ST7036-0A [ETC]

Dot Matrix LCD Controller/Driver; 点阵LCD控制器/驱动器
ST7036-0A
型号: ST7036-0A
厂家: ETC    ETC
描述:

Dot Matrix LCD Controller/Driver
点阵LCD控制器/驱动器

驱动器 控制器 CD
文件: 总72页 (文件大小:864K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST  
Sitronix  
ST7036  
Preliminary  
Dot Matrix LCD Controller/Driver  
„ Features  
z
z
5 x 8 dot matrix possible  
z
z
Wide range of instruction functions:  
Display clear, cursor home, display on/off,  
cursor on/off, display character blink, cursor  
shift, display shift, double height font  
Automatic reset circuit that initializes the  
controller/driver after power on and external  
reset pin  
Low power operation support:  
-- 2.7 to 5.5V  
z
z
Range of LCD driver power  
-- 2.7 to 7.0V  
4-bit, 8-bit, serial or 400kbits/s fast I2C-bus  
MPU interface enabled  
z
z
80 x 8-bit display RAM (80 characters max.)  
10,240-bit character generator ROM for a  
total of 256 character fonts(max)  
64 x 8-bit character generator RAM(max)  
Support two display mode:  
16-com x 100-seg and 80 ICON  
24-com x 80-seg and 80 ICON  
16 x 5 –bit ICON RAM(max)  
z
z
Internal oscillator(Frequency=540kHz) and  
external clock  
Built-in voltage booster and follower circuit  
(low power consumption )  
z
z
z
z
z
COM/SEG direction selectable  
Multi-selectable for CGRAM/CGROM size  
Instruction compatible to ST7066U and  
KS0066U and HD44780  
z
z
Available in COG type  
„ Description  
5.5V) of the ST7036 is suitable for any portable  
The ST7036 dot-matrix liquid crystal display controller and  
driver LSI displays alphanumeric, Japanese kana  
characters, and symbols. It can be configured to drive a  
dot-matrix liquid crystal display under the control of a 4-/  
8-bit, serial or fast I2C interface microprocessor. Since all  
the functions such as display RAM, character generator,  
and liquid crystal driver, required for driving a dot-matrix  
liquid crystal display are internally provided on one chip, a  
minimal system can be interfaced with this  
battery-driven product requiring low power dissipation.  
The ST7036 LCD driver consists of 17 common signal  
drivers and 100 segment signal drivers. And the second  
mode is consists of 25 common signal and 80 segment  
signal drivers. The maximum display RAM size can be  
either 80 characters in 1-line display or 40 characters in  
2-line display or 16 characters in 3-line. A single ST7036  
can display up to one 20-character line or two 20-character  
lines or three 16-character lines.  
controller/driver.  
No extra drivers can be cascaded.  
The ST7036 character generator ROM is extended to  
generate 256 5x8dot character fonts for a total of 256  
different character fonts. The low power supply (2.7V to  
Character generator  
product Name  
OPR1 OPR2 Support Character  
ROM Size  
ST7036-0A  
-
256  
-
1
-
1
-
English / Japan/Europe  
-
6800-4bit / 8bit interface  
(without IIC interface)  
ST7036  
Note:  
IIC interface  
ST7036i  
I²C option not available  
for EA DOG series !  
V1.1  
2003/12/24  
1/72  
ST7036  
ST7036 Serial Specification Revision History  
Date Description  
Version  
0.1a  
2003/04/28 1st Edition  
PAD Dimension:  
0.1b  
2003/06/03 IC L mark location modified  
Chip Size X/Y modified  
0.2a  
1.0  
2003/09/01 1. Include ST7036i  
1. Add application circuit for 3 line display.  
2. 4 bit interface program example modified.  
1. Remove the instruction of frequency adjust.  
2. Add the detail of CGRAM/CGROM arrangement.  
2003/10/24  
2003/12/24  
1.1  
V1.1  
2003/12/24  
2/72  
ST7036  
„ Pad Dimensions  
¾ Chip Size: 5190.0X910.0 µm  
¾ Bump Pitch : 55 µm ( min )  
¾ Bump Height : 17 µm ( typ. )  
¾ Bump Size :  
z
z
Pad No.1~52 : 56 x 72 µm  
Pad No.53~170 : 35 x 101 µm  
V1.1  
2003/12/24  
3/72  
ST7036  
„ Pad Location Coordinates(N3=0 1 line/2 line)  
Pad No. Function  
X
Y
Pad No. Function  
X
Y
1
2
3
4
5
6
7
8
XRESET  
OSC  
VDD  
RS  
CSB  
RW  
1859  
1783  
1707  
1631  
1555  
1479  
1403  
1327  
1251  
1175  
1099  
1023  
947  
871  
795  
719  
643  
567  
491  
415  
339  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
CLS  
CAP1N  
CAP1N  
VOUT  
VOUT  
V0  
V0  
V1  
V2  
V3  
V4  
NC  
COM[8]  
COM[7]  
COM[6]  
COM[5]  
COM[4]  
COM[3]  
COM[2]  
COM[1]  
COMI1  
SEG[1]  
SEG[2]  
SEG[3]  
SEG[4]  
SEG[5]  
SEG[6]  
SEG[7]  
SEG[8]  
SEG[9]  
SEG[10]  
SEG[11]  
SEG[12]  
SEG[13]  
SEG[14]  
SEG[15]  
SEG[16]  
SEG[17]  
SEG[18]  
SEG[19]  
-1181  
-1257  
-1333  
-1409  
-1485  
-1561  
-1637  
-1713  
-1789  
-1865  
-1941  
-2017  
-2125  
-2180  
-2235  
-2290  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2253  
-2198  
-2143  
-2088  
-2033  
-1978  
-1923  
-1868  
-1813  
-1758  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
378  
378  
378  
378  
365  
310  
255  
200  
145  
90  
E
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
VSS  
VSS  
VSS  
OPF1  
OPF2  
OPR1  
OPR2  
SHLC  
SHLS  
N3  
TEST1  
VDD  
VDD  
VDD  
VIN  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
263  
187  
111  
35  
35  
-20  
-75  
-41  
-130  
-185  
-240  
-295  
-350  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-117  
-193  
-269  
-345  
-421  
-497  
-573  
-649  
-725  
-801  
-877  
-953  
-1029  
-1105  
VIN  
VOUT  
VOUT  
PSB  
VSS  
PSI2B  
CAP1P  
CAP1P  
EXT  
VSS  
V1.1  
2003/12/24  
4/72  
ST7036  
Pad No. Function  
X
Y
Pad No. Function  
X
Y
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
SEG[20]  
SEG[21]  
SEG[22]  
SEG[23]  
SEG[24]  
SEG[25]  
SEG[26]  
SEG[27]  
SEG[28]  
SEG[29]  
SEG[30]  
SEG[31]  
SEG[32]  
SEG[33]  
SEG[34]  
SEG[35]  
SEG[36]  
SEG[37]  
SEG[38]  
SEG[39]  
SEG[40]  
SEG[41]  
SEG[42]  
SEG[43]  
SEG[44]  
SEG[45]  
SEG[46]  
SEG[47]  
SEG[48]  
SEG[49]  
SEG[50]  
SEG[51]  
SEG[52]  
SEG[53]  
SEG[54]  
SEG[55]  
SEG[56]  
SEG[57]  
SEG[58]  
SEG[59]  
-1703  
-1648  
-1593  
-1538  
-1483  
-1428  
-1373  
-1318  
-1263  
-1208  
-1153  
-1098  
-1043  
-988  
-933  
-878  
-823  
-768  
-713  
-658  
-603  
-548  
-493  
-438  
-383  
-328  
-273  
-218  
-163  
-108  
-53  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
SEG[60]  
SEG[61]  
SEG[62]  
SEG[63]  
SEG[64]  
SEG[65]  
SEG[66]  
SEG[67]  
SEG[68]  
SEG[69]  
SEG[70]  
SEG[71]  
SEG[72]  
SEG[73]  
SEG[74]  
SEG[75]  
SEG[76]  
SEG[77]  
SEG[78]  
SEG[79]  
SEG[80]  
SEG[81]  
SEG[82]  
SEG[83]  
SEG[84]  
SEG[85]  
SEG[86]  
SEG[87]  
SEG[88]  
SEG[89]  
SEG[90]  
SEG[91]  
SEG[92]  
SEG[93]  
SEG[94]  
SEG[95]  
SEG[96]  
SEG[97]  
SEG[98]  
SEG[99]  
497  
552  
607  
662  
717  
772  
827  
882  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-350  
-295  
-240  
-185  
-130  
-75  
937  
992  
1047  
1102  
1157  
1212  
1267  
1322  
1377  
1432  
1487  
1542  
1597  
1652  
1707  
1762  
1817  
1872  
1927  
1982  
2037  
2092  
2147  
2202  
2518  
2518  
2518  
2518  
2518  
2518  
2518  
2518  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
2
57  
112  
167  
222  
277  
332  
387  
-20  
35  
442  
V1.1  
2003/12/24  
5/72  
ST7036  
Pad No. Function  
X
Y
Pad No. Function  
X
Y
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
SEG[100]  
COM[9]  
2518  
2518  
2518  
2518  
2518  
2518  
2290  
2235  
2180  
2125  
90  
145  
200  
255  
310  
365  
378  
378  
378  
378  
COM[10]  
COM[11]  
COM[12]  
COM[13]  
COM[14]  
COM[15]  
COM[16]  
COMI2  
V1.1  
2003/12/24  
6/72  
ST7036  
„ Pad Location Coordinates(N3=1 3 line)  
Pad No. Function  
X
Y
Pad No. Function  
X
Y
1
2
3
4
5
6
7
8
XRESET  
OSC  
VDD  
RS  
CSB  
RW  
1859  
1783  
1707  
1631  
1555  
1479  
1403  
1327  
1251  
1175  
1099  
1023  
947  
871  
795  
719  
643  
567  
491  
415  
339  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
CLS  
CAP1N  
CAP1N  
VOUT  
VOUT  
V0  
V0  
V1  
V2  
V3  
V4  
NC  
COM[12]  
COM[11]  
COM[10]  
COM[9]  
COM[8]  
COM[7]  
COM[6]  
COM[5]  
NC  
COM[4]  
COM[3]  
COM[2]  
COM[1]  
COMI1  
NC  
NC  
NC  
NC  
NC  
SEG[1]  
SEG[2]  
SEG[3]  
SEG[4]  
SEG[5]  
SEG[6]  
SEG[7]  
SEG[8]  
SEG[9]  
-1181  
-1257  
-1333  
-1409  
-1485  
-1561  
-1637  
-1713  
-1789  
-1865  
-1941  
-2017  
-2125  
-2180  
-2235  
-2290  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2518  
-2253  
-2198  
-2143  
-2088  
-2033  
-1978  
-1923  
-1868  
-1813  
-1758  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
393  
378  
378  
378  
378  
365  
310  
255  
200  
145  
90  
E
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
VSS  
VSS  
VSS  
OPF1  
OPF2  
OPR1  
OPR2  
SHLC  
SHLS  
N3  
TEST1  
VDD  
VDD  
VDD  
VIN  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
263  
187  
111  
35  
35  
-20  
-75  
-41  
-130  
-185  
-240  
-295  
-350  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-117  
-193  
-269  
-345  
-421  
-497  
-573  
-649  
-725  
-801  
-877  
-953  
-1029  
-1105  
VIN  
VOUT  
VOUT  
PSB  
VSS  
PSI2B  
CAP1P  
CAP1P  
EXT  
VSS  
V1.1  
2003/12/24  
7/72  
ST7036  
Pad No. Function  
X
Y
Pad No. Function  
X
Y
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
SEG[10]  
SEG[11]  
SEG[12]  
SEG[13]  
SEG[14]  
SEG[15]  
SEG[16]  
SEG[17]  
SEG[18]  
SEG[19]  
SEG[20]  
SEG[21]  
SEG[22]  
SEG[23]  
SEG[24]  
SEG[25]  
SEG[26]  
SEG[27]  
SEG[28]  
SEG[29]  
SEG[30]  
SEG[31]  
SEG[32]  
SEG[33]  
SEG[34]  
SEG[35]  
SEG[36]  
SEG[37]  
SEG[38]  
SEG[39]  
SEG[40]  
SEG[41]  
SEG[42]  
SEG[43]  
SEG[44]  
SEG[45]  
SEG[46]  
SEG[47]  
SEG[48]  
SEG[49]  
-1703  
-1648  
-1593  
-1538  
-1483  
-1428  
-1373  
-1318  
-1263  
-1208  
-1153  
-1098  
-1043  
-988  
-933  
-878  
-823  
-768  
-713  
-658  
-603  
-548  
-493  
-438  
-383  
-328  
-273  
-218  
-163  
-108  
-53  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
SEG[50]  
SEG[51]  
SEG[52]  
SEG[53]  
SEG[54]  
SEG[55]  
SEG[56]  
SEG[57]  
SEG[58]  
SEG[59]  
SEG[60]  
SEG[61]  
SEG[62]  
SEG[63]  
SEG[64]  
SEG[65]  
SEG[66]  
SEG[67]  
SEG[68]  
SEG[69]  
SEG[70]  
SEG[71]  
SEG[72]  
SEG[73]  
SEG[74]  
SEG[75]  
SEG[76]  
SEG[77]  
SEG[78]  
SEG[79]  
SEG[80]  
NC  
497  
552  
607  
662  
717  
772  
827  
882  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-378  
-350  
-295  
-240  
-185  
-130  
-75  
937  
992  
1047  
1102  
1157  
1212  
1267  
1322  
1377  
1432  
1487  
1542  
1597  
1652  
1707  
1762  
1817  
1872  
1927  
1982  
2037  
2092  
2147  
2202  
2518  
2518  
2518  
2518  
2518  
2518  
2518  
2518  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
2
57  
112  
167  
222  
277  
332  
387  
NC  
NC  
NC  
NC  
NC  
COM[13]  
COM[14]  
COM[15]  
-20  
35  
442  
V1.1  
2003/12/24  
8/72  
ST7036  
Pad No. Function  
X
Y
Pad No. Function  
X
Y
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
COM[16]  
COM[17]  
COM[18]  
COM[19]  
COM[20]  
COM[21]  
COM[22]  
COM[23]  
COM[24]  
COMI2  
2518  
2518  
2518  
2518  
2518  
2518  
2290  
2235  
2180  
2125  
90  
145  
200  
255  
310  
365  
378  
378  
378  
378  
V1.1  
2003/12/24  
9/72  
ST7036  
„ Block Diagram  
OSC  
CPG  
XRESET  
CLS  
Reset  
circuit  
Timing  
generator  
Instruction  
register(IR)  
Instruction  
decoder  
COM1 to  
COM16  
(OR 24)  
Display data  
RAM  
(DDRAM)  
80x8 bits  
24-bit  
shift  
Common  
signal  
register  
driver  
RS  
RW  
E
MPU  
COMI  
interface  
Address  
counter  
(AC)  
CSB  
PSB  
SEG1 to  
SEG100  
100-bit  
shift  
100-bit  
latch  
Segment  
signal  
PSI2B  
register  
circuit  
driver  
Data  
register  
(DR)  
DB4 to  
DB7  
V0~V4  
VOUT  
LCD drive  
voltage  
Input/  
output  
buffer  
DB0 to  
DB3  
follower  
Busy  
flag  
Character  
generator RAM  
(CGRAM)  
VIN  
Voltage  
booster  
circuit  
Character  
Cursor  
generator ROM  
(CGROM)  
and  
blink  
SHLC  
SHLS  
CAP1P  
CAP1N  
64 bytes  
controller  
10.240 bits  
EXT  
N3  
ICON RAM  
80 bits  
OPR1,2  
OPF1,2  
VSS  
Parallel/serial converter  
and  
attribute circuit  
VDD  
V1.1  
2003/12/24  
10/72  
ST7036  
„ Pin Function  
Name  
Number I/O Interfaced with  
Function  
External reset pin. Only if the power on reset be used, the  
XRESET pin could be fixed to VDD.  
Low active.  
XRESET  
1
I
MPU  
Select registers.  
0: Instruction register (for write)  
RS  
1
I
MPU  
Busy flag & address counter (for read)  
1: Data register (for write and read)  
Select read or write(In parallel mode).  
0: Write  
R/W  
E
1
1
1
I
I
I
MPU  
MPU  
MPU  
1: Read  
Starts data read/write. (“E” must connect to “VDD” when  
serial mode is selected.)  
Chip select in parallel mode and serial interface(Low  
active). When the CSB in falling edge state ( in serial  
interface ), the shift register and the counter are reset.  
DB0~DB3 are four low order bi-directional data bus pins.  
DB0~DB3 are used for data transfer and receive between  
the MPU and the ST7036.  
CSB  
These pins are not used during 4-bit operation and must  
connect to VDD.  
DB4~DB7 are four high order bi-directional data bus pins.  
DB4~DB7 are used for data transfer and receive between  
the MPU and the ST7036. DB7 can be used as a busy flag.  
In serial interface mode DB7 is SI(input data),DB6 is  
SCL(serial clock).  
DB0 to DB7  
8
I/O  
MPU  
In I2C interface DB7 is slave address A1, DB6 is slave  
address A0, DB5 DB4 DB3 are SDA –out, DB2 DB1 are  
SDA-in and D0 is SCL.  
SDA and SCL must connect to I2C bus ( I2C bus means that  
connecting a resister between SDA/SCL and the power of  
I2C bus ).  
Extension instruction select:  
0:enable extension instruction(add contrast/ICON/double  
height font/ extension instruction)  
1:disable extension instruction(compatible to ST7066U, but  
without 5x11dot font)  
Interface selection  
0:serial mode  
Ext  
1
1
I
I
ITO option  
MPU  
PSB  
(“E” must connect to “VDD” when serial mode is selected.)  
1:parallel mode(4/8 bit)  
In I2C interface PSB must connect to VDD  
PSB  
PSI2B  
Interface  
No use  
0
0
1
1
0
1
0
1
PSI2B  
1
I
ITO option  
SI4  
SI2 ( I2C )  
Parallel 68  
V1.1  
2003/12/24  
11/72  
ST7036  
Name  
Number I/O Interfaced with  
Function  
Character generator select:  
OPR1  
OPR2  
CGROM CGRAM  
0
0
1
1
0
1
0
1
240  
250  
248  
256  
8
6
8
0
OPR1,OPR2  
2
I
ITO option  
Common signals direction select:  
SHLC  
SHLS  
1
1
I
I
ITO option  
ITO option  
LCD  
0:Com1~24Row address 23~0(Invert)  
1:Com1~24Row address 0~23(Normal)  
Segment signals direction select:  
0:Seg1~100Column address 99~0(Invert)  
1:Seg1~100Column address 0~99(Normal)  
Common signals that are not used are changed  
to non-selection waveform. COM9 to COM16  
are non-selection waveforms at 1/8 or 1/9 duty factor  
ICON common signals  
COM1 to  
COM16  
16  
O
COMI2  
COMI1  
Seg1~Seg10  
Seg91~Seg100  
1
O
O
LCD  
LCD  
Select “N3” pin for common or segment waveform output  
(follow up table 2 defined)  
21  
1 line/2 line or 3 line select :  
N3  
1
I
ITO option  
LCD  
0:1 line/2 line SEG0~SEG100:normal  
1:3 line COMI1,SEG1~SEG5,SEG97~SEG100 re-defined  
SEG11 to  
SEG90  
80  
O
Segment signals  
The built-in voltage follower circuit selection  
OPF1 OPF2  
Bias select  
0
0
1
1
0
1
0
1
Built-in voltage follower(only use at EXT=0)  
Built-in bias resistor(3.3KΩ)  
Built-in bias resistor(9.6KΩ)  
External bias resistor select  
OPF1,OPF2  
2
I
ITO option  
CAP1P  
CAP1N  
VIN  
2
2
2
-
-
-
Power supply  
Power supply  
Power supply  
For voltage booster circuit(VDD-VSS)  
External capacitor about 0.1u~4.7uf  
Input the voltage to booster  
DC/DC voltage converter. Connect a capacitor between this  
terminal and VIN when the built-in booster is used.  
Power supply for LCD drive  
VOUT  
4
-
Power supply  
V0 to V4  
VDD,VSS  
CLS  
6
4,5  
1
-
-
I
Power supply  
Power supply  
ITO option  
V0-Vss = 7V (Max)  
Built-in/external Voltage follower circuit  
VDD: 2.7V to 5.5V, VSS: 0V  
Internal/External oscillation select  
0:external clock  
1:internal oscillation  
When the pin input is an external clock, it must be input to  
OSC.  
When the on-chip oscillator is used, it must be connected  
to VDD.  
OSC  
1
1
I
Oscillation  
Test pin  
TEST1  
I/O  
TEST1 must connect to VDD.  
V1.1  
2003/12/24  
12/72  
ST7036  
„ EXT option pin difference table  
Mode  
Normal mode (EXT=1)  
Extension mode (EXT=0)  
Difference  
( Instruction compatible to ST7066U )  
Booster  
Always OFF  
ON/OFF controlled by instruction  
Can’t use the follower circuit  
Bias (V0~V4)  
Only use external resistor or internal resistor(1/5 Follower or internal/external resistor selectable  
bias)  
1. Controlled by instruction with follower  
Contrast adjust  
Control by external VR  
2. Controlled by external VR with  
internal/external resistor  
ICON RAM  
Can’t be use  
RAM size has 80 bit width(S1~S80).  
Control extension instruction for low power  
consumption.  
Instruction  
Control normal instruction similar to ST7066U.  
Only 5x8 font  
Double height font  
Can set 5x8 or 5x16 font  
V1.1  
2003/12/24  
13/72  
ST7036  
„ Function Description  
z
System Interface  
This chip has all four kinds of interface type with MPU: 4-bit bus, 8-bit bus, serial and fast I2C interface. 4-bit bus  
or 8-bit bus is selected by DL bit in the instruction register.  
During read or write operation, two 8-bit registers are used. One is data register (DR), the other is instruction  
register(IR).  
The data register(DR) is used as temporary data storage place for being written into or read from  
DDRAM/CGRAM/ICON RAM, target RAM is selected by RAM address setting instruction. Each internal  
operation, reading from or writing into RAM, is done automatically. So to speak, after MPU reads DR data, the  
data in the next DDRAM/CGRAM/ICON RAM address is transferred into DR automatically. Also after MPU writes  
data to DR, the data in DR is transferred into DDRAM/CGRAM/ICON RAM automatically.  
The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to  
read instruction data.  
To select register, use RS input pin in 4-bit/8-bit bus mode.  
RS R/W  
Operation  
L
L
L
H
L
Instruction Write operation (MPU writes Instruction code into IR)  
Read Busy Flag(DB7) and address counter (DB0 ~ DB6)  
Data Write operation (MPU writes data into DR)  
Data Read operation (MPU reads data from DR)  
H
H
H
Table 1. Various kinds of operations according to RS and R/W bits.  
I2C interface  
It just only could write Data or Instruction to ST7036 by the IIC Interface.  
It could not read Data or Instruction from ST7036 (except Acknowledge signal).  
SCL: serial clock input  
SDA_IN: serial data input  
SDA_OUT: acknowledge response output  
Slaver address could set from “0111100” to “0111111”.  
The I2C interface send RAM data and executes the commands sent via the I2C Interface. It could send data in to the RAM.  
The I2C Interface is two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA)  
and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be  
initiated only when the bus is not busy.  
BIT TRANSFER  
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of  
the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated  
in Fig.1.  
START AND STOP CONDITIONS  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock  
is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined  
as the STOP condition (P). The START and STOP conditions are illustrated in Fig.2.  
SYSTEM CONFIGURATION  
The system configuration is illustrated in Fig.3.  
· Transmitter: the device, which sends the data to the bus  
· Master: the device, which initiates a transfer, generates clock signals and terminates a transfer  
· Slave: the device addressed by a master  
· Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message  
V1.1  
2003/12/24  
14/72  
ST7036  
· Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to  
do so and the message is not corrupted  
· Synchronization: procedure to synchronize the clock signals of two or more devices.  
ACKNOWLEDGE  
Acknowledge signal (ACK) is not BF signal in parallel interface.  
Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the  
transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is  
addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an  
acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that  
acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during  
the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master  
receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been  
clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition. Acknowledgement on the I2C Interface is illustrated in Fig.4.  
SDA  
SCL  
data line  
stable;  
change  
of data  
allowed  
data valid  
Fig .1 Bit transfer  
SDA  
SCL  
S
P
START condition  
STOP condition  
Fig .2 Definition of START and STOP conditions  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER (1)  
0111100  
SLAVE  
RECEIVER (2)  
0111101  
SLAVE  
RECEIVER (3)  
0111110  
SLAVE  
RECEIVER (4)  
0111111  
SDA  
SCL  
Fig .3 System configuration  
V1.1  
2003/12/24  
15/72  
ST7036  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
8
SCL FROM  
MASTER  
2
1
9
S
clock pulse for  
START  
acknowledgement  
condition  
Fig .4 Acknowledgement on the IIC Interface  
I2C Interface protocol  
The ST7036 supports command, data write addressed slaves on the bus.  
Before any data is transmitted on the I2C Interface, the device, which should respond, is addressed first. Four 7-bit slave  
addresses (0111100 to 0111111) are reserved for the ST7036. The R/W is assigned to 0 for Write only.  
The I2C Interface protocol is illustrated in Fig.5.  
The sequence is initiated with a START condition (S) from the I2C Interface master, which is followed by the slave address.  
All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I2C Interface transfer. After  
acknowledgement, one or more command words follow which define the status of the addressed slaves.  
A command word consists of a control byte, which defines Co and RS, plus a data byte.  
The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a  
cleared Co bit, only data bytes will follow. The state of the RS bit defines whether the data byte is interpreted as a command  
or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte,  
depending on the RS bit setting; either a series of display data bytes or command data bytes may follow. If the RS bit is set  
to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is  
automatically updated and the data is directed to the intended ST7036i device. If the RS bit of the last control byte is set to  
logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received  
commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the I2C  
INTERFACE-bus master issues a STOP condition (P).  
V1.1  
2003/12/24  
16/72  
ST7036  
Write mode  
acknowledgement  
from ST7036i  
acknowledgement  
from ST7036i  
acknowledgement  
from ST7036i  
acknowledgement  
from ST7036i  
acknowledgement  
from ST7036i  
R
R
control byte  
data byte  
control byte  
data byte  
S 0  
1
1
1
1
0
A 1  
A
A 0  
A
A P  
1
0
S
S
n>=0 bytes  
MSB.......................LSB  
R/W  
slave address  
1 byte  
2n>=0 bytes  
command word  
Co  
Co  
R
/
W
C
o
R
S
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
0
1
1
1
1
1 0  
0 0 0 0 0 0  
control byte  
data byte  
slave address  
Fig .5 IIC Interface protocol  
Last control byte to be sent. Only a stream of data bytes is allowed to follow.  
This stream may only be terminated by a STOP condition.  
0
1
Co  
Another control byte will follow the data byte unless a STOP condition is received.  
During write operation, two 8-bit registers are used. One is data register (DR), the other is instruction  
register(IR).  
The data register(DR) is used as temporary data storage place for being written into DDRAM/CGRAM/ICON  
RAM, target RAM is selected by RAM address setting instruction. Each internal operation, writing into RAM, is  
done automatically. So to speak, after MPU writes data to DR, the data in DR is transferred into  
DDRAM/CGRAM/ICON RAM automatically.  
The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to  
read instruction data.  
To select register, use RS bit input in IIC interface.  
RS R/W  
Operation  
L
L
L
Instruction Write operation (MPU writes Instruction code into IR)  
Data Write operation (MPU writes data into DR)  
H
Table 2. Various kinds of operations according to RS and R/W bits.  
z
Busy Flag (BF)  
When BF = "High”, it indicates that the internal operation is being processed. So during this time the next  
instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation),  
through DB7 port. Before executing the next instruction, be sure that BF is not High.  
z
Address Counter (AC)  
Address Counter(AC) stores DDRAM/CGRAM/ICON RAM address, transferred from IR.  
After writing into (reading from) DDRAM/CGRAM/ICON RAM, AC is automatically increased (decreased) by 1.  
When RS = "Low" and R/W = "High", AC can be read through DB0 ~ DB6 ports.  
V1.1  
2003/12/24  
17/72  
ST7036  
z
Display Data RAM (DDRAM)  
Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80  
x 8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as  
general data RAM. See Figure 6 for the relationships between DDRAM addresses and positions on the liquid  
crystal display.  
The DDRAM address (ADD ) is set in the address counter (AC) as hexadecimal.  
¾
1-line display (N3=0,N = 0) (Figure 7)  
When there are fewer than 80 display characters, the display begins at the head position. For  
example, if using only the ST7036, 20 characters are displayed. See Figure 7.  
When the display shift operation is performed, the DDRAM address shifts. See Figure 8.  
High order bits  
Low order bits  
Example : DDRAM Address 4F  
AC6 AC5 AC4 AC3 AC2 AC1 AC0  
1
0
0
1
1
1
1
Fig. 6 DDRAM Address  
Display Position (digit)  
1
2
3
4
5
6
78 79 80  
DDRAM Address 00 01 02 03 04 05 ........ 4D 4E 4F  
Fig. 7 1-Line Display  
Display Position  
1
2
3
4
20  
13  
DDRAM Address  
00 01 02 03  
....  
For Shift Left  
01 02 03 04  
4F 00 01 02  
....  
....  
14  
12  
For Shift Right  
Fig. 8 1-Line by 20-Character Display Example  
V1.1  
2003/12/24  
18/72  
ST7036  
¾
2-line display (N3=0,N = 1) (Figure 9)  
Case 1: When the number of display characters is less than 40 x 2 lines, the two lines are displayed from the  
head. Note that the first line end address and the second line start address are not consecutive. For example,  
when just the ST7036 is used, 20 characters x 2 lines are displayed. See Figure 9.  
When display shift operation is performed, the DDRAM address shifts. See Figure 10.  
Display Position  
1
2
3
4
5
6
38 39 40  
DDRAM  
00 01 02 03 04 05 ........ 25 26 27  
Address  
(hexadecimal)  
40 41 42 43 44 45 ........ 65 66 67  
Fig. 9 2-Line Display  
Display  
Position  
1
2
3
4
5
6
7
8
17 18 19 20  
10 11 12 13  
……………  
……………  
00 01 02 03 04 05 06 07  
DDRAM  
Address  
40 41 42 43 44 45 46 47  
50 51 52 53  
……………  
……………  
01 02 03 04 05 06 07 08  
41 42 43 44 45 46 47 48  
11 12 13 14  
51 52 53 54  
For Shift  
Left  
……………  
……………  
27 00 01 02 03 04 05 06  
67 40 41 42 43 44 45 46  
0F 10 11 12  
4F 50 51 52  
For Shift  
Right  
Fig. 10 2-Line by 20-Character Display Example  
V1.1  
2003/12/24  
19/72  
ST7036  
¾
3-line display (N3=1,N =1) (Figure 11)  
Case 1: When the number of display characters is less than 16 x 3 lines, the tree lines are displayed from the  
head. For example, when just the ST7036 is used, 16 characters x 3 lines are displayed. See Figure 11.  
When display shift operation is performed, the DDRAM address shifts. See Figure 12.  
Display Position  
1
2
3
4
5
6
14 15 16  
DDRAM  
00 01 02 03 04 05 ........ 0D 0E 0F  
Address  
(hexadecimal)  
10 11 12 13 14 15 ........ 1D 1E 1F  
20 21 22 23 24 25 ........ 2D 2E 2F  
Fig. 11 3-Line Display  
Display Position  
1
2
3
4
5
6
14 15 16  
DDRAM  
00 01 02 03 04 05 ........ 0D 0E 0F  
10 11 12 13 14 15 ........ 1D 1E 1F  
20 21 22 23 24 25 ........ 2D 2E 2F  
Address  
(hexadecimal)  
1
2
3
4
5
6
14 15 16  
01 02 03 04 05 06 ........ 0E 0F 00  
11 12 13 14 15 16 ........ 1E 1F 10  
21 22 23 24 25 26 ........ 2E 2F 20  
For Shift Left  
1
2
3
4
5
6
14 15 16  
0F 00 01 02 03 04 ........ 0C 0D 0E  
1F 10 11 12 13 14 ........ 1C 1D 1E  
2F 20 21 22 23 24 ........ 2C 2D 2E  
Fig. 12 3-Line Display  
For Shift Right  
V1.1  
2003/12/24  
20/72  
ST7036  
z
Character Generator ROM (CGROM)  
The character generator ROM generates 5 x 8 dot character patterns from 8-bit character codes. It can generate  
240/250/248/256 5 x 8 dot character patterns(select by OPR1/2 ITO pin). User-defined character patterns are  
also available by mask-programmed ROM.  
z
Character Generator RAM (CGRAM)  
In the character generator RAM, the user can rewrite character patterns by program. For 5 x 8 dots, eight  
character patterns can be written.  
Write into DDRAM the character codes at the addresses shown as the left column of Table 5 to show the  
character patterns stored in CGRAM.  
See Table 5 for the relationship between CGRAM addresses and data and display patterns. Areas that are not  
used for display can be used as general data RAM.  
z
ICON RAM  
In the ICON RAM, the user can rewrite icon pattern by program.  
There are totally 80 dots for icon can be written.  
See Table 6 for the relationship between ICON RAM address and data and the display patterns.  
z
Timing Generation Circuit  
The timing generation circuit generates timing signals for the operation of internal circuits such as  
DDRAM, CGROM and CGRAM. RAM read timing for display and internal operation timing by MPU  
access are generated separately to avoid interfering with each other. Therefore, when writing data to  
DDRAM, for example, there will be no undesirable interference, such as flickering, in areas other than  
the display area.  
z
LCD Driver Circuit(N3=0)  
LCD Driver circuit has 17 common and 100 segment signals for LCD driving. Data from CGRAM/CGROM/ICON  
is transferred to 100 bit segment latch serially, and then it is stored to 100 bit shift latch. When each common is  
selected by 17 bit common register, segment data also output through segment driver from 100 bit segment  
latch. In case of 1-line display mode, COM1 ~ COM8(with COMI) have 1/9 duty, and in 2-line mode, COM1 ~  
COM16(with COMI) have 1/17 duty ratio.  
z
LCD Driver Circuit(N3=1)  
LCD Driver circuit has 25 common and 80 segment signals for LCD driving. Data from CGRAM/CGROM/ICON  
is transferred to 80 bit segment latch serially, and then it is stored to 80 bit shift latch. When each common is  
selected by 25 bit common register, segment data also output through segment driver from 80 bit segment latch.  
In case of 3-line display mode, COM1 ~ COM24(with COMI) have 1/25 duty.  
COM/SEG Output pins  
COM  
[1:8]  
SEG  
[1:5]  
SEG  
[6:10]  
SEG  
SEG  
[11:90]  
SEG  
SEG  
[91:96]  
SEG  
SEG  
[97:100]  
SEG  
COM  
[9:16]  
COM  
N3  
COMI1  
COMI1  
NC  
COMI2  
COMI2  
COMI2  
COM  
[1:8]  
SEG  
VSS  
VDD  
[1:5]  
[6:10]  
[11:90]  
SEG  
[91:96]  
[97:100]  
COM  
[9:16]  
COM  
COM  
[5:12]  
COM[4:1]  
NC  
NC  
+ COMI1  
[1:80]  
[13:16]  
[17:24]  
Table 3. COM/SEG output define  
z
Cursor/Blink Control Circuit  
It can generate the cursor or blink in the cursor/blink control circuit. The cursor or the blink appears in the digit at  
the display data RAM address set in the address counter.  
V1.1  
2003/12/24  
21/72  
ST7036  
Table 4 Correspondence between Character Codes and Character Patterns  
V1.1  
2003/12/24  
22/72  
ST7036  
CGRAM/CGROM arrangement with (OPR1, OPR2)=  
V1.1  
2003/12/24  
23/72  
ST7036  
Character Code  
(DDRAM Data)  
CGRAM  
Address  
Character Patterns  
(CGRAM Data)  
b7 b6 b5 b4 b3 b2 b1 b0 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
1
1
1
1
1
1
1
0
1
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
-
-
0
0
0
1
-
-
-
-
-
0
0
-
Table 5 Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character  
patterns (CGRAM Data)  
Notes:  
1.  
2.  
Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).  
CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position  
and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the  
cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bits will light up the 8th line  
regardless of the cursor presence.  
3.  
4.  
Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).  
As shown Table 5, CGRAM character patterns are selected when character code bits 4 to 7 are all 0.  
However, since character code bit 3 has no effect, the R display example above can be selected by either  
character code 00H or 08H.  
5.  
6.  
“1” for CGRAM data corresponds to display selection and “0” to non-selection,“-“ Indicates no effect.  
Different OPR1/2 ITO option can select different CGRAM size.  
V1.1  
2003/12/24  
24/72  
ST7036  
When SHLS=1, ICON RAM map refer below table  
ICON RAM bits  
ICON address  
D7  
-
D6  
-
D5  
-
D4  
D3  
D2  
D1  
D0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
S1  
S2  
S3  
S4  
S5  
-
-
-
S6  
S7  
S8  
S9  
S10  
S15  
S20  
S25  
S30  
S35  
S40  
S45  
S50  
S55  
S60  
S65  
S70  
S75  
S80  
-
-
-
S11  
S16  
S21  
S26  
S31  
S36  
S41  
S46  
S51  
S56  
S61  
S66  
S71  
S76  
S12  
S17  
S22  
S27  
S32  
S37  
S42  
S47  
S52  
S57  
S62  
S67  
S72  
S77  
S13  
S18  
S23  
S28  
S33  
S38  
S43  
S48  
S53  
S58  
S63  
S68  
S73  
S78  
S14  
S19  
S24  
S29  
S34  
S39  
S44  
S49  
S54  
S59  
S64  
S69  
S74  
S79  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
When SHLS=0, ICON RAM map refer below table  
ICON address  
ICON RAM bits  
D7  
-
D6  
-
D5  
-
D4  
D3  
D2  
D1  
D0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
S80  
S75  
S70  
S65  
S60  
S55  
S50  
S45  
S40  
S35  
S30  
S25  
S20  
S15  
S10  
S5  
S79  
S74  
S69  
S64  
S59  
S54  
S49  
S44  
S39  
S34  
S29  
S24  
S19  
S14  
S9  
S78  
S73  
S68  
S63  
S58  
S53  
S48  
S43  
S38  
S33  
S28  
S23  
S18  
S13  
S8  
S77  
S72  
S67  
S62  
S57  
S52  
S47  
S42  
S37  
S32  
S27  
S22  
S17  
S12  
S7  
S76  
S71  
S66  
S61  
S56  
S51  
S46  
S41  
S36  
S31  
S26  
S21  
S16  
S11  
S6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
S4  
S3  
S2  
S1  
Table 6 ICON RAM map  
When ICON RAM data is filled the corresponding position displayed is described as the following table.  
V1.1  
2003/12/24  
25/72  
ST7036  
„ Instructions  
There are four categories of instructions that:  
z
z
z
z
Designate ST7036 functions, such as display format, data length, etc.  
Set internal RAM addresses  
Perform data transfer with internal RAM  
Others  
¾
instruction table at “Normal mode”  
(when “EXT” option pin connect to VDD, the instruction set follow below table)  
Instruction  
Instruction Code  
Execution Time  
Instruction  
Description  
OSC= OSC= OSC=  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
380kHz 540kHz 700kHz  
Clear  
Write "20H" to DDRAM. and set  
DDRAM address to "00H" from AC  
1.08  
ms  
0.76  
ms  
0.59  
ms  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
Display  
Set DDRAM address to "00H" from  
AC and return cursor to its original  
position if shifted. The contents of  
DDRAM are not changed.  
Return  
Home  
1.08  
ms  
0.76  
ms  
0.59  
ms  
X
Sets cursor move direction and  
specifies display shift. These  
operations are performed during  
data write and read.  
Entry Mode  
Set  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
I/D  
C
S
B
D=1:entire display on  
C=1:cursor on  
B=1:cursor position on  
Display  
D
ON/OFF  
S/C and R/L:  
Cursor or  
Set cursor moving and display shift  
control bit, and the direction, without  
changing DDRAM data.  
0
1
1
S/C R/L  
X
X
X
X
Display Shift  
DL: interface data is 8/4 bits  
N: number of line is 2/1  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
Function Set  
Set CGRAM  
0
0
0
0
0
0
0
0
1
0
1
DL  
N
X
Set CGRAM address in address  
counter  
AC5 AC4 AC3 AC2 AC1 AC0  
Set DDRAM  
Address  
Set DDRAM address in address  
counter  
AC6 AC5 AC4 AC3 AC2 AC1 AC0  
Whether during internal operation or  
not can be known by reading BF.  
The contents of address counter  
can also be read.  
Read Busy  
Flag and  
Address  
0
0
0
0
1
BF AC6 AC5 AC4 AC3 AC2 AC1 AC0  
Write Data  
Write data into internal RAM  
(DDRAM/CGRAM)  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
1
1
0
1
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
to RAM  
Read Data  
from RAM  
Read data from internal RAM  
(DDRAM/CGRAM)  
Note:  
Be sure the ST7036 is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7036.  
If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction  
will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction  
execution time.  
V1.1  
2003/12/24  
26/72  
ST7036  
¾
instruction table at “Extension mode”  
(when “EXT” option pin connect to VSS, the instruction set follow below table)  
Instruction  
Instruction Code  
Execution Time  
Instruction  
Description  
OSC= OSC= OSC=  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
380kHz 540kHz 700kHz  
Clear  
Write "20H" to DDRAM. and set  
DDRAM address to "00H" from AC  
1.08  
ms  
0.76  
ms  
0.59  
ms  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
x
Display  
Set DDRAM address to "00H" from  
AC and return cursor to its original  
position if shifted. The contents of  
DDRAM are not changed.  
Return  
Home  
1.08  
ms  
0.76  
ms  
0.59  
ms  
Sets cursor move direction and  
specifies display shift. These  
operations are performed during  
data write and read.  
Entry Mode  
Set  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
I/D  
C
S
B
D=1:entire display on  
C=1:cursor on  
B=1:cursor position on  
Display  
D
ON/OFF  
DL: interface data is 8/4 bits  
N: number of line is 2/1  
DH: double height font  
IS[2:1]: instruction table select  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
Function Set  
0
0
0
0
0
1
0
1
DL  
N
DH IS2 IS1  
Set DDRAM  
Address  
Set DDRAM address in address  
counter  
AC6 AC5 AC4 AC3 AC2 AC1 AC0  
Whether during internal operation or  
not can be known by reading BF.  
The contents of address counter  
can also be read.  
Read Busy  
Flag and  
Address  
0
0
0
BF AC6 AC5 AC4 AC3 AC2 AC1 AC0  
Write Data  
Write data into internal RAM  
(DDRAM/CGRAM/ICONRAM)  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
1
1
0
1
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
to RAM  
Read Data  
from RAM  
Read data from internal RAM  
(DDRAM/CGRAM/ICONRAM)  
V1.1  
2003/12/24  
27/72  
ST7036  
Instruction table 0(IS[2:1]=[0,0])  
S/C and R/L:  
Cursor or  
Set cursor moving and display shift  
control bit, and the direction, without  
changing DDRAM data.  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
0
0
0
0
0
0
0
1
0
1
S/C R/L  
X
X
Display Shift  
Set CGRAM address in address  
counter  
Set CGRAM  
AC5 AC4 AC3 AC2 AC1 AC0  
Instruction table 1(IS[2:1]=[0,1])  
BS=1:1/4 bias  
BS=0:1/5 bias  
FX FX: fixed on high in 3-line  
application and fixed on low in other  
applications.  
0
0
26.3 µs 18.5 µs 14.3 µs  
Bias Set  
0
0
0
1
BS  
1
0
Set ICON  
Address  
Set ICON address in address  
0
0
0
0
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
0
0
1
1
0
0
0
1
AC3 AC2 AC1 AC0  
counter.  
Ion: ICON display on/off  
Bon: set booster circuit on/off  
C5,C4: Contrast set for internal  
follower mode.  
Power/ICON  
Control/  
Ion Bon C5 C4  
Contrast Set  
Fon: set follower circuit on/off  
Rab2~0:  
Follower  
Control  
Rab Rab Rab  
Fon  
0
0
0
0
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
0
0
1
1
1
1
0
1
2
1
0
select follower amplified ratio.  
Contrast set for internal follower  
mode.  
Contrast Set  
C3 C2 C1 C0  
Instruction table 2(IS[2:1]=[1,0])  
Double  
Height  
Position  
Select  
26.3 µs 18.5 µs 14.3 µs  
26.3 µs 18.5 µs 14.3 µs  
0
0
0
0
0
0
0
1
0
1
UD  
X
x
x
UD: Double height position select  
Do not use (reserved for test)  
Reserved  
X
X
X
X
X
X
Instruction table 3(IS[2:1]=[1,1]):Do not use (reserved for test)  
V1.1  
2003/12/24  
28/72  
ST7036  
„ Instruction Description  
z
Clear Display  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
1
Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to  
"00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge  
on first line of the display. Make entry mode increment (I/D = "1").  
z
Return Home  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
1
X
Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address counter.  
Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM does  
not change.  
z
Entry Mode Set  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
I/D  
0
0
0
0
0
0
0
1
S
Set the moving direction of cursor and display.  
¾
¾
I/D : Increment / decrement of DDRAM address (cursor or blink)  
When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1.  
When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.  
* CGRAM operates the same as DDRAM, when read from or write to CGRAM.  
S: Shift of entire display  
When DDRAM read (CGRAM read/write) operation or S = "Low", shift of entire display is not performed. If  
S = "High" and DDRAM write operation, shift of entire display is performed according to I/D value (I/D =  
"1" : shift left, I/D = "0" : shift right).  
S
H
H
I/D  
H
Description  
Shift the display to the left  
Shift the display to the right  
L
V1.1  
2003/12/24  
29/72  
ST7036  
z
Display ON/OFF  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
1
D
C
B
Control display/cursor/blink ON/OFF 1 bit register.  
¾
¾
¾
D : Display ON/OFF control bit  
When D = "High", entire display is turned on.  
When D = "Low", display is turned off, but display data is remained in DDRAM.  
C : Cursor ON/OFF control bit  
When C = "High", cursor is turned on.  
When C = "Low", cursor is disappeared in current display, but I/D register remains its data.  
B : Cursor Blink ON/OFF control bit  
When B = "High", cursor blink is on, that performs alternate between all the high data and display  
character at the cursor position.  
When B = "Low", blink is off.  
Alternating  
display  
Every  
64 frames  
Cursor  
z
Cursor or Display Shift  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
S/C R/L  
0
0
0
0
0
1
X
X
¾
¾
S/C: Screen/Cursor select bit  
When S/C=”High”, Screen is controlled by R/L bit.  
When S/C=”Low”, Cursor is controlled by R/L bit.  
R/L: Right/Left  
When R/L=”High”, set direction to right.  
When R/L=”Low”, set direction to left.  
Without writing or reading of display data, shift right/left cursor position or display. This instruction is used to  
correct or search display data. During 2-line mode display, cursor moves to the 2nd line after 40th digit of 1st  
line. Note that display shift is performed simultaneously in all the line. When displayed data is shifted  
repeatedly, each line shifted individually. When display shift is performed, the contents of address counter are  
not changed.  
S/C  
L
L
R/L  
L
H
Description  
AC Value  
AC=AC-1  
AC=AC+1  
AC=AC  
Shift cursor to the left  
Shift cursor to the right  
Shift display to the left. Cursor follows the display shift  
H
L
H
H
Shift display to the right. Cursor follows the display shift AC=AC  
V1.1  
2003/12/24  
30/72  
ST7036  
z
Function Set  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DL DH IS2 IS1  
0
0
0
0
1
N
¾
DL : Interface data length control bit  
When DL = "High", it means 8-bit bus mode with MPU.  
When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select  
8-bit or 4-bit bus mode.  
When 4-bit bus mode, it needs to transfer 4-bit data by two times.  
¾
¾
N : Display line number control bit  
When N = "High", 2-line display mode is set.  
When N = "Low", it means 1-line display mode.  
When “N3” option pin connect to VDD, N must set “N=1”.  
DH : Double height font type control bit  
When DH = " High " and N= “Low”, display font is selected to double height mode(5x16 dot),RAM address  
can only use 00H~27H.  
When DH= “High” and N= “High”, it is forbidden.  
When DH = " Low ", display font is normal (5x8 dot).  
EXT option pin connect to  
high  
EXT option pin connect to  
low  
N
DH  
Character  
Display Lines  
Font  
Character  
Display Lines  
Font  
L
L
H
H
L
H
L
1
1
2
2
5x8  
5x8  
5x8  
5x8  
1
1
2
5x8  
5x16  
5x8  
H
Forbidden  
2 line mode normal display (DH=0/N=1)  
1 line mode with double height font (DH=1/N=0)  
31/72  
V1.1  
2003/12/24  
ST7036  
¾
z
¾
IS[2:1]: instruction table select  
When IS[2:1]=(0,0): normal instruction be selected(refer instruction table 0)  
When IS[2:1]=(0,1):extension instruction be selected(refer instruction table 1 )  
When IS[2:1]=(1,0):extension instruction be selected(refer instruction table 2 )  
When IS[2:1]=(1,1):Do not use (reserved for test)  
Double height position set: IS[2:1]=(1,0)  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
UD  
0
0
0
0
0
1
X
X
X
UD: Select double height font display position of screen.(N3=VDD)  
When UD = "High", double height font is show on Com1~Com16.  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AC3 AC2 AC1 AC0  
0
0
0
1
0
0
When UD = "Low", double height font is show on Com9~Com24.  
DH  
H
UD  
H
2 LINES(N3=VSS)  
Com1~Com16 Double Height  
Com1~Com16 Double Height  
Normal Display  
3 LINES(N3=VDD)  
Com1~Com16 Double Height  
Com17~Com24 Normal Display  
Com1~Com8 Normal Display  
Com9~Com24 Double Height  
H
L
L
X
Normal Display  
V1.1  
2003/12/24  
32/72  
ST7036  
3 Line mode normal display (DH = 0 / N = 1 / UD = don`t care )  
COM1 ..8 is normal , COM9 .. 24 is a double height font (DH = 1 / N = 1 / UD = 0 )  
COM17 ..24 is normal , COM1 .. 16 is a double height font (DH = 1 / N = 1 / UD = 1 )  
V1.1  
2003/12/24  
33/72  
ST7036  
z
Set CGRAM Address  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AC5 AC4 AC3 AC2 AC1 AC0  
0
0
0
1
Set CGRAM address to AC.  
This instruction makes CGRAM data available from MPU.  
z
Set DDRAM Address  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1 AC6 AC5 AC4 AC3 AC2 AC1 AC0  
0
0
Set DDRAM address to AC.  
This instruction makes DDRAM data available from MPU.  
When 1-line display mode (N = 0), DDRAM address is from "00H" to "4FH".  
In 2-line display mode (N = 1), DDRAM address in the 1st line is from "00H" to "27H", and  
DDRAM address in the 2nd line is from "40H" to "67H".  
In 3-line display mode (N3=1, N=1), DDRAM address in the 1st line is from “00H” to “OFH”, DDRAM in the  
2nd line is from “10H” to “1FH”, and DDRAM in the 3rd line is from “20H” to “2FH”.  
z
Read Busy Flag and Address  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BF AC6 AC5 AC4 AC3 AC2 AC1 AC0  
0
1
When BF = “High”, indicates that the internal operation is being processed. So during this time the next  
instruction cannot be accepted.  
The address Counter (AC) stores DDRAM/CGRAM addresses, transferred from IR.  
After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1.  
V1.1  
2003/12/24  
34/72  
ST7036  
z
Write Data to CGRAM,DDRAM or ICON RAM  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
0
Write binary 8-bit data to CGRAM,DDRAM or ICON RAM  
The selection of RAM from DDRAM, CGRAM or ICON RAM, is set by the previous address set instruction  
: DDRAM address set, CGRAM address set, ICON RAM address set. RAM set instruction can also determine  
the AC  
direction to RAM.  
After write operation, the address is automatically increased/decreased by 1, according to  
the entry mode.  
z
Read Data from CGRAM,DDRAM or ICON RAM  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
1
Read binary 8-bit data from DDRAM/CGRAM./ICON RAM  
The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not  
performed before this instruction, the data that read first is invalid, because the direction of AC is not  
determined. If you read RAM data several times without RAM address set instruction before read operation,  
you can get correct RAM data from the second, but the first data would be incorrect, because there is no time  
margin to transfer RAM data.  
V1.1  
2003/12/24  
35/72  
ST7036  
z
Bias Set  
¾
BS: bias selection  
When BS=”High”, the bias will be 1/4  
When BS=”Low”, the bias will be 1/5  
BS will be invalid when external bias resistors are used(OPF1=1,OPF2=1)  
FX: must be fixed on high in 3-line application and fixed on low in other applications.  
¾
z
Set ICON RAM address  
Set ICON RAM address to AC.  
This instruction makes ICON data available from MPU.  
When IS=1 at Extension mode,  
The ICON RAM address is from "00H" to "0FH".  
z
Power/ICON control/Contrast set(high byte)  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
1
0
1
I
ON  
BON C5 C4  
¾
¾
Ion: set ICON display on/off  
When Ion = "High", ICON display on.  
When Ion = "Low", ICON display off.  
Bon: switch booster circuit  
Bon can only be set when internal follower is used (OPF1=0,OPF2=0).  
When Bon = "High", booster circuit is turn on.  
When Bon = "Low", booster circuit is turn off.  
¾
C5,C4 : Contrast set(high byte)  
C5,C4,C3,C2,C1,C0 can only be set when internal follower is used (OPF1=0,OPF2=0).They can more  
precisely adjust the input reference voltage of V0 generator. The details please refer to the supply voltage  
for LCD driver.  
V1.1  
2003/12/24  
36/72  
ST7036  
z
Follower control  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Rab Rab Rab  
0
0
0
1
1
0
F
ON  
2
1
0
¾
Fon: switch follower circuit  
Fon can only be set when internal follower is used (OPF1=0,OPF2=0).  
When Fon = "High", internal follower circuit is turn on.  
When Fon = "Low", internal follower circuit is turn off.  
Note that Fon must be set to “Low” if (OPF1, OPF2) is not (0,0).  
¾
z
Rab2,Rab1,Rab0 : V0 generator amplified ratio  
Rab2,Rab1,Rab0 can only be set when internal follower is used (OPF1=0,OPF2=0).They can adjust the  
amplified ratio of V0 generator. The details please refer to the supply voltage for LCD driver.  
Contrast set(low byte)  
RS R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3 C2 C1 C0  
0
0
0
1
1
1
¾
C3,C2,C1,C0:Contrast set(low byte)  
C5,C4,C3,C2,C1,C0 can only be set when internal follower is used (OPF1=0,OPF2=0).They can more  
precisely adjust the input reference voltage of V0 generator. The details please refer to the supply voltage  
for LCD driver.  
V1.1  
2003/12/24  
37/72  
ST7036  
„ Reset Function  
Initializing by Internal Reset Circuit  
An internal reset circuit automatically initializes the ST7036 when the power is turned on. The  
following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state (BF = 1)  
until the initialization ends. The busy state lasts for 40 ms after VDD rises to stable.  
1.  
2.  
Display clear  
Function set:  
DL = 1; 8-bit interface data  
N = 0; 1-line display  
DH=0; normal 5x8 font  
IS[2:1]=(0,0); use instruction table 0  
Display on/off control:  
D = 0; Display off  
3.  
4.  
C = 0; Cursor off  
B = 0; Blinking off  
Entry mode set:  
I/D = 1; Increment by 1  
S = 0; No shift  
5.  
6.  
7.  
3 line: FX=1  
1/2 line: FX=0  
ICON control  
Ion=0; ICON off  
Power control  
BS=0; 1/5bias  
Bon=0; booster off  
Fon=0; follower off  
(C5,C4,C3,C2,C1,C0)=(1,0,0,0,0,0)  
(Rab2,Rab1,Rab0)=(0,1,0)  
Double Height Position Select  
UD=0, double height font is show on Com9~Com24.  
8.  
Note:  
If the electrical characteristics conditions listed under the table Power Supply Conditions Using  
Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail  
to initialize the ST7036.  
When internal Reset Circuit not operate,ST7036 can be reset by XRESET pin from MPU control signal.  
V1.1  
2003/12/24  
38/72  
ST7036  
„ Initializing by Instruction  
z
z
8-bit Interface (fosc=380kHz)  
P O W E R O N o r external reset  
W ait tim e > 40m S  
A fter V D D stab le  
F u n ctio n set  
B F can n ot b e  
R S  
0
R /W D B 7 D B 6 D B 5 D B 4 D B 3 D B 2 D B 1 D B 0  
ch ecked b efo re  
this in stru ctio n .  
0
0
0
1
1
N
D H  
IS 2  
IS 1  
W ait tim e > 26.3 μ S  
F u n ctio n set  
B F can n ot b e  
R S  
0
R /W D B 7 D B 6 D B 5 D B 4 D B 3 D B 2 D B 1 D B 0  
ch ecked b efo re  
this in stru ctio n .  
0
0
0
1
1
N
D H  
IS 2  
IS 1  
W ait tim e > 26.3 μ S  
In tern al O S C freq u en cy  
R S  
0
R /W D B 7 D B 6 D B 5 D B 4 D B 3 D B 2 D B 1 D B 0  
B S F2 F 1 F 0  
0
0
0
0
1
W ait tim e > 26.3 μ S  
C o n trast set  
R S  
0
R /W D B 7 D B 6 D B 5 D B 4 D B 3 D B 2 D B 1 D B 0  
C 2  
C 1  
C 0  
0
0
1
1
1
C 3  
W ait tim e > 26.3 μ S  
P o w er/IC O N /C o n trast co n tro l  
R S  
0
R /W D B 7 D B 6 D B 5 D B 4 D B 3 D B 2 D B 1 D B 0  
0
B on  
C 5  
C 4  
0
1
0
1
Ion  
W ait tim e > 26.3 μ S  
F o llo w er co n tro l  
R S  
0
R /W D B 7 D B 6 D B 5 D B 4 D B 3 D B 2 D B 1 D B 0  
R a b2  
R ab 1  
R a b0  
0
0
1
1
0
F on  
W ait tim e > 26.3 μ S  
D isp lay O N /O F F co n tro l  
R S  
0
R /W D B 7 D B 6 D B 5 D B 4 D B 3 D B 2 D B 1 D B 0  
0
0
0
0
0
1
D
C
B
W ait tim e > 26.3 μ S  
Initialization end  
V1.1  
2003/12/24  
39/72  
ST7036  
¾
Initial Program Code Example For 8051 MPU(8 Bit Interface):  
;---------------------------------------------------------------------------------  
INITIAL_START:  
CALL DELAY40mS  
MOV A,#38H  
;FUNCTION SET  
CALL WRINS_NOCHK ;8 bit, N=1,5*7dot  
CALL DELAY30uS  
MOV A,#38H  
;FUNCTION SET  
CALL WRINS_NOCHK ;8 bit, N=1,5*7dot  
CALL DELAY30uS  
MOV A,#14H  
;set bias  
CALL WRINS_CHK  
CALL DELAY30uS  
MOV A,#78H  
;Contrast set adjustment  
;Power/ICON/Contrast control  
;Follower control  
CALL WRINS_CHK  
CALL DELAY30uS  
MOV A,#5EH  
CALL WRINS_CHK  
CALL DELAY30uS  
MOV A,#6AH  
CALL WRINS_CHK  
CALL DELAY30uS  
MOV A,#0CH  
;DISPLAY ON  
CALL WRINS_CHK  
CALL DELAY30uS  
MOV A,#01H  
;CLEAR DISPLAY  
CALL WRINS_CHK  
CALL DELAY2mS  
MOV A,#06H  
;ENTRY MODE SET  
CALL WRINS_CHK  
CALL DELAY30uS  
;CURSOR MOVES TO RIGHT  
;---------------------------------------------------------------------------------  
MAIN_START:  
XXXX  
XXXX  
XXXX  
XXXX  
;---------------------------------------------------------------------------------  
WRINS_CHK:  
CALL CHK_BUSY  
WRINS_NOCHK:  
CLR  
RS  
RW  
E
;EX: Port 3.0  
CLR  
;EX: Port 3.1  
SETB  
;EX:Port 3.2  
MOV P1,A  
;EX:Port 1=Data Bus  
CLR  
E
MOV P1,#FFH  
RET  
;For Check Busy Flag  
;---------------------------------------------------------------------------------  
CHK_BUSY:  
CLR  
;Check Busy Flag  
RS  
SETB RW  
SETB  
JB  
E
P1.7,$  
E
CLR  
RET  
V1.1  
2003/12/24  
40/72  
ST7036  
z
4-bit Interface (fosc=380kHz)  
V1.1  
2003/12/24  
41/72  
ST7036  
¾
Initial Program Code Example For 8051 MPU(4 Bit Interface):  
;-------------------------------------------------------------------  
INITIAL_START:  
XXXX  
;-------------------------------------------------------------------  
WRINS_CHK:  
CALL DELAY40mS  
MOV  
CALL  
CALL  
A,#30H  
; FUNCTION SET  
CALL CHK_BUSY  
WRINS_ONCE ; 8 bit, DL = 1  
DELAY2mS  
WRINS_NOCHK:  
PUSH  
A
ANL A,#F0H  
CLR RS  
MOV  
CALL  
CALL  
A,#30H  
; FUNCTION SET  
;EX: Port 3.0  
WRINS_ONCE ; 8 bit, DL = 1  
DELAY30uS  
CLR RW  
;EX: Port 3.1  
SETB  
E
;EX: Port 3.2  
MOV P1,A  
;EX:Port1=Data Bus  
MOV  
CALL  
CALL  
A,#30H  
; FUNCTION SET  
CLR  
E
A
WRINS_ONCE ; 8 bit, DL = 1  
DELAY30uS  
POP  
SWAP  
A
WRINS_ONCE:  
CALL  
MOV  
CALL  
CALL  
CHK_BUSY  
ANL A,#F0H  
CLR RS  
A,#20H  
; FUNCTION SET  
WRINS_ONCE ; 4 bit, DL = 0  
DELAY30uS  
CLR RW  
SETB  
E
MOV P1,A  
MOV  
CALL  
A,#29H  
; FUNCTION SET  
CLR  
E
WRINS_CHK ; 4 bit, DL = 0, N = 1,  
MOV P1,#FFH  
RET  
;For Check Bus Flag  
CALL DELAY30uS  
; IS2 = 0, IS1 = 1  
;bias  
;-------------------------------------------------------------------  
MOV A,#14H  
CHK_BUSY:  
PUSH  
;Check Busy Flag  
CALL WRINS_CHK  
CALL DELAY30uS  
A
MOV P1,#FFH  
$1  
MOV A,#78H  
;Contrast set  
CLR RS  
CALL WRINS_CHK  
CALL DELAY30uS  
SETB RW  
SETB  
E
MOV A,P1  
MOV  
A,#5EH  
;Power/ICON/Contrast  
;Follower control  
;DISPLAY ON  
CLR  
E
CALL WRINS_CHK  
CALL DELAY30uS  
MOV P1,#FFH  
CLR RS  
SETB RW  
MOV A,#6AH  
SETB  
NOP  
CLR  
JB  
E
CALL WRINS_CHK  
CALL DELAY30uS  
E
A.7,$1  
A
MOV A,#0CH  
POP  
RET  
CALL WRINS_CHK  
CALL DELAY30uS  
MOV A,#01H  
;CLEAR DISPLAY  
;ENTRY MODE SET  
CALL WRINS_CHK  
CALL DELAY2mS  
MOV A,#06H  
CALL WRINS_CHK  
CALL DELAY30uS  
;-------------------------------------------------------------------  
MAIN_START:  
XXXX  
XXXX  
XXXX  
V1.1  
2003/12/24  
42/72  
ST7036  
z
Serial interface & IIC interface ( fosc = 380kHz )  
POWER ON and external reset  
Wait time >40mS  
After VDD stable  
Function set  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
1
N
DH IS2 IS1  
Wait time >26.3μS  
Function set  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
1
N
DH IS2 IS1  
Wait time >26.3μS  
Internal OSC frequency  
Power/ICON/Contrast control  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BS F2 F1 F0  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
1
Bon  
C5  
C4  
0
0
1
0
1
Ion  
Wait time >26.3μS  
Wait time >26.3μS  
Contrast set  
Follower control  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
1
1
1
C3  
C2  
C1  
C0  
Rab2 Rab1 Rab0  
0
0
0
1
1
0
Fon  
Wait time >26.3μS  
Wait time >200mS  
(for power stable)  
Display ON/OFF control  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
1
D
C
B
Wait time >26.3μS  
Initialization end  
V1.1  
2003/12/24  
43/72  
ST7036  
¾
Initial Program Code Example For 8051 MPU ( Serial Interface ) :  
;---------------------------------------------------------------------------------  
INITIAL_START:  
CALL HARDWARE_RESET  
CALL DELAY40mS  
MOV A,#38H  
;FUNCTION SET  
CALL WRINS_NOCHK ;8 bit, N=1,5*7dot  
CALL DELAY30uS  
MOV A,#39H  
;FUNCTION SET  
CALL WRINS_NOCHK ;8 bit, N=1,5*7dot,IS=1  
CALL DELAY30uS  
MOV A,#14H  
;bias  
CALL WRINS_NOCHK  
CALL DELAY30uS  
MOV A,#78H  
;Contrast set  
CALL WRINS_NOCHK  
CALL DELAY30uS  
MOV A,#5EH  
;Power/ICON/Contrast control  
;Follower control  
CALL WRINS_NOCHK  
CALL DELAY30uS  
MOV A,#6AH  
CALL WRINS_NOCHK  
CALL DELAY200mS  
MOV A,#0CH  
;for power stable  
;DISPLAY ON  
CALL WRINS_NOCHK  
CALL DELAY30uS  
MOV A,#01H  
;CLEAR DISPLAY  
CALL WRINS_NOCHK  
CALL DELAY2mS  
MOV A,#06H  
;ENTRY MODE SET  
CALL WRINS_NOCHK ;CURSOR MOVES TO RIGHT  
CALL DELAY30uS  
;---------------------------------------------------------------------------------  
MAIN_START:  
XXXX  
XXXX  
XXXX  
XXXX  
.
.
.
;---------------------------------------------------------------------------------  
WRINS_NOCHK:  
PUSH  
MOV  
CLR  
1
R1,#8  
RS  
$1  
RLC  
A
MOV SI,C  
SETB SCL  
NOP  
CLR  
SCL  
DJNZ R1,$1  
POP  
1
CALL DLY1.5mS  
RET  
V1.1  
2003/12/24  
44/72  
ST7036  
„ Interfacing to the MPU  
The ST7036 can send data in two 4-bit operations/one 8-bit operation, serial 1 bit operation or fast I2C operation,  
thus allowing interfacing with 4-bit, 8-bit or I2C MPU.  
z
For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3  
are disabled. The data transfer between the ST7036 and the MPU is completed after the 4-bit data has been  
transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB4 to DB7)  
are transferred before the four low order bits (for 8-bit operation, DB0 to DB3). The busy flag must be  
checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then  
transfer the busy flag and address counter data.  
¾
Example of busy flag check timing sequence  
CSB  
RS  
R/W  
E
Internal  
Functioning  
operation  
Not  
IR7  
IR3  
AC3  
AC3  
IR7  
IR3  
DB7  
Busy  
Instruction write  
Busy flag check  
Busy flag check  
Instruction write  
¾
Intel 8051 interface(4 Bit)  
16/24  
COM1 to  
COM16/24  
4
P1.0 to P1.3  
DB4 to DB7  
P3.0  
P3.1  
P3.2  
P3.3  
RS  
R/W  
E
CSB  
SEG1 to 100/80  
SEG100/80  
Intel 8051 Serial  
ST7036  
V1.1  
2003/12/24  
45/72  
ST7036  
z
For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.  
¾
Example of busy flag check timing sequence  
CSB  
RS  
R/W  
E
Internal  
Functioning  
operation  
Not  
Data  
Busy  
Busy  
Data  
DB7  
Busy  
Instruction  
write  
Busy flag  
check  
Busy flag  
check  
Busy flag  
check  
Instruction  
write  
¾
Intel 8051 interface(8 Bit)  
16/24  
COM1 to  
COM16/24  
8
P1.0 to P1.7  
DB0 to DB7  
P3.0  
P3.1  
P3.2  
P3.3  
RS  
R/W  
E
SEG1 to 100/80  
SEG100/80  
CSB  
Intel 8051 Serial  
ST7036  
V1.1  
2003/12/24  
46/72  
ST7036  
z
For serial interface data, only two bus lines (DB6 to DB7) are used.  
¾
Example of timing sequence  
CSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
SI  
SCL  
RS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
¾
Intel 8051 interface ( Serial 4-line )  
16/24  
COM1 to  
COM16/24  
2
P1.6 to P1.7  
SI , SCL  
P3.0  
P3.3  
RS  
CSB  
SEG1 to 100/80  
SEG100/80  
Intel 8051 Serial  
ST7036  
V1.1  
2003/12/24  
47/72  
ST7036  
z
For I2C interface data, all eight bus lines (DB0 to DB7) are used.  
¾
Example of timing sequence  
. . . . . . .  
ACK  
ACK  
SDA  
SCL  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
6
D1  
7
D0  
8
D0  
. . . . . .  
9
¾
Intel 8051 interface ( I2C interface )  
V1.1  
2003/12/24  
48/72  
ST7036  
„ Supply Voltage for LCD Drive  
z
When external bias resistors are used  
(OPF1=1,OPF2=1)  
VCC (2.7~ 5.5V)  
VCC (2.7~ 5.5V)  
Vext  
Vext  
OPF1 OPF2  
OPF1 OPF2  
VDD  
V0  
VDD  
V0  
VOUT  
VR  
VR  
VOUT  
VIN  
VIN  
R
R
V1  
V2  
CAP1P  
CAP1N  
CAP1P  
CAP1N  
V1  
R
R
R
R
R
V2  
V3  
VLCD  
VLCD  
V3  
V4  
V4  
R
VSS  
VSS  
1/4 bias  
1/5 bias  
GND  
GND  
z
When built-in bias resistors(9.6K) are used  
(OPF1=1,OPF2=0)  
VCC(2.7~5.5V)  
Vext  
OPF1  
VOUT  
VDD  
V0  
VR  
VIN  
V1  
V2  
CAP1P  
CAP1N  
VLCD  
V3  
V4  
VSS  
OPF2  
GND  
V1.1  
2003/12/24  
49/72  
ST7036  
z
When built-in bias resistors(3.3K) are used  
(OPF1=0,OPF2=1)  
VCC (2.7~ 5.5V)  
Vext  
OPF2  
VOUT  
VDD  
V0  
VR  
VIN  
V1  
V2  
CAP1P  
CAP1N  
VLCD  
V3  
V4  
VSS  
OPF1  
GND  
z
When built-in voltage followers with external Vout are used  
(OPF1=0,OPF2=0 and instruction setting Bon=0,Fon=1)  
VCC (2.7~ 5.5V)  
Vext V0  
Don't need to connect stable capacitor when  
use internal follower circuit  
VOUT  
VIN  
VDD  
V0  
V1  
V2  
CAP1P  
CAP1N  
VLCD  
V3  
V4  
VSS  
OPF1 OPF2  
GND  
V1.1  
2003/12/24  
50/72  
ST7036  
z
When built-in booster and voltage followers are used(OPF1=0,OPF2=0)  
VCC (2.7~ 3.5V)  
Don't need to connect stable capacitor when  
use internal follower circuit  
VIN  
VDD  
V0  
VOUT  
VOUT2xVDD  
VDD=2.7~3.5V  
VSS=0V  
V1  
V2  
CAP1P  
CAP1N  
VLCD  
V3  
V4  
2 x step-up voltage relationships  
VSS  
OPF1 OPF2  
GND  
Note:  
Ensure V0 level stable, that must let |Vout-V0| over 0.5V(if panel size over 4.5”,the |Vout-V0| propose over 0.8V).  
|Vout-V0|>0.5V(minimum)  
Vout  
V
0
V
CC  
V
DD  
GND  
(System side)  
V
SS  
(ST7036Side)  
V1.1  
2003/12/24  
51/72  
ST7036  
¾
V0 voltage follower value calculation  
VDD  
Vout(VDD)  
Vref  
Ra  
Rb  
Ra  
x
V0=(1+  
)
Vref  
V0  
α+36  
x
While Vref=VDD  
(
)
100  
Rb  
VSS  
C5  
0
0
C4  
0
0
C3  
0
0
C2  
C1  
0
0
C0  
0
1
α
0
1
2
Rab2 Rab1 Rab0 1+Rb/Ra  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1.25  
1.5  
1.8  
2
2.5  
3
3.75  
0
0
0
0
0
0
1
0
:
:
:
:
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
61  
62  
63  
8
7
6
5
4
3
2
1
0
1
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63  
V0 level (Condition:Booster on, Follower on, VIN=3.5V, VDD=3.0V,Display off)  
The recommended curve: follower = 04H  
Notes:  
1.  
Vout V0 V1 V2 V3 V4 Vss must be maintained.  
2.  
3.  
If the calculation value of V0 is higher than Vout, the real V0 value will saturate to Vout.  
internal built-in booster can only be used when OPF1=0,OPF2=0.  
V1.1  
2003/12/24  
52/72  
ST7036  
8
7
6
5
4
3
2
1
0
0 2 4 6 8 10 12 14 1618 20 2224 26 2830 32 34 3638 40 4244 46 4850 52 54 5658 60 62  
(Condition: VDD=5.0V, external Vout=7.0V)  
V0 level  
The recommended curve: followe=01H  
Notes:  
1.  
Vout V0 V1 V2 V3 V4 Vss must be maintained.  
2.  
3.  
If the calculation value of V0 is higher than Vout, the real V0 value will saturate to Vout.  
internal built-in booster can only be used when OPF1=0,OPF2=0.  
V1.1  
2003/12/24  
53/72  
ST7036  
„ AC Characteristics  
z
68 Interface  
RS  
R/W  
tAW6  
tAH6  
CSB  
tCYC6  
tEWH  
tEWL  
E
tDS6  
tDH6  
tOH6  
D0 to D7  
(Write)  
tACC6  
D0 to D7  
(Read)  
(Ta =25°C )  
VDD=2.7 to 4.5V  
Rating  
VDD=4.5 to 5.5V  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Min.  
Max.  
Address hold time  
Address setup time  
System cycle time  
Data setup time  
Data hold time  
RS  
RS  
tAH6  
tAW6  
tCYC6  
tDS6  
20  
20  
400  
100  
40  
-
-
20  
20  
280  
80  
20  
-
-
ns  
ns  
ns  
-
-
RS  
-
-
D0 to D7  
D0 to D7  
D0 to D7  
-
-
-
-
tDH6  
Access time  
tACC6  
500  
400  
CL = 100 pF  
ns  
Output disable time  
Enable H pulse time  
Enable L pulse time  
D0 to D7  
tOH6  
tEWH  
tEWL  
300  
200  
150  
-
-
-
150  
120  
130  
-
-
-
E
E
ns  
ns  
Note: All timing is specified using 20% and 80% of VDD as the reference.  
V1.1  
2003/12/24  
54/72  
ST7036  
z
Serial Interface  
tCSS  
tCSH  
CSB  
RS  
tSAS  
tSAH  
tSCYC  
tSLW  
tSHW  
SCL  
SI  
tSDS  
tSDH  
(Ta = 25°C )  
VDD=2.7 to 4.5V  
Rating  
VDD=4.5 to 5.5V  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Min.  
Max.  
Serial Clock Period  
SCL “H” pulse width  
SCL “L” pulse width  
Address setup time  
Address hold time  
Data setup time  
200  
20  
160  
10  
250  
10  
10  
-
-
-
-
-
-
-
-
-
100  
20  
120  
10  
150  
10  
20  
-
-
-
-
-
-
-
-
-
tSCYC  
tSHW  
tSLW  
tSAS  
tSAH  
tSDS  
tSDH  
tCSS  
tCSH  
SCL  
ns  
RS  
SI  
ns  
ns  
ns  
Data hold time  
20  
20  
CS-SCL time  
CS  
350  
200  
*1 All timing is specified using 20% and 80% of VDD as the standard.  
V1.1  
2003/12/24  
55/72  
ST7036  
z
I2C interface  
SDA  
tBUF  
tHIGH  
tSU;DAT  
tLOW  
SCL  
SDA  
tf  
tDH;STA  
tr  
tHD;DAT  
tSU;STA  
t
SU;STO  
( Ta = 25°C )  
VDD=2.7 to 4.5V VDD=4.5 to 5.5V  
Rating Rating  
Units  
Item  
Signal Symbol Condition  
Min.  
Max.  
Min. Max.  
SCL clock frequency  
SCL clock low period  
SCL clock high period  
Data set-up time  
Data hold time  
SCL,SDA rise time  
SCL,SDA fall time  
fSCLK  
DC  
2.5  
0.6  
1800  
0
300K  
DC  
1.3  
0.6  
700  
0
400 kHz  
µs  
SCL  
SDA  
tLOW  
tHIGH  
tSU;DAT  
tHD:DAT  
tr  
0.5  
ns  
0.5  
µs  
20+0.1Cb 300 20+0.1Cb 300  
20+0.1Cb 300 20+0.1Cb 300  
SCL,  
SDA  
ns  
pf  
tf  
Capacitive load represent by each bus  
Cb  
400  
400  
line  
Setup time for a repeated START  
tSU;STA  
tHD;STA  
tSU;STO  
0.6  
1.8  
0.6  
1.0  
µs  
µs  
condition  
SDA  
SCL  
Start condition hold time  
Setup time for STOP condition  
0.6  
0.6  
µs  
Bus free time between a Stop and  
START condition  
tBUF  
1.3  
1.3  
µs  
V1.1  
2003/12/24  
56/72  
ST7036  
z
Internal Power Supply Reset  
2.7V/4.5V  
0.2V  
0.2V  
0.2V  
trcc  
tOFF  
0.1mStrcc10mS  
tOFF1mS  
Notes:  
Š
tOFF compensates for the power oscillation period caused by momentary power supply  
oscillations.  
Š
Š
Specified at 4.5V for 5V operation, and at 2.7V for 3V operation.  
For if 2.7V/4.5V is not reached during 3V/5V operation, internal reset circuit will not  
operate normally.  
z
Hardware reset(XRESET)  
tr100nS  
2.7V/4.5V  
0.2V  
tL>100uS  
V1.1  
2003/12/24  
57/72  
ST7036  
„ Absolute Maximum Ratings  
Characteristics  
Power Supply Voltage  
LCD Driver Voltage  
Input Voltage  
Symbol  
Value  
VDD  
VLCD  
VIN  
-0.3 to +7.0  
7.0- Vss to -0.3+Vss  
-0.3 to VDD+0.3  
-40oC to + 90oC  
-55oC to + 125oC  
Operating Temperature  
Storage Temperature  
TA  
TSTO  
„ DC Characteristics  
( TA = 25, VDD = 2.7 V)  
Symbol Characteristics  
Test Condition  
Min. Typ. Max. Unit  
VDD  
VLCD  
VIN  
Operating Voltage  
LCD Voltage  
Power Supply  
-
2.7  
2.7  
-
-
-
-
4.5  
7.0  
3.5  
V
V
V
V0-Vss  
-
VDD=3.0V  
ICC  
VIH1  
VIL1  
VIH2  
VIL2  
VOH  
VOL  
Power Supply Current  
(Use internal  
-
160  
230  
VDD  
0.8  
uA  
V
booster/follower circuit)  
Input High Voltage  
(Except OSC1)  
0.7  
-
-
-
-
-
-
-
VDD  
Input Low Voltage  
(Except OSC1)  
-
- 0.3  
V
Input High Voltage  
(OSC1)  
0.7  
-
VDD  
V
VDD  
Input Low Voltage  
(OSC1)  
0.2  
-
-
V
VDD  
Output High Voltage  
(DB0 - DB7)  
0.7  
IOH = -1.0mA  
IOL = 1.0mA  
-
V
VDD  
Output Low Voltage  
(DB0 - DB7)  
-
0.8  
V
RCOM Common Resistance VLCD = 4V, Id = 0.05mA  
-
-
2
2
20  
30  
K  
KΩ  
RSEG  
Segment Resistance VLCD = 4V, Id = 0.05mA  
Input Leakage  
VIN = 0V to VDD  
Current  
ILEAK  
-1  
-
1
µA  
IPUP  
Pull Up MOS Current  
Oscillation frequency  
VDD = 3V  
20  
30  
40  
µA  
fOSC  
VDD = 3V,1/17duty  
350  
540  
1100  
kHz  
V1.1  
2003/12/24  
58/72  
ST7036  
„ DC Characteristics  
( TA = 25, VDD = 4.5 V)  
Symbol Characteristics  
Test Condition  
Min. Typ. Max. Unit  
VDD  
VLCD  
VIN  
Operating Voltage  
-
4.5  
2.7  
-
-
-
-
5.5  
7.0  
3.5  
V
V
V
LCD Voltage  
V0-Vss  
Power Supply  
-
VDD=5.0V  
(Use internal  
ICC  
VIH1  
VIL1  
VIH2  
VIL2  
VOH  
VOL  
Power Supply Current  
-
240  
340  
VDD  
0.8  
µA  
V
booster/follower circuit)  
Input High Voltage  
(Except OSC1)  
0.7  
-
-
-
-
-
-
-
VDD  
Input Low Voltage  
(Except OSC1)  
-
-0.3  
V
Input High Voltage  
(OSC1)  
0.7  
-
VDD  
1.0  
V
VDD  
Input Low Voltage  
(OSC1)  
-
-
V
Output High Voltage  
(DB0 - DB7)  
0.8  
IOH = -1.0mA  
IOL = 1.0mA  
VDD  
0.8  
V
VDD  
Output Low Voltage  
(DB0 - DB7)  
-
V
RCOM Common Resistance VLCD = 4V, Id = 0.05mA  
-
-
2
2
20  
30  
KΩ  
KΩ  
RSEG  
Segment Resistance VLCD = 4V, Id = 0.05mA  
Input Leakage  
VIN = 0V to VDD  
Current  
ILEAK  
-1  
-
1
µA  
IPUP  
Pull Up MOS Current  
Oscillation frequency  
VDD = 5V  
65  
95  
125  
µA  
fOSC  
VDD = 5V,1/17duty  
350  
540  
1100  
kHz  
V1.1  
2003/12/24  
59/72  
ST7036  
„ LCD Frame Frequency  
z
1/16 Duty(ST7066U normal mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time  
= 1.85us, 1/16 duty; 1/5 bias,1 frame =1.85us x 200 x 16 = 5.92ms=168.9Hz(SHLC and SHLS connect  
to High)  
200 clocks  
1
2
3
4
16  
1
2
3
4
16  
1
2
3
4
16  
V0  
V1  
V2  
COM1  
V3  
V4  
Vss  
V0  
V1  
V2  
COM2  
V3  
V4  
Vss  
V0  
V1  
V2  
COM16  
V3  
V4  
Vss  
V0  
V1  
V2  
SEGx off  
V3  
V4  
Vss  
V0  
V1  
V2  
SEGx on  
V3  
V4  
Vss  
1 frame  
V1.1  
2003/12/24  
60/72  
ST7036  
z
1/17 Duty(Extension mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time =  
1.85us, 1/17 duty; 1/5 bias,1 frame =1.85us x 200 x 17 = 6.29ms=159Hz(SHLC and SHLS connect to  
High)  
200 clocks  
1
2
3
4
17  
1
2
3
4
17  
1
2
3
4
17  
V0  
V1  
V2  
COM1  
V3  
V4  
Vss  
V0  
V1  
V2  
COM2  
V3  
V4  
Vss  
V0  
V1  
V2  
COM17  
V3  
V4  
Vss  
V0  
V1  
V2  
SEGx off  
V3  
V4  
Vss  
V0  
V1  
V2  
SEGx on  
V3  
V4  
Vss  
1 frame  
V1.1  
2003/12/24  
61/72  
ST7036  
z
1/8 Duty(ST7066U normal mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time =  
1.85us, 1/8 duty; 1/4 bias,1 frame = 1.85us x 400 x 8 = 5.92ms=168.9Hz(SHLC and SHLS connect to  
High)  
400 clocks  
1
2
3
4
8
1
2
3
4
8
1
2
3
4
8
V0  
V1  
V2  
V3  
COM1  
V4  
Vss  
V0  
V1  
V2  
V3  
COM2  
V4  
Vss  
V0  
V1  
V2  
V3  
COM8  
V4  
Vss  
V0  
V1  
V2  
V3  
SEGx off  
V4  
Vss  
V0  
V1  
V2  
V3  
SEGx on  
V4  
Vss  
1 frame  
V1.1  
2003/12/24  
62/72  
ST7036  
z
1/9 Duty(Extension mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time =  
1.85us, 1/9 duty; 1/4 bias,1 frame = 1.85us x 400 x 9 = 6.66ms=150Hz(SHLC and SHLS connect to  
High)  
400 clocks  
1
2
3
4
9
1
2
3
4
9
1
2
3
4
9
V0  
V1  
V2  
V3  
COM1  
V4  
Vss  
V0  
V1  
V2  
V3  
COM2  
V4  
Vss  
V0  
V1  
V2  
V3  
COM9  
V4  
Vss  
V0  
V1  
V2  
V3  
SEGx off  
V4  
Vss  
V0  
V1  
V2  
V3  
SEGx on  
V4  
Vss  
1 frame  
V1.1  
2003/12/24  
63/72  
ST7036  
z
1/25 Duty( Extension mode and 3-line ); Assume the oscillation frequency is 540KHZ, 1 clock cycle  
time = 1.85us, 1/25 duty; 1/4 bias,1 frame = 1.85us x 160 x 25 = 7.40ms=135.1Hz(SHLC and SHLS  
connect to High)  
z
160 clocks  
1
2
3
4
25  
1
2
3
4
25  
1
2
3
4
25  
V0  
V1  
V2  
V3  
COM1  
V4  
Vss  
V0  
V1  
V2  
V3  
COM2  
V4  
Vss  
V0  
V1  
V2  
V3  
COM25  
V4  
Vss  
V0  
V1  
V2  
V3  
SEGx off  
V4  
Vss  
V0  
V1  
V2  
V3  
SEGx on  
V4  
Vss  
1 frame  
V1.1  
2003/12/24  
64/72  
ST7036  
„ I/O Pad Configuration  
VDD  
VDD  
VDD  
PMOS  
PSB  
PMOS  
NMOS  
NMOS  
Input PAD (No Pull up):  
RS, R/W, XRESET, CSB,  
PSB, OPFx, OPRx, SHLx,  
CLS, EXT  
PSB=1==>E(Floating)  
PSB=0==>E(Pull up)  
VDD  
VDD  
VDD  
Enable  
PMOS  
PMOS  
PMOS  
NMOS  
Data  
NMOS  
I/O PAD (Pull up):  
DB0-DB5  
V1.1  
2003/12/24  
65/72  
ST7036  
„ LCD and ST7036 Connection  
SHLC/SHLS ITO option pin can select at different direction for LCD panel  
z
z
z
z
Com normal direction/Seg normal direction  
3 line x 16 characters, SHLC=1 SHLS=1  
Com normal direction/Seg reverse direction  
3 line x 16 characters, SHLC=1, SHLS=0  
Com reverse direction/Seg normal direction  
3 line x 16 characters, SHLC=0, SHLS=1  
Com reverse direction/Seg reverse direction  
3 line x 16 characters, SHLC=0, SHLS=0  
V1.1  
2003/12/24  
66/72  
ST7036  
„ Application Circuit ( Normal mode )  
¾ Use internal resistor(9.6K ohm) and contrast adjust with external VR.  
¾ Booster always off.  
¾ Has 240 character of CGROM.  
¾ Internal oscillator.  
Dot Matrix LCD Panel  
VDD  
Vext  
VDD  
Com 1-24  
Seg 1-80  
VOUT  
VIN  
CLS  
SHLC  
SHLS  
N3  
CAP1N  
EXT  
OPF1  
OPF2  
OPR1  
OPR2  
CAP1P  
ST7036  
V0  
V1  
V2  
V3  
V4  
RS,R/W,E,CSB,DB0-DB7,XRESET  
To MPU  
V1.1  
2003/12/24  
67/72  
ST7036  
„ Application Circuit(Extension mode)  
¾ Use internal follower circuit.  
¾ Booster has 2 times pump.  
¾ Has 240 character of CGROM.  
¾ Internal oscillator.  
Dot Matrix LCD Panel  
Vext  
VDD  
Com 1-24  
Seg 1-80  
VOUT  
VIN  
CLS  
SHLC  
SHLS  
N3  
CAP1N  
CAP1P  
V0  
V1  
V2  
V3  
V4  
EXT  
ST7036  
OPF1  
OPF2  
OPR1  
OPR2  
RS,R/W,E,CSB,DB0-DB7,XRESET  
To MPU  
z
When the heavy load is applied, the dotted line part could be added.  
V1.1  
2003/12/24  
68/72  
ST7036  
„ Application Circuit ( for glass layout )  
z
ST7036 over Glass,6800 serial 8bit interface, with booster and follower circuit on  
V1.1  
2003/12/24  
69/72  
ST7036  
z
ST7036 over Glass,6800 serial 4bit interface, with booster and follower circuit on  
V1.1  
2003/12/24  
70/72  
ST7036  
z
ST7036 over Glass, serial interface, with booster and follower circuit on  
V1.1  
2003/12/24  
71/72  
ST7036  
z
ST7036 over Glass, I2C interface, with booster and follower circuit on  
V1.1  
2003/12/24  
72/72  

相关型号:

ST7038

Dot Matrix LCD Controller/Driver
SITRONIX

ST704

SILICON GATE ENHANCEMENT MODE RF POWER VDMOSTRANSISTOR
POLYFET

ST7063C

80CH Segment Driver for Dot Matrix LCD
SITRONIX

ST7065C

40CH Segment/Common Driver for Dot Matrix LCD
SITRONIX

ST7066

Dot Matrix LCD Controller/Driver
ETC

ST7066-0A

Controller Miscellaneous - Datasheet Reference
ETC

ST7066-0B

Controller Miscellaneous - Datasheet Reference
ETC

ST7066U

Dot Matrix LCD Controller/Driver
SITRONIX

ST7070

Dot Matrix LCD Controller/Driver
SITRONIX

ST7093

26 COM / 80 SEG LCD CONTROLLER/DRIVER
SITRONIX

ST710

Audio/RCA Connector,
SWITCH

ST715C33R

High input voltage, 85 mA LDO linear regulator
STMICROELECTR