NJU6655 [ETC]

64-common X 160-segment + 1-icon common Bitmap LCD Driver; 64普通X 160段+ 1图标常见的位图LCD驱动器
NJU6655
型号: NJU6655
厂家: ETC    ETC
描述:

64-common X 160-segment + 1-icon common Bitmap LCD Driver
64普通X 160段+ 1图标常见的位图LCD驱动器

驱动器 CD
文件: 总47页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6655  
Preliminary  
64-common X 160-segment + 1-icon common  
Bitmap LCD Driver  
GENERAL DESCRIPTION  
PACKAGE OUTLINE  
The NJU6655 is a bitmap LCD driver to display graphics or  
characters.  
It contains 10,400 bits display data RAM, microprocessor  
interface circuits, instruction decoder, 64-common and  
160-segment + 1-icon-common drivers.  
The bit image display data is transferred to the display data  
RAM by serial or 8-bit parallel interface.  
NJU6655CJ  
65 x 160 dots graphics or 10-character 4-line by 16 x 16 dots  
character with icon are displayed by NJU6655 itself.  
The wide operating voltage from 2.4 to 5.5V and low operating  
current are suitable for battery-powered applications.  
The build-in Electrical Variable Resistance is very precision,  
furthermore the rectangle outlook is very applicable to COG or  
Slim TCP.  
FEATURES  
Direct Correspondence between Display Data RAM and LCD Pixel  
Display Data RAM - 10,400 bits  
225 LCD Drivers - 64-common and 160-segment + 1-icon common  
Direct Microprocessor Interface for both of 68 and 80 type MPU  
Serial Interface (SI, SCL, A0, CS1b, CS2)  
Programmable Bias selection : 1/5,1/7,1/9 bias  
Useful Instruction Set  
Display On/Off Cont, Initial Display Line Set, Page Address Set, Column Address Set, Status Read,  
Display Data Read/Write, ADC Select, Inverse Display, Entire Display On/Off, Bias Select, Read Modify Write,  
End, Reset, Common Direction Register Set, Power control set, Feedback Resistor Ratio Set,  
EVR Mode Set, EVR Register Set, Static Indicator On/Off, Static Indicator Register Set, Power Save,  
Power Save Reset, n-line Inverse Drive Register Set, n-line Inverse Drive Reset, Partial Select,  
Internal Oscillation Circuit ON.  
Power Supply Circuits for LCD Incorporated  
Voltage Booster Circuits (4-time Maximum),  
Voltage Adjust Circuits, Voltage Follower x 4  
Voltage Regulator Incorporated  
Precision Electrical Variable Resistance (64-step)  
Low Power Consumption T.B.D.uA(Typ.).  
Operating Voltage (All the voltages are based on VDD=0V.)  
- Logic Operating Voltage  
- Voltage Booster Operating Voltage  
- LCD Driving Voltage  
: -2.4V to -5.5V  
: -2.4V to -6.0V  
: -4.5V to -18.0V  
Rectangle outlook for COG  
Package Outline : Bump-chip  
C-MOS Technology (Substrate : N)  
Ver.2004-11-08  
- 1 -  
NJU6655  
PAD LOCATION  
DUMMY19  
DUMMY18  
DUMMY17  
S156  
DUMMY1  
DUMMY2  
TEST1  
SYNC  
FRS  
FR  
S155  
CL  
DOFb  
SYNC  
VSS  
CS1b  
CS2  
VDD  
RESb  
A0  
VSS  
WRb  
RDb  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
D6(SCL)  
D7(SI)  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VOUT  
VOUT  
C3-  
Y
C3-  
C1+  
C1+  
C1-  
C1-  
C2-  
C2-  
X
C2+  
C2+  
VSS  
VSS  
VRS  
VRS  
DUMMY3  
Chip Center  
: X=0um, Y=0um  
: X=8.88mm,Y=2.77mm  
: 675um ± 30um  
: 130um x 31um  
: 50um(Min.)  
Chip Size  
DUMMY4  
VDD  
VDD  
V1  
V1  
V2  
V2  
V3  
V3  
V4  
Chip Thickness  
Bump Size  
Bump Pitch  
Bump Height  
Bump Material  
: 17.5um(Typ.)  
: Au  
Voltage Boosting Polarity  
V4  
V5  
V5  
VR  
: Negative Voltage (VDD common)  
Substrate  
: N  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
TEST2  
VSS  
IRS  
VDD  
DUMMY5  
DUMMY6  
S4  
S3  
DUMMY16  
DUMMY15  
DUMMY14  
Ver.2004-11-08  
- 2 -  
NJU6655  
PAD COORDINATES  
Chip Size 8.88 x 2.77mm(Chip Center X=0um, Y=0um)  
PAD No.  
1
Terminal  
DUMMY1  
DUMMY2  
TEST1  
SYNC  
FRS  
FR  
X= um  
-4092  
-4042  
-3919  
-3796  
-3637  
-3417  
-3197  
-2976  
-2756  
-2598  
-2474  
-2317  
-2194  
-2071  
-1914  
-1790  
-1667  
-1510  
-1387  
-1229  
-1008  
-788  
-567  
-347  
-127  
94  
Y= um  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
PAD No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Terminal  
X= um  
1622  
1672  
1722  
1772  
1822  
1872  
1922  
1972  
2022  
2072  
2122  
2172  
2222  
2272  
2322  
2372  
2422  
2472  
2522  
2572  
2622  
2672  
2796  
2953  
3076  
3199  
3356  
3480  
3603  
3726  
3849  
3972  
4022  
4072  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
Y= um  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1213  
-1037  
-987  
C2+  
2
C2+  
3
VSS  
4
VSS  
5
VRS  
6
VRS  
7
CL  
DUMMY3  
DUMMY4  
VDD  
8
DOFb  
SYNC  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
VDD  
CS1b  
CS2  
V1  
V1  
VDD  
V2  
RESb  
A0  
V2  
V3  
VSS  
V3  
WRb  
RDb  
VDD  
V4  
V4  
V5  
D0  
V5  
D1  
VR  
D2  
VDD  
D3  
M/S  
D4  
CLS  
VSS  
D5  
D6(SCL)  
D7(SI)  
VDD  
C86  
314  
P/S  
472  
VDD  
VDD  
522  
TEST2  
VSS  
VDD  
572  
VDD  
622  
IRS  
VDD  
672  
VDD  
VSS  
722  
DUMMY5  
DUMMY6  
DUMMY7  
DUMMY8  
DUMMY9  
DUMMY10  
C31  
VSS  
772  
VSS  
822  
VSS2  
VSS2  
VSS2  
VSS2  
VSS2  
VOUT  
VOUT  
C3-  
872  
922  
-937  
972  
-887  
1022  
1072  
1122  
1172  
1222  
1272  
1322  
1372  
1422  
1472  
1522  
1572  
-837  
C30  
-787  
C29  
-737  
C28  
-687  
C27  
-637  
C3-  
C26  
-587  
C1+  
C25  
-537  
C1+  
C24  
-487  
C1-  
C23  
-437  
C1-  
C22  
-387  
C2-  
C21  
-337  
C2-  
C20  
-287  
Ver.2004-11-08  
- 3 -  
NJU6655  
PAD No.  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
Terminal  
X= um  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4265  
4115  
4065  
4015  
3965  
3915  
3865  
3815  
3765  
3715  
3665  
3615  
3565  
3515  
3465  
3415  
3365  
3315  
3265  
3215  
3165  
3115  
3065  
3015  
Y= um  
-237  
-187  
-137  
-87  
PAD No.  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Terminal  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S51  
S52  
S53  
S54  
S55  
S56  
S57  
S58  
S59  
S60  
S61  
S62  
S63  
S64  
S65  
S66  
S67  
S68  
S69  
S70  
S71  
S72  
X= um  
2965  
2915  
2865  
2815  
2765  
2715  
2665  
2615  
2565  
2515  
2465  
2415  
2365  
2315  
2265  
2215  
2165  
2115  
2065  
2015  
1965  
1915  
1865  
1815  
1765  
1715  
1665  
1615  
1565  
1515  
1465  
1415  
1365  
1315  
1265  
1215  
1165  
1115  
1065  
1015  
965  
Y= um  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
C19  
C18  
C17  
C16  
C15  
-37  
C14  
13  
C13  
63  
C12  
113  
C11  
163  
C10  
213  
C9  
263  
C8  
313  
C7  
363  
C6  
413  
C5  
463  
C4  
513  
C3  
563  
C2  
613  
C1  
663  
C0  
713  
COMM  
763  
S0  
813  
S1  
863  
S2  
913  
DUMMY11  
963  
DUMMY12  
1013  
1063  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
DUMMY13  
DUMMY14  
DUMMY15  
DUMMY16  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
915  
865  
815  
765  
715  
665  
615  
565  
515  
Ver.2004-11-08  
- 4 -  
NJU6655  
PAD No.  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
Terminal  
S73  
X= um  
465  
Y= um  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
PAD No.  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
Terminal  
S123  
X= um  
-2035  
-2085  
-2135  
-2185  
-2235  
-2285  
-2335  
-2385  
-2435  
-2485  
-2535  
-2585  
-2635  
-2685  
-2735  
-2785  
-2835  
-2885  
-2935  
-2985  
-3035  
-3085  
-3135  
-3185  
-3235  
-3285  
-3335  
-3385  
-3435  
-3485  
-3535  
-3585  
-3635  
-3685  
-4015  
-4065  
-4115  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
Y= um  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1213  
1063  
1013  
963  
S74  
415  
S124  
S75  
365  
S125  
S76  
315  
S126  
S77  
265  
S127  
S78  
215  
S128  
S79  
165  
S129  
S80  
115  
S130  
S81  
65  
S131  
S82  
15  
S132  
S83  
-35  
S133  
S84  
-85  
S134  
S85  
-135  
-185  
-235  
-285  
-335  
-385  
-435  
-485  
-535  
-585  
-635  
-685  
-735  
-785  
-835  
-885  
-935  
-985  
-1035  
-1085  
-1135  
-1185  
-1235  
-1285  
-1335  
-1385  
-1435  
-1485  
-1535  
-1585  
-1635  
-1685  
-1735  
-1785  
-1835  
-1885  
-1935  
-1985  
S135  
S86  
S136  
S87  
S137  
S88  
S138  
S89  
S139  
S90  
S140  
S91  
S141  
S92  
S142  
S93  
S143  
S94  
S144  
S95  
S145  
S96  
S146  
S97  
S147  
S98  
S148  
S99  
S149  
S100  
S101  
S102  
S103  
S104  
S105  
S106  
S107  
S108  
S109  
S110  
S111  
S112  
S113  
S114  
S115  
S116  
S117  
S118  
S119  
S120  
S121  
S122  
S150  
S151  
S152  
S153  
S154  
S155  
S156  
DUMMY17  
DUMMY18  
DUMMY19  
DUMMY20  
DUMMY21  
DUMMY22  
S157  
913  
S158  
863  
S159  
813  
C32  
763  
C33  
713  
C34  
663  
C35  
613  
C36  
563  
C37  
513  
C38  
463  
Ver.2004-11-08  
- 5 -  
NJU6655  
PAD No.  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
Terminal  
X= um  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
-4265  
Y= um  
413  
C39  
C40  
363  
C41  
313  
C42  
263  
C43  
213  
C44  
163  
C45  
113  
C46  
63  
C47  
13  
C48  
-37  
C49  
-87  
C50  
-137  
-187  
-237  
-287  
-337  
-387  
-437  
-487  
-537  
-587  
-637  
-687  
-737  
-787  
-837  
-887  
-937  
-987  
-1037  
C51  
C52  
C53  
C54  
C55  
C56  
C57  
C58  
C59  
C60  
C61  
C62  
C63  
COMM  
DUMMY23  
DUMMY24  
DUMMY25  
DUMMY26  
Ver.2004-11-08  
- 6 -  
NJU6655  
BLOCK DIAGRAM  
C31 - - - - C0  
C32 - - - C63  
S0 - - - - - - - - - - - - - S159  
COMM  
VSS  
VDD  
Segment  
Drivers  
Common  
Drivers  
5
Common  
Drivers  
V1 to V5  
Internal  
Voltage  
Shift  
Power  
Shift  
Followers  
Common  
Register  
Circuits  
Register  
Timing  
VR  
VRS  
IRS  
Voltage  
Regulator  
Display Data Latch  
VOUT  
C1+/C1-  
C2+/C2-  
C3-  
Voltage  
Converter  
Display Data RAM  
VSS2  
160 X 65 = 10,400-bit  
Column Address Decoder 160  
Column Address Counter 8bit  
M/S  
FR  
Display  
Timing  
FRS  
CL  
CLS  
SYNC  
DOFb  
Column Address Register 8bit  
Multiplexer  
Oscillator  
Instruction  
Decoder  
Status  
Bus Holder  
Busy Flag  
Internal Bus Line  
Reset  
MPU Interface  
D7  
D6  
RESb  
CS1b  
CS2  
A0  
RDb  
WRb  
C86  
P/S D0 to D5  
(SI)  
(SCL)  
Ver.2004-11-08  
- 7 -  
NJU6655  
TERMINAL DISCRIPTION  
No.  
SYMBOL  
I/O  
FUNCTION  
1,2,57,58, DUMMY1  
Dummy terminals.  
83 to 88,  
to  
These are open terminals electrically.  
125 to 130, DUMMY26  
285 to 290,  
327 to 330  
13,19,  
VDD  
VSS  
Power Power supply terminal.  
GND Ground terminal.  
28 to 32  
59,60,72,  
78,82  
10,16,  
33 to 35  
53,54,75,  
80  
36 to 40  
55,56  
VSS2  
VRS  
Power Reference voltage for voltage booster.  
Power External reference voltage input terminal.  
Normally open.  
61,62  
63,64  
65,66  
67,68  
69,70  
V1  
V2  
V3  
V4  
V5  
Power LCD driving voltage supplying terminal.  
When the internal voltage booster is not used, supply each level of LCD driving  
voltage from outside with following relation.  
V
DDV1V2V3V4V5VOUT  
When the internal power supply is on, the internal circuits generate and supply  
following LCD bias voltage from V1 to V4 terminal.  
Bias  
1/5 Bias  
V1  
V2  
V3  
V4  
V5+4/5VLCD  
V5+6/7VLCD  
V5+8/9VLCD  
V5+3/5VLCD  
V5+5/7VLCD  
V5+7/9VLCD  
V5+2/5VLCD V5+1/5VLCD  
V5+2/7VLCD V5+1/7VLCD  
V5+2/9VLCD V5+1/9VLCD  
1/7 Bias  
1/9 Bias  
(VLCD=VDD-V5)  
45,46  
47,48  
51,52  
49,50  
43,44  
41,42  
C1+  
C1-  
O
Boosted capacitor connecting terminals used for voltage booster.  
C2+  
C2-  
C3-  
VOUT  
O
I
Voltage booster output terminal.  
Connect the boosted capacitor between this terminal and VSS2  
Voltage adjustment terminal  
.
71  
VR  
Connect external feedback resistor to control the LCD driving voltage V5. This  
terminal is effective when IRS=”L”.  
20 to 27  
(26, 27)  
D0 to D7  
I/O  
Data input/output terminals.  
(SCL, SI)  
P/S="H" : Tri-state bi-directional Data I/O terminal in 8-bit parallel operation.  
P/S="L" : D7=Serial data input terminal. D6=Serial data clock signal input terminal.  
D0 to D5 terminals are Hi-impedance.  
Data from SI is loaded at the rising edge of SCL and latched as the parallel data at  
8th rising edge of SCL. When CS1b="H", D0 to D7 terminals are Hi-impedance.  
Data discrimination signal input terminal.  
15  
14  
A0  
I
I
Connect to the Address bus of MPU. The data on the D0 to D7 is distinguished between  
Display data and Instruction by status of A0.  
A0  
Distinction  
H
L
Display Data  
Instruction  
RESb  
Reset terminal.  
When the RESb terminal goes to “L”, the initialization is performed.  
Reset operation is executing during “L” state of RESb.  
Ver.2004-11-08  
- 8 -  
NJU6655  
No.  
SYMBOL  
I/O  
I
FUNCTION  
11  
12  
18  
CS1b  
CS2  
RDb  
(E)  
Chip select terminal.  
Data Input/Output are available during CS1b=”L” and CS2=”H”.  
<In case of 80 Type MPU>  
I
RDb signal of 80 type MPU input terminal. Active "L"  
During this signal is "L" , D0 to D7 terminals are output.  
<In case of 68 Type MPU>  
Enable signal of 68 type MPU input terminal. Active "H"  
<In case of 80 Type MPU>  
17  
WRb  
I
(R/W)  
Connect to the 80 type MPU WRb signal. Active "L".  
The data on the data bus input synchronizing the rise edge of this signal.  
<In case of 68 Type MPU>  
The read/write control signal of 68 type MPU input terminal.  
R/W  
State  
H
Read  
L
Write  
76  
77  
C86  
P/S  
I
I
MPU interface type selection terminal.  
This terminal must connect to VDD or VSS.  
C86  
State  
H
L
68 Type  
80 Type  
Serial or parallel interface selection terminal.  
Serial  
Clock  
-
P/S  
Chip Select Data/Instruction  
Data Read/Write  
D0toD7 RDb,WRb  
“H”  
“L”  
CS1b,CS2  
CS1b,CS2  
A0  
A0  
SI(D7)  
-
SCL(D6)  
In case of the serial interface (P/S="L")  
RAM data and status read operation do not work in mode of the serial interface.  
RDb and WRb must be fixed "H" or "L", and D0 to D5 are high impedance.  
Terminal to select whether or enable or disable the display clock internal oscillator  
circuit.  
74  
73  
CLS  
M/S  
I
I
CLS=”H” : Internal oscillator circuit is enable  
CLS=”L” : Internal oscillator circuit is disabled (requires external input)  
When CLS=”L”, input the display clock through the CL terminal.  
This terminal selects the master/slave operation for the NJU6655.  
Master operation outputs the timing signals that are required for the LCD display, while  
slave operation inputs the timing signals required for the LCD, synchronizing the LCD  
system.  
M/S = ”H” : Master operation  
M/S = ”L” : Slave operation  
The following is true depending on the M/S and CLS status:  
Power  
M/S CLS  
OSC.  
Supply  
Circuit  
CL  
FR  
FRS  
DOFb  
“H” Available Available Output Output Output Output  
“L” Not Avail. Available Input Output Output Output  
“H”  
“L”  
*
Not Avail. Not Avail. Input  
Input Output Input  
*:Don’t Care  
7
CL  
I/O  
Display clock input/output terminal.  
The following is true depending on the M/S and CLS status.  
M/S  
“H”  
“L”  
CLS  
“H”  
“L”  
*
CL  
Output  
Input  
Input  
*:Don’t Care  
Ver.2004-11-08  
- 9 -  
NJU6655  
No.  
SYMBOL  
FR  
I/O  
I/O  
FUNCTION  
6
LCD alternating current signal I/O terminal.  
M/S=”H” : Output  
M/S=”L” : Input  
4,9  
8
SYNC  
DOFb  
I/O  
I/O  
LCD synchronizing current signal I/O terminal.  
M/S=”H” : Output  
M/S=”L” : Input  
LCD Display blanking control terminal.  
M/S=”H” : Output terminal. Display “On” = “H”, Display “Off” = “L”  
M/S=”L” : Input terminal. External control. Refer to the following table.  
DOFb  
Instruction  
H
On  
Off  
L
Off  
Off  
Display On  
Display Off  
81  
5
IRS  
I
Internal Feedback Resistor Select  
IRS=“H” : Internal feedback  
IRS=“L” : External feedback resistor  
This setting is effective in the master operation. It is ineffective in the slave operation  
but should be fixed to “H” or “L”.  
FRS  
O
O
The output terminal for the static drive.  
This terminal is used in conjunction with the SYNC terminal.  
LCD driving signal output terminals.  
89 to 120  
C31 to C0  
-Common output terminals : C0 to C63  
-Segment output terminals : S0 to S159  
Common output terminals  
The following output voltages are selected by the combination of alternating (FR)  
signal and Common scanning data.  
122 to 124, S0 to S159  
131 to 284,  
O
O
Scan Data  
H
FR  
Output Voltage  
H
L
H
L
V5  
VDD  
V1  
291 to 293  
L
V4  
294 to 325 C32 to C63  
Segment output terminals  
The following output voltages are selected by the combination of alternating (FR)  
signal and display data in the RAM.  
Output Voltage  
RAM Data  
FR  
Normal  
VDD  
V5  
Reverse  
V2  
H
L
H
L
H
L
V3  
V2  
VDD  
V5  
V3  
121,326  
COMM  
TEST1  
TEST2  
O
O
I
COM output terminals for the indicator.  
Both terminals output the same signal. Leave these open if they are not used.  
3
Maker test only.  
Normally open.  
79  
Maker test only.  
This terminal must connect to VSS.  
Ver.2004-11-08  
- 10 -  
NJU6655  
FUNCTIONAL DESCRIPTION  
(1) Description for each blocks  
(1-1) Busy Flag (BF)  
During internal operation, the LSI is being busy and can’t accept any instructions except “status read”. The BF  
data is output through D7 terminal by the “status read” instruction.  
When the cycle time (tcyc) mentioned in the “AC characteristics” is satisfied, the BF check isn’t required after  
each instruction, so that MPU processing performance can be improved.  
(1-2) Initial display line register  
The initial display line register assigns a DDRAM line address, which corresponds to COM0 by “initial display  
line set” instruction. It is used for not only normal display but also vertical display scrolling and page switching  
without changing the contents of the DDRAM.  
However, the 65th address for icon display can’t be assigned for initial display line address.  
(1-3) Line counter  
The line counter provides a DDRAM line address. It initializes its contents at the switching of frame timing signal  
(FR), and also counts-up in synchronization with common timing signal.  
(1-4) Column address counter  
The column address counter is an 8-bit preset counter, which provides a DDRAM column address, and it is  
independent of below-mentioned page address register.  
It will increment (+1) the column address whenever “display data read” or “display data write” instructions are  
issued. However, the counter will be locked when no-existing address above A0H are addressed. The count-lock will  
be able to be released by the “column address set” instruction again. The counter can invert the correspondence  
between the column address and segment driver direction by means of “ADC set” instruction.  
(1-5) Page address register  
The page address register provides a DDRAM page address.  
The last page address “8” should be used for icon display because the only D0 is valid.  
(1-6) Display data RAM (DDRAM)  
The DDRAM contains 10,400-bit, and stores display data, which are 1-to-1 correspondents to LCD panel pixels.  
When normal display mode, the display data “1” turns on and “0” turns off LCD pixels. When inverse display  
mode, “1” turns off and “0” turns on.  
Ver.2004-11-08  
- 11 -  
NJU6655  
Line  
Common  
Driver  
Data  
Page Address  
Display Pattern  
Address  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
C56  
C57  
C58  
C59  
C60  
C61  
C62  
C63  
C0  
C1  
C2  
C3  
C4  
00H  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
D3,D2,D1,D0  
(0,0,0,0)  
PAGE 0  
D3,D2,D1,D0  
(0,0,0,1)  
PAGE 1  
PAGE 2  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
D3,D2,D1,D0  
(0,0,1,0)  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
C46  
C47  
C48  
C49  
C50  
C51  
C52  
C53  
36  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D6  
D7  
D0  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
D3,D2,D1,D0  
(0,1,1,1)  
PAGE 7  
PAGE 8  
C54  
C55  
COMM*  
(1,0,0,0)  
D0="0" 00 01 02 03 04 05 06  
D0="1" 9F 9E 9D 9C 9B 9A 99  
9E 9F  
01 00  
Column  
ADC  
Address  
For example the Initial  
display is 08H.  
Segment Drivers  
0
1
2
3
4
5
6
- - - - - - - - - - - - - - - -  
158 159  
Fig.1 Display data RAM (DDRAM) Map  
* : COMM is independent of the “Initial display line set” instruction and always corresponds to the 65th line.  
Ver.2004-11-08  
- 12 -  
NJU6655  
(1-7) Common direction register  
The common direction register is selected by the "Partial Select" and "Common Direction Register Set"  
instructions as shown in Table 1. When using the partial display function, the COM0 - COM15 and COM48  
-
COM63 terminals cannot be used.  
Table 1. Common direction  
Partial  
Select  
Common  
Direction  
Register Set  
D3  
Common drivers  
D0  
PADNo. 114  
Pin name C0  
83  
309  
278  
C32  
COM32  
COM31  
278  
C32  
COM32  
COM31  
C31  
COM31  
COM32  
83  
C63  
0
0
0
1
COM0  
COM63  
PADNo. 98  
Pin name C16  
COM16  
COM47  
COM63  
COM0  
293  
C31  
C47  
1
1
0
1
COM31  
COM32  
COM47  
COM16  
(1-8) Reset circuit  
The reset circuit initializes the LSI to the following status by using of the reset signal into the RESb terminal.  
-Reset status using the RESb terminal:  
1. Display off  
2. Normal display (Non-inverse display)  
3. ADC select : Normal mode (D0="0")  
4. Power control register clear : D2,D1,D0=”0,0,0”  
5. Serial interface register clear  
6. LCD bias select : D1,D0=”0,0”(1/9 bias)  
7. Power save reset  
8. Entire display off  
: Normal mode  
9. Internal oscillation circuit stop  
10.Partial select : D0=”0”(1/65 duty)  
11.Static indicator off  
Static indicator register : D1,D2=”0,0”  
12.Read modify write off  
13.Initial display line address : 00H  
14.Column address  
15.Page address  
: 00H  
: 0 page  
16.Common direction register : D3=”0”(Normal)  
17.Feedback resistors ratio : D2,D1,D0=”0,0,0”  
18.EVR mode off and EVR register: D5,D4,D3,D2,D1,D0=”1,0,0,0,0,0”  
19.n-line inverse drive register : D3,D2,D1,D0=”0,0,0,0”(n-line inverse reset)  
20.Test mode reset (Test mode 1 and Test mode 2)  
The RES terminal should be connected to MPU’s reset terminal, and the reset operation should be executed at the  
same timing of the MPU reset. As described in the “BUS TIMING CHARACTERISTICS”, it is necessary to input  
1.5us(min.) or over “L” level signal into the RES terminal in order to carry out the reset operation. The LSI will  
return to normal operation after about 1.5us(max.) from the rising edge of the reset signal.  
The reset operation by RESb="L" initializes each register setting as above reset status, but the internal oscillation  
circuit and output terminals (D0 to D7) are not affected.  
The reset operation is necessary to avoid malfunctions.  
Note 1) The “Reset” instruction in Table.4 can’t be substituted for the reset operation by using of the RES terminal. It  
executes above-mentioned only 11 to 20 items.  
Note 2) The reset terminal is susceptible to external noise, so design PCB layout in consideration for the noise.  
Note 3) In case of using external power supply for LCD driving voltage, the RESb terminal is required to be being “L”  
level when the external power supply is turned-on.  
Ver.2004-11-08  
- 13 -  
NJU6655  
(1-9) LCD driving circuits  
(a) Common and segment drivers  
LCD drivers consist of 64-common drivers, 160-segment divers and 1-icon-common driver.  
As shown in “LCD driving waveform”, LCD driving waveforms are generated by the combination of display data,  
common timing signal and internal FR timing signal.  
(b) Display data latch circuit  
The display data latch circuit temporally stores 160-bit display data transferred from the DDRAM in the synchronization  
with the common timing signal, and then it transfers these stored data to the segment drivers.  
“Display on/off”, “inverse display on/off” and “entire display on/off” instructions control only the contents of this latch  
circuit, they can’t change the contents of the DDRAM.  
In addition, the LCD display isn’t affected by the DDRAM accuses during its displaying because the data read-out  
timing from this latch circuit to the segment drivers is independent of accessing timing to the DDRAM.  
(c) Line counter and latch signal or latch Circuits  
The clock line counter and latch signal to the latch circuits are generated from the internal display clock (CL). The line  
address of display data RAM is renewed synchronizing with display clock (CL).  
160bits display data are latched in display latch circuits synchronizing with display clock, and then output to the LCD  
driving circuits. The display data transfer to the LCD driving circuits is executed independently with RAM access by the  
MPU.  
(d) Display timing generator  
The display timing generates the timing signal for the display system by combination of the master clock CL and driving  
signal FR ( refer to Fig.2 ) The frame signal FR and LCD alternative signal generate LCD driving waveform on the  
2-frame alternative driving method or the n-line inverse driving method.  
Ver.2004-11-08  
- 14 -  
NJU6655  
(e) Common timing generation  
The common timing is generated by display clock CL (refer to Fig.2)  
64 65  
1
2
3
4
5
6
7
8
62 63 64 65  
1
2
3
4
5
CL  
FR  
VDD  
V1  
C0  
C1  
V4  
V5  
VDD  
V1  
V4  
V5  
RAM DATA  
Sn  
VDD  
V2  
V3  
V5  
Fig.2-1 2-frame alternating drive mode  
64 65  
1
2
3
4
5
6
7
8
62 63 64 65  
1
2
3
4
5
CL  
FR  
VDD  
V1  
C0  
C1  
V4  
V5  
VDD  
V1  
V4  
V5  
RAM DATA  
Sn  
VDD  
V2  
V3  
V5  
Fig.2-2 n-line inverse drive mode (n=7, line inverting register sets to 6)  
Ver.2004-11-08  
- 15 -  
NJU6655  
(f) Oscillator  
This is the low power consumption CR oscillator which provides the display clock and voltage converter timing clock.  
(g) Internal power circuits  
The internal power circuits are composed of x4 boost voltage converter, output voltage regulator including 64-step EVR  
and voltage followers.  
The optimum values of the external passive components for the internal power circuits, such as capacitors for V1 to V5  
terminals and feed back resistors for VR terminal, depend on LCD panel size. Therefore, it is necessary to evaluate the  
actual LCD module with these external components in order to determine the optimum values.  
Each portion of the internal power circuits is controlled by “power control set” instruction as shown in Table.2. In  
addition, the combination of power supply circuits is described in Table.3.  
Table.2 Power control set  
Status  
Portions  
“1”  
ON  
ON  
ON  
“0”  
D2  
D1  
D0  
Voltage converter  
Voltage regulator  
Voltage followers  
OFF  
OFF  
OFF  
Table.3 Power supply combinations  
Status  
Voltage  
Voltage  
Voltage  
External  
voltage  
VSS2  
Capacitor  
terminals  
D2 D1 D0  
converter  
regulator  
ON  
followers  
ON  
Use  
1) Using all internal power circuits  
2) Using voltage regulator and Voltage  
followers  
3) Using voltage followers  
4) Using only external power supply  
1
0
1
1
1
1
ON  
Open  
OFF  
ON  
ON  
VOUT,VSS2  
Open  
Open  
0
0
0
0
1
0
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
VOUT,V5,VSS2  
VOUT,V1~V5  
* Capacitor input terminals: C1+, C1-, C2+, C2-, C3-  
* Do not use other combinations except examples in Table.3.  
The internal LCD power supply is designed to drive small LCD panels such as cellular phones. Thus, if the IC is used to  
drive a large panel, make sure whether it works with the internal power supply or needs an external power supply.  
The selections of external components for the LCD bias circuit, the voltage booster and the feedback loop depend on  
panel sizes, so make sure what are the best values in the particular application.  
Ver.2004-11-08  
- 16 -  
NJU6655  
Power Supply applications  
Power Control Instruction  
D2 : Boost Circuit  
D1 : Voltage Regulator  
D0 : Voltage Follower  
(1) Internal power supply Example.  
All of the Internal Booster, Voltage Regulator,  
Voltage Follower using  
(2) Only VOUT Supply from outside Example.  
Internal Voltage Regulator,  
Voltage Follower using.  
(D2,D1,D0) = (0,1,1)  
(D2,D1,D0) = (1,1,1)  
V
V
V
V
V
DD  
1
V
V
V
V
V
DD  
1
+
+
+
+
+
+
+
+
+
+
+
C1-  
C1+  
C3-  
C2+  
C2-  
+
+
2
2
3
3
4
4
V
V
V
5
V
V
V
5
OUT  
OUT  
SS2  
V
SS2  
V
DD  
VR  
V
5
DD  
VR  
V
5
(3) VOUT and V5 Supply from outside Example.  
Internal Voltage Follower using.  
(D2,D1,D0) = (0,0,1)  
(4) External Power Supply Example.  
All of V1 to V5 and VOUT supply from outside  
(D2,D1,D0) = (0,0,0)  
V
V
V
V
V
DD  
1
V
V
V
V
V
DD  
1
+
+
+
+
2
2
3
3
4
4
V
V
V
5
V
V
V
5
OUT  
SS2  
OUT  
SS2  
: These switches should be open during the power save mode.  
Note) : When using the voltage follower circuit, external resistors may be necessary to stabilize V1,V2,V3 and V4  
voltages.  
Ver.2004-11-08  
- 17 -  
NJU6655  
(2) Instruction set  
The NJU6655 distinguishes the signal on the data bus D0 to D7 as an Instruction by combination of A0 , RDb and  
WRb(R/W). The decode of the instruction and execution performs with only high speed Internal timing without  
relation to the external clock. Therefore no busy flag check required normally. In case of serial interface, the data  
input as MSB(D7) first serially. The Table. 4-1,4-2 shows the instruction codes of the NJU6655.  
Table. 4-1 Instruction table  
(*: Don’t Care)  
Instruction code  
Instruction  
Description  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
1
D0  
(a)  
(b)  
(c)  
(d)  
Display On/Off  
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
0
1
0
0
0/1 LCD Display On/Off  
D0=0:Off D0=1:On  
Initial Display Line Set  
Page Address Set  
1
0
0
0
Line Address  
Determine the Display Line of RAM to  
COM0  
Set the page of DD RAM to the Page  
Address Register  
Set the Upper order 4 bits Column  
Address to the Register  
Set the Lower order 4 bits Column  
Address to the Register  
1
0
0
1
1
0
Page Address  
Column Address Set  
Upper Order  
Upper Order 4bits  
Column Address Set  
Lower Order 4bits  
Column Address  
Lower Order  
Column Address  
(e)  
(f)  
Status Read  
0
1
0
1
1
0
Status  
0
0
0
0
Read out the internal Status  
Write Display Data  
Write Data  
Write the data into the Display Data  
RAM  
(g)  
(h)  
(i)  
Read Display Data  
ADC Select  
1
0
0
0
0
1
1
1
1
0
0
0
Read Data  
Read the data from the Display Data  
RAM  
0/1 Set the DD RAM vs Segment  
D0=0 :Normal D0= 1:Inverse  
0/1 Inverse the On and Off Display  
D0=0 :Normal D0= 1:Inverse  
1
1
1
0
0
0
1
1
1
0
0
0
0
0
0
0
1
1
0
1
0
Normal or Inverse of  
On/Off Set  
Whole Display Turns On  
D0=0: Normal D0=1: Whole Disp. On  
Select the Bias  
Increment the Column Address Register  
when writing but no-change when  
reading  
(j)  
0/1  
Whole Display On/Off  
(k)  
(l)  
LCD Bias Select  
Read Modify Write  
0
0
1
1
0
0
1
1
0
1
0
1
1
0
0
0
0
0
Bias  
0
1
0
0
(m)  
End  
0
1
0
1
1
1
0
1
1
Release from the Read Modify write  
Mode  
(n)  
(o)  
Reset  
0
0
1
1
0
0
1
1
1
1
1
0
0
0
0
0
*
1
*
0
*
Initialize the Internal Circuits  
Common Direction Select  
0/1  
Set the scanning order of common  
drivers to the Register  
D3=0 : Normal, D3=1 : Inverse  
(p)  
(q)  
Power Control Set  
Feedback Resistor Ratio Set  
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
Operating Mode Set the status of internal power circuits  
Resistor Ratio  
Set the status of internal resistors ratio  
(Rb/Ra)  
Ver.2004-11-08  
- 18 -  
NJU6655  
Table. 4-2 Instruction table  
(*: Don’t Care)  
Instruction code  
Instruction  
Description  
A0 RDb WRb D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
(r)  
EVR Mode Set  
0
0
1
1
0
0
1
*
Set EVR mode  
EVR Register Set  
*
Setting Data  
Set the V5 output level to the EVR  
register  
(s)  
(t)  
Static Indicator On/Off  
Static Indicator Register Set  
Pawer Save  
0
0
0
1
1
1
0
0
0
1
*
1
0
*
0
1
*
1
0
*
0
1
*
1
1
*
0
0
0/1 D =0 : Off, D =1 : On  
0 0  
Mode  
0
Set static indicator register  
0/1 D =0 : Standby mode  
0
D =1 : Sleep mode  
0
(u)  
(v)  
Pawer Save Reset  
n-line Inverse Drive Register  
Set  
0
0
1
1
0
0
1
0
1
0
1
1
0
1
0
0
0
1
Release from the Pawer Save Mode  
Set the number of inverse drive line  
Number of Inverse  
Lines  
(w)  
(x)  
n-line Inverse Drive Reset  
Partial Select  
0
0
1
1
0
0
1
1
1
0
1
1
0
0
0
0
1
0
0
1
0
Release the line inverse drive  
0/1 D =0 : Off (1/65 Duty)  
0
D =1 : On (1/33 Duty)  
0
(y)  
(z)  
Internal Oscillation Circuit  
On  
NOP  
0
0
1
1
0
0
1
1
0
1
1
1
0
0
1
0
0
0
1
1
1
1
Start the operation of the Internal  
Oscillation circuit  
Ver.2004-11-08  
- 19 -  
NJU6655  
(2-1) Explanation of Instruction Code  
(a) Display On/Off  
This instruction selects display turn-on or turn-off regardless of the contents of the DDRAM.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
1
D0  
D
0
1
0
1
D
0: Display Off  
1: Display On  
(b) Initial Display Line Set  
This instruction specifies the DDRAM line address which corresponds to the COM0 position.  
By means of repeating this instruction, the initial display line address will be dynamically changed; it means smooth  
display scrolling will be enabled.  
A0 RDb WRb D7  
D6  
1
D5  
A5  
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
D0  
A0  
0
1
0
0
A5  
0
0
:
A4  
0
0
:
A3  
0
0
:
A2  
A1  
A0  
0
1
:
Line Address (HEX)  
0
0
:
0
0
:
00  
01  
:
:
:
:
:
:
:
:
1
1
1
1
1
1
3F  
(c) Page Address Set  
In order to access to the DDRAM for writing or reading display data, both “page address set” and “column address set”  
instructions are required before accessing.  
The last page address “8” should be used for icon display because the only D0 is valid.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
1
D3  
A3  
D2  
A2  
D1  
A1  
D0  
A0  
0
1
0
1
A3  
0
0
:
A2  
A1  
0
0
:
A0  
Page  
0
0
:
0
1
:
0
1
:
:
:
:
:
:
1
0
0
0
8
Ver.2004-11-08  
- 20 -  
NJU6655  
(d) Column Address Set  
As above-mentioned, in order to access to the DDRAM for writing or reading display data, it is necessary to execute  
both “page address set” and “column address set” before accessing. The 8-bit column address data will be valid when  
both upper 4-bit and lower 4-bit data are set into the column address register.  
Once the column address is set, it will automatically increment (+1) whenever the DDRAM will be accessed, so that the  
DDRAM will be able to be continuously accessed without “column address set” instruction.  
The column address will stop increment and the page address will not be changed when the last address 9FH is  
addressed.  
A0 RDb WRb D7  
D6  
0
D5  
0
D4  
1
D3  
A7  
D2  
A6  
D1  
A5  
D0  
0
1
0
0
A4 Upper 4-bit  
0
1
0
0
0
0
0
A3  
A2  
A1  
A0 Lower 4-bit  
A7  
0
0
:
A6  
0
0
:
A5  
0
0
:
A4  
0
0
:
A3  
0
0
:
A2  
0
0
:
A1  
0
0
:
A0  
0
1
:
Column Address (HEX)  
00  
01  
:
:
:
:
:
:
:
:
:
:
1
0
0
1
1
1
1
1
9F  
(e) Status Read  
This instruction reads out the internal status regarding “busy flag”, “ADC select”, “display on/off” and “reset”.  
A0 RDb WRb D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
0
0
1
BUSY ADC ON/OFF RESET  
BUSY  
ADC  
: When D7 is “1”, the LSI is being busy and can’t accept any instructions.  
: It shows the correspondence between the column address and segment drivers.  
When D6 is “0”, the column address (159-n) corresponds to segment driver n.  
When D6 is “1”, the column address (n)  
corresponds to segment driver n.  
Please be careful that read out data is opposite of “ADC select” instruction data.  
ON/OFF  
RESET  
: It shows display on or off status.  
When D5 is “0”, the LSI is in display-on status.  
When D5 is “1”, the LSI is in display-off status.  
Please be careful that read out data is opposite of “Display On/Off” instruction data.  
: It shows reset status.  
When D4 is “0”, the LSI is in normal operation.  
When D4 is “1”, the LSI is during reset operation.  
(f) Display Data Write  
This instruction writes display data into the selected column address on the DDRAM.  
The column address automatically increments (+1) whenever the display data is written by this instruction, so that this  
instruction can be continuously issued without “column address set” instruction.  
A0 RDb WRb D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
1
0
Write Data  
Ver.2004-11-08  
- 21 -  
NJU6655  
(g) Display Data Read  
This instruction reads out the display data stored in the selected column address on the DDRAM.  
The column address automatically increments (+1) whenever the display data is read out by this instruction, so that this  
instruction can be continuously issued without “column address set” instruction.  
After the ”column address set” instruction, a dummy read will be required, please refer to the (4-4).  
In case of using serial interface mode, this instruction can’t be used.  
A0 RDb WRb D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
1
Read Data  
(h) ADC Select  
This instruction selects segment driver direction.  
The correspondence between the column address and segment driver direction is shown in Fig.1.  
This function reduces the restrictions on the IC position of an LCD module.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
D
0
1
0
1
D
0: Clockwise Output (Normal)  
Segment Driver S0 to S159  
1: Counterclockwise Output (Inverse) Segment Driver S159 to S0  
(i) Inverse Display On/Off  
This instruction inverses the status of turn-on or turn-off of entire LCD pixels. It doesn’t change the contents of the  
DDRAM.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
1
D0  
D
0
1
0
1
D
0: Normal  
1: Inverse  
RAM data "1" correspond to "On"  
RAM data "0" correspond to "On"  
(j) Whole Display On/Off  
This instruction turns on entire LCD pixels regardless the contents of the DDRAM. It doesn’t change the contents of  
DDRAM.  
This instruction should be performed prior to the "Inverse display On/Off" instruction.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
D
0
1
0
1
D
0: Normal Display  
1: Whole Display Turns On  
(Whole Display Off)  
(Whole Display On)  
(k) Bias Select  
This instruction selects LCD bias value.  
A0 RDb WRb D7  
D6  
0
D5  
0
D4  
1
D3  
0
D2  
0
D1  
A1  
D0  
A0  
0
1
0
1
A1  
A0  
0
LCD Bias  
1/9  
0
0
1
1
1
1/7  
0
1
1/5  
Prohibited*  
* : Because it may malfunction-operate, do not set (D1,D0) = (1,1).  
Ver.2004-11-08  
- 22 -  
NJU6655  
(l) Read Modify Write  
This instruction controls column address increment.  
By using of this instruction, the column address can’t increment when read operation but it can increment when write  
operation. This status will be continued until the below-mentioned “end” instruction will be issued.  
This instruction can reduce the load of MPU, during the display data in specific DDRAM area is repeatedly changed for  
cursor blink or others.  
A0 RDb WRb D7  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
0
1
0
1
Note) In this "Read Modify Write" mode, out of display data "Read" / "Write", any instructions except "Column Address  
Set" can be executed.  
- The Sequence of Cursor Blink Display  
Page Address Set  
Set to the Start Address of Cursor  
Display  
Column Address Set  
Read Modify Write  
Dummy Read  
Data Read  
Start the Read Modify Write  
The data is ignored  
Column Counter doesn’t increase  
Data inverse by MPU  
Column Counter increase  
Data Write  
Column Counter doesn’t increase  
Column Counter doesn’t increase  
Column Counter increase  
Dummy Read  
Data Read  
Data Write  
Dummy Read  
Data Read  
Column Counter doesn’t increase  
Column Counter doesn’t increase  
Column Counter increase  
Data Write  
Repeating  
End the Read Modify Write  
End  
No  
Finish?  
Yes  
Ver.2004-11-08  
- 23 -  
NJU6655  
(m) End  
The “end” instruction cancels the read modify write mode and makes the column address return to the initial value just  
before “read modify write” is started.  
A0 RDb WRb D7  
D6  
1
D5  
1
D4  
0
D3  
1
D2  
1
D1  
1
D0  
0
0
1
0
1
Return  
End  
Column  
Address  
N
N+1  
N+2  
N+3  
- - - -  
N+m  
N
Read modify write  
(n) Reset  
This instruction reset the LSI to the following status, however it doesn’t change the contents of the DDRAM. Please be  
careful that it can’t be substituted for the reset operation by using of the RESb terminal.  
Reset status by “reset” instruction:  
1: Static indicator register  
2: Read modify write off  
3: Initial display line address  
4: Column address  
: D1,D0 = “0,0”  
: 00H  
: 00H  
5: Page address  
: 0 page  
6: Common direction register  
7: Feedback resistors ratio  
8: EVR mode off and EVR register  
9: n-line inverse drive register  
: D3=”0”(Normal mode)  
: D2,D1,D0 = “0,0,0”  
: D5,D4,D3,D2,D1,D0 = “1,0,0,0,0,0”  
: D3,D2,D1,D0 = “0,0,0,0”  
10: Test mode reset (Test mode 1 and Test mode 2)  
The DD RAM is not affected of this initialization.  
A0 RDb WRb D7  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
1
D0  
0
0
1
0
1
(o) Common Driver Direction Select  
This instruction selects common driver direction.  
Please refer to (1-7) common driver direction for more detail.  
A0 RDb WRb D7  
D6  
1
D5  
0
D4  
0
D3  
D3  
D2  
*
D1  
*
D0  
*
0
1
0
1
(*: Don’t Care)  
D3  
0: Normal  
1: Inverse  
Common driver direction (C0 to C63) or (C16 to C47)  
Common driver direction (C63 to C0) or (C47 to C16)  
Ver.2004-11-08  
- 24 -  
NJU6655  
(p) Power Control Set  
This instruction controls the status of internal power circuits. Please refer to the (1-9) LCD Driving Circuits (g) internal  
power circuits for more detail.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
A2  
D1  
A1  
D0  
A0  
0
1
0
0
A2  
A1  
A0  
0: Voltage Converter Off  
1: Voltage Converter On  
0: Voltage Regulator Off  
1: Voltage Regulator On  
0: Voltage Followers Off  
1: Voltage Followers On  
Note) The internal power supply must be Off when external power supply using.  
* The wait time depends on the C4 to C8, COUT capacitors, and VDD and VLCD Voltage.  
Therefore it requires the actual evaluation using the LCD module to get the correct time.  
(q) Feedback Resistor Ratio Set  
This instruction is used to determine the internal feedback resistor ratio.  
Please refer to the (3-2) Voltage Adjust Circuits for more detail.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
A2  
D1  
A1  
D0  
A0  
0
1
0
0
Internal resistor ratio  
VLCD  
A2  
A1  
A1  
1+(Rb/Ra)  
4.5  
1+(Rb/Ra)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Minimum  
5.0  
:
5.5  
:
6.0  
:
6.5  
:
7.0  
:
7.6  
:
8.1  
Maximum  
Ver.2004-11-08  
- 25 -  
NJU6655  
(r) EVR Set  
1) EVR mode set  
This instruction sets the LSI into the EVR mode, and it is always used by the combination with “EVR register set”. The  
LSI can’t accept any instructions except the “EVR register set” during the EVR set mode. This mode will be released  
after the “EVR register set” instruction.  
A0  
0
RDb WRb D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
1
0
1
2) EVR Register Set  
This instruction sets 6-bit data into the EVR register to determine the output voltage “V5” of the internal voltage  
regulator.  
A0 RDb WRb D7  
D6  
*
D5  
A5  
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
D0  
0
1
0
*
A0 (*: Don’t Care)  
A5  
0
0
:
A4  
0
0
:
A3  
0
0
:
A2  
A1  
A0  
0
1
:
VLCD  
0
0
:
0
0
:
Minimum  
:
:
:
:
:
:
:
:
:
1
1
1
1
1
1
Maximum  
(s) Static Indicator  
1) Static Indicator On/Off  
This instruction selects static indicator turn-on or turn-off, and it is always used by the combination with the “ static  
indicator register set”.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
0
D0  
D
0
1
0
1
D
0: Static Indicator Off  
1: Static Indicator On  
2) Static Indicator Register Set  
A0 RDb WRb D7  
D6  
*
D5  
*
D4  
*
D3  
*
D2  
*
D1  
A1  
D0  
0
1
0
*
A0 (*: Don’t Care)  
A1  
A0  
0
Indicator display Status  
Off  
On (Blink at 1.0s intervals)  
On (Blink at 0.5s intervals)  
On (Turn on at all time)  
0
0
1
1
1
0
1
Ver.2004-11-08  
- 26 -  
NJU6655  
(t) Power Save  
This instruction sets the LSI into the power save mode. This instruction is reducing operating current as well as static  
operations.  
The internal status and the contents of the DDRAM will be remained just before the “Power save” instruction. In  
addition, the DDRAM can be accessed during the power save mode.  
There are two power save modes, sleep mode and standby mode.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
0
D1  
0
D0  
D
0
1
0
1
D
0: Standby Mode  
1: Sleep Mode  
<Sleep Mode>  
All functions are halted so that its operating current is reduced as low as standby current.  
All LCD system stops as follows,  
1) Oscillator and internal power circuits stop.  
2) All common and segment drivers output VDD level.  
<Standby Mode>  
A part of functions are halted. The only static drive system as the indicator operates.  
The LCD system except the static indicator stops as follows,  
1) Internal power circuits stop. (Oscillator is operating.)  
2) LCD driving is stopped. All common and segment drivers output VDD level.  
3) The only static indicator is working.  
(u) Pawer Save Reset  
This instruction releases the power save mode.  
A0 RDb WRb D7  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
0
1
0
1
Ver.2004-11-08  
- 27 -  
NJU6655  
(v) n-line Inverse Drive Register Set  
This instruction specifies the number of n-line. Please refer to the (1-9)LCD Driving Circuits (e)Common timing  
generation Fig.2-1, Fig.2-2 for more detail.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
1
D3  
A3  
D2  
A2  
D1  
A1  
D0  
A0  
0
1
0
0
A3  
0
0
0
:
1
1
A2  
0
0
0
:
1
1
A1  
A0  
0
1
0
:
0
1
Inverse Lines  
0
0
1
:
-(*)  
2
(*) 2-frame alternating drive  
mode.  
3
:
15  
16  
1
1
(w) n-line Inverse Drive Reset  
This instruction releases n-line inversion, but does not change the contents of the n-line register.  
A0 RDb WRb D7  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
0
0
1
0
1
(x) Patial Select  
This instruction starts the partial mode operation.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
1
D0  
D
0
1
0
1
D
0: 1/65 Duty (Partial Select Off)  
1: 1/33 Duty (Partial Select On)  
Display structure by Partial Select On / Off  
Partial Select On  
Partial Select Off  
(1/65 Duty)  
(1/33 Duty)  
COM0~COM7  
COM8~COM15  
COM16~COM23  
COM24~COM31  
COM32~COM39  
COM40~COM47  
COM48~COM55  
COM56~COM63  
COMM  
COM0~COM7  
COM8~COM15  
COM16~COM23  
COM24~COM31  
COM32~COM39  
COM40~COM47  
COM48~COM55  
COM56~COM63  
COMM  
64com+1  
32com+1  
160seg  
160seg  
Active Display-block  
Ver.2004-11-08  
- 28 -  
NJU6655  
(y) Internal Oscillation Circuit On  
This setting is effective when M/S=”1” and CLS=”1”.  
A0 RDb WRb D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
0
D1  
1
D0  
1
0
1
0
1
(z)NOP  
Non Operation.  
A0 RDb WRb D7  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
1
D0  
1
0
1
0
1
Ver.2004-11-08  
- 29 -  
NJU6655  
(3) Internal power circuits  
(3-1) Voltage converter  
The voltage converter generates maximum 4x boosted negative-voltage from the voltage between VDD and VSS2. The  
boosted voltage is output from the VOUT terminal.  
The internal oscillator is required to be operating when using this converter, because the divided signal provided from  
the oscillator is used for the internal timing of this circuit.  
The boosted voltage between VDD and VOUT must not exceed 18.0V.  
The voltage converter requires external capacitors for boosting as shown in below.  
The boosted voltage and VDD, VSS2  
VDD=+3V  
V
V
V
V
SS2=0V  
OUT=-3V  
OUT=-6V  
OUT=-9V  
2x boost  
3x boost  
3x boost  
4x boost  
Example for connecting the capacitors  
4x boost  
2x boost  
VSS2  
C1-  
VSS2  
C1-  
VSS2  
C1-  
C1+  
C3-  
C2+  
C1+  
+
+
+
C1+  
+
+
+
+
+
C3-  
C2+  
C3-  
C2+  
C2-  
C2-  
C2-  
VOUT  
VOUT  
VOUT  
Ver.2004-11-08  
- 30 -  
NJU6655  
(3-2) Voltage Adjust Circuits  
The voltage adjust circuits is composed of the reference voltage circuit, 64-step E.V.R. and feedback resistors. The adjust  
circuits produces the LCD driving voltage V5 on the V5 terminal, using the VOUT voltage supplied from the internal  
booster.  
(a) Using Internal Feedback Resistors  
LCD contrast can be fine-tuned by adjusting the V5 voltage through setting the internal feedback resistors and the E.V.R.  
And the V5 voltage is calculated from the foemula (1), where |V5| < |VOUT|.  
VLCD = VDD-V5  
- - - - - (1)  
= (1+(Rb/Ra)) x VCON  
[VCON = (EVR) x (VREG)]  
= (1+(Rb/Ra)) x (EVR) x VREG [EVR = (n+99) / 162]  
VLCD : LCD Driving Voltage VCON : Contrast Control Voltage  
VREG : Reference Voltage  
VDD  
Ra,Rb : Feedback Resistors  
n
: E.V.R. Setting Value  
VCON  
(VREG x EVR)  
Internal Ra  
VLCD  
+
-
V5  
VOUT  
Internal Rb  
Fig.3-1 Voltage adjust circuits (Using internal feedback resistors)  
The VREG is the regulated voltage with temperature coefficient, as follows.  
Temperature  
Coefficient  
Internal Power Supply 0.05[%/°C] (Typ.)  
VREG  
2.11[V] (Typ.)  
The V5 is adjusted in 64-step by setting 6-bit data into the E.V.R. register, as follows.  
E.V.R. Register  
E.V.R. Value  
(99/162)  
(100/162)  
(101/162)  
:
VLCD  
00H  
01H  
02H  
:
(0,0,0,0,0,0)  
Minimum  
(0,0,0,0,0,1)  
:
(0,0,0,0,1,0)  
:
:
:
:
:
:
:
:
:
:
:
3DH  
3EH  
3FH  
(1,1,1,1,0,1)  
(1,1,1,1,1,0)  
(1,1,1,1,1,1)  
(160/162)  
(161/162)  
(162/162)  
:
:
Maximum  
Ver.2004-11-08  
- 31 -  
NJU6655  
The ratio of the Ra and Rb (Ra/Rb) is selected out of 8 options by the "Feedback Resistor set" instruction.  
The Register of Feedback Resistor  
1+(Rb/Ra)  
4.5  
VLCD  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
(0,0,0)  
(0,0,1)  
(0,1,0)  
(0,1,1)  
(1,0,0)  
(1,0,1)  
(1,1,0)  
(1,1,1)  
Minimum  
5.0  
:
5.5  
:
6.0  
:
6.5  
:
7.0  
:
7.6  
:
8.1  
Maximum  
* : The resistance of the feedback resistors has a certain amount of error. If it may impact on the LCD contrast external  
feedback resistors should be considered.  
(b) Using External Feedback Resistors  
When IRS="L", the V5 voltage can be adjusted by the external feedback resistors. And the E.V.R. function is applied in  
combination, and fine-tunes the LCD contrast through software. The V5 voltage is calculated from the formula (2), where  
|V5| < |VOUT|.  
VLCD = VDD-V5  
- - - - - (2)  
= (1+(Rb/Ra)) x VCON  
[VCON = (EVR) x (VREG)]  
= (1+(Rb/Ra)) x (EVR) x VREG [EVR = (n+99) / 162]  
VLCD : LCD Driving Voltage VCON : Contrast Control Voltage  
VREG : Reference Voltage  
VDD  
Ra,Rb : Feedback Resistors  
n
: E.V.R. Setting Value  
VCON  
(VREG x EVR)  
External Ra  
VLCD  
VR  
+
-
V5  
VOUT  
External Rb  
Fig.3-2 Voltage adjust circuits (Using external feedback resistors)  
* : When using either the internal feedback resistors or E.V.R. or both, the LCD voltage generator and the buffer  
amplifiers must be activated.  
* : The VR terminal is only used for the external feedback resistors. This must be open when using the internal  
feedback resistors.  
Ver.2004-11-08  
- 32 -  
NJU6655  
<Design example for the adjustable range / Reference> Using external resistors(Not using variable resistor), VLCD=7V  
Power supply  
VDD=3.0V, VSS=0V  
E.V.R. register = (D5,D4,D3,D2,D1,D0) : (1,0,0,0,0)  
By formula (2)  
VLCD = VDD-V5  
= (1+(Rb/Ra)) x (EVR) x VREG  
7[V] = (1+(Rb/Ra)) x (130/162) x 2.1  
Rb/Ra = 3.15  
- - - - - (3)  
In case of the current value sets 5uA, which flows to Ra and Rb  
Ra+Rb = 1.4MΩ  
By formula (3), (4)  
Ra+3.15Ra= 1.4MΩ  
- - - - - (4)  
- - - - - (5)  
Ra  
= 337kΩ  
Therefore,  
Rb  
= 1.4M- 337kΩ  
= 1063kΩ  
- - - - - (6)  
The adjustable range and the step voltage are calculated as follows in the formula (2).  
- In case of setting 00H in the E.V.R. register,  
VLCD =(1+(Rb/Ra)) x (EVR) x VREG  
=(1+3.15) x [(99/162) x 2.1]  
=5.33V  
- In case of setting 3FH in the E.V.R. register,  
VLCD =(1+(Rb/Ra)) x (EVR) x VREG  
=(1+3.15) x [(162/162) x 2.1]  
=8.72V  
(min.) 00H  
(max.) 3FH  
VLCD Adjustable Range 5.33 ---------------------------------------- 8.72[V]  
VLCD Step Voltage  
54  
[mV] *: In case of VDD=3V  
Ver.2004-11-08  
- 33 -  
NJU6655  
(3-3) LCD Driving Voltage Generation Circuits  
The LCD driving bias voltage of V1,V2,V3,V4 are generated internally by dividing the VLCD (VLCD=VDD-V5) voltage  
with the internal bleeder resistance. And it is supplied to the LCD driving circuits after the impedance conversion with  
voltage follower circuit.  
As shown in Fig 4, Five capacitors are required to connect to each LCD driving voltage terminal for voltage stabilizing.  
And the value of capacitors C4, C5, C6, C7, and C8 are determined depending on the actual LCD panel display evaluation.  
Using the internal Power Supply  
Using the external Power Supply  
VSS  
VSS  
VSS2  
C1-  
C1-  
C1+  
C1  
C3  
C1+  
+
+
+
C3-  
C2+  
C3-  
C2+  
COUT  
(2)  
C2  
C2-  
C2-  
*2  
VOUT  
VOUT  
R3  
NJU6655  
NJU6655  
V5  
V5  
(1)  
*1  
VR  
VR  
R2  
R1  
VDD  
VDD  
+
C4  
V1  
V2  
V1  
V2  
+
+
+
+
C5  
C6  
C7  
C8  
External  
Voltage  
Generator  
V3  
V4  
V3  
V4  
V5  
V5  
Fig.4 LCD Driving Voltage Generation Circuits  
Reference set up value  
LCD=VDD-V5=7.0 to 10.5V  
V
*1 Short wiring or sealed wiring to the VR terminal is required due to  
the high impedance of VR terminal.  
*2 Following connection of VOUT is required when external power  
supply using.  
~1.0uF  
~1.0uF  
COUT  
C1~C3, C8  
C4~C7  
R1  
(1): When VSS > V5 --- VOUT=V5  
0.1 ~ 0.47uF  
225k  
(2): When VSS < V5 --- VOUT=VSS  
R2  
112kΩ  
R3  
1.063MΩ  
Ver.2004-11-08  
- 34 -  
NJU6655  
(4) MPU interface  
(4-1) Interface type selection  
NJU6655 interfaces with MPU by 8-bit bidirectional data bus (D7 to D0) or serial (SI:D7). The 8 bit parallel or serial  
interface is determined by a condition of the P/S terminal connecting to "H" or "L" level as shown in Table 5. In case  
of the serial interface, status and RAM data read out operation is impossible.  
Table.5 Relation between P/S terminal and each I/O terminal  
P/S  
H
L
Type  
Parallel  
Serial  
CS1b  
CS1b  
CS1b  
A0  
A0  
A0  
RDb  
RDb  
-
WRb  
WRb  
-
C86  
C86  
-
SI(D7) SCL(D6  
)
D0 ~ D5  
D0 ~ D5  
Hi-Z  
D7  
D6  
SCL  
SI  
“Hi-Z” : Hi-impedance “-“ : They should be fixed to “H” or “L”.  
Parallel Interface  
The NJU6655 interfaces to 68 or 80 type MPU directly when the parallel interface (P/S="H") is selected. 68 type MPU  
or 80 is determined by the condition of C86 terminal connecting to "H" or "L" as shown in Table 6.  
Table.6 Relation between C86 terminal and each I/O terminal  
C86  
H
L
Type  
CS1b  
CS1b  
CS1b  
A0  
A0  
A0  
RDb  
E
RDb  
WRb  
R/W  
WRb  
D0 ~ D7  
D0 ~ D7  
D0 ~ D7  
68 type MPU  
80 type MPU  
(4-2) Discrimination of Data Bus Signal  
The NJU6655 discriminates the mean of signal on the data bus by the combination of A0, E, R/W, and (RDb,WRb)  
signals as shown in Table 7.  
Table.7 Relation between A0 terminal and 68/80 type terminal  
Common  
68 type  
80 type  
Function  
A0  
H
H
L
R/W  
H
RDb  
WRb  
H
L
H
L
Read Display Data  
Write Display Data  
Status Read  
L
L
H
H
L
L
L
H
Write into the Register(Instruction)  
Ver.2004-11-08  
- 35 -  
NJU6655  
(4-3) Serial Interface (P/S="L")  
Serial interface circuits consist of 8 bits shift register and 3 bits counter. SI and SCL input are activated when the chip  
select terminal CS1b set to "L", CS2 set to "H"and P/S terminal set to "L". The 8 bits shift register and 3 bits counter are  
reset to the initial condition when the chip is not selected.  
The data input from SI terminal is MSB first like as the order of D7,D6,- - - - D0, and the data are entered into the shift  
register synchronizing with the rise edge of the serial clock SCL. The data in the shift register are converted to parallel  
data at the 8th serial clock rise edge input.  
Discrimination of the display data or instruction of the serial input data is executed by the condition of A0 at the 8th  
serial clock rise edge. A0="H" is display data and A0="L" is instruction. When RESb terminal becomes "L" or CS1b  
terminal becomes "H" (CS2 terminal becomes "L") before 8th serial clock rise edge, NJU6655 recognizes them as a  
instruction data incorrectly. Therefore a unit of serial data must be structured by 8-bit.  
The time chart for the serial interface is shown in Fig. 5. To avoid the noise trouble, the short wiring is required for the  
SCL input.  
Note) The read out function, such as the status or RAM data read out, is not supported in this serial interface.  
CS1
b  
CS2  
SI  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
SCL  
A0  
1
2
3
4
5
6
7
8
9
10  
Fig.5 Signal chart of serial interface  
Ver.2004-11-08  
- 36 -  
NJU6655  
(4-4) Access to the Display Data RAM and Internal Register  
The NJU6655 is operating as one of pipe-line processor by the bus-holder connecting to the internal data bus to adjust  
the operation frequency between MPU and the Display Data RAM or Internal Register.  
For example, when the MPU reads out the data from the Display Data RAM, the read out data in the data read cycle  
(dummy read) is held in the bus-holder, then it is read out from the bus-holder to the system bus at the next data read  
cycle. When the MPU writes the data into the Display Data RAM, the data is held in the bus-holder, then it is written  
into the Display Data RAM by the next data write cycle.  
Therefore high speed data transmission between MPU and NJU6655 is available because of it is not limited by the tACC  
and tDS as display data RAM access time and is limited by the system cycle time (R) or (W).  
If the cycle time is not be kept in the MPU operation, NOP should be inserted to the system instead of the waiting  
operation.  
The read out operation does not read out the data in the pointed address just after the address set operation. And second  
read out operation can read out the data correctly from the pointed address.  
Therefore, one dummy read operation is required after address setting or write cycle as shown in Fig. 6.  
The example of Read Modify Write operation is mentioned in (2-1) Instruction (l)The sequence of inverse display.  
Write Operation  
CPU  
WRb  
DATA  
N
N+1  
N+2  
N+3  
Internal  
Timing  
Bus holder  
WRb  
N
N+1  
N+2  
N+3  
Read Operation  
CPU  
WRb  
RDb  
DATA  
N
N
Dummy read  
n
Data read n  
n+1  
Data read n+1  
Address Set N  
Internal  
Timing  
WRb  
RDb  
Column  
address  
N
N+1  
N+2  
Bus holder  
N
n
n+1  
n+2  
Fig.6 Relation between display data write/read and internal timing  
(4-5) Chip select  
CS1b, CS2 are Chip Select terminals. In case of CS1b="L" and CS2=”H”, the interface with MPU is available. In case  
of CS1b=”H” or CS2=”L”, the D0 to D7 are high impedance and A0, RDb, WRb, D7(SI) and D6(SCL) inputs are ignored.  
If the serial interface is selected when CS1b=”H” or CS2=”L”, the shift register and the counter are reset. However, the  
reset is always operated in any conditions of CS1b and CS2.  
Ver.2004-11-08  
- 37 -  
NJU6655  
ABSOLUTE MAXIMUMN RATINGS  
(Ta=25°C)  
UNIT  
V
PARAMETER  
SYMBOL  
RATINGS  
Supply Voltage (1)  
Supply Voltage (2)  
VDD  
Vss  
-0.3 to +7.0  
2
-7.0 to +0.3  
-6.0 to +0.3  
-4.5 to +0.3  
-18.0 to +0.3  
V
(
(
When using 3x voltage converter  
When using 4x voltage converter  
Supply Voltage (3)  
Supply Voltage (4)  
Input Voltage  
Output Voltage  
Operating Temperature  
Storage Temperature  
)
)
V
5
1
,VOUT  
V
V
V
,V  
2
,V3  
,V  
4
V5 to +0.3  
VIN  
VOUT  
Topr  
-0.3 to VDD + 0.3  
-0.3 to VDD + 0.3  
-30 to +80  
V
V
°C  
°C  
(TCP) Tstg  
(Chip)  
-55 to +100  
-55 to +125  
VDD  
VDD  
VSS  
V
SS2, V1 to V4  
V5  
Note 1) VSS2, V1 to V5, VOUT voltage values are specified as VDD = 0V.  
Note 2) The relation of VDD>V1>V2>V3>V4>V5>VOUT ; VDD>VSS>VOUT must be maintained.  
In case of inputting external LCD driving voltage, LCD drive voltage should start supplying to NJU6655 at the  
mean time of turning on VDD power supply or after turned on VDD  
.
In use of the voltage boost circuit, the condition that the supply voltage : 18V >VDD-VOUT is necessary.  
Note 3) If the LSI are used on condition beyond the absolute maximum rating, the LSI may be destroyed. Using LSI  
within electrical characteristics is strongly recommended for normal operation. Use beyond the electric  
characteristics conditions will cause malfunction and poor reliability.  
Note 4) Decoupling capacitor should be connected between VDD and VSS due to the stabilized operation for the voltage  
converter.  
Ver.2004-11-08  
- 38 -  
NJU6655  
DC Electrical Characteristics  
(VDD=2.4 to 3.6V, VSS=0V, Ta= -30 to 80°C)  
NOTE  
SYMBOL  
VDD  
PARAMETER  
CONDITIONS  
Recommend→  
Possible→  
MIN  
2.4  
TYP  
MAX UNIT  
Power Supply (1)  
-
3.6  
5.5  
V
V
V
V
5
2.4  
-
Power Supply (2)  
Power Supply (3)  
VSS2 VDD common  
-6.0  
-18  
0.4V5  
V5  
-
-2.4  
-4.5  
VDD  
0.6V5  
VDD  
0.2VDD  
VDD  
0.2VDD  
1.0  
V5  
VDD common  
-
V1,V2 VDD common  
-
V3,V4  
VIHC1  
VILC1  
-
“H” Level Input Voltage  
“L” Level Input Voltage  
“H” Level Output Voltage  
“L” Level Output Voltage  
Leakage Current  
0.8VDD  
VSS  
0.8VDD  
VSS  
-1.0  
-3.0  
-
-
V
V
-
-
VOHC1  
VOLC1  
ILI  
IOH=-0.5mA  
IOL= 0.5mA  
All input terminals  
D0 to D7 terminals, Hi-Z state  
V
-
V
-
uA  
uA  
kΩ  
kΩ  
uA  
uA  
pF  
kHz  
ILO  
-
3.0  
Driver On-resistance  
RON1 Ta=25°C V5=-14.0V  
2.0  
3.2  
0.01  
0.01  
5
3.5  
6
7
RON2  
ISSQ  
I5Q  
V5=-8.0V  
-
5.4  
Stand-by Current  
-
5
Output Leakage Current  
Input Terminal Capacitance  
V5=-18.0V (VDD common)  
Ta=25°C  
-
15  
CIN  
-
8
Oscillation Frequency  
Display Clock Frequency  
fOSC VDD=3V,Ta=25°C  
17.0  
20.8  
24.6  
fCL  
External input  
4.25  
5.20  
6.15  
kHz  
Input Voltage  
VSS2  
VDD common, 3-times boost  
VDD common, 4-times boost  
-6.0  
-4.5  
-
-
-2.4  
-2.4  
-
V
V
Output Voltage  
On-resistance  
VOUT VDD common  
-18.0  
-
RQUAD 4-times boost, C1-C3, COUT=1uF  
VDD=3V, VSS=VSS2  
2.5  
3.5  
kΩ  
Adjustment Range  
LCD Driving Voltage  
Voltage Follower  
Operating Voltage  
Operating current  
VOUT2 Voltage boost operation off  
External power supply  
-18.0  
-18.0  
-
-
-6.0  
-4.5  
5.0  
10  
8
9
V
V5  
Voltage adjustment circuit off  
External power supply  
V
IDDQ1 Power save mode  
(Sleep mode)  
0.01  
4
uA  
IDDQ2 Power save mode  
(Standby mode)  
IDD1  
IDD2  
VDD=3V, V5=-11V  
130  
20  
200  
50  
uA  
All COM/SEG open, Without MPU  
access, Checker flag display  
Reference Voltage  
Temperature  
VREF Ta=25°C  
TC VDD=3V  
2.04  
2.15  
-0.05  
2.26  
V
%/°C  
Coefficient  
Note 5) Although the NJU6655 can operate in wide range of the operating voltage, it shall not be guaranteed in a  
sudden voltage fluctuation during the access with MPU.  
Note 6) RON is the resistance values in supplying 0.1V voltage-difference between power supply terminals  
(V1,V2,V3,V4) and each output terminals (common / segment). This is specified within the range of Operating  
Voltage (2).  
Note 7) Apply to A0, D7 to D0, RDb, WRb, CS1b, CS2, RESb, C86 and P/S terminals.  
Note 8) The voltage adjustment circuit controls V5 within the range of the voltage follower operating voltage.  
Note 9) Each operating current shall be defined as being measured in the following condition.  
Ver.2004-11-08  
- 39 -  
NJU6655  
Power Control  
Operating Condition  
Voltage regulator  
External  
Symbol  
Voltage Supply  
(Input Terminal)  
D2  
D1  
D0  
Voltage converter  
Voltage  
followers  
IDD1  
IDD2  
1
1
0
1
0
On  
Off  
On  
Off  
On  
Off  
Use(VSS2  
)
0
Use(VOUT,V1 V5)  
IDD 1,2 measurement circuits:  
:IDD1  
VDD  
VR  
V5  
NJU6655  
A
VSS C1+ C1- C2+ C2-  
C3-  
VOUT  
+
+
+
+
V1 V2 V3 V4  
:IDD2  
V1 V2 V3 V4 V5  
VR  
VDD  
NJU6655  
A
VSS C1+ C1- C2+ C2-  
C3-  
VOUT  
Ver.2004-11-08  
- 40 -  
NJU6655  
BUS TIMING CHARACTERISTICS  
- Read and Write characteristics (80 type MPU)  
CS2=H  
A0  
tCYC8  
(1)CS1b  
*
(2)WRb,RDb  
tAW8  
tAH8  
tCCL  
(1)WRb,RDb  
*
tCCH  
(2)CS1b  
tDS8  
tDH8  
tr  
D0 to D7  
(Write)  
tf  
tACC8  
tOH8  
D0 to D7  
(Read)  
(VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C)  
SYMBOL CONDITION  
PARAMETER  
TERMINAL  
MIN  
0
MAX  
UNIT  
ns  
ns  
Address Hold Time  
A0,CS1b  
t
t
AH8  
AW8  
CYC8  
CCLW  
CCLR  
CCHW  
CCHR  
DS8  
DH8  
ACC8  
OH8  
-
-
CS2  
Address Set Up Time  
System Cycle Time  
0
t
800  
120  
240  
120  
120  
80  
-
ns  
Control “L” Pulse Width (WRb)  
Control “L” Pulse Width (RDb)  
Control “H” Pulse Width (WRb)  
Control “H” Pulse Width (RDb)  
Data Set Up Time  
t
-
ns  
WRb  
RDb  
t
-
ns  
t
-
-
ns  
t
ns  
t
-
ns  
Data Hold Time  
t
30  
-
ns  
D0 to D7  
RDb Access Time  
t
-
280  
200  
ns  
CL=100pF  
Output Disable Time  
t
10  
ns  
CS1b,CS2,  
WRb,RDb,  
A0,D0 to D7  
Input Signal Rising, Falling Edge  
tr, tf  
15  
ns  
Note 10) Each timing is specified based on 0.2xVDD and 0.8xVDD  
.
* : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L".  
Ver.2004-11-08  
- 41 -  
NJU6655  
- Read and Write characteristics (68 type MPU)  
tCYC6  
CS2=H  
tEWL  
(1)E  
*
*
(2)CS1b  
tAW6  
tEWH  
(1)CS1b  
(2)E  
tr  
tf  
tAH6  
A0,R/W  
tDS6  
tDH6  
D0 to D7  
(Write)  
tOH6  
tACC6  
D0 to D7  
(Read)  
(VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C)  
SYMBOL CONDITION  
PARAMETER  
TERMINAL  
MIN  
0
MAX  
UNIT  
ns  
Address Hold Time  
A0,CS1b  
t
t
AH6  
AW6  
CYC6  
EWHR  
EWHW  
EWLR  
-
CS2  
Address Set Up Time  
System Cycle Time  
0
-
ns  
t
800  
240  
120  
120  
120  
80  
-
ns  
Enable “H” Pulse Width (Read)  
Enable “H” Pulse Width (Write)  
Enable “L” Pulse Width (Read)  
Enable “L” Pulse Width (Write)  
Data Set Up Time  
t
-
ns  
E(RDb)  
t
-
ns  
t
-
-
ns  
t
EWLW  
ns  
t
DS6  
DH6  
ACC6  
OH6  
-
ns  
Data Hold Time  
t
30  
-
ns  
D0 to D7  
E(RDb),  
RDb Access Time  
t
-
280  
200  
ns  
CL=100pF  
Output Disable Time  
t
10  
ns  
Input Signal Rising, Falling Edge R/W(WRb),  
A0,D0 to D7  
tr, tf  
15  
ns  
Note 11) Each timing is specified based on 0.2xVDD and 0.8xVDD  
.
* : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L".  
Ver.2004-11-08  
- 42 -  
NJU6655  
- Write characteristics (Serial interface)  
CS2=H  
CS1b  
tCSS  
tCSH  
tSAS  
tSAH  
A0  
tSCYC  
tSLW  
tSHW  
SCL  
tSDS  
tSDH  
SI  
tf  
tr  
(VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C)  
SYMBOL CONDITION  
PARAMETER  
Serial Clock Cycle  
SCL “H” Pulse Width  
SCL “L” Pulse Width  
Address Set Up Time  
Address Hold Time  
Data Set Up Time  
Data Hold Time  
TERMINAL  
SCL(D6)  
MIN  
400  
150  
150  
250  
250  
150  
150  
250  
250  
MAX  
UNIT  
ns  
t
SCYC  
SHW  
SLW  
SAS  
SAH  
SDS  
SDH  
CSS  
CSH  
-
-
-
-
-
-
-
-
-
t
ns  
t
ns  
t
ns  
A0  
t
ns  
t
ns  
SI(D7)  
t
t
ns  
t
ns  
CS1b-SCL Time  
CS1b,CS2  
ns  
SCL(D6),A0,  
CS1b,CS2,  
SI(D7)  
Input Signal Rising, Falling Edge  
tr,, tf  
15  
ns  
Note 12) Each timing is specified based on 0.2xVDD and 0.8xVDD  
.
Ver.2004-11-08  
- 43 -  
NJU6655  
- Display control timing characteristics  
CL  
(OUT)  
tDFR  
FR  
tDSNC  
SYNC  
(VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C)  
TERMINAL SYMBOL CONDITION  
PARAMETER  
FR Delay Time  
SYNC Delay Time  
MIN  
TYP  
50  
MAX  
200  
200  
UNIT  
ns  
ns  
FR  
t
DFR  
DSNC  
CL=50pF  
CL=50pF  
-
-
SYNC  
t
50  
Note 13) Each timing is specified based on 0.2xVDD and 0.8xVDD  
(The delay time is applied to the master operation only.)  
.
- Reset input timing  
tRW  
RESb  
tR  
During reset  
End of reset  
Internal  
circuit status  
(VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C)  
TERMINAL SYMBOL CONDITION  
PARAMETER  
Reset Time  
Reset ”L” Level Pulse  
Width  
MIN  
-
TYP  
-
MAX  
1.5  
UNIT  
us  
t
R
RESb  
t
RW  
1.5  
-
-
us  
Note 14) Each timing is specified based on 0.2xVDD and 0.8xVDD  
.
Ver.2004-11-08  
- 44 -  
NJU6655  
LCD DRIVING WAVEFORM  
64 65  
0
1
2
3
4
0
1
2
3
4
5
64 65  
V
VSDSD  
FR  
VDD  
V
COM  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
V1  
V2  
V3  
COM  
0
1
V4  
5
COM6  
7
V
VDD  
V1  
V2  
V3  
COM  
COM  
COM8  
COM  
COM9  
COM10  
COM11  
COM12  
COM13  
COM145  
V4  
5
VDD  
V
V1  
V2  
V3  
2
S S S S  
S
E
E
G
1
E E E  
G G G  
G
V4  
5
0
2
3
4
VDD  
V1  
V2  
V3  
V
SEG  
0
V4  
5
VDD  
V
V1  
V2  
V3  
SEG  
1
V4  
5
V
V5  
V4  
V3  
V2  
VD1 D  
-V  
COM0-SEG0  
-V1  
-V2  
-V3  
-V4  
5
V
V5  
V4  
V3  
V2  
VD1 D  
-V  
COM0-SEG1  
-V1  
-V2  
-V3  
-V4  
5
Ver.2004-11-08  
- 45 -  
NJU6655  
APPLICATION CIRCUIT  
(1) Microprocessor Interface Example  
The NJU6655 interfaces to 80 type or 68 type MPU directly. And the serial interface also communicate with MPU.  
* : C86 terminal must be fixed VDD or VSS.  
80 Type MPU  
VDD  
VCC  
A0  
A0  
C86  
P/S  
A1~A7  
IORQ  
CS1b  
CS2  
Decoder  
NJU6655  
C P U  
D0~D7  
RD  
D0~D7  
RDb  
WR  
WRb  
RES  
RESb  
GND  
VSS  
RESET  
68 Type MPU  
VCC  
VDD  
A0  
A0  
C86  
P/S  
A1~A15  
VMA  
CS1b  
CS2  
Decoder  
NJU6655  
C P U  
D0~D7  
E
D0~D7  
E
R/W  
R/W  
RES  
RESb  
GND  
VSS  
RESET  
Serial Interface  
VDD  
VCC  
A0  
A0  
C86  
A1~A7  
CS1b  
CS2  
VDD  
OR GND  
NJU6655  
Decoder  
C P U  
SI  
Port 1  
Port 2  
RES  
SCL  
P/S  
RESb  
VSS  
GND  
RESET  
Ver.2004-11-08  
- 46 -  
NJU6655  
(2) 65 x 320 dots Driving Application Circuits Example  
(Common and Segment Drivers Extension by using two of NJU6655)  
LCD Panel : 65 x 320  
SEG  
SEG  
M/S  
M/S  
CL  
COM  
COM  
CL  
NJU6655  
NJU6655  
Slave  
FR  
FR  
SYNC  
DOFb  
Master  
SYNC  
DOFb  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
Ver.2004-11-08  
- 47 -  

相关型号:

NJU6655B

64-common X 160-segment + 1-icon common Bitmap LCD Driver
NJRC

NJU6655BCJ

64-common X 160-segment + 1-icon common Bitmap LCD Driver
NJRC

NJU6657

88-common x 272-segment Bitmap LCD Driver
NJRC

NJU6657CJ

Liquid Crystal Driver,
NJRC

NJU6673

25-common x 100-segment BITMAP LCD DRIVER
NJRC

NJU6673CH

Liquid Crystal Driver, 125-Segment, CMOS, BUMP, DIE-212
NJRC

NJU6673CL

25-common x 100-segment BITMAP LCD DRIVER
NJRC

NJU6673H

Liquid Crystal Driver, 125-Segment, CMOS, TCP
NJRC

NJU6673T

Liquid Crystal Driver, 125-Segment, CMOS, COF
NJRC

NJU6674

38-common x 132-segment + 1-icon common Bitmap LCD Driver
ETC

NJU6674CJ

Liquid Crystal Driver, 171-Segment, CMOS, 10.38 X 2.51MM, DIE-286
NJRC

NJU6675

BIT MAP LCD DRIVER
NJRC