  
EMI by spreading the energy over a wider frequency range  
than the band width measured by the EMI test equipment.  
The amount of EMI reduction is directly related to the depth  
of the reference frequency. As can be seen in Figure 21, the  
frequency changes from 63KHz to 69KHz in 4ms.  
Vo  
Voset  
VFB  
0.5V  
0.3V  
Drain Current  
Ids  
Ts  
Ts  
Vds  
Ts  
fs  
time  
Switching  
Switching  
69kHz  
66kHz  
63kHz  
disabled  
disabled  
T4  
T2 T3  
T1  
Figure 22. Waveforms of Burst Operation  
4ms  
t
Figure 21. Frequency Modulation  
5. Soft Start: The FSCM0765R has an internal soft start  
circuit that increases PWM comparator inverting input  
voltage together with the SenseFET current slowly after it  
starts up. The typical soft start time is 15ms. The pulse width  
to the power switching device is progressively increased to  
establish the correct working conditions for transformers,  
rectifier diodes and capacitors. The voltage on the output  
capacitors is progressively increased with the intention of  
smoothly establishing the required output voltage.  
Preventing transformer saturation and reducing stress on the  
secondary diode during start up is also helpful.  
6. Burst Operation: To minimize power dissipation in  
standby mode, the FSCM0765R enters into burst mode  
operation at light load condition. As the load decreases, the  
feedback voltage decreases. As shown in Figure 22, the  
device automatically enters into burst mode when the  
12  
FSCM0765R  
Typical application circuit  
Application  
Output Power  
40W  
Input Voltage  
Universal Input  
(85-265Vac)  
Output Voltage (Max Current)  
5V (2.0A)  
LCD Monitor  
12V (2.5A)  
Features  
• High efficiency (>81% at 85Vac input)  
• Low standby mode power consumption (<1W at 240Vac input and 0.4W load)  
• Low component count  
• Enhanced system reliability through various protection functions  
• Low EMI through frequency modulation  
• Internal soft-start (15ms)  
Key Design Notes  
• Resistors R102 and R105 are employed to prevent start-up at low input voltage  
• The delay time for over load protection is designed to be about 50ms with C106 of 47nF. If a faster triggering of OLP is  
required, C106 can be reduced to 22nF.  
1. Schematic  
L20  
1
D202  
T1  
EER3016  
MBRF10100  
12V,  
2.5A  
10  
8
C202  
1000u  
F
1
2
C201  
1000uF  
25V  
R102  
500kΩ  
C104  
2.2nF  
1kV  
25V  
R103  
56kΩ  
2W  
R105  
D101 500kΩ  
UF 4007  
C103  
100uF  
400V  
3
BD101  
2
2KBP06M3N257  
FSCM0765R  
1
1
3
6
3
Drain  
Vcc  
Ilimit  
L20  
2
R106  
5kΩ  
1/4W  
D201  
MBRF1045  
5
4
N.C  
5V, 2A  
Vf  
b
4
7
4
C204  
1000u  
F
D102  
TVR10G  
R104  
5Ω  
GND  
2
C105  
22uF  
50V  
C203  
1000uF  
10V  
C102  
220nF  
275VA  
C
C106  
47nF  
50V  
ZD10  
1
22V  
10V  
6
5
C301  
4.7n  
F
LF101  
23mH  
R201  
1kΩ  
R101  
560kΩ  
1W  
R204  
5.6kΩ  
R202  
1.2kΩ  
R203  
10kΩ  
C205  
47nF  
IC301  
H11A817A  
IC201  
KA431  
C101  
220nF  
275VA  
C
F1  
RT1  
5D-9  
FUSE  
250V  
2A  
R205  
5.6kΩ  
Figure 23. Demo Circuit  
13  
FSCM0765R  
2. Transformer  
EER3016  
1
2
3
10  
9
Np/2  
Np/2  
N12V  
8
4
5
7
N5V  
6
Na  
Figure 24. Transformer Schematic Diagram  
3.Winding Specification  
No  
Pin (sf)  
4 5  
Wire  
0.2φ × 1  
Turns  
Winding Method  
Na  
8
Center Winding  
Insulation: Polyester Tape t = 0.050mm, 2Layers  
Np/2 2 1  
0.4φ × 1  
Insulation: Polyester Tape t = 0.050mm, 2Layers  
10 8  
0.3φ × 3  
Insulation: Polyester Tape t = 0.050mm, 2Layers  
N5V 7 6  
0.3φ × 3  
Insulation: Polyester Tape t = 0.050mm, 2Layers  
Np/2 3 2  
0.4φ × 1  
18  
7
Solenoid Winding  
Center Winding  
Center Winding  
Solenoid Winding  
N
12V  
3
18  
Outer Insulation: Polyester Tape t = 0.050mm, 2Layers  
4.Electrical Characteristics  
Pin  
Specification  
520uH ± 10%  
10uH Max  
Remarks  
Inductance  
1 - 3  
1 - 3  
100kHz, 1V  
2
nd all Short  
Leakage Inductance  
5. Core & Bobbin  
Core: EER 3016  
Bobbin: EER3016  
Ae(mm2): 96  
14  
FSCM0765R  
6. Demo Circuit Part List  
Part  
F101  
Value  
2A/250V  
5D-9  
Note  
Part  
Value  
Note  
Fuse  
NTC  
C301  
4.7nF  
Polyester Film Cap.  
Inductor  
RT101  
L201  
L202  
5uH  
5uH  
Wire 1.2mm  
Wire 1.2mm  
Resistor  
R101  
R102  
R103  
R104  
R105  
R106  
R201  
R202  
R203  
R204  
R205  
560K  
500K  
56K  
5
1W  
1/4W  
2W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
Diode  
500K  
5K  
D101  
D102  
D201  
D202  
UF4007  
TVR10G  
1K  
MBRF1045  
10K  
1.2K  
5.6K  
5.6K  
MBRF10100  
Bridge Diode  
BD101 2KBP06M 3N257  
Bridge Diode  
Wire 0.4mm  
Capacitor  
C101  
C102  
C103  
C104  
C105  
C106  
C201  
C202  
C203  
C204  
C205  
220nF/275VAC  
220nF/275VAC  
100uF/400V  
10nF/1kV  
Box Capacitor  
Line Filter  
IC  
Box Capacitor  
LF101  
23mH  
Electrolytic Capacitor  
Ceramic Capacitor  
Electrolytic Capacitor  
Ceramic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Ceramic Capacitor  
IC101  
IC201  
IC301  
FSCM0765R  
KA431(TL431)  
H11A817A  
FPSTM  
22uF/50V  
Voltage Reference  
Opto-coupler  
47nF/50V  
1000uF/25V  
1000uF/25V  
1000uF/10V  
1000uF/10V  
47nF/50V  
15  
FSCM0765R  
Package Dimensions  
D2-PAK-6L  
A
10.10  
9.70  
1.40  
1.00  
MIN 9.50  
9.40  
9.00  
MIN 9.00  
(0.75)  
5.10  
10.00  
MAX0.80  
MIN 4.00  
4.70  
0.70  
0.50  
MAX1.10  
MIN 0.85  
2.19  
2.19  
1.75  
1.27  
3.81  
1.27  
1.75  
10.20  
9.80  
B
4.70  
4.30  
(8.58)  
(4.40)  
1.40  
1.25  
R0.45  
(1.75)  
(0.90)  
(7.20)  
15.60  
15.00  
SEE  
DETAIL A  
NOTES: UNLESS OTHERWISE SPECIFIED  
A) THIS PACKAGE DOES NOT COMPLY  
TO ANY CURRENT PACKAGING STANDARD.  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,  
MOLD FLASH, AND TIE BAR EXTRUSIONS.  
D) DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M-1994  
16  
FSCM0765R  
Package Dimensions (Continued)  
I2-PAK-6L (Forming)  
17  
FSCM0765R  
Package Dimensions (Continued)  
Dimensions in Millimeters  
TO-220-6L (Forming)  
4.70  
4.30  
10.10  
9.70  
1.40  
1.25  
2.90  
2.70  
15.90  
15.50  
20.00  
19.00  
(13.55)  
9.40  
9.00  
23.80  
23.20  
(0.65)  
R0.55  
R0.55  
(0.75)  
2.60  
2.20  
8.30  
7.30  
MAX0.80  
MAX1.10  
(7.15)  
0.70  
0.50  
0.60  
0.45  
2.19  
1.75  
3.48  
2.88  
1.27  
3.81  
10.20  
9.80  
18  
FSCM0765R  
Ordering Information  
Product Number  
FSCM0765RJ  
Package  
D2-PAK-6L  
I2-PAK-6L  
TO-220-6L  
Marking Code  
CM0765R  
BVdss  
650V  
Rds(on) Max.  
FSCM0765RIWDTU  
FSCM0765RGWDTU  
1.6 Ω  
19  
FSCM0765R  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
12/15/05 0.0m 001  
© 2004 Fairchild Semiconductor Corporation  

相关型号:

FSCM0765R

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RC

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RCYDTU

7 A SWITCHING REGULATOR, PZFM5, TO-220, 5 PIN
ROCHESTER

FSCM0765RCYDTU_NL

Switching Regulator, Current-mode, 21A, 72kHz Switching Freq-Max, PSFM6, TO-220, 6 PIN
FAIRCHILD

FSCM0765RD

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RG

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RGWDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RI

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RIWDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM0765RJ

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCM2.05BL

SC Fiber Optic Connectors
PANDUIT

FSCM2.0BL

SC Fiber Optic Connectors
PANDUIT