FMS2704T1C [FAIRCHILD]

Analog Circuit, 1 Func, PDSO24, TSSOP-24;
FMS2704T1C
型号: FMS2704T1C
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Analog Circuit, 1 Func, PDSO24, TSSOP-24

光电二极管
文件: 总39页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FMS 2 7 0 4 /FMS 2 7 0 4 L  
S m a rt TTV Ha rd w a re Mo n it o r  
Tachometer inputs are monitored continuously with speeds  
compared with internal limits stored in registers. Individual  
fan speeds can be sensed through the six TACH inputs.  
Features  
• Six tachometer inputs  
• Two analog/PWM fan-speed outputs  
• Fan speed controller mode  
• Dual remote thermal diode inputs  
• Local (on-chip) temperature sense  
Voltage monitoring  
Remote and local diode temperatures are monitored at a 1Hz  
rate. Diode temperatures are digitized to 1°C resolution prior  
to storage in remote and local temperature registers. Violations  
of temperature limits/trip points set interrupt register bits and  
assert the INT or THERM outputs.  
• Serial Bus access to internal registers  
• Thermal Alarm output  
• Maskable Interrupt output  
• Status & Configuration registers  
• Integrated Reset Generators  
Reset output, RST is asserted if STANDBY = L or VCC  
2.9/2.9/4.4V. Voltages V1-6 can be monitored in place of the  
diode inputs and tachometer inputs 5 and 6.  
Fan noise can be minimized using the Controller Mode to set  
speed as a function of temperature. Alternatively, external  
firmware/software can be used to control the fan speed volt-  
Description  
The FMS2704 is a Smart Tachometer/ Thermometer/  
Voltmeter with a fan speed control mode independent of  
system management software or BIOS. Outputs are two fan  
control voltages, THERM alarm and interrupt INT.  
ages, FAN_SPDA,B  
.
Supply voltages are 5.0V for the FMS2704 and 3.3V for the  
FMS2704L. Performance is specified from 0 to 85°C. Package  
is a 24-lead TSSOP  
Block Diagram  
OSC1  
OSC2  
3.58 MHz  
Oscillator  
Oscillator  
VCC  
ADD  
Main Reset  
RST  
Timing  
and Control  
STANDBY  
SDA  
SCL  
SMBus  
Interface  
Internal Reset  
TL, TR  
Fan Speed  
Controller  
Internal Bus  
8-bit DAC  
Converters  
FAN_SPDA  
FAN_SPDB  
Current  
Generators  
D/A  
8-bit DAC  
Converters  
Registers  
DXP1/V1  
DXN1/V2  
Low-pass  
Filter  
Interrupt  
Status  
Registers  
Voltage/  
Temperature  
Comparators  
A/D  
Converter  
THERM  
DSP  
DXP2/V3  
DXN2/V2  
Low-pass  
Filter  
Mux  
On-chip  
Temperature  
Sensor  
Interrupt  
Mask  
Register  
Trip & Limit  
Registers  
V5/V6  
Mask  
Gating  
INT  
TACHA1  
TACHB1  
TACHA2  
TACHB2  
Tachometers  
Configuration  
Register  
TACHA3/V5  
TACHB3/V6  
REV. 1.01 12/2/99  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Tachometers  
Architectural Overview  
Six tachometers monitor fan speed. Stored in each 8-bit  
tachometer register is the fan speed value expressed in 22.5kHz  
clock counts per blade revolution. Sensitivity is established by  
the Tachometer Divisor Register which matches pulse count-  
ing to the sensor pulses per revolution.  
As a sensor, the FMS2704 has three monitoring functions:  
1. Tachometer  
2. Thermometer  
3. Voltmeter.  
Each tachometer output is compared against a low speed  
threshold. A violation will trip the interrupt output to notify  
System Management software or BIOS that a fault has  
occurred.  
Additional functions are:  
1. Fan speed controller mode.  
2. Programmable dual fan speed outputs.  
3. Reset Generator.  
Thermometers  
There are three thermometers: two for remote sensing; one for  
measuring local temperature. All channels utilize the thermal  
variation of the voltage drop, VD across a diode, sampled at  
two currents to derive the diode temperature.  
Overall operation of the FMS2704 is controlled by the Serial  
Bus, which sets register values and interrupt masking. Ten of  
sixteen inputs can be monitored:  
1. Two remote thermal diode voltages.  
2. Local thermal diode voltage.  
To facilitate tracking of temperatures for controlling fan speed,  
upper and lower temperature limits can be loaded into the  
Limit Registers. If a limit is violated, the INT output is  
asserted to indicate that limits must be updated and fan speed  
changed. A remote diode open or short circuit fault will also  
assert INT. All interrupt sources are maskable.  
3. VCC voltage.  
4. Six tachometer, TACH.  
5. V4-1 voltages instead of external diode inputs.  
6. V6-5 voltages instead of TACHA3 and TACHB3.  
Maximum allowable remote and local temperatures are loaded  
into the Trip Point registers. If a Trip Point is violated, the  
THERM output is asserted warning that system temperature is  
too high.  
Following comparisons against either preset or programmable  
thresholds the following hardware outputs are set:  
1. Reset, RST if VCC is low.  
2. THERM if a remote or local thermometer trip point  
violated.  
Instead of sensing the change in VD at one current, which is  
approximately –2mV/°C, VD is sampled at two currents (IHI  
100 and ILO = 10µA) to cancel out common error voltages.  
=
3. Interrupt (INT), if:  
Difference voltage between the two currents is proportional to  
absolute temperature:  
a) Fan speed is low.  
b) Remote/Local High/Low temperature limit is violated.  
c) Remote diode fault.  
IHI  
nkT  
---------  
q
--------  
ILO  
VD  
=
1n  
d) V6-1 voltage out of tolerance.  
Register bits also indicate status:  
1. Fan speed error.  
where:  
n = PN junction ideality factor, typically 1.0065 for the  
Pentium II thermal diode.  
2. Remote high/low temperature limit violated.  
3. Local high/low temperature limit violated.  
4. THERM input asserted.  
k = Boltmann’s constant, 1.381 x 10-23 J.K-1  
T = Absolute temperature, °K  
5. Remote diode fault.  
6. Voltage error.  
q = Electron charge, 1.602 x 10-19  
C
2
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Nominal thermal diode sensitivity is 199.7µV/°C. Diode volt-  
age variation over a –40 to +125°C temperature range, is  
approximately 300 to 800mV, while the difference voltage  
variation is approximately 50 to 110mV. Overall sensitivity of  
the conversion is 1°C/lsb.  
By varying the balance between these parameters, over limited  
ranges, either local or remote temperatures can dominate the  
fan speed. With both remote temperature inputs processed  
against the same values, fan speed control parameters are  
established through three groups of six registers. There is one  
group for each temperature input, while within each group  
there are four registers containing the following data:  
Voltmeters  
1. FANLO7-0, the idle-speed fan-drive value if the  
temperature is below TEMPLO7-0.  
If the TACA3/V5, TACB3/V6 or the DX2-1/V4-1 inputs are  
configured to measure voltage, corresponding tachometer or  
diode registers are disabled. V6-1 inputs are sequentially sam-  
pled by anAnalog Multiplexer, prior to digitization by theA/D  
Converter with 8-bit accuracy over a 0–1300mV range. Using  
external voltage dividers, each incoming voltage should be  
normalized to 1000mV.  
2. TEMPLO7-0, the threshold for the start of fan drive rising  
from RFANLO7-0 in proportion to temperature minus  
TEMPLO7-0  
.
3. TEMPHI7-0, the limit above which the fan drive will  
have the value 255.  
Upper and Lower Voltage Thresholds are common to all six  
voltmeters. If an input violates a threshold, a flag is set in the  
Voltmeter Configuration Register. A voltage error will cause a  
maskable interrupt.  
4. SLOPE7-0 the incremental rate of fan speed versus  
temperature.  
Either the analog output from the D/A or the PWM digital out-  
put can be selected.  
Fan Speed Controller  
Reset Generators  
If the FMS2704 is operating in the controller mode, local and/  
or remote temperatures: TL, TR1 and TR2 establish the fan  
speed drive voltages or PWM output. Fan drive voltage range  
is 0–2.5V corresponding to 0–255 DAC value.  
If VCC 2.9/4.4V, then RST = L and internal reset is active,  
resetting all internal registers to default values.  
If the input STANDBY = L, then RST = L and the Standby  
Mode is active with sensing suspended and tachometer,  
temperatures and voltage register values frozen, while supply  
current is minimized. Internal reset in not active.  
Overall response to one sensor will be a straight-line segment  
that is defined by the upper and lower temperatures and the  
minimum fan speed. Maximum fan speed always corresponds  
to SPEED7-0 = 255.  
After input VCC > 2.9/4.4V and input, STANDBY = H, then  
RST = L for a timeout period of 0.2 seconds.  
Full Speed Value = 255  
Serial Interface  
Idle Speed  
Temperature  
Registers are accessed through an I2C/SMBus compatible  
Serial Interface located at the address selected by the A  
address pin.  
Full Speed  
Temperature  
Idle Speed  
Value  
Registers  
Temperature  
Registers setup the monitoring configuration and report status:  
For each temperature input, a fan speed value is calculated as a  
function of temperature along a straight line segment preset to  
match the thermal characteristics of the system environment.  
The value inserted into the fan speed register is the sum of the  
responses of the local and two remote diode segments. Updat-  
ing control points through the Serial Bus can change response.  
Configuration: Establish the mode of operation: Run/  
standby, Interrupt control, etc.  
Status: Report violations of limits or trip points and fault  
conditions.  
Tachometer: Fan speed periods.  
Temperature: Local and remote temperatures in °C.  
Voltage: Digitized voltage inputs.  
Remote and Local responses can be set up with different:  
1. Idle temperatures.  
2. Full speed temperatures.  
3. Idle speed values  
Limits: Tachometer, Temperature and Voltage limit and trip  
point values.  
Fan Speed Controller: minimum fan speed, lowest tempera-  
ture, slope.  
REV. 1.01 12/2/99  
3
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Pin Assignments  
No.  
1.  
Name  
OSC1  
OSC2  
RST  
No.  
13.  
14.  
15.  
16.  
17.  
18.  
19.  
20.  
21.  
22.  
23.  
24.  
Name  
DXP1/V1  
DXN1/V2  
DXP2/V3  
DXN2/V4  
TACHA3/V5  
TACHB3/V6  
VCCA  
2.  
3.  
4.  
THERM  
SDA  
5.  
6.  
SCL  
7.  
VCCD  
8.  
INT  
TACHB2  
TACHA2  
TACHB1  
TACHA1  
STANDBY  
9.  
ADD  
10.  
11.  
12.  
FAN_SPDA  
FAN_SPDB  
GND  
Pin Descriptions  
Pin Name  
Pin No.  
Type/Value  
Pin Function Description  
Analog I/O (11)  
DXP1/V1  
13  
Voltage input/  
current source  
External diode input/V1 sense.  
DISXD1 = 0: Current source to remote thermal diode 1 anode and  
voltage sense input.  
DISXD1 = 1: V1 voltage sense input (0–1000mV)  
DXN1/V2  
DXP2/V3  
DXN2/V4  
14  
15  
16  
Voltage input/  
current sink  
External diode input/V2 sense.  
DISXD1 = 0: Current sink from remote thermal diode 1 cathode and  
voltage sense input.  
DISXD1 = 1: V2 voltage sense input (0–1000mV)  
Voltage input/  
current source  
External diode input/V3 sense.  
DISXD2 = 0: Current source to remote thermal diode 1 anode and  
voltage sense input.  
DISXD2 = 1: V3 voltage sense input (0–1000mV)  
Voltage input/  
current sink  
External diode input/V4 sense.  
DISXD2 = 0: Current sink from remote thermal diode 1 cathode and  
voltage sense input.  
DISXD2 = 1: V4 voltage sense input (0–1000mV)  
TACHA3/V5  
TACHB3/V6  
FAN_SPDA,B  
OSC2-1  
17  
18  
Voltage input  
Voltage input  
Fan Tachometer 5/V5 sense. Dual function pin. 10Kpull-up  
TACH5 = 0: V5 Voltage input (0–1000mV)  
TACH5 = 1: Tachometer TACA3 Input  
Fan Tachometer 6/V6 sense. Dual function pin.  
TACH6 = 1: Tachometer TACB3 Input  
TACH6 = 0: V6 Voltage input (0–1000mV)  
10, 11 Analog/Digital  
output  
Fan A, B speed control. Analog (± 2mA) or PWM (± 12mA) output  
programmed from the Fan Speed Configuration Register. Analog  
output is 0–2.5V. External THERM = L forces a 2.5 volt output.  
2, 1  
Output/Input  
Oscillator/Clock Inputs. Connection to 3.58MHz external  
frequency reference: ceramic resonator across OSC2-1 or clock  
connected to OSC1.  
4
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Pin Descriptions (continued)  
Pin Name  
Serial Port (3)  
SDA  
Pin No.  
Type/Value  
Pin Function Description  
5
6
9
Bi-directional  
Input  
Data. Serial Bus data to/from FMS2704  
Clock. Serial Bus clock into FMS2704  
SCL  
ADD  
3-level  
Address Select Pins. Serial Port address select corresponding to  
H, L and Z levels.  
Digital Inputs/Outputs (6)  
TACHB2,  
TACHA2,  
TACHB1,  
TACHA1  
20, 21, Input  
22, 23  
Fan Tachometer 4-1 Inputs. One,two, four or eight pulses per  
revolution. Three tachometers inputs per bank of fans, A or B.  
10Kpull-up.  
THERM  
4
8
I/O (Open drain) Thermal Overload. Output THERM = L indicates that a temperature  
trip point has been exceeded. Input THERM = L sets the THERM bit  
in the Interrupt Status Register.  
INT  
Open drain  
Interrupt Output. INT = L when a voltage, temperature limit or  
temperature trip point is violated and bit 1 of the Configuration  
Register is set H.  
Reset (3)  
RST  
3
Output  
Input  
Reset. Output from Main Reset Generator, which is tripped by  
STANDBY = L or VCC < 2.9/4.4 volt.  
STANDBY  
24  
Standby Mode. Forces the Standby Mode with interrupts disabled  
and register read backs frozen. Initiates a master reset cycle.  
Current is minimized by powering down: D/A converters, A/D  
converters, serial bus ADD detection. The STANDBY pin should  
biased to VCC through a 20Kpull-up resistor.  
Power and Ground (2)  
VCCD  
VCCA  
GND  
7
+3.3/5V  
+3.3/5V  
0 V  
Digital Supply Voltage.  
19  
12  
Analog Supply Voltage.  
Ground. Return for VCC supply.  
Addressable Memory  
FMS2704 Memory Map  
Name  
Address (hex)  
POR[7:0] (hex)  
Thermometer  
PTL7-0  
0x13  
0x14  
0x16  
0x17  
0x18  
0x19  
0x20  
0x21  
0x22  
0x23  
0x24  
0x46  
0x64  
0x00  
0x46  
0x64  
0x00  
0x16  
0x15  
0x14  
0x20  
0x02  
70°C  
PTR7-0  
100°C  
SPEEDA7-0  
FTL7-0  
70°C  
FTR7-0  
100°C  
SPEEDB7-0  
TR27-0  
22°C  
21°C  
20°C  
32°C  
02°C  
TR17-0  
TL7-0  
TR2HI7-0  
TR2LO7-0  
REV. 1.01 12/2/99  
5
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
FMS2704 Memory Map (continued)  
Name  
Address (hex)  
POR[7:0] (hex)  
0x04  
TRAVE, TLAVE  
TRSENS13-8  
TRSENS7-0  
TROS7-0  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x37  
0x38  
0x39  
0x3A  
Temperature samples averaged  
0x16  
5708 + TROS8  
5708  
0x4C  
0xF8  
249-1  
TLSENS13-8  
TLSENS7-0  
TLOS7-0  
0x53  
5008 + TLOS8  
5008  
0x90  
0x08  
265-1  
TR1HI7-0  
0x1F  
31°C  
TR1LO7-0  
0x01  
01°C  
TLHI7-0  
0x1E  
30°C  
TLLO7-0  
0x00  
0°C  
Global  
Manufacturer ID  
Version, Revision  
Configuration  
Interrupt Status  
Interrupt Mask  
Fan Speed Configuration  
0x3E  
0x3F  
0x40  
0x41  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0xFC  
0x10  
0x05  
0x00  
0x00  
0x00  
reserved  
reserved  
reserved  
reserved  
N/A  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
Tachometer  
TACA17-0  
TACA27-0  
TACA37-0  
TACB17-0  
TACB27-0  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
00  
00  
0x00  
0x00  
0x00  
6
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
FMS2704 Memory Map (continued)  
Name  
Address (hex)  
POR[7:0] (hex)  
TACB37-0  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x00  
reserved  
TACHTRIPA7-0  
0xFF  
Bank A speed boundary  
reserved  
TACHTRIPB7-0  
0xFF  
0x00  
0x00  
0x09  
0x3F  
Bank B speed boundary  
Tachometer Status  
Tachometer Mask  
Tachometer Divisor  
Divide by 2, A and B banks  
Tachometer Configuration  
Voltage  
Voltage V17-0  
Voltage V27-0  
Voltage V37-0  
Voltage V47-0  
Voltage V57-0  
Voltage V67-0  
VHI7-0  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0c7A  
0x7C  
0x7D  
0x7E  
0x7F  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x01  
0x00  
0xF0  
0x00  
Voltage High Limit  
Voltage Low Limit  
VLO7-0  
Voltmeter Configuration  
Voltage Error  
Voltage Mask  
VAVE  
Voltage samples averaged  
VSENS13-8  
VSENS7-0  
0 + VOS8  
240  
VOS7-0  
Zero offset  
Controller  
SPEEDLOA7-0  
TLLOA7-0  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Controller A low speed  
Controller A local low temp  
Controller A local slope  
SLOPEAL7-0  
TRLOA17-0  
SLOPEA17-0  
TRLOA27-0  
SLOPEA27-0  
SPEEDLOB7-0  
TLLOB7-0  
Controller A remote low temp 1  
Controller A remote slope 1  
Controller A remote low temp 2  
Controller A remote slope 2  
Controller B low speed  
Controller B local low temp  
Controller B local slope  
SLOPEBL7-0  
TRLOB17-0  
SLOPEB17-0  
TRLOB27-0  
SLOPEB27-0  
Controller Configuration  
Controller B remote low temp 1  
Controller B remote slope 1  
Controller B remote low temp 2  
Controller B remote slope 2  
Fan Speed Controller Modes  
REV. 1.01 12/2/99  
7
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Global Register Definitions  
Address  
0x3E  
Name  
MFR7-0  
NUM7-0  
Type  
R
Description  
Manufacturer ID. Value is FC.  
0x3F  
R
Version and Revision. NUM7-4 = 1, the FMS2704 version number.  
NUM3-0 = revision number.  
Configuration Register (0x40)  
BIT#  
Name  
Type  
Description  
0
START  
R/W  
Start Temperature and Voltage Monitoring. (Power-up default = 1)  
0: Standby mode. (INT is not cleared)  
1: Run. All limit and trip values should be entered into FMS2704 registers  
prior to setting START = 1.  
1
2
INT_EN  
R/W  
R/W  
Interrupt Enable  
0: Disabled (Power-up default)  
1: Enables the INT output.  
INT_CLR  
Interrupt Clear. (Power-up default = 1)  
0: INT output unaffected.  
1: Clears the INT output. Contents of the Interrupt Status Register  
preserved.  
3
TRIP_LOCK R/(W-once) Temperature Trip Point Lock. (Power-up default = 0)  
0:  
1. THERM limits are the fixed values: FTL7-0 and FTR7-0  
.
2. Writes to programmable registers PTL and PTR are enabled.  
3. Writes to A/D Converter Calibration Registers are enabled.  
1:  
1. THERM limits are the programmable values PTL7-0 and PTR7-0, while  
RST = H.  
2. Writes to A/D Converter Calibration Registers are inhibited.  
4
5
SOFT_RST  
R/W  
Soft Reset. (Power-up default = 0)  
0: Power-up default restored by SOFT_RST cycle.  
1: Restore power-up values to the Configuration, Interrupt Status, and  
Interrupt Mask registers.  
Reserved  
Fan Drive Configuration Register (44)  
BIT#  
Name  
Type  
Description  
0
VOLTA  
R/W  
Fan Speed A Analog Voltage Output Enable.  
0: Disable.  
1: Enable analog voltage output on FAN_SPDA.  
1
2
3
PWMA  
VOLTB  
PWMB  
R/W  
R/W  
R/W  
Fan Speed A PWM Output Enable.  
0: Disable.  
1: Enable pulse width modulated output on FAN_SPDA.  
Fan Speed B Analog Output Enable.  
0: Disable.  
1: Enable analog voltage output on FAN_SPDB.  
Fan Speed B PWM Output Enable.  
0: Disable.  
1: Enable pulse width modulated output on FAN_SPDB.  
8
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Fan Drive Configuration Register (44) (continued)  
BIT#  
Name  
Type  
Description  
4
PWM_INVA  
Fan Speed A PWM Output Invert.  
0: Mark-space ratio increases with drive.  
1: Mark-space ratio decreases with drive.  
5
PWM_INVB  
Fan Speed B PWM Output Invert.  
0: Mark-space ratio increases with drive.  
1: Mark-space ratio decreases with drive.  
Thermometer Register Definitions  
Thermometer Value Registers  
Address  
Name  
Type  
Description  
Programmable Local Temperature Automatic Trip Point. If TA7- > PTL7-0,  
0x13  
PTL7-0  
R/W  
then THERM = L. Write access is disabled if the TRIP_LOCK bit in the  
Configuration Register been set. (default: 46h [70°C])  
0x14  
PTR7-0  
R/W  
Programmable Remote Thermal Diode Automatic Trip Point. If TR17- >  
PTR7-0 or TR27- > PTR7-0 then THERM = L. Write access is disabled if the  
TRIP_LOCK bit in the Configuration Register been set. (default: 64h [100°C])  
Fan Speed Register. Fan speed control value. (default: 00h)  
Fixed Local Temperature Automatic Trip Point. (default: 46h [70°C])  
Fixed Remote Thermal Diode Automatic Trip Point. (default: 64h [100°C])  
Fan Speed Register. Fan speed control value. (default: 00h)  
Remote Thermal Diode 2 Temperature.  
0x16  
0x17  
0x18  
0x19  
0x20  
0x21  
0x22  
SPEEDA7-0  
FTL7-0  
R/W  
R
FTR7-0  
R
SPEEDB7-0  
TR27-0  
R/W  
R
TR17-0  
R
Remote Thermal Diode 1 Temperature.  
TL7-0  
R
Local Temperature. Temperature output derived from on-chip thermal  
diode.  
0x23  
0x24  
0x37  
0x38  
0x39  
0x3A  
TR2HI7-0  
TR2LO7-0  
TR1HI7-0  
TR1LO7-0  
TLHI7-0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Remote Thermal Diode 2 High Temperature Limit. TR27-0 > TR2HI7-0 will  
set the RTV2 bit in the Interrupt Status Register.  
Remote Thermal Diode 2 Low Temperature Limit. TR27-0 < TR2LO7-0 will  
set the RTV2 bit in the Interrupt Status Register.  
Remote Thermal Diode 1 High Temperature Limit. TR17-0 > TR1HI7-0 will  
set the RTV1 bit in the Interrupt Status Register.  
Remote Thermal Diode 1 Low Temperature Limit. TR17-0 < TR1LO7-0 will  
set the RTV1 bit in the Interrupt Status Register.  
Local Temperature High Temperature Limit. TA7-0 > TAHI7-0 will set the  
ATV and MATV bits in the Interrupt Register.  
TLLO7-0  
Local Temperature Low Temperature Limit. TA7-0 < TALO7-0 will set the  
ATV and ARTV bits in the Interrupt Register.  
Temperature Status Register (0x41)  
BIT#  
Name  
Type  
Description  
0
LTV  
R
Local Temperature Violation  
0: On-chip temperature within limits.  
1: On-chip temperature limit violated  
1
RTV2  
R
Remote Diode 2 Temperature Violation.  
0: Remote temperature within limits.  
1: Remote temperature limit violated  
REV. 1.01 12/2/99  
9
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Temperature Status Register (0x41) (continued)  
BIT#  
Name  
Type  
Description  
2
FAULT_D2  
R
Remote Diode 2 Fault.  
0: Diode functional  
1: Short or open circuit.  
4–3  
5
R
R
Reserved  
RTV1  
THERM  
Remote Diode 1 Temperature Violation.  
0: Remote temperature within limits.  
1: Remote temperature limit violated  
6
7
R
R
THERM input status.  
0: THERM input negated.  
1: THERM input asserted.  
FAULT_D1  
Remote Diode 1 Fault.  
0: Diode functional  
1: Short or open circuit.  
Note: An error that causes continuous interrupts may be concealed using the mask register, until the error can be alleviated.  
Temperature Interrupt Mask Register (0x43)  
BIT#  
Name  
Type  
Description  
0
MASKLTV  
R/W  
Mask Local Temperature Violation bit.  
0: Allow ATV bit to affect INT output.  
1: Prohibit ATV bit from affecting the INT output.  
1
2
3
MASKRTV2  
MASKFAULT_D2  
MASKITHERM  
R/W  
R/W  
R/W  
Mask Remote Diode 2 Temperature Violation.  
0: Allow RTV2 bit to assert INT output.  
1: Prevent RTV2 bit from asserting the INT output.  
Mask Remote Diode 2 Fault bit.  
0: Allow FAULT_D2 bit to assert the INT output.  
1: Prohibit FAULT_D2 bit from asserting the INT output.  
Mask Internal THERM.  
0: Allow ITHERM to affect INT output.  
1: Block ITHERM from affecting the INT output.  
4
5
Reserved  
MASKRTV1  
MSKTHERM  
R/W  
R/W  
R/W  
Mask Remote Diode 1 Temperature Violation bit.  
0: Allow RTV1 bit to assert INT output.  
1: Prevent RTV1 bit from asserting the INT output.  
6
7
Mask THERM bit.  
0: Allow THERM bit to affect INT output.  
1: Block THERM bit from affecting the INT output.  
MASKFAULT_D1  
Mask Remote Diode 1 Fault bit.  
0: Allow FAULT_D1 bit to assert the INT output.  
1: Prohibit FAULT_D1 bit from asserting the INT output.  
10  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Temperature Samples Averaged Register (0x29)  
BIT#  
Name  
Type  
Description  
2-0  
TRAVE  
R/W  
Number of remote samples averaged.  
000  
001  
010  
011  
100  
101  
110  
1
2
4
8
16  
32  
64  
5-3  
TLAVE  
R/W  
Number of local samples averaged.  
000  
001  
010  
011  
100  
101  
110  
1
2
4
8
16  
32  
64  
Thermometer Calibration Registers (0x2A–2F)  
Register[bit]  
Name  
Type  
Description  
0x2A[6]  
TROS8  
R/W  
Remote Diode A/D Converter Offset MSB. MSB of a 9-bit number that  
offsets the remote temperature by TROS °C. Default = 0 (TROS = 249-1)  
Range = 0 to 255.  
0x2A[5:0]  
0x2B  
TRSENS13-8  
TRSENS7-0  
TROS7-0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Remote Diode A/D Converter Sensitivity HI. Upper six bits of the A/D  
sensitivity (lsbs/volt) value programmed into the Voltage Counter Limit  
Register. Default = 0x16 (TRSENS = 5708). Range 0 to 16383.  
Remote Diode A/D Converter Sensitivity LO. Lower eight bits of the A/D  
sensitivity (lsbs/volt) value programmed into the Voltage Counter Limit  
Register. Default = 0x4C (TRSENS = 5708) Range 0 to 16383.  
0x2C  
Remote Diode A/D Converter Offset LO. Lower eight bits of a 9-bit  
number that offsets the remote temperature by TROS °C. Default = 0xF8  
(TROS = 249-1) Range = 0 to 511.  
0x2D[6]  
0x2D[5:0]  
0x2E  
TLOS8  
Local Diode A/D Converter Offset MSB. MSB of a 9-bit number that  
offsets the remote temperature by TLOS °C. Default = 1 (TLOS = 265-1)  
Range = 0 to 511.  
TLSENS13-8  
TLSENS7-0  
TLOS7-0  
Local Diode A/D Converter Sensitivity HI. Upper six bits of the A/D  
sensitivity (lsbs/volt) value programmed into the Voltage Counter Limit  
Register. Default = 0x13 (TLSENS = 5008) Range 0 to 16383.  
Local Diode A/D Converter Sensitivity LO. Lower eight bits of the A/D  
sensitivity (lsbs/volt) value programmed into the Voltage Counter Limit  
Register. Default = 0x90 (TLSENS = 5008) Range 0 to 16383.  
0x2F  
Local Diode A/D Converter Offset LO. Lower eight bits of a 9-bit  
number that offsets the local temperature by TLOS °C. Default = 0x08  
(NOS = 265-1) Range = 0 to 511.  
REV. 1.01 12/2/99  
11  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Tachometer Register Definitions  
Tachometer Value Registers  
Address  
0x51  
Name  
TACA17-0  
Type  
R
Description  
Fan Bank A Tachometer 1 Speed LSB.  
Fan Bank A Tachometer 2 Speed LSB.  
Fan Bank A Tachometer 3 Speed LSB.  
Fan Bank B Tachometer 1 Speed LSB.  
Fan Bank B Tachometer 2 Speed LSB.  
Fan Bank B Tachometer 3 Speed LSB.  
Tachometer speed boundary A LSB  
Tachometer speed boundary B LSB  
0x53  
TACA27-0  
R
0x55  
TACB37-0  
R
0x57  
TACB1L7-0  
TACB27-0  
R
0x59  
R
0x5B  
0x5D  
0x5F  
TACB37-0  
R
TACHTRIPA7-0  
TACHTRIPB7-0  
R/W  
R/W  
Tachometer Status Register (0x60)  
BIT#  
Name  
Type  
Description  
0
ERROR_TA1  
R
Bank A Fan 1 speed status.  
0: Speed within TACHTRIPA register boundary.  
1: Speed violates TACHTRIPA register boundary.  
1
2
ERROR_TA2  
ERROR_TA3  
ERROR_TB1  
ERROR_TB2  
ERROR_TB3  
R
R
R
R
R
Bank A Fan 2 speed status.  
0: Speed within TACHTRIPA register boundary.  
1: Speed violates TACHTRIPA register value.  
Bank A Fan 3 speed status.  
0: Speed within TACHTRIPA register boundary.  
1: Speed violates TACHTRIPA register value.  
3
Bank B Fan 1 speed status.  
0: Speed within TACHTRIPB register boundary.  
1: Speed violates TACHTRIPB register value.  
4
Bank B Fan 2 speed status.  
0: Speed within TACHTRIPB register boundary.  
1: Speed violates TACHTRIPB register value.  
5
Bank B Fan 3 speed status.  
0: Speed within TACHTRIPB register boundary.  
1: Speed violates TACHTRIPB register value.  
7–6  
Tachometer Status Mask Register (0x61)  
BIT#  
Name  
Type  
Description  
0
MASKA1  
R
Mask Bank A Fan 1 speed status.  
0: Allow A1LO bit to assert INT output.  
1: Prevent A1LO bit from asserting INT output.  
1
2
MASKA2  
MASKA3  
R
R
Mask Bank A FAN 2 speed status.  
0: Allow A2LO bit to assert INT output.  
1: Prevent A2LO bit from asserting INT output.  
Mask Bank A FAN 3 speed status.  
0: Allow A3LO bit to assert INT output.  
1: Prevent A2LO bit from asserting INT output.  
12  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Tachometer Status Mask Register (0x61) (continued)  
BIT#  
Name  
Type  
Description  
3
MASKB1  
R
Mask Bank B FAN 1 speed status.  
0: Allow B1LO bit to assert INT output.  
1: Prevent B1LO bit from asserting INT output.  
4
5
MASKB2  
MASKB3  
R
R
Mask Bank B FAN 2 speed status.  
0: Allow B2LO bit to assert INT output.  
1: Prevent B2LO bit from asserting INT output.  
Mask Bank B FAN 3 speed status.  
0: Allow B2LO bit to assert INT output.  
1: Prevent B2LO bit from asserting INT output.  
7–6  
Reserved  
Tachometer Divisor Register (0x62)  
BIT#  
Name  
Type  
Description  
2–0  
ADIV  
R/W  
Bank A Divisor.  
000: Divide tachometer input rate by 1.  
001: 2  
010: 4  
011: 8  
100: 16  
101: 32  
5–3  
7–6  
BDIV  
R/W  
Bank B Divisor.  
000: Divide tachometer input rate by 1.  
001: 2  
010: 4  
011: 8  
100: 16  
101: 32  
Reserved  
Tachometer Configuration Register (0x63)  
BIT#  
Name  
Type  
Description  
0
ENA1  
R/W  
Enable Bank A Fan 1 Tachometer.  
0: Standby.  
1: Run.  
1
2
3
4
ENA2  
ENA3  
ENB1  
ENB2  
R/W  
R/W  
R/W  
R/W  
Enable Bank A Fan 2 Tachometer.  
0: Standby.  
1: Run.  
Enable Bank A Fan 3 Tachometer.  
0: Standby.  
1: Run.  
Enable Bank B Fan 1 Tachometer.  
0: Standby.  
1: Run.  
Enable Bank B Fan 2 Tachometer.  
0: Standby.  
1: Run.  
REV. 1.01 12/2/99  
13  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Tachometer Configuration Register (0x63) (continued)  
BIT#  
Name  
Type  
Description  
5
ENB3  
R/W  
Enable Bank B Fan 3 Tachometer.  
0: Standby.  
1: Run.  
7–6  
Reserved  
Voltmeter Register Definitions  
Voltmeter Value Registers  
Address  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x7D  
0x7E  
0x7F  
Name  
V17-0  
Type  
R
Description  
Voltage Value V1. 200 == 1000mV input.  
Voltage Value V2. 200 == 1000mV input.  
Voltage Value V3. 200 == 1000mV input.  
Voltage Value V4. 200 == 1000mV input.  
Voltage Value V5. 200 == 1000mV input.  
Voltage Value V6. 200 == 1000mV input.  
High Voltage Trip Level. Common to V6-1  
Low Voltage Trip Level. Common to V6-1  
Voltmeter Sensitivity HI. (Default = 0)  
Voltmeter Sensitivity LO. (Default = 240)  
Voltmeter Offset. (Default = 0)  
V27-0  
R
V37-0  
R
V47-0  
R
V57-0  
R
V67-0  
R
VHI7-0  
VLO7-0  
VSENS15-8  
VSENS7-0  
VOS7-0  
R/W  
R/W  
R/W  
R/W  
R/W  
Voltmeter Configuration Register (0x78)  
BIT#  
Name  
Type  
Description  
0
V12D1  
R
DXP1/V1 and DXN1/V2 Configuration.  
0: Thermometer inputs DXP1 and DXN1  
1: Voltmeter inputs V1 and V2.  
1
2
V34D2  
V5TACHA3  
V6TACHB3  
-
R
R/W  
R/W  
-
DXP2/V2 and DXN3/V4 Configuration.  
0: Thermometer inputs DXP2 and DXN2  
1: Voltmeter inputs V3 and V4.  
Tachometer A3/Voltage 5 input configuration.  
0: Tachometer A3 input.  
1: Voltmeter V5 input.  
3
Tachometer B3/Voltage 6 input configuration.  
0: Tachometer B3 input.  
1: Voltmeter V6 input.  
7-4  
-
14  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Voltage Error Register (0x79)  
BIT#  
Name  
Type  
Description  
0
ERROR_V1  
R
Voltage 1 Error.  
0: V1 within tolerance.  
1: V1 out of tolerance.  
1
2
3
4
5
ERROR_V2  
ERROR_V3  
ERROR_V4  
ERROR_V5  
ERROR_V6  
R
R
R
R
R
Voltage 2 Error.  
0: V2 within tolerance.  
1: V2 out of tolerance.  
Voltage 3 Error.  
0: V3 within tolerance.  
1: V3 out of tolerance.  
Voltage 4 Error.  
0: V4 within tolerance.  
1: V4 out of tolerance.  
Voltage 5 Error.  
0: V5 within tolerance.  
1: V5 out of tolerance.  
Voltage 6 Error.  
0: V6 within tolerance.  
1: V6 out of tolerance.  
6
7
-
-
Voltage Error Mask Register (7A)  
BIT#  
Name  
Type  
Description  
0
MASKV1ERR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Mask Voltage 1 Error.  
0: Allow V1ERR bit to assert INT output.  
1: Prevent V1ERR bit from asserting INT output.  
1
2
3
4
5
MASKV2ERR  
MASKV3ERR  
MASKV4ERR  
MASKV5ERR  
MASKV6ERR  
Mask Voltage 2 Error.  
0: Allow V2ERR bit to assert INT output.  
1: Prevent V2ERR bit from asserting INT output.  
Mask Voltage 3 Error.  
0: Allow V3ERR bit to assert INT output.  
1: Prevent V3ERR bit from asserting INT output.  
Mask Voltage 4 Error.  
0: Allow V4ERR bit to assert INT output.  
1: Prevent V4ERR bit from asserting INT output.  
Mask Voltage 5 Error.  
0: Allow V5ERR bit to assert INT output.  
1: Prevent V5ERR bit from asserting INT output.  
Mask Voltage 6 Error.  
0: Allow V6ERR bit to assert INT output.  
1: Prevent V6ERR bit from asserting INT output.  
6
7
-
-
REV. 1.01 12/2/99  
15  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Voltage Samples Averaged Register (0x7C)  
BIT#  
Name  
Type  
Description  
2-0  
VAVE  
R/W  
Number of voltage samples averaged.  
000  
001  
010  
011  
100  
101  
110  
1
2
4
8
16  
32  
64  
7-3  
Voltmeter Calibration Registers (0x7D–7F)  
Register[bit]  
Name  
Type  
Description  
0x7D[6]  
VOS8  
R/W  
Voltmeter Offset Polarity. Polarity of VOS7-0  
0: Positive.  
1: Negative.  
Default = 0.  
0x7D[5:0]  
0x7E  
VSENS13-8  
VSENS7-0  
VOS7-0  
R/W  
R/W  
R/W  
Voltmeter Sensitivity HI. Upper six bits of the A/D converter sensitivity  
(LSB/volt) value programmed into the Voltage Counter Limit Register.  
Default = 0x0 (TRSENS = 240). Range 0 to 16383.  
Voltmeter Sensitivity LO. Lower eight bits of the A/D converter  
sensitivity (LSB/volt) value programmed into the Voltage Counter Limit  
Register. Default = 0xF0 (TRSENS = 240) for 5mV/LSB. Range 0 to 16383.  
0x7F  
Voltmeter Offset Magnitude. An 8-bit number that offsets the Voltage  
ADC output by VOS LSBs with polarity determined by VOS8. Default =  
0x00 (VOS = 0) Range = 0 to 255.  
Controller Register Definitions  
Controller Value Registers  
Address  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
SPEEDLOA7-0  
TLLOA7-0  
Controller A low speed  
Controller A local low temp  
SLOPEAL7-0  
TRLOA17-0  
SLOPEA17-0  
TRLOA27-0  
SLOPEA27-0  
SPEEDLOB7-0  
TLLOB7-0  
Controller A local slope. (integer + fraction)  
Controller A remote low temp 1  
Controller A remote slope 1. (integer + fraction)  
Controller A remote low temp 2  
Controller A remote slope 2. (integer + fraction)  
Controller B low speed  
Controller B local low temp  
SLOPEBL7-0  
TRLOB17-0  
SLOPEB17-0  
TRLOB27-0  
SLOPEB27-0  
Controller B local slope. (integer + fraction)  
Controller B remote low temp 1  
Controller B remote slope 1. (integer + fraction)  
Controller B remote low temp 2  
Controller B remote slope 2. (integer + fraction)  
Note: All controller register values must be postitive.  
16  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Fan Speed Controller Configuration Register (8E)  
BIT#  
Name  
Type  
Description  
0
FAN_CTRL  
R/W  
Fan Speed Control Enable. (Power up default =0)  
0: Fan speed outputs set through SERIAL BUS (Power up default)  
1: Fan speed outputs depend on local/remote diode temperatures.  
1
2
3
4
5
6
TLA_CTRL  
TRA1_CTRL  
TRA2_CTRL  
TLB_CTRL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Local Diode Fan Speed A Control Enable.  
0: Fan speed outputs established by other thermal diode inputs.  
1: Fan speed outputs depend on local thermal diode temperature and any  
other enabled thermal diode input.  
Remote Diode 1 Fan Speed A Control Enable.  
0: Fan speed outputs established by other thermal diode inputs.  
1: Fan speed outputs depend on remote thermal diode 1 temperature and  
any other enabled thermal diode input.  
Remote Diode 2 Fan Speed A Control Enable.  
0: Fan speed outputs established by other thermal diode inputs.  
1: Fan speed outputs depend on remote thermal diode 2 temperature and  
any other enabled thermal diode input.  
Local Diode Fan Speed B Control Enable.  
0: Fan speed outputs established by other thermal diode inputs.  
1: Fan speed outputs depend on local thermal diode temperature and any  
other enabled thermal diode input.  
TRB1_CTRL  
TRB2_CTRL  
Remote Diode 1 Fan Speed B Control Enable.  
0: Fan speed outputs established by other thermal diode inputs.  
1: Fan speed outputs depend on remote thermal diode 1 temperature and  
any other enabled thermal diode input.  
Remote Diode 2 Fan Speed B Control Enable.  
0: Fan speed outputs established by other thermal diode inputs.  
1: Fan speed outputs depend on remote thermal diode 2 temperature and  
any other enabled thermal diode input.  
REV. 1.01 12/2/99  
17  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Functional Description  
Within the FMS2704, there are six major functional blocks:  
Each TACH input can be programmed to accept fan rotation  
pulses at one, two, four or eight pulses per revolution.  
Tachometer output is an 8-bit value indicating the period of  
one fan revolution:  
1. Tachometers  
2. Temperature Processor.  
3. Voltage Monitor  
4. Data Processor  
225000 60  
TAC = -----------------------------  
RPM DIV  
5. Fan Speed Controller  
6. Reset Generators  
To accommodate slow rise and fall times, edge filtering is  
inserted at each tachometer input. Open drain/collector out-  
puts are accommodated by pulling up each TACH input with a  
10 Kresistor.  
Tachometers  
There are six tachometers, three for each of the two banks of  
fans. Tachometers are enabled through the Tachometer  
Configuration Register.  
Tach Channel A3  
Tach Channel A2  
TACHA3  
TACHA2  
TACHA1  
Tach Channel A1  
Tach Channel B3  
TACHB3  
TACHB2  
Tachometer  
Status  
Register  
Tach Channel B2  
Tach Channel B1  
Tachometer  
Register  
Tachometer  
TACHB1  
Comparator  
Tach  
Interrupt  
Interrupt  
Mask  
TACHTRIPA  
and  
TACHTRIPB  
Registers  
Figure 1. Tachometry  
Each tachometer output is compared against a programmable  
threshold.  
If a violation occurs, an interrupt is generated (INT =L) to  
inform BIOS or System Management software that fan regis-  
ters should be read. After servicing the interrupt, the source  
can be masked to prevent further interrupts.  
1. TACHTRIPA for bank A tachometers  
2. TACHTRIPB for bank B tachometers  
Thermometers  
Threshold Period is set at a fraction (e.g. 110%) of nominal, a  
level below which airflow may be diminished.  
Remote and local thermal diode voltages are sensed by the  
Temperature Processor which sequentially outputs values of  
the remote and local temperatures. Inputs are derived from a  
remote diode that is connected by two wires to the input of the  
processor; and the local diode, which is located on-chip. Out-  
put is supplied to the Data Processor which loads the TL7-0  
and TR7-0 registers with the digitized local and remote tem-  
peratures.  
An Error Flag will be set in the Tachometer Status Register  
under either of the following conditions:  
TACA1-A3 > TACHTRIPA  
TACB1-B3 > TACHTRIPB  
18  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Current  
Generators  
Remote  
Thermal  
Diodes  
T7-0  
A/D  
Converter  
DSP  
Mux  
FAULT  
Local  
Thermal  
Diode  
Figure 2. Temperature Processor Block Diagram  
Table 1.Temperature/Data Conversion/Format  
A differential multiplexer selects the thermal diode input  
voltage to be applied to the A/D converter and the bandgap  
used for the A/D calibration cycle. Voltage of the diode is  
sensed at two currents:10 and 100µA. During the diode sam-  
pling interval, the A/D converter digitizes low and high cur-  
rent samples. DSP averages and subtracts the samples to  
output an 8-bit temperature that is updated a rate greater than  
1Hz. Remote and Local diode temperatures are outputted  
alternately on the T7-0 bus which is connected to the  
Temperature Registers.  
Digital Output  
Temperature  
Binary  
Hex  
0x7D  
0x19  
0x01  
0x00  
0xFF  
0xE7  
0xC9  
+125°C  
+25°C  
+1.0°C  
0°C  
0111 1101  
0001 1001  
0000 0001  
0000 0000  
1111 1111  
1110 0111  
1100 1001  
-1.0°C  
-25°C  
-55°C  
Remote Diode fault sensing is included within the DSP block.  
If either remote diode voltage indicates either a short or an  
open circuit, the appropriate FAULT_D1 or FAULT_D2 bit is  
set in the Interrupt Status Register.  
A block diagram of the processing shared by the thermometer  
channels is shown in Figure 3.  
Temperature data format is 8-bit, two’s complement with the  
LSB equivalent to 1.0°C. Range and conversion between °C  
and equivalent binary and hexadecimal data is exemplified in  
Table 1.  
VHI[13:0]  
ADC[13:0]  
TK[9:0]  
TC[8:0]  
VPN  
A/D  
VLO[13:0]  
Sensitivity  
Register  
(NG)  
Offset  
Register  
(NOS = 272.2)  
Ambient: No A/D averaging  
Remote: Average 16 HI/LO sample pairs  
Figure 3. Temperature Processor Architecture  
REV. 1.01 12/2/99  
19  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Default response of the Temperature Processor is set to match  
the expected characteristics of the Intel Pentium thermal diode  
and the on-chip local diode. By updating the values in the  
TRSENS, TRSO, TLSENS and TLOS registers sensitivity can  
be trimmed to accommodate alternate thermal diode charac-  
teristics.  
Local temperatures are compared against:  
1. TLHI7-0 and TLLO7-0 values stored in the Limit Registers  
which bracket the temperature range to be tracked. If a  
limit is violated, INT = L.  
2. Thermal trip points PTL7-0 or FTL7-0 set at high levels  
corresponding to a serious overheating problem.  
Diode low current voltage value VLO is subtracted from the  
high current value VHI to yield TK = VD . TK is the digitized  
temperature in °K with a sensitivity of 1/2 °/lsb.  
Remote temperatures, TR1 and TR2 are compared against:  
1. TR1HI7-0, TR1LO7-0 TR2HI7-0 and TR2LO7-0 values  
stored in the Limit Registers which bracket the tempera-  
ture range to be tracked. If a limit is violated, INT = L.  
Next, the value 273.2 is subtracted to transform TK from °K to  
°C. Diode offsets are trimmed out by adjusting the value of  
NOS. TC is truncated to 8-bits prior to storage in the tempera-  
ture registers.  
2. Thermal Trip points FTR7-0 or PTR7-0. If TR7-0  
>
FTR7-0 or PTR7-0, the alert output THERM = asserted.  
Following a violation, the sensed temperature must drop  
5°C to clear the trip flag.  
To minimize the effects of noise, digitized temperatures are  
averaged over several samples.  
Figure 4 depicts the logical flow of the internal and external  
THERM signals, showing the origins and destinations.  
THERM Processing  
THERM is a bi-directional pin with an open drain output.  
When the THERM output is asserted L, the THERM input  
is disabled.  
INTRSTb  
Interrupt  
Status  
Register  
Mirror  
TEMPVALID  
THERM  
PFRY7-0  
XTHERM  
Programmable  
Trip Point  
PHOT7-0  
Registers  
FRY7-0  
ITHERM  
HOT7-0  
THERM  
Comparators  
FFRY7-0  
FHOT7-0  
Fixed Trip  
Point  
Registers  
Interrupt  
Status  
Register  
Other  
Interrupts  
THERM  
Interrupt  
OR-gate  
Mask  
Gating  
ITHERM  
Restore  
Interrupt  
Mask  
INT  
MSKTHERM  
Register  
TRIPLOCK  
TR[7:0]  
TA[7:0]  
Configuration  
Register  
FAN_ON  
FAN_OFF  
DACFF==THERM  
D/A  
Register  
D/A  
Converter  
FAN_SPD  
Figure 4. THERM I/O Structure/Detail  
As an input, if THERM = L the following events occur:  
As an output, ITHERM = H, causes THERM = L; ITHERM  
= L, causes THERM = Z, open drain. ITHERM = H, if any of  
the following conditions occur:  
1. If the mask bit, MSKTHERM = L, output pin, INT = L  
2. Configuration Register bit, FAN_OFF = H.  
1. If Configuration Register bit, TRIPLOCK = L:  
3. Output pins, FAN_SPDA,B = 2.5V for maximum fan  
speed, with register values SPEEDA7-0 and SPEEDB7-0  
unchanged.  
a) TL7-0 > FTL7-0  
.
b) TR17-0 > FTR7-0  
.
.
4. Interrupt Status Register bit, THERM = H.  
c) TR27-0 > FTR7-0  
5. Interrupt Status Register Mirror bit, MTHERM = H.  
20  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
2. If Configuration Register bit, TRIPLOCK = H  
TRIPLOCK is Temperature Trip Point Lock bit in the Config-  
uration Register. After a Trip Point has been exceeded, to  
restore the open drain output, THERM = Z, the temperature  
must fall 5°C below the trip point.  
a) TL7-0 > PTL7-0  
.
b) TR17-0 > PTR7-0  
.
.
c) TR27-0 > PTR7-0  
A typical THERM sequence is shown in Figure 5, which  
depicts the profile of events when TR1 transitions through the  
PTR trip point threshold. Similar profiles apply to:  
1. TR1 with FTR limits  
2. TR2 with PTR and FTR trip points  
3. and to TL and TR2 with the appr  
PTR  
PTR - 5  
TR1  
ITHERM  
INT  
RD_INT  
Figure 5. Profile of THERM Driven Events  
One set of high and low limit values, VHI7-0 and VLO7-0 are  
shared between the six voltage values. Violation of a limit will  
set the corresponding flag in the Voltage Error Register. Flag i  
is set as a result of either of the following conditions:  
Voltage Monitoring  
In the voltmeter mode, either diode input can become a pair  
of single-ended voltage inputs. A low pass filter in each  
input minimizes fluctuations caused by noise riding on the  
input signals. Voltmeter inputs are optimized for conversion  
of a nominal 1000mV signal that is converted with a sensi-  
tivity of 0.2 lsb/mV.  
1. Vi < VLO  
2. Vi > VHI  
Where i = 1:6.  
Voltmeter data format is 8-bit integer. Table 2 shows register  
values corresponding to selected inputs. By setting the value  
of VAVE, the number of samples to be averaged can be set to  
be either 1, 2, 4, 8, 16, 32 or 64.  
If the flag is not masked by the Voltage Error Mask Register,  
the Interrupt Output, INT = L. After the source of the error  
has been identified, further interrupts can be prevented by  
masking the source of the error.  
Table 2. Voltage Conversion  
Voltage Value  
Input (mV)  
Interrupt Processing  
Decimal  
0
Hex  
0
INT is a hardware interrupt output. INT operation is  
controlled by the Configuration Register bits: INT_EN and  
INT_CLR bits, which enable and clear the open drain INT  
output. Subject to the setting of the Mask Registers, INT =L,  
if any bit is active in the following registers:  
0
100  
20  
14  
64  
B4  
C8  
DC  
FF  
500  
100  
180  
200  
220  
255  
900  
1000  
1100  
1275  
1. Tachometer Status.  
2. Voltage Status Register.  
3. Temperature Status Register.  
REV. 1.01 12/2/99  
21  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Otherwise INT = Z, open drain. Figure 6 depicts the logical  
flow of the interrupt sources to the INT output.  
Voltage Status Register bits indicate if any one of the six volt-  
meter inputs violates the high or low voltage trip levels bound-  
ary, causing the appropriate ERROR_V6-1 bit to be set.  
Unwanted interrupts can be masked by programming the Volt-  
meter Mask Register.  
For the Tachometer Status Register, if any one of the six fan  
speed inputs violates the speed boundary, the appropriate  
ERRORA1-3,B1-3 bit is set. Unused tachometer inputs can be  
disabled by programming in the Tachometer Configuration  
Register. Unwanted interrupts can be masked by program-  
ming the Tachometer Mask Register.  
XTHERM  
THERM  
INT  
ITHERM  
LTV & RTV  
Interrupt  
LTV, RTV2-1  
Control &  
Masking  
Interrupt  
Control  
ITHERM  
THERM,  
Mask  
Interrupt  
Status  
Register  
FAULT1-2  
Gating  
ERROR_V6-1  
ERROR_TA3-1,B3-1  
FAULT_D1-2  
Interrupt  
Mask  
Register(s)  
Interrupt  
Status  
Register  
Mirror  
INT_CLR  
INT_EN  
Configuration  
Register  
INT_RST  
SOFT_RST  
Figure 6. INT Output Structure  
With Configuration Register bits INT_EN = 1 and INT_CLR  
= 0, output pin INT = L, if any of the following bits are set in  
the Temperature Interrupt Register:  
Output pin INT = Z, clearing the interrupt output, if any of the  
following events occur:  
1. Interrupt Status Register is read, causing this register to  
be cleared to the default state that is all interrupts  
cleared. However a THERM or FAULT1-2 condition will  
cause an immediate re-assertion of the interrupt.  
1. LTV: An local temperature limit is violated indicating  
that the on-chip temperature falls outside the boundaries  
established by TLLO7-0 and TLHI7-0  
.
2. Configuration Register bit INT_CLR = 1, which is the  
default condition following an internal reset.  
2. RTV1: Remote thermal diode 1 temperature limit is  
violated, indicating that the temperature falls outside the  
3. Configuration Register bit INT_EN = 0, which is the  
default condition following an internal reset.  
boundaries established by TRLO7-0 and TRHI7-0  
.
3. RTV2: Remote thermal diode 2 temperature limit is  
violated, indicating that the temperature falls outside the  
Status of the INT_CLR and INT_EN bits does not impact the  
contents of the Interrupt Status. Reading the Interrupt Status  
Registers clears only that register.  
boundaries established by TRLO7-0 and TRHI7-0  
.
4. THERM: Temperature exceeds an selected automatic  
trip point (PTL7-0, PTR7-0, FTL7-0, or FTR7-0) causing  
output THERM = L or the THERM input = L even if the  
THERM bit in the Interrupt Register is masked.  
Note that setting the INT output by exceeding a temperature  
limit is an edge-driven event. Only when the temperature  
actually crosses the limit boundary does INT transition LOW.  
An example of interrupts caused by a series of temperature, T  
transitions across temperature limits is shown in Figure 7.  
5. FAULT_D1-2: Remote diode D1-2 is either open or short  
circuit.  
22  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Temperature limits are fixed for the first series of temperature  
excursions. Then, for the second series, following the THI1  
violation, the THI limit is raised from THI1 to THI2. If THI is  
reprogrammed from a value above T to a value below THI,  
then an interrupt is generated.  
THI2  
THI3  
THI1  
TLO1  
TLO2  
T
RTV/LTV  
Read_INT  
INT  
Figure 7. Profile of Temperature Driven Interrupts  
LTV and RTV bits operate in conjunction with the INT output  
and Interrupt Status Register as follows:  
If the low temperature limit is changed from a level below the  
ambient/remote temperature to a level above, then the LTV/  
RTV bit is set.  
1. When the temperature exceeds a high limit, the corre-  
sponding Interrupt Status Register bit, either LTV or  
RTV is set.  
Serial Interface  
FMS2704 register access is via a 2-wire I2C/SMBus compati-  
ble interface. Base address is 0x2C + n, where n is an offset  
defined by the state of the ADD pin: Z, H, L == 0, 1, 2. (see  
Table 3) State Z corresponds to the ADD pin being open  
circuit.  
2. Reading the Interrupt Status Register clears LTV and  
RTV.  
3. Once the high limit has been exceeded, a subsequent  
transitions through the high level will not cause an  
interrupt, unless:  
Table 3. Serial Port Slave Addresses  
a) The temperature passes through the low limit.  
ADD  
Address  
2C  
b) Or, the high temperature limit is changed.  
Z
H
L
2D  
4. If the high temperature limit is changed from a level  
above the temperature to a level below, then the relevant  
Interrupt Status Register bit, either LTV or RTV is set.  
2E  
5. If the temperature falls below a low limit, the corre-  
sponding Interrupt Status Register bit, either LTV or  
RTV is set.  
Two signals comprise the bus: clock (SCL) and bi-directional  
data (SDA). When receiving and transmitting data through the  
serial interface, the FMS2704 acts as a slave, responding only  
to commands by the I2C/SMBus master.  
6. Once the low limit has been exceeded, a subsequent  
transitions through the low level will not cause an inter-  
rupt, unless:  
Data received or transmitted on the SDA line must be stable  
for the duration of the positive-going SCL pulse. Data on  
SDA may change only when SCL = L. An SDA transition  
while SCL = H is interpreted as a start or stop signal.  
a) The temperature passes through the high limit.  
b) Or, the low temperature limit is changed.  
REV. 1.01 12/2/99  
23  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
SDA  
tBUFF  
tSTAH  
tDHO  
tSU  
tSTASU  
tSTOSU  
tDAL  
SCL  
tDAH  
Figure 8. Serial Bus: Read/Write Timing  
SDA  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ACK  
SCL  
Figure 9. Serial Bus: Typical Byte Transfer  
SDA  
SCL  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W\  
ACK  
Figure 10. Serial Bus: Slave Address with Read/Write Bit  
There are five steps within an I2C/SMBus cycle:  
Data Transfer Via Serial Interface  
If a slave device, such as the FMS2704 does not acknowledge  
the master device during a write sequence, SDA remains  
HIGH so the master can generate a stop signal. During a read  
sequence, if the master device does not acknowledge (ACK  
= L), the FMS2704 interprets this as “end of data.” SDA  
remains HIGH so the master can generate a stop signal.  
1. Start signal  
2. Slave address byte  
3. Pointer register address byte  
4. Data byte to read or write  
5. Stop signal  
To write data to a specific FMS2704 control register, three  
bytes are sent:  
When the Serial Bus interface is inactive (SCL = H and SDA  
= H) communications are initiated by sending a start signal.  
The start signal (Figure 8, left waveform) is a HIGH-to-LOW  
transition on SDA while SCL is HIGH. This signal alerts all  
slaved devices that a data transfer sequence is imminent.  
1. Write the slave address byte with bit R/W = L.  
2. Write the pointer byte.  
3. Write to the control register indexed by the pointer.  
After a start signal, the first eight bits of data that are transferred,  
comprise a seven bit slave address followed a single R/W bit  
(Read = H, Write = L). As shown in Figure 9, the R/W bit  
indicates the direction of data transfer: read from; or write to  
the slave device. If the transmitted slave address matches the  
address of the FMS2704 which set by the state of the ADD  
pin, the FMS2704 acknowledges by pulling SDA LOW on the  
9th SCL pulse (see Figure 10). If the addresses do not match,  
the FMS2704 does not acknowledge.  
Data is read from the control registers of the FMS2704 in a  
similar manner, except that two data transfer operations are  
required:  
4. Write the slave address byte with bit R/W = L.  
5. Write the pointer byte.  
6. Write the slave address byte with bit R/W = H  
7. Read the control register indexed by the pointer.  
For each byte of data read or written, the MSB is the first bit of  
the sequence.  
24  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Preceding each slave write, there must be a start cycle. Follow-  
ing the pointer byte there should be a stop cycle. After the last  
read, there must be a stop cycle comprising a LOW-to-HIGH  
transition of SDA while SCL is HIGH. (see Figure 8, right  
waveform)  
Following power-up, registers are set to default values. After a  
200 msec. power up reset delay, the FMS2704 will begin  
checking sensor inputs to determine if the temperature in volt-  
ages fall within default limits, which can be overridden by  
changing the values stored in the Value RAM.  
A repeated start signal occurs when the master device driving  
the serial interface generates a start signal without first gener-  
ating a stop signal to terminate the current communication.  
This is used to change the mode of communication (read,  
write) between the slave and master without releasing the  
serial interface lines.  
If the PTL7-0 and PTR7-0 values are changed, then the  
TRIP_LOCK (Temperature Trip Point Lock) bit in the Config-  
uration Register must be set to enable temperature values to be  
compared against the programmable rather than the fixed trip  
point values. If the temperature limit values are changed, then  
the changes are effective immediately. Interrupt masking (reg-  
ister 0x43), enabling (INT_EN bit) and clearing (INT_CLR  
bit) can be used to disable interrupts during register setup.  
Serial Interface Read/Write Examples  
Register functions and bit assignments defined in the Address-  
able Memory and Global Register Definitions sections.  
Examples below show how serial bus cycles can be linked  
together for multiple register read and write access cycles. For  
sequential register accesses, each ACK handshake initiates  
further SCL clock cycles from the master to transfer the next  
data byte.  
Temperature register outputs, TR7-0 and TA7-0 are compared  
with the limit values TRHI7-0, TRLO7-0, TAHI7-0 and TALO7-0  
that are stored in the Limit Registers. Out of range TA7-0 and  
TR7-0 values set the INT bit in the Interrupt Status Register.  
TR7-0 and TA7-0 are also compared with the values in Trip  
Point Registers, PTL7-0 and PTR7-0 if these registers have  
been loaded or FTL7-0 and FTR7-0, which contain power up  
default values.  
Write to one control register  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte  
4. Data byte to base address  
5. Stop signal  
Fan Speed Outputs  
Fan speed outputs FAN_SPDA and FAN_SPDB can be pro-  
grammed individually to be either 0–2.5V analog output or  
Pulse Width Modulated Output. Register values are set  
directly through the Serial Bus by external software or firm-  
ware following interrogation to temperature and tachometer  
values. Also, the fan speed may be derived from the internal  
registers, SPEEDA and SPEEDB or from the Channel A or  
Channel B Fan Speed Controllers.  
Read from one control register  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte (= base address)  
4. Stop signal  
5. Start signal  
If the A Channel analog output is selected, the output of the  
ADAC D/A converter is connected to the FAN_SPDA output.  
If A Channel PWM is selected, then Pulse Width Modulator is  
connected to the FAN_SPDA output. B channel analog/PWM  
selection functions similarly.  
6. Slave Address byte (R/W bit = HIGH)  
7. Data byte from base address  
8. Stop signal  
Registers  
Reset Generator  
Based upon setup commands via the Serial Bus, the FMS2704  
gathers sensor inputs from the Tachometers, Thermometers and  
Voltmeters. Measured values are compared against reference  
values stored in the Trip and Limit registers. Fault conditions  
set flags in the Interrupt registers and activate THERM and  
INT outputs. Sensor and interrupt status are passed to the host  
via the Serial Bus interface. Host commands set the FMS2704  
configuration, interrupt masking and the fan speed.  
The Reset Generator emits a RST = L pulse under either of the  
following conditions:  
1. STANDBY = L, causing no internal reset, INTRST.  
2. VCCA & VCCD < 4.4V (FMS2704) or  
VCCA & VCCD < 2.9V (FMS2704L),  
Following release of the reset stimulus, RST = L for a further  
200 msec.  
REV. 1.01 12/2/99  
25  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
tRST  
200mS  
200mS  
VCC3<2.9  
STANDBY  
RST  
tDSTBY  
200mS  
tDIR  
INTRST  
Figure 11. Reset Generator Waveforms  
In the standby mode power is minimized by stopping all sens-  
ing activities and freezing the tachometer, temperature and  
voltage register values. When power is initially applied, the  
Reset Generator instigates five events through internal reset,  
INTRST:  
4. Temperature Processor and Data Processor are reset.  
5. Fan Speed Controller is disengaged with output set to zero.  
Fan Speed Controllers  
If the FAN_CTRL bit is set H, D/A converter fan drive volt-  
ages are established as a function of FMS2704 sensor inputs.  
If the FAN_CTRL bit is set L, the Controller does not influ-  
ence the D/A register values, which are set through the Serial  
Bus. There are two identical channels, A and B that can be set  
up independently to control the A and B fan banks. Figure 12  
shows both controllers and the details of the A controller.  
1. Configuration, Interrupt and Mask registers are reset to  
default values.  
2. THERM Trip Point registers: PTL7-0, PTR7-0, FTL7-0  
FTR7-0 are set to default values.  
,
3. SPEEDA7-0 and SPEEDB7-0 registers are set to 0x00.  
SPEEDA  
REGISTER  
TR17-0  
TR27-0  
TL7-0  
DACA  
FAN_SPDA  
PWMA  
+
+
DACB  
FAN_SPDB  
PWMB  
TR17-0  
TR27-0  
TL7-0  
Channel B  
Controller  
SPEEDB  
REGISTER  
Part of Data Processor  
Figure 12. Fan Speed Controller  
26  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Fan control is based upon running the fans at slow speed for  
minimum noise, unless the local temperature rises due to a  
higher ambient temperature or a remote temperature rises  
because a CPU is running hot. If remote or local diode tem-  
perature rises, then the fan speed is increased. Fan drive is  
controlled on the basis of:  
For each thermometer channel, a piece-wise linear approxima-  
tion response like that shown in Figure 13 is defined.  
255  
SLOPEA1  
1. Remote temperatures 1 and 2 (CPU temperatures).  
2. Local temperature (FMS2704 die temperature).  
A straightforward mode of operation is to control fan speed as  
a function of one CPU temperature. Another mode is to base  
primary control upon local temperature, which is sensed to  
anticipate the extra cooling required to compensate for higher  
ambient temperature surrounding the enclosure. Secondary  
control augments cooling by increasing fan speed if the tem-  
perature of either CPU begins to rise. If a fan runs low or fails,  
the fan speed within that bank is automatically increased,  
while an interrupt is generated to inform the CPU that a fan  
speed has fallen below threshold.  
0
0
TRLOA1  
TR1(°C)  
Figure 13. Fan Drive Response  
This straight-line segment defines the value to be added to the  
Channel A fan speed drive for a given temperature. For exam-  
ple setting TRLOA1 = 60 and SLOPEA1 = 4D hex to define  
fan speed drive increment of 9.5 lsbs/°C, above 60°C. Below  
60°C, the contribution is zero.  
To account for multiple temperature inputs, separate segments  
are defined for the local and remote temperatures. Drive con-  
tributions from these segments are added to a minimum fan  
speed to create a target drive value.  
Channel A drive is:  
DRIVEA = SPEEDLOA + SLOPEAL • (TL – TLLOA) + SLOPEA1 • (TR1 – TRLOA1) + SLOPEA2 • (TR2 – TRLOA2)  
where:  
And logic within the FMS2704 applies the following constraints:  
TL = Local temperature.  
TR1 = Remote temperature of diode 1.  
DRIVEA 255  
TL > TLLOA  
SLOPEAL*(TL – TLLOA) 255  
TR1 > TRLOA1  
TR2 = Remote temperature of diode 2.  
SLOPEA1*(TR1 – TRA1) 255  
TR2 > TRLOA2  
SLOPEA2*(TR2 – TRA2) 255  
Channel B drive is:  
DRIVEB = SPEEDLOB + SLOPEBL • (TL – TLLOB) + SLOPEB1 • (TR1 – TRLOB1) + SLOPEB2 • (TR2 – TLLOB2)  
REV. 1.01 12/2/99  
27  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Essentially, the overall response amounts to summing individ-  
ual fan speed contributions that have different gains and offsets.  
TRLOA1, TRLOA2, TRLOB1 and TRLOB2 must be  
unsigned integer °C values.  
An example with channel A fan drive caused solely by remote  
diode 1 is shown in Figure 14, which is the result of adding the  
remote diode 1 segment to minimum fan speed. Using the  
values from the segment example, if SPEEDLOA = 16, the  
SPEED drive rises from 16 at 60°C to a 255 limit at 78°C.  
SLOPEAL,BL,A1-2,B1-2 is expressed as a 5-bit integer plus a  
fraction. SLOPE7-3 is the integer. SLOPE2-0 is the fraction in  
1/8’th degrees. For example, the slope 13.5 is coded as 6C  
(SLOPE7-3 = 13, SLOPE2-0 = 1/2).  
A typical Fan Speed Controller register set up is shown in  
Table 4.  
255  
Table 4. Example Controller Register Values  
9.5 LSB/°C  
Register  
Address  
80  
Decimal  
Hex  
60  
00  
3C  
40  
00  
05  
01  
SPEEDALO  
SLOPEAL  
TRLOA1  
96  
0
75  
0
82  
83  
60  
64  
0
SLOPEA1  
SLOPEA2  
FAN_CTRL  
VOLTA  
84  
60  
79  
86  
TR1(°C)  
8E  
5
Figure 14. Fan Speed Response  
44  
1
With both remote temperature inputs processed against the  
same values, fan speed control parameters are established  
through a set of fourteen registers:  
With these register values, Fan ControllerA is selected with an  
analog voltage output (rather than PWM). Below 60°C, the  
fan idles at 38% (96/255) maximum speed. Above 60°C, fan  
drive increases at 8 LSB/°C (0.3%/°C) until the fan drive is  
255 at 80°C.  
1. SPEEDLOA, TRLOA1, SLOPEA1, TRLOA2, SLOPEA2  
,
TRLOAL, SLOPEAL  
2. SPEEDLOB, TRLOB1, SLOPEB1, TRLOB2, SLOPEB2  
TRLOB2, SLOPEBL  
.
,
Since SLOPEAL and SLOPEA2 values are zero, neither local  
temperature, TL nor remote diode 2 temperature, TR2 impact  
the value of drive A, which is a solely dependant upon temper-  
ature TR1.  
.
In the slave mode, FAN_SPDA and FAN_SPDB outputs are  
derived from the SPEEDA and SPEEDB registers.  
Format of the values in the registers is as follows:  
SPEEDLOA,B is expressed in LSBs of fan drive output. Range  
is 0–255 corresponding to 0–2.5V DAC output or 0–100%  
PWM on the FANSPDA,B outputs.  
28  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Equivalent Circuits  
VDD  
VDD  
p
Digital  
Output  
Digital  
Input  
n
n
GND  
GND  
Figure 18. Equivalent Open Drain Output Circuit  
Figure 15. Equivalent Digital Input Circuit  
VDD  
p
Digital  
Output  
n
GND  
Figure 16. Equivalent Digital and D/A Output Circuit  
Figure 19. Equivalent D/A Output Circuit  
VCC  
DXP  
DXN  
GND  
Figure 17. Equivalent Remote Diode Interface Circuit  
REV. 1.01 12/2/99  
29  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
(beyond which the device may be damaged)1  
Absolute Maximum Ratings  
Parameter  
Min  
Typ  
Max  
Unit  
Power Supply Voltages  
VCC (Measured to GND)  
Digital Inputs  
-0.5  
3.3/5.0  
5.75  
V
3.3/5.0V logic applied voltage (Measured to GND)2  
Forced current3, 4  
-0.3  
-5.0  
5.75  
5.0  
V
mA  
Analog Inputs  
Applied Voltage (Measured to GND)2  
Forced current3, 4  
-0.5  
5.75  
10.0  
V
-10.0  
mA  
Digital Outputs  
Applied voltage (Measured to GND)2  
-0.5  
5.75  
V
Parameter  
Forced current3, 4  
Forced current3, 4  
Min  
-6.0  
-8.0  
Typ  
Max  
6.0  
8.0  
1
Unit  
mA  
mA  
Short circuit duration (single output in HIGH state to ground)  
second  
Temperature  
Operating, Ambient  
Junction  
-40  
-65  
125  
150  
300  
220  
150  
±150  
°C  
°C  
°C  
°C  
°C  
V
Lead Soldering (10 seconds)  
Vapor Phase Soldering (1 minute)  
Storage  
Electrostatic Discharge5  
Notes:  
1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if  
Operating Conditions are not exceeded.  
2. Applied voltage must be current limited to specified range.  
3. Forcing voltage must be limited to specified range.  
4. Current is specified as conventional current flowing into the device.  
5. EIAJ test method.  
Operating Conditions  
Parameter  
VCC  
Min  
Nom  
Max  
Units  
V
Digital Power Supply Voltage  
Ambient Temperature, Still Air  
3.3/5.0  
TA  
0
85  
°C  
30  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
Electrical Characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Power Supply Currents  
IVCC  
Supply Current  
Operating Standby  
15  
10  
7
20  
mA  
mA  
mA  
TACHA1-3, B1-3 Active  
Standby, TACHA1-3, B1-3 = H  
Digital Inputs/Outputs  
CI  
Input Capacitance  
5
10  
pF  
pF  
µA  
µA  
µA  
V
CO  
IIH  
Output Capacitance  
10  
Input Current, HIGH  
-1  
0.005  
0.005  
200  
IIL  
Input Current, LOW  
+1  
+1  
IILR  
VIH  
VIL  
IOZH  
IOH  
IOL  
VOH  
VOL  
Input Current, LOW, Master Reset  
Input Voltage, HIGH  
STANDBY = L  
2.0  
Input Voltage, LOW  
0.8  
100  
-2  
V
Output Current, HIGH, open drain  
Output Current, HIGH  
Output Current, LOW  
Output Voltage, HIGH  
-0.1  
µA  
µA  
mA  
V
3
IOH = max.  
IOL = max.  
2.4  
2.1  
Output Voltage, LOW (VDD3  
)
0.4  
V
Serial Bus I/O  
VSMIH  
VSMIL  
Input Voltage, HIGH  
Input Voltage, LOW  
V
V
0.8  
0.4  
-100  
4
VSMOL Output Voltage, LOW  
ISMOL = max.  
V
ISMOH  
ISMOL  
Output Current, HIGH  
Output Current, HIGH  
-0.1  
µA  
mA  
Diode Inputs  
IDH Source Current, High  
IDL Source Current, Low  
Analog Output  
80  
8
100  
10  
120  
12  
µA  
µA  
VAH  
VAL  
IAH  
IAL  
Output Voltage, high  
SPEEDA/B7-0 = 0xFF  
SPEEDA/B7-0 = 0x00  
2.5  
0
V
V
Output Voltage, low  
Output Current , source  
Output Current , sink  
2
mA  
mA  
1
REV. 1.01 12/2/99  
31  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Switching Characteristics  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
Digital Inputs  
tDI  
Delay, input to register  
Reset Generators  
tDR  
Delay, STANDBY to RST = L  
ns  
ms  
ns  
tWR  
Pulsewidth, STANDBY to RST = H  
Delay, VCC < 2.9/4.4 V to RST output  
Pulsewidth, RST after VCC > 2.9/4.4 V  
180  
140  
500  
500  
tDVR  
tDVW  
Serial Bus Interface  
tDAL SCL Pulse Width, LOW  
tDAH  
ms  
4.7  
4.0  
4.0  
4.0  
4.7  
4.7  
250  
300  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
SCL Pulse Width, HIGH  
tSTAH  
tSTASU  
tSTOSU  
tBUFF  
tDSU  
SDA Start Hold Time  
SCL to SDA Setup Time (Stop)  
SCL to SDA Setup Time (Start)  
SDA Stop Hold Time Setup  
SDA to SCL Data Setup Time  
SDA to SCL Data Hold Time  
tDHO  
Notes:  
1. is a H to L transition.  
2. is a L to H transition.  
System Performance Characteristics  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
Thermometer  
Remote Accuracy  
Local Accuracy  
-40°C TR +125°C  
+60°C TR +100°C  
0°C TA +85°C  
±5  
±3  
±5  
±3  
°C  
°C  
°C  
°C  
20°C TA +50°C  
Tachometer  
Voltmeter  
Accuracy  
±1  
%
Accuracy  
±1  
8
%
Resolution  
bits  
A/D Converter  
ETUADC  
ELDADC  
PSS  
Error, Total Unadjusted  
Differential Linearity Error  
Power Supply Sensitivity  
Total Monitoring Cycle Time  
±1  
±1  
±1  
1.0  
%
LSB  
%/V  
Sec.  
tC  
Remote and Local  
1.4  
D/A Converter Output  
ETUDAC Error, Total Unadjusted  
ELDDAC Differential Linearity Error  
-3  
-1  
+3  
+1  
%
LSB  
32  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
System Performance Characteristics (continued)  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
Reset Generators  
VRES  
Threshold Voltage  
FMS2704  
4.4  
2.9  
200  
V
V
FMS2704L  
tRES  
Reset Interval  
msec.  
Notes:  
1. Unless stated otherwise, values shown in Typ. column are typical for V = 3.3/5.0V and T = 25°C.  
CC  
A
Parasitic voltages and leakage can cause errors. Voltage sensi-  
tivity is 200µV/°C. 1µA current leakage can cause a 4%  
change in sensitivity that corresponds to a 12°C error at room  
temperature.  
Applications Information  
Before illustrating some applications with a few examples,  
below are several guidelines that should be adopted to opti-  
mize performance of the FMS2704.  
Fan Control  
Thermal Diode Connections  
Whether setting the fan speed through the SMBus or using the  
internal controller, the fan speed should be constrained  
between a value corresponding to stall speed and normal rated  
speed. Stall speed is typically 30% of normal speed.  
When connecting a bipolar transistor configured as a thermal  
diode, sensing the base-emitter junction with the collector dis-  
connected is not recommended. Intrinsic base resistance will  
induce an error causing the indicated temperature to be high.  
Instead connect the transistor in either of the configurations  
shown in Figure 20:  
1. PNP: Collector connected to ground, with DXP con-  
nected to the emitter and DXN connected to the base.  
Stall Voltage  
2. NPN: Collector connected to base, with DXN con-  
nected to the emitter and DXP connected to the base.  
Within the FMS2704, there is a return to ground through the  
DXN pin which conducts the base current of a PNP transistor  
or the emitter current from an NPN transistor.  
Voltage  
Figure 21. Fan Speed verses Drive Voltage  
DXP  
Q1  
General  
DXN  
PNP  
Power is supplied to the VCCA and VCCD pins, which should  
be de-coupled to ground through local 0.1µF chip capacitors.  
To minimize the effects of noise, locate the FMS2704 over a  
ground plane.  
DXP  
Q2  
Input pin STANDBY and bi-directional pin THERM, should  
be biased to VCCD through a pull-up resistor to prevent spuri-  
ous triggering. Tachometer inputs are internally biased to  
VCCD.  
NPN  
DXN  
JP1  
Opitional Ground  
Serial Bus pins SCL and SDA require pull-up resistors along  
the bus but not necessarily local to the FMS2704. ADD must  
be set H, L or open to match the FMS2704 address to the  
assigned Serial Bus address.  
Figure 20. Thermal Diode Connections  
Cleanly route the DXP1, DXN1 and DXP2, DXN2 analog  
traces as pairs over the ground plane. Segregate DXP2-1,N2-1  
traces from digital traces and areas of noise.  
REV. 1.01 12/2/99  
33  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Recommended ceramic resonator to be connected across the  
OSC2-1 pins is a Murata CSTCC358-TC or equivalent. This  
resonator includes capacitors that form the resonant circuit of  
a Colpitts oscillator. If a resonator without internal capacitors  
is used, external capacitors should be connected as shown in  
Figure 22.  
Example Applications Circuits  
Several applications are depicted in the schematics below.  
Figure 23 shows how the FMS2704 can be used to set the  
speed of two fans while monitoring the rotation rates with the  
tachometer inputs. Fan speed is set by programming the  
SPEEDA and SPEEDB registers. Drive to the P-channel  
MOSFETs is set to be PWM.  
Y1  
CSTCC358-TC  
1
HI  
OSC1  
OSC2  
2
GND  
LO  
Figure 24 shows the FMS2704 used as a Fan Speed Control-  
ler. Fan Drive increases as the temperature of the thermal  
diode increases. There are two separate controllers, one for  
each fan. PNP transistors comprising the diodes may be  
embedded within processor silicon such as a Pentium II or III.  
3
OSC1  
C?  
30PF  
Y?  
Figure 25 shows an FMS2704 driving two banks of three fans  
while monitoring the speed of each fan.  
RESONATOR  
C?  
30PF  
OSC2  
Figure 22. Schematic, Ceramic Resonator  
Configurations  
34  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
S O P  
1
G E N  
S O P  
2
1
G E N  
2
8
8
4
4
A C C V  
D C C V  
9 1  
7
D N G  
2 1  
Figure 23. FMS2704 Reference Schematic, Dual Analog Fan Drive with Tachometers  
REV. 1.01 12/2/99  
35  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
S O P  
G E N  
2
1
S O P  
G E N  
2
1
A C C V  
D C C V  
9 1  
7
D N G  
2 1  
Figure 24. FMS2704 Reference Schematic, Dual PWM Fan Speed Controller with Voltage Monitoring  
36  
REV. 1.01 12/2/99  
FMS2704/FMS2704L  
PRODUCT SPECIFICATION  
S O P  
S O P  
S O P  
S O P  
1
1
1
G E N  
G E N  
G E N  
G E N  
2
2
2
2
S O P  
1
G E N  
2
S O P  
1
G E N  
2
8
4
8
4
A C C V  
D C C V  
9 1  
D N G  
7
2 1  
Figure 25. FMS2704 Reference Schematic, Dual Triple Fan Drive, Six Tachometers  
REV. 1.01 12/2/99  
37  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Mechanical Dimensions  
24-Lead TSSOP (T1) Package  
Notes:  
Inches  
Millimeters  
Symbol  
Notes  
1. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
Min.  
Max.  
Min.  
Max.  
2. "D" and "E" do not include mold flash. Mold flash or  
protrusions shall not exceed .006 inch (0.15mm).  
A
.047  
.006  
.012  
.008  
.316  
.180  
1.20  
0.15  
0.30  
0.20  
7.90  
4.50  
A1  
B
.002  
.007  
.004  
.308  
.172  
0.05  
0.19  
0.09  
7.70  
4.30  
3. "L" is the length of terminal for soldering to a substrate.  
4. Terminal numbers are shown for reference only.  
5. Symbol "N" is the maximum number of terminals.  
C
D
E
2
2
e
.026 BSC  
.256 BSC  
.018 .030  
0.65 BSC  
6.40 BSC  
0.45 0.75  
H
L
3
5
N
α
24  
24  
0°  
8°  
0°  
8°  
ccc  
.004  
0.10  
D
E
H
C
A1  
A
α
SEATING  
PLANE  
– C –  
L
B
LEAD COPLANARITY  
ccc C  
e
38  
REV. 1.01 12/2/99  
PRODUCT SPECIFICATION  
FMS2704/FMS2704L  
Ordering Information  
Product Number Temperature Range  
Screening  
Commercial  
Commercial  
Package  
Package Marking  
2704T1  
FMS2704T1C  
FMS2704LT1C  
0°C to 85°C  
0°C to 85°C  
24 Lead TSSOP  
24 Lead TSSOP  
2704LT1  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
12/2/99 0.0m 004  
Stock#DS30001117  
1998 Fairchild Semiconductor Corporation  

相关型号:

FMS2AT148

Small Signal Bipolar Transistor, 0.15A I(C), 50V V(BR)CEO, 2-Element, PNP, Silicon, SC-74A, 5 PIN
ROHM

FMS2AT149

Small Signal Bipolar Transistor, 0.1A I(C), 40V V(BR)CEO, 2-Element, PNP, Silicon
ROHM

FMS3

General purpose (dual transistors)
ROHM

FMS3

High breakdown voltage, Power dissipation: PC=300mW
TYSEMI

FMS3110

Triple Video D/A Converters 3 x 10 bit, 150 Ms/s
FAIRCHILD

FMS3110KRC

Triple Video D/A Converters 3 x 10 bit, 150 Ms/s
FAIRCHILD

FMS3110KRC_NL

Triple Video D/A Converters 3 x 10 bit, 150 Ms/s
FAIRCHILD

FMS3110_04

Triple Video D/A Converters 3 x 10 bit, 150 Ms/s
FAIRCHILD

FMS3115

Triple Video D/A Converters 3 x 10 bit, 150 Ms/s
FAIRCHILD

FMS3115KRC

Triple Video D/A Converters 3 x 10 bit, 150 Ms/s
FAIRCHILD

FMS3120KRC

Video DAC without Color Palette
ETC

FMS3125KRC

Video DAC without Color Palette
ETC