NJU6657CJ [NJRC]

Liquid Crystal Driver,;
NJU6657CJ
型号: NJU6657CJ
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Liquid Crystal Driver,

驱动 接口集成电路
文件: 总78页 (文件大小:758K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6657  
Preliminary  
88-common x 272-segment  
Bitmap LCD Driver  
GENERAL DESCRIPTION  
PACKAGE OUTLINE  
The NJU6657 is a bitmap LCD driver to display graphics or  
characters.  
It contains 23,936 bits display data RAM, microprocessor  
interface circuits, instruction decoder, 88-common and  
272-segment drivers.  
The bit image display data is transferred to the display data  
RAM by serial or 8-bit parallel interface.  
88 x 272 dots graphics or 17-character 5-line by 16 x 16 dots  
character with icon are displayed by NJU6657 itself.  
The NJU6657 contains a built-in OSC circuit for reducing  
external components.  
NJU6657CJ  
The wide operating voltage from 2.7 to 5.5V and low operating  
current are suitable for battery-powered applications.  
FEATURES  
Direct Correspondence between Display Data RAM and LCD Pixel  
Display Data RAM – 23,936 bits  
225 LCD Drivers – 88-common and 272-segment  
Direct Microprocessor Interface for both of 68 and 80 type MPU  
Serial Interface (SDA, SCL, A0, CSB)  
Programmable Bias selection : 1/5,1/7,1/8,1/9,1/10 bias  
Useful Instruction Set  
Display On/Off Cont, Initial Display Line Set, Page Address Set, Column Address Set, Status Read,  
Display Data Read/Write, ADC Select, Common Direction Register Set, Inverse Display,  
Entire Display On/Off, Partial Select, n-line Inverse Drive Register Set, Dummy Period Set, Read Modify Write,  
End, Internal Oscillation Circuit ON/OFF, Oscillation Frequency Set, Bias Select, Power Control set,  
EVR Register Set, Voltage Booster Circuits Multiple Select, Voltage Booster Circuits Clock Select, Temperture  
Sensor ON/OFF, Soft Reset, Power Save.  
Power Supply Circuits for LCD Incorporated  
Voltage Booster Circuits (12-time Maximum),  
Voltage Adjust Circuits, Voltage Follower x 4  
High Precision Voltage Regulator Incorporated (VREF=+3%, Ta=25OC )  
Precision Electrical Variable Resistance (400-step)  
V
LCD Temperature Coefficient  
Low Power Consumption 130uA(Typ.).  
Operating Voltage (All the voltages are based on VSS=0V.)  
:-0.00 to –0.15%/OC  
- Logic Operating Voltage  
- Voltage Booster Operating Voltage  
- LCD Driving Voltage  
: VDD=2.7V to 5.5V  
: VEE=VDD to 5.5V  
: VLCD= 4.8 to 28.8V(External Voltage: 36.0V)  
Rectangle outlook for COG  
Package Outline : Bump-chip  
C-MOS Technology (Substrate : P)  
Ver.2012-11-22  
- 1 -  
NJU6657  
Preliminary  
PAD LOCATION  
・・・・・・  
Alignment  
mark2  
Alignment  
mark3  
193  
162  
SIZE  
ITEM  
UNIT  
X
Y
Chip Size  
Chip Tchickness  
Bump Pich  
17.76  
1.97  
mm  
um  
um  
um  
um  
um  
um  
um  
625±30  
50(min)  
Bump Size  
No. 1 to 162  
79  
122  
30  
86  
30  
No. 163 to 192  
No. 193 to 514  
No. 515 to 544  
122  
30  
122  
Bump Height  
17.5  
Alignment  
mark3  
Alignment  
mark1  
514  
・・・・・・  
Ver.2012-11-22  
- 2 -  
NJU6657  
Preliminary  
Alignment Mark 1  
(-8645µm, -854µm)  
45µm  
Alignment Mark 2  
(8645µm, 768µm)  
18µm  
45µm  
Alignment Mark 3  
(8645µm, -854µm)  
(-8645µm, 768µm)  
25µm  
50µm  
25µm  
50µm  
Ver.2012-11-22  
- 3 -  
NJU6657  
Preliminary  
PAD COORDINATES  
Chip Size 17.76 x 1.97mm(Chip Center X=0um, Y=0um)  
PAD No.  
1
Terminal  
X=µm  
-8050  
-7950  
-7850  
-7750  
-7650  
-7550  
-7450  
-7350  
-7250  
-7150  
-7050  
-6950  
-6850  
-6750  
-6650  
-6550  
-6450  
-6350  
-6250  
-6150  
-6050  
-5950  
-5850  
-5750  
-5650  
-5550  
-5450  
-5350  
-5250  
-5150  
-5050  
-4950  
-4850  
-4750  
-4650  
-4550  
-4450  
-4350  
-4250  
-4150  
-4050  
-3950  
-3850  
-3750  
-3650  
-3550  
-3450  
-3350  
-3250  
-3150  
Y=µm  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
PAD No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Terminal  
VSSE  
VSSE  
VSSE  
VSSE  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VST1  
C1P  
X=µm  
-3050  
-2950  
-2850  
-2750  
-2650  
-2550  
-2450  
-2350  
-2250  
-2150  
-2050  
-1950  
-1850  
-1750  
-1650  
-1550  
-1450  
-1350  
-1250  
-1150  
-1050  
-950  
-850  
-750  
-650  
-550  
-450  
-350  
-250  
-150  
-50  
Y=µm  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
DUMMY0  
DUMMY1  
DUMMY2  
DUMMY3  
DUMMY4  
DUMMY5  
DUMMY6  
BUSY  
DUMMY7  
OSC1  
DUMMY8  
DUMMY9  
CSB  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
RSTB  
A0  
VPDN  
WRB  
RDB  
VPUP  
D7/SDA  
D6/SCL  
D0  
D1  
D2  
D3  
D4  
D5  
D6/SCL  
D7/SDA  
VPDN  
CLS  
VPUP  
CSEL  
VPDN  
SEL68  
VPUP  
PS  
VPDN  
VSS  
VSS  
VSS  
VSS  
C1P  
C1P  
C1P  
C1P  
C1P  
C1N  
C1N  
C1N  
50  
150  
250  
350  
450  
550  
650  
750  
C1N  
C1N  
C1N  
VST1  
VST1  
VST1  
VST1  
VST1R  
VST1R  
VST1R  
VST1R  
VDCIN  
VDCIN  
VDCIN  
850  
950  
1050  
1150  
1250  
1350  
1450  
1550  
1650  
1750  
1850  
VSS  
VSS  
VSS  
VSS  
VSSE  
VSSE  
VSSE  
VSSE  
Ver.2012-11-22  
- 4 -  
NJU6657  
Preliminary  
PAD No.  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
Terminal  
VDCIN  
VDCOUT  
VDCOUT  
VDCOUT  
VDCOUT  
C2P  
X=µm  
1950  
2050  
2150  
2250  
2350  
2450  
2550  
2650  
2750  
2850  
2950  
3050  
3150  
3250  
3350  
3450  
3550  
3650  
3750  
3850  
3950  
4050  
4150  
4250  
4350  
4450  
4550  
4650  
4750  
4850  
4950  
5050  
5150  
5250  
5350  
5450  
5550  
5650  
5750  
5850  
5950  
6050  
6150  
6250  
6350  
6450  
6550  
6650  
6750  
6850  
Y=µm  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
PAD No.  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Terminal  
TEST2  
X=µm  
6950  
Y=µm  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-853.8  
-768.8  
-718.8  
-668.8  
-618.8  
-568.8  
-518.8  
-468.8  
-418.8  
-368.8  
-318.8  
-268.8  
-218.8  
-168.8  
-118.8  
-68.8  
TEST1  
7050  
TSV  
7150  
TEST3  
7250  
TEST4  
7350  
DUMMY11  
DUMMY12  
DUMMY13  
DUMMY14  
DUMMY15  
DUMMY16  
DUMMY17  
DUMMY18  
DUMMY19  
COM43  
7450  
C2P  
7550  
C2P  
7650  
C2N  
7750  
C2N  
7850  
C2N  
7950  
C4P  
8050  
C4P  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8596.1  
8025  
C4P  
C6P  
C6P  
COM42  
C6P  
COM41  
DUMMY10  
C5P  
COM40  
COM39  
C5P  
COM38  
C5P  
COM37  
C3N  
COM36  
C3N  
COM35  
C3N  
COM34  
C3P  
COM33  
C3P  
COM32  
C3P  
COM31  
VDCOUT  
VDCOUT  
VDCIN  
VDCIN  
VLCD  
VLCD  
VLCD  
V1  
COM30  
-18.8  
COM29  
31.2  
COM28  
81.2  
COM27  
131.2  
181.2  
231.2  
281.2  
331.2  
381.2  
431.2  
481.2  
531.2  
581.2  
631.2  
681.2  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
COM26  
COM25  
COM24  
COM23  
V1  
COM22  
V1  
COM21  
V2  
COM20  
V2  
COM19  
V2  
DUMMY20  
DUMMY21  
DUMMY22  
DUMMY23  
DUMMY24  
DUMMY25  
DUMMY26  
COM18  
V3  
V3  
V3  
V4  
7975  
V4  
7925  
V4  
7875  
VSSA  
VSSA  
VSS  
7825  
COM17  
7775  
COM16  
7725  
VSS  
COM15  
7675  
Ver.2012-11-22  
- 5 -  
NJU6657  
Preliminary  
PAD No.  
Terminal  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
SEG0  
X=µm  
7625  
7575  
7525  
7475  
7425  
7375  
7325  
7275  
7225  
7175  
7125  
7075  
7025  
6975  
6925  
6875  
6825  
6775  
6725  
6675  
6625  
6575  
6525  
6475  
6425  
6375  
6325  
6275  
6225  
6175  
6125  
6075  
6025  
5975  
5925  
5875  
5825  
5775  
5725  
5675  
5625  
5575  
5525  
5475  
5425  
5375  
5325  
5275  
5225  
5175  
Y=µm  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
PAD No.  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
Terminal  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
X=µm  
5125  
5075  
5025  
4975  
4925  
4875  
4825  
4775  
4725  
4675  
4625  
4575  
4525  
4475  
4425  
4375  
4325  
4275  
4225  
4175  
4125  
4075  
4025  
3975  
3925  
3875  
3825  
3775  
3725  
3675  
3625  
3575  
3525  
3475  
3425  
3375  
3325  
3275  
3225  
3175  
3125  
3075  
3025  
2975  
2925  
2875  
2825  
2775  
2725  
2675  
Y=µm  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
Ver.2012-11-22  
- 6 -  
NJU6657  
Preliminary  
PAD No.  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
Terminal  
SEG85  
X=µm  
2625  
2575  
2525  
2475  
2425  
2375  
2325  
2275  
2225  
2175  
2125  
2075  
2025  
1975  
1925  
1875  
1825  
1775  
1725  
1675  
1625  
1575  
1525  
1475  
1425  
1375  
1325  
1275  
1225  
1175  
1125  
1075  
1025  
975  
Y=µm  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
PAD No.  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
Terminal  
SEG135  
DUMMY27  
DUMMY28  
DUMMY29  
DUMMY30  
SEG136  
SEG137  
SEG138  
SEG139  
SEG140  
SEG141  
SEG142  
SEG143  
SEG144  
SEG145  
SEG146  
SEG147  
SEG148  
SEG149  
SEG150  
SEG151  
SEG152  
SEG153  
SEG154  
SEG155  
SEG156  
SEG157  
SEG158  
SEG159  
SEG160  
SEG161  
SEG162  
SEG163  
SEG164  
SEG165  
SEG166  
SEG167  
SEG168  
SEG169  
SEG170  
SEG171  
SEG172  
SEG173  
SEG174  
SEG175  
SEG176  
SEG177  
SEG178  
SEG179  
SEG180  
X=µm  
125  
Y=µm  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
SEG86  
75  
SEG87  
25  
SEG88  
-25  
SEG89  
-75  
SEG90  
-125  
SEG91  
-175  
SEG92  
-225  
SEG93  
-275  
SEG94  
-325  
SEG95  
-375  
SEG96  
-425  
SEG97  
-475  
SEG98  
-525  
SEG99  
-575  
SEG100  
SEG101  
SEG102  
SEG103  
SEG104  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
SEG132  
SEG133  
SEG134  
-625  
-675  
-725  
-775  
-825  
-875  
-925  
-975  
-1025  
-1075  
-1125  
-1175  
-1225  
-1275  
-1325  
-1375  
-1425  
-1475  
-1525  
-1575  
-1625  
-1675  
-1725  
-1775  
-1825  
-1875  
-1925  
-1975  
-2025  
-2075  
-2125  
-2175  
-2225  
-2275  
-2325  
925  
875  
825  
775  
725  
675  
625  
575  
525  
475  
425  
375  
325  
275  
225  
175  
Ver.2012-11-22  
- 7 -  
NJU6657  
Preliminary  
PAD No.  
Terminal  
SEG181  
SEG182  
SEG183  
SEG184  
SEG185  
SEG186  
SEG187  
SEG188  
SEG189  
SEG190  
SEG191  
SEG192  
SEG193  
SEG194  
SEG195  
SEG196  
SEG197  
SEG198  
SEG199  
SEG200  
SEG201  
SEG202  
SEG203  
SEG204  
SEG205  
SEG206  
SEG207  
SEG208  
SEG209  
SEG210  
SEG211  
SEG212  
SEG213  
SEG214  
SEG215  
SEG216  
SEG217  
SEG218  
SEG219  
SEG220  
SEG221  
SEG222  
SEG223  
SEG224  
SEG225  
SEG226  
SEG227  
SEG228  
SEG229  
SEG230  
X=µm  
-2375  
-2425  
-2475  
-2525  
-2575  
-2625  
-2675  
-2725  
-2775  
-2825  
-2875  
-2925  
-2975  
-3025  
-3075  
-3125  
-3175  
-3225  
-3275  
-3325  
-3375  
-3425  
-3475  
-3525  
-3575  
-3625  
-3675  
-3725  
-3775  
-3825  
-3875  
-3925  
-3975  
-4025  
-4075  
-4125  
-4175  
-4225  
-4275  
-4325  
-4375  
-4425  
-4475  
-4525  
-4575  
-4625  
-4675  
-4725  
-4775  
-4825  
Y=µm  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
PAD No.  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
Terminal  
SEG231  
SEG232  
SEG233  
SEG234  
SEG235  
SEG236  
SEG237  
SEG238  
SEG239  
SEG240  
SEG241  
SEG242  
SEG243  
SEG244  
SEG245  
SEG246  
SEG247  
SEG248  
SEG249  
SEG250  
SEG251  
SEG252  
SEG253  
SEG254  
SEG255  
SEG256  
SEG257  
SEG258  
SEG259  
SEG260  
SEG261  
SEG262  
SEG263  
SEG264  
SEG265  
SEG266  
SEG267  
SEG268  
SEG269  
SEG270  
SEG271  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
X=µm  
-4875  
-4925  
-4975  
-5025  
-5075  
-5125  
-5175  
-5225  
-5275  
-5325  
-5375  
-5425  
-5475  
-5525  
-5575  
-5625  
-5675  
-5725  
-5775  
-5825  
-5875  
-5925  
-5975  
-6025  
-6075  
-6125  
-6175  
-6225  
-6275  
-6325  
-6375  
-6425  
-6475  
-6525  
-6575  
-6625  
-6675  
-6725  
-6775  
-6825  
-6875  
-6925  
-6975  
-7025  
-7075  
-7125  
-7175  
-7225  
-7275  
-7325  
Y=µm  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
Ver.2012-11-22  
- 8 -  
NJU6657  
Preliminary  
PAD No.  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
Terminal  
COM53  
X=µm  
-7375  
Y=µm  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
702.3  
681.2  
631.2  
581.2  
531.2  
481.2  
431.2  
381.2  
331.2  
281.2  
231.2  
181.2  
131.2  
81.2  
PAD No.  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
Terminal  
X=µm  
Y=µm  
COM54  
-7425  
COM55  
-7475  
COM56  
-7525  
COM57  
-7575  
COM58  
-7625  
COM59  
-7675  
COM60  
-7725  
COM61  
-7775  
COM62  
-7825  
DUMMY31  
DUMMY32  
DUMMY33  
DUMMY34  
DUMMY35  
DUMMY36  
DUMMY37  
COM63  
-7875  
-7925  
-7975  
-8025  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
-8596.1  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
31.2  
COM74  
-18.8  
COM75  
-68.8  
COM76  
-118.8  
-168.8  
-218.8  
-268.8  
-318.8  
-368.8  
-418.8  
-468.8  
-518.8  
-568.8  
-618.8  
-668.8  
-718.8  
-768.8  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
DUMMY38  
DUMMY39  
Ver.2012-11-22  
- 9 -  
NJU6657  
Preliminary  
BLOCK DIAGRAM  
SEG0 to SEG271  
SEG Driver  
COM0 to COM87  
VLCD  
V1  
V2  
COM Driver  
V3  
V4  
VDCIN  
VEE  
VSSE  
C1+  
C1-  
TSV  
Temp. Sensor  
DD RAM  
VST1  
VST1R  
C2+  
Power  
Supply  
Circuit  
C2-  
C3+  
C3-  
C4+  
CLS  
Oscilation  
Circuit  
OSC1  
C5+  
C6+  
VDCOUT  
BUSY  
V7 to D0  
PS  
SEL68  
I/F  
Logic Circuit  
A0  
RDB/E  
WRB/RW  
RSTB  
VDD  
VSS  
Ver.2012-11-22  
- 10 -  
NJU6657  
Preliminary  
TERMINAL DISCRIPTION(Power Supply)  
No.  
Symbol  
VDD  
VSS  
I/O  
FUNCTION  
61 to 68  
39 to 46  
149, 150  
69 to 76  
Power Power supply Terminal  
GND GND Terminal  
VEE  
Power Voltage booster input  
When the internal voltage booster is not used, This terminal connected VDD.  
Power Voltage booster input  
This terminal is internally connected to the VSS level.  
102 to 105, VDCOUT Power 2nd voltage booster output. This terminal must be connected VDCIN.  
47 to 54  
VSSE  
128, 129  
When the internal voltage booster used, the capacitor between VSS terminal must be  
connected.  
Note: It recommends using 102 to 105 terminals, when the external power supply  
used.  
98 to 101, VDCIN  
130,131  
132 to 134 VLCD  
Power Voltage booster input, This terminal connected VDCIN  
Note: It recommends using 98 to 101 terminals, when the external power supply used.  
Power/ LCD driving voltage  
Out  
135 to 137  
138 to 140  
141 to 143  
144 to 146  
55 to 60,  
147,148  
78 to 83  
84 to 89  
77,  
V1  
V2  
V3  
V4  
VSSA  
When the internal voltage booster is not used, external LCD driving voltages  
(V1 to V4, VSSA and VLCD) should be supplied onto these terminals. The  
external voltages should be maintained with the following relationship.  
VDCIN>V0>V1>V2>V3>V4>VSSA  
When the internal voltage booster is used, the capacitors between these  
terminals (VLCD and V1 to V4) and VSS terminal must be connected.  
C1P  
C1N  
VST1  
Out  
Capacitor connection terminal for the 1st voltage booster  
Power/ 1st voltage booster output for high voltage circuits  
90 to 93  
Out  
The capacitor between VSS terminal must be connected.  
1st voltage booster used, 2nd voltage booster is not used:  
VST1=VST1R=VDCOUT=VDCIN  
1st voltage booster is not used, 2nd voltage booster used:  
OPEN or VST1R=VST1  
1st voltage booster is not used, In the case of use by a voltage regulating function of a  
2nd voltage booster circuit:  
Please supply an external power supply from this terminal.  
Note: It recommends using 90 to 93 terminals, when the external power supply used.  
1st and 2nd booster are not used:  
OPEN  
94 to 97  
VST1R  
Power/ 2nd voltage booster output for high voltage circuits  
Out  
OPEN or The capacitor between VSS terminal must be connected.  
1st voltage booster used, 2nd voltage booster is not used:  
VST1=VST1R=VDCOUT=VDCIN  
1st voltage booster is not used, 2nd voltage booster used:  
Please supply an external power supply from this terminal.  
1st voltage booster is not used, In the case of use by a voltage regulating function of a  
2nd voltage booster circuit:  
The capacitor between VSS terminal must be used.  
1st and 2nd booster are not used:  
The capacitor between VSS terminal must be connected or OPEN.  
Ver.2012-11-22  
- 11 -  
NJU6657  
Preliminary  
No.  
Symbol  
C2P  
C2N  
C3P  
C3N  
C4P  
C5P  
I/O  
O
FUNCTION  
2
nd voltage boostor capacitor connection terminal  
106108  
109111  
125127  
122124  
112114  
119121  
115117  
C6P  
TERMINAL DESCRIPTION(FIX)  
No.  
19,32,36  
Symbol  
VPUP  
I/O  
FUNCTION  
Power/ This terminal is internally connected to VDD level.  
O
This terminal is used to fix the VDD level.  
When the not used normally open.  
16,30,34,  
38  
VPDN  
Power/ This terminal is internally connected to VSS level.  
O
Thisterminal is used to fix the VSS level.  
When the not used normally open.  
Ver.2012-11-22  
- 12 -  
NJU6657  
Preliminary  
TERMINAL DESCRIPTION(INTERFACE)  
No.  
20,29  
21,28  
27  
26  
25  
Symbol  
D7/SDA  
D6/SCL  
D5  
I/O  
I/O  
FUNCTION  
Data I/O terminal  
In the parallel interface mode (P/S=“H”)  
D7 to D0: 8-bit bi-directional bus  
In the serial interface mode (P/S=”L”)  
D7: Serial data bi-directional bus(SDA)  
D6: Serial clk input terminal(SCL)  
D0 to D5: Hi-Z  
D4  
D3  
D2  
D1  
24  
23  
When CSB=”H” status, the D5 to D0 terminals are in the high impedance status  
therefore those terminals should be fixed to VDD or VSS.  
Parallel / Serial interface mode select  
22  
D0  
37  
PS  
I
P/S =”L”: Serial interface  
P/S =”H”: Parallel interface  
In the serial interface mode (P/S=”L”)  
RAM Data and status read operation do not work in mode of serial intrerface.  
MPU interface type select  
SEL68  
I
I
This teminal must be fixed VDD or VSS.  
SEL68 =L: 80 series parallel / 3 wire-serial  
H:68 series parallel / 5wire-serial  
35  
CSB  
A0  
Chip select  
Active “0”  
13  
15  
Data Input/Output are avaibal during CSB=”L”  
Resister select  
The data on the D0 to D7 is distinguished between Display data and Instruction data  
by status of A0.  
I
I
A0 L: Instruction command  
H: Display data  
18  
17  
RDB  
(E)  
<In case of 80 Type MPU> (PS=”H”,SEL68=”L”)  
RDb signal of 80 type MPU input terminal. Active “L”  
During this signal is “L”, D0 to D7 terminals output.  
<In case of 68 Type MPU> (PS=”H”,SEL68=”H”)  
Enable signal of 68 type MPU input terminal. Active “H”  
<In case of 80Type MPU> (PS=”H”,SEL68=”L”)  
Connect to the 80 type MPU WRb signal. Active “L”  
The data on the data bus input synchronizing the rise edge of this signal.  
<In case of 68 Type MPU>(PS=”H”,SEL68=”H”)  
The read/write control signal of 68 type MPU input terminal.  
RW L: Write  
WRB  
I
I
(R/W)  
H: Read  
Reset terminal.  
14  
RESB  
When the RESB terminal goes to “L”, the initialization is performed.  
Ver.2012-11-22  
- 13 -  
NJU6657  
Preliminary  
TERMINAL DISCRIPTION(LCD DRIVER)  
No.  
SYMBOL  
I/O  
O
FUNCTION  
LCD driving signal output terminals(Common)  
Common output terminals  
The following output voltages are selected by the combination of alternating (FR)  
signal and Common scanning data.  
165189, C0C87  
197215,  
492510,  
518542  
Scan Data  
FR  
Output Voltage  
H
L
H
L
VLCD  
VSS  
V1  
H
L
V4  
O
LCD driving signal output terminals(Segment)  
Segment output terminals  
216351, S0S271  
356491  
The following output voltages are selected by the combination of alternating (FR)  
signal and display data in the RAM.  
Output Voltage  
RAM Data  
FR  
Normal  
VLCD  
VSS  
V2  
Reverse  
V2  
V3  
VLCD  
VSS  
H
L
H
L
H
L
V3  
DUMMYx  
-
Dummy Terminals.  
Normally Open.  
17,  
9,11,12,  
118,  
156164,  
190196,  
352355,  
511517,  
543,544  
Ver.2012-11-22  
- 14 -  
NJU6657  
Preliminary  
TERMINAL DISCRIPTION(OTHER TERMINAL)  
No.  
10  
SYMBOL  
OSC1  
I/O  
I
FUNCTION  
External clock input terminal  
In internal oscillation operation, this terminal must connect to VDD or VSS.  
Terminal to select whether or enable or disable the display clock internal oscillation  
CLS  
31  
I
circuit.  
CLS=”H” : Internal oscillation circuit is enable.  
CLS=”L” : Internal oscillation circuit is disabled. (requires external clock)  
When CLS=”L”, input the display clock through the OSC1 terminal.  
Common driver output select terminal  
“L” : Both sides wiring mode  
“H”: Comb wiring mode  
Thermo sensor analog voltage output terminal  
In case of not used, this terminal is open.  
Busy flag terminal  
CSEL  
TSV  
33  
I
153  
O
BUSY  
TEST1  
8
152  
O
O
TEST terminal  
Normaly open  
TEST terminal  
Normaly open  
TEST terminal  
Normaly open  
TEST terminal  
TEST2  
TEST3  
TEST4  
151  
154  
155  
O
I
I
Normaly open  
Ver.2012-11-22  
- 15 -  
NJU6657  
Preliminary  
FUNCTIONAL DESCRIPTION  
(1) Discription for each blocks  
(1-1) Selection of Parallel or Serial interface  
NJU6657 interfaces with MPU by 8-bit bi-directional data bus (D7 to D0) or serial interface(SDA, SCL).  
The 8-bit parallel or serial interface is determined by a condition of the PS terminal connecting to “H” or “L” level.  
The PS terminal is used to select parallel or serial interface mode as shown in the following table. In the parallel interface  
mode, the SEL terminal is used to select 68- or 80-type MPU interface type.  
In the serial interface mode, the SEL terminal used to select 5 wire serial or 3 wire serial interfase type.  
In case of the serial interface, status and RAM data read out operation is impossible.  
PS  
H
SEL  
H
L
MPU type  
68 type MPU  
80 type MPU  
5 wire serial  
3 wire serial  
CSB  
CSB  
CSB  
CSB  
CSB  
A0  
A0  
A0  
A0  
-
RDB  
WRB  
WR  
WRB  
WR  
-
D7  
D6  
D5 to D0  
E
RDB  
Data  
Data  
H
L
-
-
SDA  
SDA  
SCL  
SCL  
Note 1  
Note 1  
L
Note 1) “-“: Fix to “VDD” or “VSS”.  
(1-2) Data recognition  
In the parallel interface mode, the data from MPU is interpreted as display data or instruction according to the combination  
of the A0, RDB, and WRB(R/W) signals.  
68 type  
80 type  
A0  
Function  
RW  
1
RDB  
WRB  
L
L
0
1
0
1
1
0
1
0
Status read  
Write into the Register(Instruction)  
Read Display Data  
0
H
H
1
0
Write Display Data  
Ver.2012-11-22  
- 16 -  
NJU6657  
Preliminary  
(1-3) Parallel interface  
While the chip select is active (CSB=”L”), the data from MPU can be written into the DDRAM or the instruction  
register. When the A0 is “L”, the data is interpreted as display data whitch is stored in the DDRAM. The display data is  
latched at the rising edge of the WRB signal in the 80-series MPU mode, or at the falling edge of the E signal in the  
68-series MPU mode.  
A0  
H
L
Data  
Display RAM data  
Internal command register  
In the DDRAM read sequence, be sure to execute a dummy read right after setting an address or right after  
writing display data or instruction. The data from MPU is temporarily held in the internal bus-holder, then released  
on the internal data-bus, therefore a dummy data is read out by the 1st “Display Data Read” instruction. After that,  
the display data is read out from a specified address by the 2nd instruction. Note that the “Display Data Read”  
instruction cannot be used in the serial inter face.  
80-series parallel data transmission (PS=”H”, SEL68=”L”)  
<Write>  
RS  
(Note) When the DDRAM data writing, CSb should be changed to "H" once every 2-byte.  
CSb  
WRb  
D7 to D0  
(Data bus direction)  
Input  
<Read>  
RS  
CSb  
RDb  
D7 to D0  
1st reading out is dummy.  
(Data bus direction) Input  
Outpu  
Input  
Outpu  
Input  
Outpu  
Input  
The data bus is output at CSB=”L” and RDB=”L”.  
Ver.2012-11-22  
- 17 -  
NJU6657  
Preliminary  
68-series parallel data transmission (PS=”H”, SEL68=”H”)  
<Write>  
RS  
(Note) When the DDRAM data writing, CSb should be changed to "H" once every 2-byte.  
RW  
CSb  
E
D7 to D0  
(Data bus  
Input  
<Read>  
RS  
RW  
CSb  
E
D7~D0  
1st reading out is  
(Data bus Input  
Outpu  
Input  
Outpu  
Input  
Outpu  
Input  
The data bus is output at RW=”H”, CSb=”L” and E=”H”.  
Ver.2012-11-22  
- 18 -  
NJU6657  
Preliminary  
(1-4) 5 wire serial Interface  
While the chip select is active (CSB=”L”), the SDA and SCL are enabled. While the chip select is inactive  
(CSB=”H”), the SDA and SCL are disabled, and the internal shift register and the internal counter are being initilized.  
8-bit serial data on the SDA is latched at the rising edge of the SCL signal in order of D7, D6, …, and D0, and  
converted into 8-bit parallel data at the timing of the internal signal produced from the 8th SCL signal. The data on  
the SDA is interpreted as display data instruction according to the A0.  
A0  
H
L
Data  
Display RAM data  
Internal command register  
Note that the SCL should be set to “L” right after data transmission or during non-access because the serial  
interface is susceptible to external noises which may cause malfunctions. For added safety, inactivate the chip select  
(CSB=”H”) temporary whenever 8-bit data transmission is completed.  
Serial data transmission (PS=”L”, SEL=”L”)  
<Write>  
RW  
(Data bus directio  
RS  
Input  
The data bus is Input at RW=”L”.  
CSb  
SCL  
SDA  
<Read>  
RW  
(Data bus  
RS  
Output  
Input  
The data bus is output at RW=”H” and CSb=”L”.  
CSb  
SCL  
SDA  
Ver.2012-11-22  
- 19 -  
NJU6657  
Preliminary  
(1-5) 3 wire serial Interface  
While the chip select is active (CSB=”L”), the SDA and SCL are enabled. While the chip select is not active  
(CSB=”H”), the SDA and SCL are disabled, and the internal shift register and the internal counter are being  
initialized. 9-bit serial data on the SDA is lached at the rising edge of the SCL signal in order of A0, D7, D6, … , and  
then converted into 9-bit parallel data at the timing of the internal signal produced from the 9th SCL signal. The data  
on the SDA is interpreted as display data or instruction according to the combination of the A0 bit status.  
Note that the SCL should be set to “L” right after data transmission or during non-access because the serial  
interface is susceptible to external noises which may cause malfunctions. For added safety, inactivate the chip-select  
(CSB=”H”) temporary whwnever 9-bit data transmission is completed.  
3wire Serial data transmission (PS=”L”, SEL=”H”)  
RW  
(Data bus directio  
Input  
The data bus is Input at RW=”L”.  
CSb  
SCL  
SDA  
(1-6) Write to Internal Register  
The writing internal register, therre are two byte and 1byte instruction.  
In two byte instruction, 1st byte specifies “Mode Set”. The relation of CSB and Data is shown in below.  
And then Moreover, it is also possible to write in the instruction of plurality with CSB=L continuously, in order to judge  
automatically distinction of a 1-byte instruction or a 2-byte instruction inside.  
Note) 2 Byte instruction: Between byte data CSB="L".  
Note) It is possible for data continuously at the CSB=”L” condition.  
CSB  
A0  
WRB  
RAM  
Mode  
data  
Mode  
Mode  
data  
Mode  
Mode  
data  
7~0  
D
2 Byte  
Instruction  
1 Byte  
Instruction  
RAM Data  
Note) The 1st byte is knowledge of “mode set” at falling edge of the CSB condition.  
Ver.2012-11-22  
- 20 -  
NJU6657  
Preliminary  
(1-7) Busy Flag (BF)  
While the internal circuits are operating, the busy flag(BF) is “1”, and any instruction excepting for the status read  
are inhibited.  
The busy flag goes to “1” from D7 terminal when status read instruction is executed.  
When enough cycle time over than Tcyc indicated in “AC CHARACTERISTICS” is ensured, no need to check the  
busy flag for reduction of the MPU loads.  
(1-8) Initial display line register  
The initial display line register assigns a DDRAM line address, which corresponds to COM0 by “initial display line  
set” instruction. It is used for not only normal display but also vertical display scrolling and page swiching without  
changing the contents of the DDRAM.  
(1-9) Line counter  
The line counter generates the line address of display data RAM by the count up operation synchronizing the  
common cycle after the reset operation at the status change of internal FR signal.  
(1-10)Column address counter  
The coulumn address counter is 8-bit pre-settable counter addressing the column address of display data RAM as  
shown in Fig. 1. It is incremented (+1) by the display data read / write instruction execution.  
The column address counter is independent of the page register.  
By the address inverse instruction, the column address decoder inverse the column address of display data RAM  
corresponding to the segment driver.  
(1-11)Page register  
The page register gives a page address of display data RAM as shown in Fig. 1. When the MPU accesses the data  
with the page change, the page address set instruction is required.  
Page address “8”(D4 to D0 = “0100”) is Icon RAM area, the data only for the D0 is valid.  
(1-12)Display data RAM  
Display data RAM is the bit map RAM consisting of 23,936 bits to memorize the display data corresponding to  
each pixel of LCD panel. The each bit in the display data RAM corresponds to the each pixel of the LCD panel  
and controls the display by following bit data.  
When normal display : On=”1”, Off=”0”  
When inverse display : On=”0”, Off=”1”  
The display data RAM outputs 272-bit parallel data in the area addressed by the line counter, and these data are set  
into the display data latch.  
The access operation from MPU to the display data RAM and the data output from the display data RAM are so  
controlled to operate independently that the data rewriting does not influence with any malufunctions to the  
display.  
Ver.2012-11-22  
- 21 -  
NJU6657  
Preliminary  
Line  
Address  
Common  
Driver  
Data  
Page Address  
Display Pattern  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
C80  
C81  
C82  
C83  
C84  
C85  
C86  
C87  
C0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
P3,P2,P1,P0  
(0,0,0,0)  
PAGE 0  
C1  
C2  
C3  
P3,P2,P1,P0  
(0,0,0,1)  
PAGE 1  
PAGE 2  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
P3,P2,P1,P0  
(0,0,1,0)  
1AH  
C69  
C70  
C71  
C72  
C73  
C74  
C75  
C76  
C77  
C78  
C79  
4DH  
4EH  
4FH  
50H  
51H  
52H  
53H  
54H  
55H  
56H  
57H  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
P3,P2,P1,P0  
(1,0,1,0)  
PAGE 10  
D0="0" 000 001 002 003 004 005 006  
D0="1" 10F 10E 10D 10C 10B 10A 109  
10E  
001  
10F  
000  
Column  
Address  
ADC  
For example the Initial display is 08H.  
- - - - - - - - - - - -  
- - - -  
Segment Drivers  
0
1
2
3
4
5
6
270  
271  
Fig.1 Display data RAM (DDRAM) Map  
Ver.2012-11-22  
- 22 -  
NJU6657  
Preliminary  
(1-13) COMMON DRIVER OUTPUT SWITCHING  
The common output order of NJU6657 is selected by CSEL terminal (Both sides wiring or Comb wiring). When the  
CSEL="L", the COM0 to 43 connects on the lower half of the panel and the COM44 to 87 connects on the upper half.  
When the CSEL="H", the COM is divided by 4, that is connected to the panel by the comb pattern.  
< Wiring image >  
(i) CSEL=”L” Both sides wiring mode  
COM87  
Panel  
(CSEL="L")  
COM44  
COM43  
COM0  
COM44  
COM0  
NJU6657  
COM87  
COM43  
(ii) CSEL=”H” Comb wiring mode  
COM84COM87  
COM80COM83  
COM72COM75  
COM64COM67  
COM56COM59  
COM48COM51  
COM40COM43  
COM32COM35  
COM24COM27  
COM16COM19  
COM8COM11  
COM0COM3  
COM76COM79  
COM68COM71  
COM60COM63  
COM52COM55  
COM44COM47  
COM36COM39  
COM28COM31  
COM20COM23  
COM12COM15  
COM4COM7  
Panel  
(CSEL="H")  
COM44  
COM0  
NJU6657  
COM87  
COM43  
The common direction register is selected by the “Common direction register set” is shown in Table.  
Table. Common direction  
INV  
Status  
Normal  
Inverse  
Common direction  
COM0 -> COM87  
COM87 -> COM0  
0
1
(1-14)Display scroll function  
NJU6657 is executed to the vertical smooth scroll display of 1-dot.  
The Start line display set the line address shown Fig 1.  
Ver.2012-11-22  
- 23 -  
NJU6657  
Preliminary  
(1-15) Partial display function  
The partial display is executed by Partial select instruction.  
This function reduces the LCD driving voltage and the power consumption when the duty set low like the clock display of  
stand-by.  
Page Address data Line Address  
COM Start COM Out  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
page0  
page1  
page2  
page3  
Initialize Status: 1/88 Duty  
1/88 Duty  
Display  
Display Area  
COM0  
COM10  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM29  
COM87  
page10  
(Example) Partial Select Command (Display line count=”04H”, COM Start position =”AH”)  
COM Start  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
Page Addres data Line Address  
COM Out  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
Partial Select Command  
Display line: 04H(20-line)  
COM start position 0AH(COM10)  
Setting.  
page0  
page1  
page2  
page3  
1/20 Duty  
Display  
Active Area  
COM0  
Non  
Active  
Area  
COM10  
Active  
Area  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM29  
COM87  
page10  
Non  
Active  
Area  
Ver.2012-11-22  
- 24 -  
NJU6657  
(Example 2) When both of Partial Select and Initial Display line set instruction are executed, the smmoth scroll  
for vertical direction in partial display area.  
COM Start  
Address COM Out  
Partial Select Command  
Page Addres data Line Address  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
Display line: 04H(20-line)  
COM start position 0AH(COM10)  
Initial Display Start Line Command  
Line Address: 0AH  
page0  
page1  
page2  
page3  
Setting.  
Start Line  
Address Set  
1/20 Duty  
Display  
Active Area  
COM0  
Active  
Area  
COM11  
Non  
Active  
Area  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM80  
COM87  
page10  
Active  
Area  
(Example 3) Partial Select Command (Display line count=”50H”, COM Start position=”AH”)  
Partial Select Command  
Display line: 04H(20-line)  
COM start position 50H(COM80)  
Initial Display Start Line Command  
COM Start  
Address COM Out  
Page Address data Line Address  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
Line Address: 0AH  
Setting.  
1/20 Duty  
Display  
Display  
page0  
page1  
page2  
page3  
Area  
COM0  
Active  
Area  
COM11  
Non  
Active  
Area  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM80  
COM87  
1/20 Duty  
Display  
Display  
Area  
Active  
Area  
page10  
Ver.2012-11-22  
- 25 -  
NJU6657  
Preliminary  
* Duty is changed automatically when Partial Display execution, but LCD Driving Voltage , Bias ratio, EVR  
register are not changed. The optimum conditions should fix refering the result of actual display.  
* The Dummy period Insertion position of Partial Display executed.  
(Example 1) <display line count: 20-line, COM Start Position: COM10>  
COM10COM29Dummy Time  
(The dummy period is inserted in front of a COM display starting position.)  
* The Dummy period Insertion position of when the overlap display and Partial Display executed.  
(Example 2) <Display line count: 20-line, COM start Position: COM80>  
COM80COM87COM0COM11Dummy Time  
When straddling the end of display position, the Dummy period is inserted in front of a  
COM display starting position.)  
Ver.2012-11-22  
- 26 -  
NJU6657  
Confidential  
Preliminary  
(1-16) Reset circuit  
The reset circuit initializes the LSI to the following status by using of the reset signal into the RESB terminal.  
-Reset status using the RESB terminal:  
PARAMETER  
Register name  
D
SL6 to 0  
PA3 to 0  
AC7 to 0  
ADC  
RESET status  
0
00H  
0H  
00H  
0
Int. No.  
(1)  
(2)  
(3)  
(4)  
1
2
3
4
5
6
7
8
9
Display ON/OFF: OFF  
Start display line set: Set to COM0  
Page address set: Set to 0 page  
Culumn address set: Set to  
ADC select: Normal  
(8)  
Common direction: Normal  
Display normal/inverse: normal  
All display ON/OFF: OFF  
Partial select  
SCAN  
REV  
ALLON  
DN6 to 0  
DST6 to 0  
NLS  
0
0
0
48H  
00H  
0
(9)  
(10)  
(11)  
(12)  
10  
11  
N-line inverse ON/OFF: OFF  
N-line inverse register set  
(13)  
(14)  
MIX  
0
NL6 to 0  
00H  
12  
13  
14  
15  
Dummy time set  
ST, DUM  
0,0  
(15)  
(16)  
(18)  
(19)  
Read modyfy write: OFF  
Oscilator ON/OFF : ON  
Internal oscillator frequency set:  
43.1kHz  
INTCK  
SH1 to 0  
OS4 to 0  
BS2 to 0  
TC2 to 0  
DC1 to 0  
VRG  
1
10  
10000  
000  
000  
00  
16  
17  
18  
Bias ratio set: 1/10  
(20)  
(21)  
(22)  
Temperature coefficient: 0%/OC  
Power controll: DC/DC, VREG, VF  
0
VF  
0
19  
20  
21  
22  
23  
24  
E.V.R set : Min.  
Boost. Voltage controll function set  
Boost. Clock set  
Temp. sensor ON/OFF : OFF  
Discharge ON/OFF : OFF  
Power save : OFF  
ER8 to 0  
VU2 to 0  
DCC2 to 0  
TSON  
000H  
0H  
101  
0
(23)(24)  
(27)  
(28)  
(29)  
(30)  
DIS  
0
(33)  
The RESB terminal should be connected to MPU’s reset terminal, and the reset operation should be executed at  
the same timing of the MPU reset. As described in the “BUS TIMING CHARACTERISTICS”, it is necessary to  
input 1.0us(min.) or over “L” level signal into the RES terminal in order to carry out the reset operation. The LSI  
will return to normal operation after about 1.5us(max.) from the rising edge of the reset signal.  
The reset operation by RESb="L" initializes each register setting as above reset status, but the internal oscillation  
circuit and output terminals (D0 to D7) are not affected.  
The reset operation is necessary to avoid malfunctions.  
Note 1) The “Reset” instruction in Table.4 can’t be substituted for the reset operation by using of the RESBterminal. It  
executes above-mentioned only 11 to 20 items.  
Note 2) The reset terminal is susceptible to external noise, so design PCB layout in consideration for the noise.  
Note 3) In case of using external power supply for LCD driving voltage, the RESb terminal is required to be being “L”  
level when the external power supply is turned-on.  
Ver.2012-11-22  
- 27 -  
NJU6657  
Preliminary  
(1-17) LCD driving circuits  
LCD drivers consist of 88-common drivers, 272-segment divers.  
As shown in “ LCD driving waveform”, LCD driving waveforms are generated by the combination of display data,  
common timing signal and internal FR timing signal.  
(1-18) Display data latch circuit  
The display data latch circuit temporally stores 272-bit display data transferred from the DDRAM in the synchronization  
with the common timing signal, and then it transfers these stored data to the segment drivers.  
“Display on/off”, “inverse display on/off” and “entire display on/off” instructions control only the contents of this latch  
circuit, they can’t change the contents of the DDRAM.  
In addition, the LCD display isn’t affected by the DDRAM accuses during its displaying because the data read-out  
timing from this latch circuit to the segment drivers is independent of accessing timing to the DDRAM.  
(1-19) Line counter and latch signal or latch Circuits  
The clock line counter and latch signal to the latch circuits are generated from the internal display clock (CL). The line  
address of display data RAM is renewed synchronizing with display clock (CL).  
272bits display data are latched in display latch circuits synchronizing with display clock, and then output to the LCD  
driving circuits. The display data transfer to the LCD driving circuits is executed independently with RAM access by the  
MPU.  
(1-20) Display timing generator  
The display timing generates the timing signal for the display system by combination of the master clock CL and driving  
signal FR ( refer to Fig.2 ) The frame signal FR and LCD alternative signal generate LCD driving waveform on the  
2-frame alternative driving method or the n-line inverse driving method.  
(1-21) Dummy selection period  
Immediately after COM88 has been selected, the selection period equivalent to Display 1 line is provided as dummy.  
Therefore, The relation between Display Lline count and Display Duty by setting of Partial Display.  
The formula is shown below.  
1
1
Duty=  
=
(CL+Dummy)  
(CL+1)  
CL: Display line unit  
Ver.2012-11-22  
- 28 -  
NJU6657  
Confidential  
Preliminary  
(1-22) n-line inversion  
NJU6657 sets the number of inversion line of the alternating signal for LCD to the optional values from 2 to 88.  
The relation of the alternating signal, n-line inversion and dummy period are shown in below.  
1/20duty, n-line inverse: OFF, Dummy period OFF  
FR Signa
COM end line  
COM end line  
COM end line  
1/20duty, n-line inverse: OFF, Dummy period: ON  
FR Signa
COM end line  
COM end line  
COM end line  
1/20duty, n-line inverse: 10CLK, Dummy period: OFF  
FR Signa
10Line  
10Line  
10Line  
n-line CLK  
n-line CLK  
n-line CLK  
n-line CLK  
1/20duty, n-line inverse: 10, Dummy Period: ON  
FR Signal  
10Line  
10Line  
10Line  
n-line CLK  
n-line CLK  
n-line CLK  
n-line CLK  
Ver.2012-11-22  
- 29 -  
NJU6657  
Preliminary  
(1-23) Common timing generation  
The common timing is generated by display clock CL (refer to Fig.2)  
87 88  
1
2
3
4
5
6
7
8
85 86 87 88  
1
2
3
4
5
CL  
FR  
VLCD  
V1  
C0  
C1  
V4  
VSS  
VLCD  
V1  
V4  
VSS  
RAM DATA  
Sn  
VLCD  
V2  
V3  
VSS  
Fig.2-1 2-frame alternating drive mode( N-line inverse set OFF)  
87 88  
1
2
3
4
5
6
7
8
85 86 87 88  
1
2
3
4
5
CL  
FR  
VLCD  
V1  
C0  
C1  
V4  
VSS  
VLCD  
V1  
V4  
VSS  
RAM DATA  
Sn  
VLCD  
V2  
V3  
Vss  
Fig.2-2 n-line inverse drive mode (n=7, line inverting register set to 6 )  
Ver.2012-11-22  
- 30 -  
NJU6657  
Confidential  
Preliminary  
(1-24) OSCILLATION CIRCUIT  
NJU6657 is equipped with the CR oscllation circuit, and generates internal clocks used for the display timing. The  
generating method of the clock selects by the internal oscillation or external clock. When the internal oscillation circuit is  
used, Oscillator starts after input of the Internal Oscillator ON/OFF command input. (INTCK=“H”)  
In addition, oscillation frequency can be selected by programming the “Internal oscillation frequency control” instruction  
So that is possible to optimize the Display duty.  
When CLS=”L”, oscillation stops, and display clock is input from the OSC1 terminal.  
When external oscillation circuit is operating by setting CLS terminal gives priority more than the operation of the  
internal oscillation circuit.  
CLS Terminal  
INTCK  
Ext. Input Status  
Available  
Available (Priority)  
Not available  
Not available  
Internal Oscillator  
Inactive  
L
L
H
H
0
1
0
1
Active  
Inactive  
Active  
When external clock input, the divide value is reflection setting by “Interanal oscillation circuit frequency set”  
instruction. The divide set is normally using select by the 1 divide (“SH1 to 0 = “00”)  
When partial display function used, the divide value changing by divide set instruction.  
When frame frequency changes by partial display etc by external clock used.  
You shuld be changing external clock frequency and also possible to have you change or to change oscillating frequency  
using a divide setup.  
The set to each of frequency value is shown in below. ( also in case of External CLK operation.)  
Selllect of frame frequency  
Sellect of display line  
Boost  
Divide  
OSC1  
( Ext. CLK Input )  
Boost CLK  
Divide  
OSC  
Frequency  
CR OSC  
Caluculate of frequency * refer P56  
Fix to OSC frequency  
(Fix to OS4 to OS0 and SH1 to SH0  
register value.)  
Caluculate of Boost clock frequency  
Use to OS4 to OS0 register value.  
"Refer to P.60"  
BLOCK DIAGRAM  
End  
Ver.2012-11-22  
- 31 -  
NJU6657  
Preliminary  
(1-25) Thermal Sensor Circuit  
The NJU6657 has the built-in thermal sensor circuit equipped with the pin to output the analog voltage, which represents  
the –4.19[mV/](typ) temprature gradient. When the TSON=”1” ,from Thermal Sensor command ON/OFF.  
The suitable tone LCD display is enabled in a wide temprature range by inputting the electronic control resister value  
sent from the MPU for the thermal sensor output value to control the LCD drive voltage.  
* Note  
When the resistance component R exists between the system GND and the IC’s VSS terminal, the IC’s substrate  
potential VSS viewed from the system GND drops as follows:  
V=IR ( I: Supply Current by the NJU6657)  
VDD  
VDDL2  
VDDL2  
DD  
RAM  
Analog  
Sensor  
I/F  
TSV  
TSVBS  
VSS  
V=IR  
System GND  
Ver.2012-11-22  
- 32 -  
NJU6657  
Confidential  
Preliminary  
(1-26)Power supply circuit  
The internal power circuits are composed of boost voltage converter, adjust voltage circuit and voltage followers.  
Each portion of the internal power circuits is controlled by “Power Control Set” instruction as shown in Table below.  
In addition, the combination of power supply circuits is described as shown in Table.  
When the External power supply used, the bias voltage of V1 to V4 and VLCD for the LCD should be supplied from  
outside, terminals C1+, C1-, C2+, C2-, C3+, C3-, C4+, C5+ and C6+ should be open.  
When the Internal power supply used, the stabilize capacitor of V1 to V4 and VLCD should be connection.  
A0 RDB WRB D7  
D6  
0
*
D5  
1
*
D4  
0
*
D3  
0
DC1  
D2  
1
D1  
0
D0  
1
VF  
COMMAND  
Mode Set  
Internal Power Cont.  
0
1
0
0
*
DC0 VRG  
Power supply combinations  
VF 2nd Boost 1st Boost Adjust V  
VF  
Ext. Power  
VEE  
VRG  
1
Status  
DC1 DC0  
1) All internal power  
supply circuit  
2) 1st Boostor,  
Adjust voltage circuit and  
Voltage followers only  
3) 2nd Boostor ,  
Adjust voltage circuit and  
Voltage followers only  
4) Voltage Reg.  
1
0
1
1
1
1
ON  
ON  
ON  
ON  
ON  
ON  
1
1
1
OFF  
ON  
ON  
ON  
VEE  
1
0
0
0
1
1
ON  
OFF  
OFF  
ON  
ON  
VST1R  
and Voltage followers  
only  
OFF  
VDCIN  
5) Voltage followers only  
0
0
0
0
0
0
1
0
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
VLCD  
6) External power  
supply only  
VLCD to V4  
* Capacitor input terminals: C1+,C1-,C2+,C2-,C3+,C3-,C4+,C5+,C6+  
* Do not use other combinations except examples in table Power supply combinations.  
The internal LCD power supply is designed to drive small LCD panels. Thus, if the IC is used to drive a large panel,  
make sure whether it works with the internal power supply or needs an external power supply.  
The selections of external components for the LCD bias circuit, the voltage booster and the feedback loop depend on  
panel sizes, so make sure what are the best values in the particular application.  
Ver.2012-11-22  
- 33 -  
NJU6657  
Preliminary  
BLOCK DIAGRAM (Power Supply)  
VEE  
VST1  
VST1R  
VDCOUT  
2nd Boostor  
1st Boostor  
Boost Voltage  
Adjust Circuit  
Boost Circuit  
VDCIN  
Adjust Voltage Circuit  
EV R  
VLCD  
V1  
Vref.  
V2  
V3  
V4  
VF Circuit  
Ver.2012-11-22  
- 34 -  
NJU6657  
Confidential  
Preliminary  
(1-27-1) Voltage Regulator Circuit  
VLCD voltage genetator produces the VDCIN voltage.  
The NJU6657 has consist of voltage regulator and EVR circuit. The EVR, variable with 400-step, is used to fine-tune  
the LCD driving voltage (VLCD) by setting the “EVR Control Instruction”.  
(a) EVR  
The “EVR Control Instruction” sets 9-bit data into the EVR register to determine the output voltage.  
The relation of EVR register and EVR value is shown in table.  
ER8 ER7 ER6 ER5 ER4 ER3 ER2 ER1 ER0  
EVR  
VLCD  
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
1
:
0
1
:
:
Min.(4.8[V]) ( Default )  
:
:
:
:
:
:
:
:
:
:
:
:
1
1
0
0
1
0
0
0
0
400  
Max.(28.8[V])  
VLCD = Va+(EVR×ΔVb)  
Va = 4.8[V]  
ΔVb = 60[mV]  
Default  
EVR Step  
* Example: EVR=250  
VLCD = 4.8+(250×0.06) = 19.8[V]  
The relation of EVR value and LCD driving voltage is shown in graph.  
35  
30  
25  
20  
15  
10  
5
0
0
50  
100  
150  
200  
250  
300  
350  
400  
EV R Set V alue  
Note1) When using voltage follower circuit, you should be bigger than set to EVR=20(ER=”000010100”,VLCD=6[V])  
Ver.2012-11-22  
- 35 -  
NJU6657  
Preliminary  
(b) Temperature Gradient Selection Circuit  
The circuit is used for selecting the temperature gradient characteristics of the LCD driving voltage.  
The set “Temperature Gradient Slect” instruction allows selection of temperature gradient characteristics from 6 stetes.  
The Teprature gradient value is refer to shown in table.  
Selecting temperature gradient characteristics matching temperature characteristics to be used enables you to configure  
the system without an external add-on device for correcting temperature characteristics.  
A0 RDB WRB D7  
D6  
1
*
D5  
0
*
D4  
0
*
D3  
1
*
D2  
1
D1  
1
D0  
0
Command  
Mode Set  
0
1
0
0
*
TC2 TC1 TC0 Temprature Gradient Select  
TC2 TC1 TC0  
Temperature Gradient Value  
[%/]  
-0.000 ( Default )  
-0.050  
-0.075  
-0.100  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
-0.125  
-0.150  
When using this function, you should be reviced LCD driving voltage at Ta=25OC.  
* Example) EVR=250, Ta=25OC, Temperature Gradient Value=0,0,0  
In case of changing temperature to +40OC.  
VLCD = [Va+(EVR×ΔVb)]×[1+(temp-25)×(incline/100)]  
= [4.8+(250×0.06)]×[1+(40-25)×(-0.1/100)]  
=
19.503 [V]  
(1-27-2) Voltage Follower Circuit  
Each LCD driving voltage (V1, V2, V3, V4) is generated by the high impedance bleeder resistance buffered by voltage  
follower OP-AMP. The bias voltage is selected by the instruction.  
A0 RDB WRB D7  
D6  
0
*
D5  
1
*
D4  
0
*
D3  
0
*
D2  
0
D1  
1
D0  
0
Command  
Mode Set  
Bias Ratio Set  
0
1
0
1
*
BS2 BS1 BS0  
BS2 BS1 BS0  
Bias Ratio  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1/10 (Default)  
1/9  
1/8  
1/7  
1/6  
1/5  
1/4  
The external capacitor connected each of bias terminals needed for stabilizing bias voltage.  
And the value of capactors are determined depending on the actual LCD panel display evaluation.  
Ver.2012-11-22  
- 36 -  
NJU6657  
Preliminary  
(1-27-3) Voltage boost Circuit  
(a) 1st Boost Circuit (2-time Boost)  
The 1st Boost circuit outputs the positive Voltage(VSS Common) boosted 2 times of VEE-VSS from the VST1 terminal  
with connecting the two capacitors between C1+ and C1-, VST1 and VSS.  
The purpose of 1st Boost circuit is two reason, 1st is input voltage less than 5V or Using 2nd Boost circuit depends on  
voltage shortage. The 1st Boost circuit only used, the VST1 terminal with connecting VDCOUT and VDCIN outside.  
-External Capacitor Connection of 1st Voltage Booster  
VST1=10V  
C1+  
C1-  
VST1  
+
+
VEE=5V  
VSS=0V  
VDCOUT  
VDCIN  
1st Booster  
VSS  
Ver.2012-11-22  
- 37 -  
NJU6657  
Preliminary  
(b) 2nd Booster Circuit ( 6-time Boost)  
The 2nd Boost circuit outputs the positive Voltage(VSS Common) boosted 6 times of VST1-VSS from the VDCOUT  
terminal with connecting the six capacitors between C2+ and C2-, C3+ and C3-, C4+ and C2-, C5+ and C3-, C6+ and C2-,  
and VSS and VDCOUT. The boosting time is selected out of 2 times to 6 by changing the external capacitors connection.  
The VDCOUT and VDCIN terminal should be connecting outside.  
When the input voltage of voltage boost circuit is over than 5.5V, the 2nd boost circuit should be using only.  
The boosted voltage of VSS-VDCOUT  
must be 36V less.  
Please adjust the input voltage.  
VDCOUT=36V  
VDCOUT=24V  
VST1R=6  
VSS=0V  
VST1R=6  
VSS=0V  
2nd Booster (4-time Boost)  
2nd Booster (6-time Boost)  
- External Capacitor Connection of 2nd Voltage Booster (Power Supply = VST1R)  
2-time Boost  
3-time Boost  
4-time Boost  
+
+
C4+  
C2+  
C2-  
C4+  
C2-  
C2+  
C6+  
C4+  
C2+  
C2-  
+
+
+
C6+  
C6+  
C3+  
C3-  
C3+  
C3-  
+
C3+  
C3-  
OPEN  
C5+  
C5+  
C5+  
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
+
+
+
VSS  
VSS  
VSS  
5-time Boost  
6-time Boost  
+
+
+
C4+  
C2-  
C2+  
C6+  
C4+  
C2-  
C2+  
C6+  
+
+
+
+
C3+  
C3-  
C5+  
C3+  
C3-  
C5+  
+
+
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
+
+
VSS  
VSS  
Ver.2012-11-22  
- 38 -  
NJU6657  
Preliminary  
(c) Combination using of 1st boost and 2nd boost circuit  
The combination of 1st boost and 2nd boost circuits the positive voltage(VSS common) boosted 4 to 12 times of  
VEE-VSS from the VDCOUT terminal with connecting outside the VST1 and VST1R , VDCOUT and VDCIN terminals.  
The relation of 1st boost circuit, 2nd boost circuit and Voltage adjust circuit is shown in below.  
Connecting  
Outside  
The boosted voltage of VSS-VDCOUT  
must be 36V less.  
Please adjust the input voltage.  
VDCOUT  
2 to 6 x Boost  
VDCIN  
VLCD  
VST1  
Ext. Connect  
VST1R  
2 x Boost  
VEE  
VSS  
1st Booster  
2nd Booster  
Adjust Voltage  
-External Capacitor Connection of Voltage Booster  
4-time Boost  
6-time Boost  
8-time Boost  
C1+  
C1-  
+
C1+  
C1-  
C1+  
C1-  
+
+
VST1  
VST1R  
VSS  
C4+  
C2+  
C2-  
VST1  
VST1R  
VSS  
C4+  
C2+  
C2-  
VST1  
VST1R  
VSS  
C4+  
C2-  
+
+
+
+
+
+
C2+  
C6+  
+
+
C6+  
C6+  
+
C3+  
C3-  
C3+  
C3-  
C3+  
C3-  
OPEN  
C5+  
C5+  
C5+  
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
+
+
+
VSS  
VSS  
VSS  
10-time Boost  
12-time Boost  
C1+  
C1-  
+
C1+  
C1-  
+
VST1  
VST1R  
VSS  
C4+  
C2-  
VST1  
VST1R  
VSS  
C4+  
C2-  
+
+
+
+
C2+  
C6+  
C2+  
C6+  
+
+
+
C3+  
C3-  
C5+  
C3+  
C3-  
C5+  
+
+
+
+
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
+
+
VSS  
VSS  
Ver.2012-11-22  
- 39 -  
NJU6657  
Preliminary  
(d) Adjust voltage boost function  
The Adjust voltage boost circuit generates VST1R voltage by Adjust voltage boost set instruction.  
Register value(VU2 to VU0) should be setting of according to use 2nd Booster condition.  
When the this function used, using of 2nd Boost circuit and combination of 1st and 2nd Boost circuits.  
The combination of the auto control function can’t used.  
In using 2nd boost circuit only, the input voltage input to VST1 terminal. In using combination of 1st boost and 2nd  
boost circuit used, the input voltage input to VEE terminal. In this time , each of the connect to capacitor between  
VST1, VST1R and VSS terminals.  
This function controls 2nd booster output voltage less than Maxmum voltage (36V)  
If this function is used, it can set up VEE and VST1 voltage without considering Maxmum voltage.  
This function is control by set to command “Adjust voltage boost instruction”.  
The register value (VU2 to 0) set are before starting of 2nd boost circuit.  
A0 RDB WRB D7  
D6  
0
*
D5  
0
*
D4  
0
*
D3  
1
*
D2  
1
D1  
0
D0  
1
Instruction  
Mode Set  
Adjust Boost Voltage  
0
1
0
1
*
VU2  
VU1  
VU0  
VU2  
0
0
0
0
VU1  
VU0  
0
1
0
1
2nd Booster  
OFF ( Default )  
2-time  
0
0
1
1
0
0
3-time  
4-time  
5-time  
6-time  
1
1
0
1
The relation of 1st boost circuit, 2nd boost circuit and Voltage adjust circuit is shown in below.  
Connecting  
Outside  
VDCOUT  
VDCIN  
2 to 6 time Boost  
VLCD voltage  
VST1  
Int. REG  
VST1R  
2-time Boost  
VEE  
VSS  
1st Booster  
2
nd Booster  
Adjust voltage  
The output voltage of a VST1R terminal generates voltage according to the number of stages of 2nd-Boost circuit.  
The 2nd-Boost circuit controls less than maximum voltage. Therefore, in case of VEE=5.5V or VST1=15V condition,  
VDCOUT voltage is less than 36V.  
Ver.2012-11-22  
- 40 -  
NJU6657  
Preliminary  
- External Capacitor Connection of Voltage Booster  
4-time Boost  
6-time Boost  
8-time Boost  
C1+  
C1-  
VST1  
VSS  
+
+
C1+  
C1-  
VST1  
VSS  
+
+
C1+  
C1-  
VST1  
VSS  
+
+
VST1R  
C4+  
C2+  
C2-  
VST1R  
C4+  
C2+  
C2-  
VST1R  
C4+  
C2-  
C2+  
C6+  
+
+
+
+
+
+
+
+
C6+  
C6+  
+
+
C3+  
C3-  
C5+  
C3+  
C3-  
C5+  
C3+  
C3-  
C5+  
OPEN  
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
+
+
VSS  
VSS  
VSS  
10-time Boost  
12-time Boost  
C1+  
C1-  
VST1  
VSS  
+
+
C1+  
C1-  
VST1  
VSS  
+
+
VST1R  
C4+  
C2-  
VST1R  
C4+  
C2-  
+
+
+
+
C2+  
C6+  
C2+  
C6+  
+
+
+
C3+  
C3-  
C5+  
C3+  
C3-  
C5+  
+
+
+
+
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
+
+
VSS  
VSS  
Ver.2012-11-22  
- 41 -  
NJU6657  
Preliminary  
(1-27-4)Discharge circuit  
The NJU6657 incorporates a discharge circuit.  
Discharge circuit is used to discharge out of the stabilizing capacitors placed on the VDCOUT, VDCIN, VLCD, V1 to  
V4, VST1 and VST1R. This instruction prevents the unknown display at the power supply off. (refer to shown below)  
VDCIN  
VDCIN  
VLCD  
External  
Adjust  
Voltage  
VDCOUT  
VST1  
Adjust  
Booster  
1st  
Boost  
V1  
V2  
V3  
V4  
VST1R  
VF  
1st  
Boost  
VEE  
VSSE  
VSS  
(1-27-5)Attention of Power ON/OFF  
To protect the LSI from overcurrent, the following sequences must be maintained to turn on and off the power supply.  
() Power ON/OFF in using external LCD supply  
Power ON  
First “VDD and VDDL ON”, next “Reset by RESb”, then “External LCD power supply ON”. When using only  
internal voltage converter, first “VDD and VDDL ON”, next “Reset”, then “VDCIN ON”.  
Power OFF  
First “Reset by RESb” or “Power save” instruction” to isolate external LCD bias voltage, next “VDD OFF”. For  
more safety, placing a resistor in series on the VLCD or VDCIN line are recommended. That resistance is usually  
between 50  
and 100.  
The value of resistance is fixed with the result of actual LCD display evaluation.  
() Power ON/OFF in using internal LCD supply  
Power ON  
First “VDD, VDDL and VEE ON”, next “Reset by RESb”, then “Internal LCD Power supply ON”. Be sure to  
excute the “Display ON” instruction later than the completion of this power ON sequence. Otherwise, unexpected  
pixels may be turned on instantly.  
Power OFF  
First “Reset by RESb or “Power save” instruction, next “Dispcharge ON” next “VEE OFF” then “VDD OFF”. If  
using different power sources for the VDD and the VEE individually, the VEE must be turned off after that, the VDD  
can be turned off, waiting until the LCD bias voltgae (VLCD, V1, V2, V3 and V4) drop below the threshold level of  
LCD pixels.  
Ver.2012-11-22  
- 42 -  
NJU6657  
Preliminary  
-External Components for LCD Power Supply -  
1) Using Only Internal LCD Power Supply  
(VEE=VDD, 12-time Boost)  
2) Using Only Internal LCD Power Supply  
(VEE=VDD, 12-time Boost, Adjust Boost circuit.)  
C1+  
C1+  
+
+
CA2  
CA2  
C1-  
C1-  
CA1  
2
CA1 2  
×
×
VST1  
VDD  
VEE  
VST1  
VDD  
VEE  
+
CA1  
+
+
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
+
+
CA1  
2
CA1  
2
×
×
+
+
VST1R  
VST1R  
+
+
VSS  
VSSE  
VSSA  
VSS  
VSSE  
VSSA  
C2+  
C2-  
C2+  
C2-  
+
+
+
+
CA2  
CA2  
3
CA2  
CA2  
3
×
×
C4+  
C6+  
C4+  
C6+  
+
+
C3+  
C3-  
C3+  
C3-  
+
+
+
+
2
5
2
5
×
×
C5+  
C5+  
CA3  
CA3  
×
×
VLCD  
V1  
VLCD  
V1  
+
+
+
+
V2  
V2  
+
+
V3  
V3  
+
+
V4  
V4  
+
+
Reference Values  
CA1  
CA2  
CA3  
1.0 ~ 4.7µF  
1.0 ~ 4.7µF  
0.47 ~ 1µF  
Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the  
particular application.  
Note 2) Parasitic resistance on the power supply lines (VSS, VDD, VSSE, VEE, VDCIN, VLCD, V1 to V4) reduces  
step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality.  
Note 3) When using 1st and 2nd boost circuits, the capactor value (connect between C1+/C1- and VST1 terminals) should  
be bigger than capacitor value of 2nd boost circuit. ( Recommendation is 3-times. )  
Ver.2012-11-22  
- 43 -  
NJU6657  
Preliminary  
-External Components for LCD Power Supply  
3) Using Internal LCD Power Supply within  
1st Boost, Adjust Voltage Circuit, VF Circuit  
(VEE=VDD)  
4) Using Internal LCD Power Supply within  
2nd Boost, Adjust Voltage Circuit, VF Circuit.  
(6-time Boost)  
C1+  
C1+  
+
CA2  
C1-  
C1-  
CA1  
2
CA1  
×
VST1  
VDD  
VEE  
VST1  
VDD  
VEE  
+
+
External  
Power  
Circuit  
CA1  
2
×
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
+
+
VST1R  
VST1R  
+
CA1  
VSS  
VSSE  
VSSA  
VSS  
VSSE  
VSSA  
C2+  
C2-  
C2+  
C2-  
+
+
CA2  
CA2  
3
×
C4+  
C6+  
C4+  
C6+  
+
C3+  
C3-  
C3+  
C3-  
+
+
2
5
×
C5+  
C5+  
CA3  
5
CA3  
×
×
VLCD  
V1  
VLCD  
V1  
+
+
+
+
V2  
V2  
+
+
V3  
V3  
+
+
V4  
V4  
+
+
Reference Values  
CA1  
CA2  
CA3  
1.0 ~ 4.7µF  
1.0 ~ 4.7µF  
0.47 ~ 1µF  
Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the  
particular application.  
Note 2) Parasitic resistance on the power supply lines (VSS, VDD, VSSE, VEE, VDCIN, VLCD, V1 to V4) reduces  
step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality.  
Ver.2012-11-22  
- 44 -  
NJU6657  
Preliminary  
-External Components for LCD Power Supply  
5) Using Internal LCD Power Supply within  
2nd Boost, Adjust Voltage Circuit, VF Circuit  
(6-time Boost, Adjust Boost Voltage circuit)  
6) Using Internal LCD Power Supply within  
Adjust Voltagae Circuit, VF Circuit  
(VDCIN Ext. Input)  
C1+  
C1+  
C1-  
+
CA2  
External  
Power  
Circuit  
C1-  
CA1  
CA1  
VST1  
VDD  
VEE  
VST1  
VDD  
VEE  
+
+
External  
Power  
VDCOUT  
VDCIN  
VDCOUT  
+
VDCIN  
Circuit  
+
VST1R  
VST1R  
CA1  
CA2  
2
+
×
VSS  
VSSE  
VSSA  
VSS  
VSSE  
VSSA  
C2+  
C2-  
C2+  
C2-  
+
+
3
×
C4+  
C6+  
C4+  
C6+  
+
C3+  
C3-  
C3+  
C3-  
+
+
CA2  
2
5
×
C5+  
C5+  
CA3  
CA3 5  
×
×
VLCD  
V1  
VLCD  
V1  
+
+
+
+
V2  
V2  
+
+
V3  
V3  
+
+
V4  
V4  
+
+
Reference Values  
CA1  
CA2  
CA3  
1.0 ~ 4.7µF  
1.0 ~ 4.7µF  
0.47 ~ 1µF  
Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the  
particular application.  
Note 2) Parasitic resistance on the power supply lines (VSS, VDD, VSSE, VEE, VDCIN, VLCD, V1 to V4) reduces  
step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality.  
Ver.2012-11-22  
- 45 -  
NJU6657  
Preliminary  
7. Using Only Internal Voltage follower Circuit.  
8. Using Only External LCD Power Supply  
C1+  
C1-  
C1+  
C1-  
CA1  
CA1  
VST1  
VDD  
VEE  
VST1  
VDD  
VEE  
+
+
VDCOUT  
VDCIN  
VDCOUT  
VDCIN  
VST1R  
VST1R  
VSS  
VSSE  
VSSA  
VSS  
VSSE  
VSSA  
C2+  
C2-  
C2+  
C2-  
C4+  
C6+  
C4+  
C6+  
C3+  
C3-  
C3+  
C3-  
C5+  
C5+  
VLCD  
V1  
VLCD  
V1  
CA3  
4
×
+
External  
Power  
External  
Power  
V2  
+
V2  
V3  
Circui  
Circuit  
t
+
V3  
V4  
+
V4  
Reference Values  
CA1  
CA2  
CA3  
1.0 ~ 4.7µF  
1.0 ~ 4.7µF  
0.47 ~ 1µF  
Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the  
particular application.  
Note 2) Parasitic resistance on the power supply lines (VSS, VDD, VSSE, VEE, VDCIN, VLCD, V1 to V4) reduces  
step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality.  
Ver.2012-11-22  
- 46 -  
NJU6657  
Preliminary  
(1) Instruction Set-  
The NJU6657 distinguishes the signal on the data bus D0 to D7 as an instruction by combination of A0, RDB and  
WRB(R/W). The decode of the instruction and execution performs with only high speed Internal timing without relation  
to the external clock. In case of serial interface, the data input as MSB(D7) first serially. The Table. 4-1, 4-2 shows the  
instruction codes of the NJU6657.  
Table. 4-1 Instruction table (1/2)  
(*: Don’t Care)  
Instruction code  
Instruction  
A0  
RDb WRb  
Defoult  
Description  
D7  
1
1
*
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
1
D0  
D
0
Display ON/OFF  
(1)  
0
0
1
1
0
0
0
D0=0:OFF, D0=1:ON  
0
0
0
1
0
1
(2) Initial Display Line Set  
(3) Page Address Set  
00H  
SL6 to 0: Initial Display Line Address  
PA3 to 0: Page Address of DDRAM  
SL6 SL5 SL4 SL3 SL2 SL1 SL0  
1
*
0
*
1
*
1
*
0
0
0
1
0
0
0
1
1
1
0
0
0
0H  
PA3 PA2 PA1 PA0  
0
*
0
*
0
*
1
*
0
0
1
1
00H  
00H  
CA3 CA2 CA1 CA0  
(4) Column Address Set  
CA8 to 0: Column Address of DDRAM  
0
*
0
*
0
*
1
0
1
0
0
CA8 CA7 CA6 CA5 CA4  
Status Read  
Status  
(5)  
(6)  
(7)  
0
1
1
0
0
0
1
0
1
-
-
-
Write Display Data  
Read Display Data  
Write Data  
Read Data  
Write the data into the Display Data RAM  
Read the data from the Display Data  
RAM  
ADC Select  
(8)  
(9)  
0
0
1
1
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
ADC  
0
ADC: Set the DDRAM vs Segment  
Common Direction Select  
INV  
000  
INV: Common Direction  
Normal or Inverse of ON/OFF Set  
(10)  
(11)  
0
0
1
1
0
0
1
1
1
*
0
0
0
1
1
1
0
0
1
0
0
1
1
1
1
1
0
0
REV  
0
0
REV: Inverse the ON and OFF Display  
ALLON: Whole Display Turns ON  
ALL  
ON  
Whole Display ON/OFF  
1
LCD Duty Ratio Set  
0
1
0
48H  
Partial Select Function  
DN6 DN5 DN4 DN3 DN2 DN1 DN0  
(12)  
DN5 to 0: LCD Duty Ratio  
DS5 to 0: COM Start Position  
1
*
0
1
1
1
1
1
0
Common Start Position Set  
n-line Inverse Drive Set  
0
0
0
1
1
1
0
0
0
00H  
DS6 DS5 DS4 DS3 DS2 DS1 DS0  
(13)  
1
0
1
0
1
1
0
1
0
0
1
1
0
1
NLS  
0
0
-
NLS: n-line Inverse Drive Set  
NL6 to 0: Set the number of inverse drive  
line.  
(14) n-line Inverse Drive Register Set  
MIX: n-line inverse + 2-frame  
MIX NL6 NL5 NL4 NL3 NL2 NL1 NL0  
DUM: Dummy Width ON/OFF  
ST: Segment Output Status  
Dummiy width Set  
Read Modify Write Set  
End  
(15)  
(16)  
(17)  
0
1
1
0
1
1
1
1
1
1
0
0
0
0
1
0
0
1
ST DUM  
00  
-
0
0
1
1
0
0
0
1
0
0
Read Modify Write Set  
-
Read Modify Write Reset  
Ver.2012-11-22  
- 47 -  
NJU6657  
Preliminary  
table. 4-2 Instruction table (2/2)  
(*: Don’t Care)  
Instruction Code  
Instruction  
A0 RDb WRb  
Default  
1
Description  
D7 D6 D5 D4 D3 D2 D1 D0  
Internal Oscillation Circuit  
INTCK: Oscillation Circuit  
ON/OFF  
INT  
CK  
(18)  
(19)  
0
0
1
1
0
0
1
0
1
1
0
0
1
1
1
0
1
1
1
On/Off  
SH1 to 0: Divide Set  
OS3 to 0: Oscillation Circuit  
Frequency ON/OFF  
0
*
1
Oscillation Circuit Frequency  
Set  
101000  
0
SH1 SH0 OS4 OS3 OS2 OS1 OS0  
1
*
0
*
1
*
0
*
0
*
0
1
0
(20) LCD Bias Ratio Set  
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
000 BS2 to 0: LCD Bias Ratio Set  
BS2 BS1 BS0  
0
*
1
*
0
*
0
*
1
*
1
1
0
TC2 to 0: Temprature Gradient of  
LCD Drive Voltgae  
(21) Temprature Gradient Set  
(22) Power Control Set  
000  
TC2 TC1 TC0  
DC1 to 0: Boost ON/OFF  
0000 VRG: Adjust Voltage ON/OFF  
VF: VF ON/OFF  
0
*
0
*
1
*
0
*
0
1
0
1
DC1 DC0 VRG VF  
1
*
0
*
0
*
0
0
0
0
1
ER8 to 4: EVR Register Set  
(Upper-4bit)  
(23) EVR Register Set (Upper Bit)  
(24) EVR Register Set (Lower Bit)  
00h  
ER8 ER7 ER6 ER5 ER4  
1
*
0
*
0
*
0
*
0
0
1
0
ER3 to 0: EVR Register Set  
(Lower-4bit)  
0H  
ER3 ER2 ER1 ER0  
EVR Step Up  
(25)  
(26)  
0
0
1
1
0
0
1
1
1
*
0
0
0
*
0
0
0
*
0
0
0
*
0
0
1
*
0
1
1
1
0
0
1
0
1
-
-
EVR Step Up  
EVR Step Down  
EVR Step Down  
0h  
(27) Boost Voltage Control Set  
(28) Boost Clock Set  
VU2 to 0: 2nd Boost Set  
VU2 VU1 VU0  
1
*
0
*
0
*
0
*
0
*
1
1
0
0
1
0
101 DCC2 to 0: Boost Clock Set  
DCC2 DCC1 DCC0  
TS  
Thermo Sensor ON/OFF  
Discharge ON/OFF  
Address Home  
(29)  
(30)  
(31)  
(32)  
(33)  
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
*
0
1
1
1
1
1
*
1
1
1
1
1
1
*
0
0
0
1
1
0
*
1
1
0
1
0
0
*
0
0
0
0
0
1
*
0
1
1
0
0
1
*
0
0
-
TSON: Thermo Sensor ON/OFF  
DIS: Discharge ON/OFF  
Initialize of PA and CA value  
Set to Power Save  
ON  
DIS  
0
0
Power Save  
-
Power Save Reset  
1
-
Power Save Reset  
0
LVM: Set to Low Voltage  
Operation  
(34) Low Voltage Operation Mode  
0
1
0
0
LVM  
Ver.2012-11-22  
- 48 -  
NJU6657  
Preliminary  
(1-1) Explanation of Instruction Code  
1. Display ON/OFF  
This instruction selects display turn-on or turn-off regardless of the contents of the DDRAM.  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
1
D0  
D
COMMAND  
Display ON/OFF  
0
1
0
1
D
0: Display OFF  
1: Display ON  
2. Initial Display Line Set ( refer to FUNCTIONAL DESCRIPTION Fig.1 Display data RAM (DDRAM) Map )  
This instruction specifies the DDRAM line address which correponds to the COM0 position.  
By means of repeating this instruction, the initial display line address will be dynamically changed; it means smooth  
display scrolling will be enabled.  
In this time, DDRAM data are unchanged.  
A0 RDB WRB D7  
D6  
0
D5  
0
D4  
0
D3  
1
D2  
0
D1  
1
D0  
0
COMMAND  
Mode Set  
Initial Display Line Set  
0
1
0
1
*
SL6 SL5 SL4 SL3 SL2 SL1 SL0  
SL6  
SL5  
SL4  
SL3  
SL2  
SL1  
SL0  
Line Address (HEX)  
0
1
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
1
:
00H ( Default )  
01H  
:
:
:
:
:
:
:
:
:
1
0
1
0
1
1
1
57H  
3. Page Address Set ( refer to FUNCTIONAL DESCRIPTION Fig.1 Display data RAM (DDRAM) Map )  
In order to access to the DDRAM for writing or reading display data, both “page address set” and “column  
address set” instructions are required before accessing.  
The change of page address is not affected to the display.  
A0 RDB WRB D7  
D6  
0
*
D5  
1
*
D4  
1
*
D3  
0
P3  
D2  
0
P2  
D1  
0
P1  
D0  
1
P0  
COMMAND  
Mode Set  
Page Address Set  
0
1
0
1
*
P3  
0
0
:
P2  
0
0
:
P1  
P0  
0
1
:
Page  
0 ( Default )  
0
0
:
1
:
:
:
:
:
:
1
0
1
0
10  
Ver.2012-11-22  
- 49 -  
NJU6657  
Preliminary  
4. Column Address Set ( refer to FUNCTIONAL DESCRIPTION Fig.1 Display data RAM (DDRAM) Map )  
As abobe-mentioned, in order to access to the DDRAM for writing or reading display data, it is necessary to execute  
both “page address set” and “column address set” before accessing.  
Once the column address is set, it will automatically increment (+1) whenever the DDRAM will be accessed, so that the  
DDRAM will be able to be continuously accessed without “column address set” instruction.  
A0 RDB WRB D7  
D6  
0
*
D5  
0
*
D4  
1
*
D3  
0
D2  
0
D1  
1
D0  
1
COMMAND  
Mode Set  
Column Address Set 1  
0
1
0
0
*
CA3 CA2 CA1 CA0  
A0 RDB WRB D7  
D6  
0
*
D5  
0
*
D4  
1
D3  
0
D2  
1
D1  
0
D0  
0
COMMAND  
Mode Set  
Column Address Set 2  
0
1
0
0
*
CA8 CA7 CA6 CA5 CA4  
CA8 CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0  
Column Address (HEX)  
00H ( Default )  
01H  
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
1
:
:
:
:
:
:
:
:
:
:
:
:
1
0
0
0
0
1
1
1
1
10FH  
5. Status Read  
This instruction reads out the internal status regarding “busy flag”, “ADC select”, “Display on/off”, “Power save”  
“2nd Booster on/off”, “1st Booster on/off.”, “Voltage regulator on/off” and “Voltage follower on/off”  
< Status Read Command >  
A0 RDB WRB D7  
D6  
ADC  
D5  
D
D4  
PO  
D3  
D2  
D1  
D0  
VF  
COMMAND  
Status Read  
0
0
1
BF  
DC1 DC0 VRG  
BF  
0: The instruction can be input.  
1: operating status  
ADC  
D
0: Clockwise Output (Normal)  
1: Counterclockwise Output (Inverse)  
0: Display OFF  
1: Display ON  
PO  
0: Normal  
1: Power Seve  
DC1  
DC0  
VRG  
VF  
0: 2nd Boost Circuit OFF  
1: 2nd Boost Circuit ON  
0: 1st Boost Circuit OFF  
1: 1st Boost Circuit ON  
0: Adjust Voltage Circuit OFF  
1: Adjust Voltage Circuit ON  
0: VF Circuit OFF  
1: VF Circuit ON  
Ver.2012-11-22  
- 50 -  
NJU6657  
Preliminary  
6. Display Data Write  
This instruction writes display data into the selected column address on the DDRAM.  
The column address automatically increments (+1) whenever the display data is written by this instruction, so that this  
instruction can be continuously issued without “column address set” instruction.  
A0 RDB WRB D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
COMMAND  
1
1
0
Write Data  
Display Data Write  
7. Display Data Read  
This instruction reads out the display data stored in the selected column address on the DDRAM.  
The column address automatically increments (+1) whenever the display data is read out by this instruction, so that this  
instruction can be continuously issued without “column address set” instruction.  
After the “column address set” instruction, adummy read will be required, please refer to the (*-*).  
In case of using serial interface mode, this instruction can’t be used.  
A0 RDB WRB D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
COMMAND  
1
0
1
Read Data  
Display Data Read  
8. ADC Select  
This instruction selects segment driver direction.  
The correspondence between the column address and segment driver direction is shown in Fig.1.  
This function reduces the restrictions on the IC position of an LCD module.  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
ADC  
COMMAND  
ADC select  
0
1
0
1
ADC 0: Clockwise Output (Normal)  
1: Counterclockwise Output (Inverse)  
Segment Driver S0 to S271 ( Default )  
Segment Driver S271 to S0  
9. Common Driver Direction Select  
This instruction selects common driver direction.  
A0 RDB WRB D7  
D6  
1
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
INV  
COMMAND  
Common Driver Direction  
0
1
0
1
INV  
0: Normal  
1: Inverse  
Common driver direction C0 to C88 (Default )  
Common driver direction C88 to C0  
Ver.2012-11-22  
- 51 -  
NJU6657  
Preliminary  
10. Inverse Display ON/OFF  
This instruction inverses the status of turn-on or turn-off of entire LCD pixels. It doesn’t change the contents of the  
DDRAM.  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
1
D0  
REV  
COMMAND  
Normal / Inverse  
0
1
0
1
REV 0: Normal  
1: Inverse  
RAM data “1” correspond to “ON” ( Default )  
RAM data “0” correspond to “ON”  
11. Whole Display ON/OFF  
This instruction turns on entire LCD pixels regardless the contents of the DDRAM. It doesn’t change the  
contents of DDRAM.  
This instruction should be performed prior to the “Inverse display ON/OFF” instruction.  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
ALL  
ON  
COMMAND  
Whole Display ON/OFF  
0
1
0
1
ALLON 0: Normal Display  
(Whole Display OFF) ( Default )  
1: Whole Display Turns ON (Whole Display ON)  
12. Partial Select  
The partial display is executed by combining the Display Duty Ratio with the Display Start Position instruction.  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
1
D3  
1
D2  
1
D1  
0
D0  
1
COMMAND  
Mode Set  
Duty Ratio  
0
1
0
1
*
DN6 DN5 DN4 DN3 DN2 DN1 DN0  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
D0  
0
COMMAND  
Mode Set  
COM Start Potision  
0
1
0
1
*
DS6 DS5 DS4 DS3 DS2 DS1 DS0  
DN6  
DN5  
DN4  
DN3  
DN2  
DN1  
DN0  
Duty Ratio  
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
1
:
1/16  
1/17  
:
:
:
:
:
:
:
:
:
1
0
0
1
0
0
0
1/88 ( Default )  
DS6  
DS5  
DS4  
DS3  
DS2  
DS1  
DS0  
COM Start Position  
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
1
:
COM0(COM87) ( Default )  
COM1(COM86)  
:
:
:
:
:
:
:
:
:
1
0
1
0
1
1
1
COM87(COM0)  
( ): INV=”1” set by “Common Direction Select” instruction  
Duty is changed automatically when Partial Display execution. But VLCD voltage and frame frequency are not changed.  
The optimum conditions should fix refering the result of actual display.  
Ver.2012-11-22  
- 52 -  
NJU6657  
Preliminary  
13. n-line Inverse ON/OFF  
This instruction sets n-line inversion.  
A0 RDB WRB D7  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
NLS  
COMMAND  
n-line Inverse ON/OFF  
0
1
0
1
NLS  
0: 2-frame alternating drive mode. ( Default )  
1: N-line inverse drive mode.  
14. n-line Inverse Drive Register Set  
This instruction specifies the number of n-line. The line count to be set is 2 to 88.  
In case of Mix=”1”, the driving wave form is Mixed. (n-line Inverse + 2-frame alternating drive mode.)  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
1
D3  
0
D2  
1
D1  
1
D0  
0
COMMAND  
Mode Set  
n-line Inverse Register Set  
0
1
0
0
0
NL6 NL5 NL4 NL3 NL2 NL1 NL0  
NL6  
NL5  
NL4  
NL3  
NL2  
NL1  
NL0  
Inverse Lines  
2 ( Default )  
3
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
1
:
:
:
:
:
:
:
:
:
:
1
1
0
0
1
1
0
0
1
1
0
1
1
0
87  
88  
15. Dummy period  
This instruction specifies the insert position of dummy period.  
In addition, SEG outputs of dummy period are made by ST register  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
1
D3  
0
D2  
0
D1  
ST  
D0  
DUM  
COMMAND  
Dummy Period Set  
0
1
0
0
DUM  
0: 1/CL Duty ( Default )  
1: 1/ (CL+1dummy) Duty  
ST  
0: All segment drivers output non-active.. ( Default )  
1: All segment drivers output active.  
CL: Display line count  
Ver.2012-11-22  
- 53 -  
NJU6657  
Preliminary  
16. Read Modify Write  
This instruction controls column address increment.  
By using of this instruction, the column address can’t increment when read operation but it can increment when write  
operation. This status will be continued until the below-mentioned “end” instruction will be issued.  
This instruction can reduce the load of MPU, during the display data in specific DDRAM area is repeatedly changed for  
cursor blink or others.  
A0 RDB WRB D7  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
COMMAND  
Read Modify Write  
0
1
0
1
Note) In this “Read Modify Write” mode, out of display data “Read” / “Write”, any instructions except “Column Address  
Set” can be executed  
- The Sequence of Cursor Blink Display  
Page Address Set  
Set to the Start Address of  
cursor Display  
Column Address Set  
Read Modify Write  
Dummy Read  
Start the Read Modify Write  
The data is igonored  
Column Counter doesn’t increase  
Dummy Read  
Data inverse by MPU  
Column Counter increase  
Data Write  
Column Counter doesn’t increase  
Column Counter doesn’t increase  
Column Counter increase  
Dummy Read  
Data Read  
Data Write  
Column Counter doesn’t increase  
Column Counter doesn’t increase  
Column Counter increase  
Dummy Read  
Data Read  
Data Write  
Repeating  
End the Read Modify Write  
End  
No  
Finish?  
Yes  
Ver.2012-11-22  
- 54 -  
NJU6657  
Preliminary  
17. End  
The “end” instruction cancels the read modify write mode and makes the coulumn address return to the initial value just  
before “read modify write” is atarted  
A0 RDB WRB D7  
D6  
1
D5  
1
D4  
0
D3  
1
D2  
1
D1  
1
D0  
0
COMMAND  
End  
0
1
0
1
Return  
Column  
Address  
N
N+1  
N+2  
N+3  
・ ・ ・ ・  
N+m  
N
Read modify write  
End  
18. Internal Oscillator Circuit ON/OFF  
This command starts the internal oscillator circuit operation. (INTCLK = “1”)  
This setting is effective when CLS=”1”.  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
0
D1  
1
D0  
INT  
CLK  
COMMAND  
Oscillator Control  
0
1
0
1
INTCLK  
0: Internal OSC OFF ( Default )  
1: Internal OSC ON  
Ver.2012-11-22  
- 55 -  
NJU6657  
Preliminary  
19. Internal Oscillator Circuit Frequency Select  
This instruction sets the internal oscillator circuit frequency.  
A0 RDB WRB D7  
D6  
1
D5  
0
D4  
1
D3  
1
D2  
1
D1  
1
D0  
1
COMMAND  
Mode Set  
OSC Frequency Control  
0
1
0
0
*
SH1 SH0 OS4 OS3 OS2 OS1 OS0  
SH1  
0
SH0  
0
Divide Frequency Select  
fOSC  
0
1
1
1
0
1
f
f
f
OSC/2  
OSC/4 ( Default )  
OSC/8  
OS4 OS3 OS2 OS1 OS0 OS4~0  
(HEX)  
Internal Frequency fOSC [kHz]  
fOSC  
82.4  
88.0  
93.4  
fOSC/2  
41.2  
44.0  
46.7  
49.6  
52.4  
55.1  
57.6  
60.4  
63.0  
65.8  
68.5  
71.2  
73.8  
76.5  
79.2  
81.9  
84.5  
87.2  
89.7  
92.4  
fOSC/4  
20.6  
22.0  
23.4  
24.8  
26.2  
27.6  
28.8  
30.2  
31.5  
32.9  
34.2  
35.6  
36.9  
38.3  
39.6  
41.0  
fOSC/8  
10.3  
11.0  
11.7  
12.4  
13.1  
13.8  
14.4  
15.1  
15.8  
16.4  
17.1  
17.8  
18.4  
19.1  
19.8  
20.5  
21.1  
21.8  
22.4  
23.1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
99.2  
104.7  
110.3  
115.2  
120.8  
126.0  
131.6  
137.0  
142.3  
147.5  
153.1  
158.5  
163.9  
169.0  
174.4  
179.4  
184.9  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
10h  
11h  
12h  
13h  
42.2 (Default)  
43.6  
44.9  
46.2  
* The table above showns the values at 25OC and without of manufacturing variations in the internal oscillation circuit  
frequency.  
* The frame frequency changed automatically when Partial Display execution. The optimum conditions should be select  
refer to formula is shown below.  
Formula of OSC Frequency  
When using internal OSC Circuit.  
Dummy Period Set: DUM=’0’  
OSC frequency  
fOSC = fFR× (CL ×6)  
fFR: frame frequency  
CL: Display line count  
Dummy Period Set: DUM=’1’  
OSC Frequency  
f
OSC = fFR× { (CL+1dummy) ×6 }  
fFR: frame frequency  
CL: Display line count  
Ver.2012-11-22  
- 56 -  
NJU6657  
Preliminary  
In External clock operation, the external clock input to OSC1 terminal.  
The formula is shown below.  
Condition: DUM=’0’  
External clock frequency fOSC = n×fFR× (CL ×6)  
n: Divide count  
fFR: Frame frequency  
CL: Display line  
Condition: External clock Input, DUM=”1”  
External Clock Frequency fOSC = n×fFR× { (CL+1dummy) ×6 }  
n: Divide count  
fFR: Frame frequency  
CL: Display line  
The relationship between OSC register (OS4 to OS0) and OSC frequency are shownbelow.  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
OS4 to OS0  
Ver.2012-11-22  
- 57 -  
NJU6657  
Preliminary  
20. Bias Select  
This instruction selects LCD bias value.  
A0 RDB WRB D7  
D6  
0
*
D5  
1
*
D4  
0
*
D3  
0
*
D2  
0
D1  
1
D0  
0
COMMAND  
Mode Set  
Bias Select  
0
1
0
1
*
BS2 BS1 BS0  
NL2  
0
NL1  
0
NL0  
0
Bias Ratio  
1/10 ( Default )  
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
1/9  
1/8  
1/7  
1/6  
1/5  
1/4  
21. Temperature Gradient Set  
This instruction is used to set the temperature gradient characteristics of the VLCD voltage output from the internal  
power supply circuit.  
A0 RDB WRB D7  
D6  
1
*
D5  
0
*
D4  
0
*
D3  
1
*
D2  
1
D1  
1
D0  
0
COMMAND  
Mode Set  
Temperature Gradient Set  
0
1
0
0
*
TC2 TC1 TC0  
TC2  
0
0
0
0
TC1  
0
0
1
1
TC0 Temperature Gradient [%/]  
0
1
0
1
0
1
-0.000 ( Default )  
-0.050  
-0.075  
-0.100  
-0.125  
1
1
0
0
-0.150  
22. Power Control Set  
This instruction controls the status of internal power circuits. Please refer to the (1-24) internal power circuit more  
detail.  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
1
COMMAND  
Mode Set  
Internal Power Supply Control  
0
1
0
0
*
*
*
*
DC1 DC0 VRG  
VF  
DC1  
0: 2nd Boost OFF ( Default )  
1: 2nd Boost ON  
DC0  
VRG  
VF  
0: 1st Boost OFF ( Default )  
1: 1st Boost ON  
0: Adjust Voltage Circuit OFF ( Default )  
1: Adjust Voltage Circuit ON  
0: V/F Circuit OFF ( Default )  
1: V/F Circuit ON  
The internal power supply must be Off when external power supply using.  
*The wait time depends on the C4 to C8, COUT capacitors, and VDD and VLCD Voltage.  
Therefore it requires the actual evaluation using the LCD module to get the correct time.  
Ver.2012-11-22  
- 58 -  
NJU6657  
Preliminary  
23. EVR Register Set (Upper bit)  
The EVR values is controled in 400 steps by setting the combination of “EVR register set” instruction..  
A0 RDB WRB D7  
D6  
0
*
D5  
0
*
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
COMMAND  
Mode Set  
EVR Register Set 2  
0
1
0
1
*
ER8 ER7 ER6 ER5 ER4  
24. EVR Register Set (Lower bit)  
The EVR values is controled in 400 steps by setting the combination of “EVR register set” instruction..  
A0 RDB WRB D7  
D6  
0
*
D5  
0
*
D4  
0
*
D3  
0
D2  
0
D1  
0
D0  
1
COMMAND  
Mode Set  
EVR Register Set 1  
0
1
0
1
*
ER3 ER2 ER1 ER0  
The combination of EVR register at shown in below.  
ER8 ER7 ER6 ER5 ER4 ER3 ER2 ER1 ER0  
EVR  
VLCD  
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
0
:
0
1
:
0
1
:
:
Min. ( Default )  
:
:
:
:
:
:
:
:
:
:
:
:
1
1
0
0
1
0
0
0
0
400  
Max.  
25. EVR register Step Up  
The “EVR register Step Up” instruction controls +1 step of EVR register value.  
A0 RDB WRB D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
D0  
1
COMMAND  
EVR Register Step Up  
0
1
0
1
26. EVR register Step Down  
The “EVR Register Step Down” instruction controls – 1 step of EVR register value  
A0 RDB WRB D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
1
D1  
0
D0  
0
COMMAND  
EVR Register Step Down  
0
1
0
1
27. Adjust Boost Voltage Set  
The “Adjust Boost Voltage Set” instruction controls 2nd Voltage Booster at Vlcd = 36(V).  
A0 RDB WRB D7  
D6  
0
*
D5  
0
*
D4  
0
*
D3  
1
*
D2  
1
D1  
0
D0  
1
COMMAND  
Mode Set  
Adjust Boost Voltage Set  
0
1
0
1
*
VU2  
VU1  
VU0  
VU2  
0
0
0
0
VU1  
VU0  
0
1
0
1
2nd Boost Circuit  
OFF ( Default )  
2-Time  
3-Time  
4-Time  
0
0
1
1
0
0
1
1
0
1
5-Time  
6-Time  
Ver.2012-11-22  
- 59 -  
NJU6657  
Preliminary  
28. Boost Clock Set  
The “Boost Clock Set” instruction controls Boost Clock Frequency of 1st Vand 2nd Voltage Booster.  
A0 RDB WRB D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
1
D1  
1
D0  
0
COMMAND  
Mode Set  
Boost CLK Set  
0
1
0
1
*
*
*
*
*
DCC  
2
DCC  
1
DCC  
0
DCC2  
DCC1  
DCC0  
Boost CLK  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2 Divide  
4 Divide  
8 Divide  
16 Divide 10.6[kHz]  
32 Divide 5.28[kHz]  
64 Divide 2.64[kHz] (Default )  
128 Divide 1.33[kHz]  
256 Divide 0.66[kHz]  
84.5[kHz]  
42.2[kHz]  
21.1[kHz]  
* The Boost clock frequency is changes by register (OS4 to 0 ) of Internal Oscillator frequency select instruction. Upper  
table value is Boost clock when set to reset condition. (OS4 to 0 =’10000 )  
When fix to Internal Frequency, the boost clock frequency caluculate is shown in below.  
Boost Clock Frequency: fDCC = fDOSC / n  
n: Fix to divide  
fDOSC: Basis Frequency (Internal Oscillator : )  
* In case of using external clock, Basis frequency interchange External clock frequency.  
OS OS OS OS OS  
OS4~  
0(HEX)  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Boost CLK  
82.4  
88.0  
93.4  
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2-Divide  
99.2  
4-Divide  
104.7  
110.3  
115.2  
120.8  
126.0  
131.6  
137.0  
142.3  
147.5  
153.1  
158.5  
163.9  
169.0 (Default)  
174.4  
179.4  
184.9  
8-Divide  
16-Divide  
OS4 to OS0  
Bh  
7
6
5
4
3
2
1
0
Ch  
Dh  
Eh  
32-Divide  
Fh  
10h  
11h  
12h  
13h  
64-Divide  
128-Divide  
256-Divide  
OS4 to OS0  
Fundamental frequency (it corresponds to OS4 to 0 of a built-in oscillating frequency setting command)  
Ver.2012-11-22  
- 60 -  
NJU6657  
Preliminary  
29. Thermal Sensor ON/OFF  
The ON/OFF of the thermal sensor is set by this instruction.  
A0 RDB WRB D7  
D6  
0
D5  
1
D4  
0
D3  
1
D2  
0
D1  
0
D0  
TSON  
COMMAND  
Thermal Sensor ON/OFF  
0
1
0
0
TSON  
0: Thermal Sensor OFF ( Default )  
1: Thermal Sensor ON  
30. Discharge ON/OFF  
Discharge circuits is used discharge out the stabilizing capacitors placed on the VLCD, V1, V2, V3, V4 and VSS..  
This instruction prevents the unknown display at the power supply OFF.  
A0 RDB WRB D7  
D6  
1
D5  
1
D4  
0
D3  
1
D2  
0
D1  
1
D0  
DIS  
COMMAND  
Discharge ON/OFF  
0
1
0
1
DIS  
0: Discharge OFF ( Default )  
1: Discharge ON  
Ver.2012-11-22  
- 61 -  
NJU6657  
Preliminary  
31. Address Home  
This instruction sets the initialization of Page Address and Coulumn Address.  
A0 RDB WRB D7  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
1
D0  
0
COMMAND  
Address Home  
0
1
0
1
Initialize Status  
PARAMETER  
Page Address: Set to “0” page.  
Coulumn Address: St to “0”.  
Resistor  
PA30  
AC70  
Default  
0H  
00H  
1
2
32. Power Save  
This instruction sets the LSI into the power save mode. This instruction is reducing operating current.  
A0 RDB WRB D7  
D6  
1
D5  
1
D4  
1
D3  
1
D2  
0
D1  
0
D0  
0
COMMAND  
Power Save  
0
1
0
1
<Power Save Status>  
PARAMETER  
Status  
Stop  
Stop  
Stop  
Stop  
Stop  
VSS  
Internal Oscillator  
Adjust Voltage Circuit  
VF Circuit  
Voltage Boost Circuit  
Thermo Sensor  
All COM/SEG output terminals  
* When the external clock operation, it can not be accessed.  
* The DDRAM can be accessed during the power save mode.  
33. Power Save Reset  
This instruction releases the power save mode.  
A0 RDB WRB D7  
D6  
1
D5  
1
D4  
1
D3  
0
D2  
0
D1  
0
D0  
1
COMMAND  
Power Save Reset  
0
1
0
1
34. Low Voltage Operation Mode  
When using to the Low VDD condition (VDD=2.7 to 3.3V), Please set up to “Low Voltage Operation  
Mode ON”.  
A0 RDB WRB D7  
D6  
1
*
D5  
1
*
D4  
0
*
D3  
0
*
D2  
1
*
D1  
1
*
D0  
0
COMMAND  
Low Voltage Operation Mode  
0
1
0
0
*
LVM  
LVM  
0: Low Voltage Operation Mode OFF (Default)  
1: Low Voltage Operation Mode ON  
Ver.2012-11-22  
- 62 -  
NJU6657  
Preliminary  
TYPICAL INSTRUCTION SEDUENCE  
Initialization Sequence in Using Internal LCD Power Supply  
Initialization Sequence in Using Ext. LCD Power Supply  
Power ON (VDD)  
WAIT *2  
Power ON (VDD, VEE) (*1)  
WAIT *2  
Reset (RESB terminal)  
WAIT *3  
Reset (RESB terminal)  
WAIT *3  
Command initialization  
(18) OSC ON/OFF  
Command initialization  
(18) Oscillator ON/OFF  
(19) Int.  
(19) Set to internal OSC Frequency  
(21) Set to Temperature Gradient  
(23),(24) Set to E.V.R Volume  
(30) Thermo Sensor ON/OFF  
(34) Low Voltage Operation Mode  
(VDD=3V)  
(20) Set to Bias ratio  
(21) Set to Temperature Gradient  
(23),(24) Set to E.V.R Volume  
(27) Boost Circuit Controll function  
(28) Set to Boost Clock  
(29) Thermo Sensor ON/OFF  
(34) Low Voltage Operation Mode  
(VDD=3V)  
External Power Supply  
From VDCOUT terminal.  
(22) Internal Power Control  
Voltage Boost ON  
WAIT *5  
WAIT *4  
End of Initialize setting  
(22) Internal Power Control  
Adjust Voltage Circuit ON  
V/F Circuit ON  
WAIT *5  
End of Initialize setting  
*1 If different power sources are applied to the VDD and the VEE, turn ON the VDD first.  
*2 Wait until the VDD and VEE are stabilized  
*3 Reset wait time. ( Over than 2mS )  
*4 Wait until the VDCOUT and VDCIN are stabilized  
*5 Wait until the VLCD and V1 to V4 are stabilized  
Note) Wait time for stabilizing internal power supply differs by external components, VDD, and VLCD.  
Make sure what is the eait time in the particular application.  
Ver.2012-11-22  
- 63 -  
NJU6657  
Preliminary  
Example for Display Data Write Sequence  
Example for Power OFF Sequence in using Internal Power Supply.  
Set of Initialize  
(1) Display OFF  
(34) Power Save  
(2) Initial Display Line Address Set  
(22) Internal Power Control  
Voltage Boost OFF  
Voltage Regualator OFF  
Voltage Follower OFF  
(3) Page Address Set  
(30) Discharge ON  
WAIT (*6)  
(4) Culumn Address Set  
(6) Display Data write  
VEE Power OFF  
VDD Power OFF  
(6) Diplay Data Write (different Page)  
Set to from Page AddressSet  
(1) Display ON  
Example for Power OFF Sequence in using Ext. Power Supply  
(1) Display OFF  
(34) Power Save  
Ext. Power Supply OFF  
(30) Discharge ON  
WAIT (*6)  
VEE Power OFF  
VDD Power OFF  
*6 Wait until the discharge stabilized .  
Wait time for End of discharge differs by external components, VDD, and VLCD.Make sure what is  
the eait time in the particular application.  
Ver.2012-11-22  
- 64 -  
NJU6657  
Preliminary  
ABSOLUTE MAXIMUMN RATINGS  
(Ta=25)  
UNIT  
PARAMETER  
SYMBOL  
RATING  
Supply Voltage (1)  
Supply Voltage (2)  
Supply Voltagae (3)  
VDD  
VEE  
-0.3 to +6.0  
V
-0.3 to +6.0  
V
V
VST1,VST1R  
VDCOUT,VDCIN,VLCD  
V1,V2,V3,V4  
VIN  
VOUT  
Topr  
-0.3 to +40.0  
Supply Voltage (4)  
Input Voltage  
Output Voltgae  
-0.3 to VLCD  
-0.3 to VDD + 0.3  
-0.3 to VDD + 0.3  
-40 to +105  
V
V
V
Operation Temperature  
Storage Temperature (Chip) Tstg  
-55 to +125  
VDCOUT  
VDCIN  
VLCD  
VEE  
V1 to V4  
VDD  
VDDL  
VSS  
Note 1) VDD, VLCD to V4, VDCOUT, VDCIN voltage values are specified as VSS = 0V.  
Note 2) The relation of VDCOUT >VLCD>V1>V2>V3>V4>Vss ; VOUT>VDD>VSS must be maintained.  
In case of inputting external LCD driving voltage, LCD drive voltage should start supplying to NJU6657 at the  
mean time of turning on VDD power supply or after turned on VDD  
.
In use of the voltage boost circuit, the condition that the supply voltage : 40V >VOUT –VSS is necessary.  
Note 3) If the LSI are used on condition beyond the absolute maximum rating, the LSI may be destroyed. Using LSI  
within electrical characteristics is strongly recommended for normal operation. Use beyond the electric  
characteristics conditions will cause malfunction and poor reliability.  
Note 4) Decoupling capacitor should be connected between VDD and VSS due to the stabilized operation for the voltage  
converter.  
Ver.2012-11-22  
- 65 -  
NJU6657  
Preliminary  
DC Electrical Characteristics  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
SYMBOL  
NOTE  
PARAMETER  
CONDITION  
MIN  
TYP  
-
MAX  
単位  
Power Supply (1)  
Power Supply (2)  
Power Supply (3)  
VDD  
VEE  
VST1  
VST1R  
VDCOUT  
VDCIN  
VLCD  
2.7  
2.7  
VDD  
5.5  
5.5  
15  
V
V
V
5
6
6
1st Boost Input Voltage  
Power Supply (4)  
VEE  
6
6
-
-
-
36  
36  
36  
V
V1,V2  
V3,V4  
0.4VLCD  
VSS  
0.8VDD  
VSS  
0.8VDD  
VSS  
-1.0  
-
-
-
-
-
-
-
VLCD  
0.6VLCD  
VDD  
0.2VDD  
VDD  
“H” Level Input Voltage  
“L” Level Input Voltage  
VIHC1 VDD=2.7 to 5.5V  
VILC1  
V
V
V
V
uA  
7
8
9
“H” Level Output Voltage VOHC1 VDD=2.7 IOH=-25uA  
to 5.5V  
VIN=VDD or VSS  
“L” Level Output Voltage VOLC1  
IOL= 25uA  
0.2VDD  
1.0  
Leakage Current  
ILI  
ILO  
-3.0  
-
3.0  
uA 10  
Driver On-resistance  
RON1  
VLCD=20V  
VLCD=10V  
DD=3V,Ta=25℃  
VEE=3V, Ta=25℃  
LCD=20V, Ta=25℃  
Ta=25, Initialize Status  
-
1
1.7  
11  
Ta=25℃  
kΩ  
kΩ  
uA  
RON2  
-
2.5  
4.2  
Stand-by Current  
IDDQ  
IEEQ  
ILCDQ  
fOSC  
fCL  
-
0.3  
0.3  
2
5
5
V
-
-
38.0  
-
10  
V
Oscillation Frequency  
42.2  
42.2  
46.5  
200  
kHz 12  
kHz  
External  
Clock Frequency  
Note 5) Although the NJU6657 can operate in wide range of the operating voltage, it shall not be guaranteed in a  
suddeen voltage flucuation during the access with MPU.  
Note 6) Apply to using of external power supply.  
Note 7) Apply to A0,D0 to D7, RDB, WRB, CSB, RESB, CEL68, PS, VDLS, CLS terminals.  
Note 8) Apply to D0 to D7, BUSY terminals.  
Note 9) Aplly to All Input terminals.  
Note 10) Apply to D0 to D7, All output terminals.  
Note 11) RON is the resistance values in supplying 0.1V voltage-difference between power supply terminals (V1,  
V2, V3, V4) and each output terminals (common/segment) of 1/7 bias setting.  
Note 12) Internal osillation frequency when the reset status.  
SH10 = ’10’  
OS40 = ’10000’  
Note 13) The divide of internal oscillation frequency.  
SH1 to 0 = ‘00’  
Ver.2012-11-22  
- 66 -  
NJU6657  
Preliminary  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
SYMBOL  
UNIT NOTE  
PARAMETER  
1st Boost  
CONDITION  
4-times boost  
6-times boost  
8-times boost  
10-times boost  
12-times boost  
MIN  
2.7  
2.7  
2.7  
2.7  
2.7  
VDD  
VDD  
TYP  
MAX  
5.5  
5.5  
5.0  
4.0  
3.3  
15.0  
13.3  
VEE  
V
14  
Input Voltgae  
VST1R 2-times boost  
3-times boost  
-
-
V
2nd Boost  
Input Voltage  
4-times boost  
5-times boost  
VDD  
VDD  
VDD  
-
-
-
-
-
10.0  
8.0  
6-times boost  
6.6  
1st Boost  
VST1 VSS common  
11.0  
V
V
V
output Voltgae  
2nd Boost  
VDOUT VSS common  
-
-
-
-
36  
36  
36  
output Voltage  
Adjustment Range  
LCD Driving Voltage  
Voltage Follower  
Operating Voltage  
Operating current  
VLCD Voltage boost operation off  
External power supply  
VLCD  
6
6
15  
V
ISSQ1 Power save mode  
ISS1  
ISS2  
1
1.7  
220  
40  
3
500  
uA  
mA 16  
uA  
VDD=3V, VLCD=20V,  
All COM/SEG open, without MPU  
access, checker flag display  
Note 14) Applies to the condition when using the internal voltage booster, VST1 and VST1R terminals are  
connected. The adjust boost voltage and boost autocontroled function are not used.  
Note 15) The voltage adjustment circuit controls VLCD within the range of the E.V.R circuit.  
Note 16) Each operating current shall be defined as being measured in the following condition.  
( fFR=80[Hz], 1/10Bias, 1/88Duty, Low voltage operation mode, Driver terminals are open )  
SYMBOL  
Power Control  
Operating Condition  
External  
DCC1  
DCC0  
VRG  
VF  
1st  
Booster  
2nd  
Booster  
Voltage  
regulator  
Voltage  
followers  
Voltage Supply  
(Input Terminal)  
12-Time Boost  
VDCIN, VLCD~V4  
1
0
1
0
1
0
1
0
On  
Off  
On  
Off  
On  
Off  
On  
Off  
ISS1  
ISS2  
ISS 1,2 measurement circuit:  
C1+  
C1-  
+
+
VDCOUT  
VDCIN  
VST1  
VDD  
VEE  
VDD  
VEE  
VDCOUT  
VDCIN  
+
VST1R  
+
NJU6657  
NJU6657  
VLCD  
V1  
C2+  
C2-  
VSS  
VSSE  
VSSA  
VSS  
VSSE  
VSSA  
+
+
External  
Voltage  
Generator  
V2  
C4+  
C6+  
+
V3  
V4  
C3+  
C3-  
A
A
+
+
C5+  
ISS1  
ISS2  
Ver.2012-11-22  
- 67 -  
NJU6657  
Preliminary  
Temperature Sensor Characteristics  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
PARAMETER  
Operating  
SYMBOL  
Ta  
CONDITION  
MIN  
-40  
TYP  
-
MAX  
105  
UNIT NOTE  
Temperature Range  
Temperature Gradient  
T
-5.0  
1.412  
1.144  
0.807  
-
-
5.0  
1.454  
1.186  
0.849  
-
Ta=-40 to 105℃  
Output Voltage  
TSV  
1.433  
1.165  
0.828  
-4.19  
Ta=-40℃  
Ta=25℃  
Ta=105℃  
V
Output Voltage  
VINC  
TTSV  
ITS  
mV/℃  
Temperature gradient  
Temperature sensor  
Setup time  
20  
-
-
-
ms  
uA  
18  
Operating Current  
20  
50  
Note 17) The typ. Value of the sensor analog output voltage TSV when ambient temperature is Ta [OC] is approximated  
by the following expression.  
V
TSV = -0.0006 x Ta2 –4.1386 x Ta +1269mV [mV]  
The sensor analog output voltage is output with accuracy of + 5OC.  
The output voltage temperature gradient VINC.  
Since it is -4.19 [mV/OC], variation voltage [ of TSV ] ΔTSV is denoted by the following formula.  
ΔVTSV = ±(4.19 x 5OC) = 21 [mV]  
The relationship of between VOUT and Temperature as shown in below.  
TSV max  
21[mV]  
TSV  
21[mV]  
TSV min  
5OC  
5OC  
Ta  
Temperrature [OC]  
Ta min  
Ta max  
Note 18) The setup time is possible of Read-out from after input a temperature sensor ON/OFF instruction.  
The TSV terminal is OPEN.  
Ver.2012-11-22  
- 68 -  
NJU6657  
Preliminary  
BUS TIMING CHARACTERISTICS  
- Read and Write characteristics (80 type MPU)  
A0  
tAS6  
tAH6  
tWCS6  
CSB  
tCSH6  
tCSS6  
tEHR6  
WRB  
tELR6  
tCYC6  
tRDH6  
D7 to D0  
Out Put  
tRDD6  
A0  
tAS6  
tAH6  
tELR6  
CSB  
tEHR6  
tCYC6  
tCSH6  
tCSS6  
tWCS6  
WRB  
D7 to D0  
tRDH6  
Out Put  
tRDD6  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
PARAMETER  
A0 Hold Time  
A0 Set Up Time  
SYMBOL CONDITION  
MIN.  
50  
0
MAX.  
UNIT  
ns  
ns  
TERMINAL  
tAS8  
tAH8  
-
A0  
CSB Hold Time  
tCSH8  
tCSS8  
tWCS8  
tCYC8  
tWRLW8  
tWRHW8  
tDS8  
100  
100  
500  
1350  
550  
700  
250  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
CSB  
CSB Set Up Time  
CSB ”H” Level Width  
System Cycle Time  
Write ”L” Pulse Time  
Write ”H” Pulse Time  
Data Set Up Time  
Data Hold Time  
-
-
WRB  
D7 to D0  
tDH8  
Note) Each timing is specified based on 0.2xVDD and 0.8xVDD.  
* : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L".  
Ver.2012-11-22  
- 69 -  
NJU6657  
Preliminary  
- System bus read timing (80 type MPU)  
A0  
tAS6  
tAH6  
tWCS6  
CSB  
tCSH6  
tCSS6  
tEHR6  
E(RDB)  
tELR6  
tCYC6  
tRDH6  
D7 to D0  
Out Put  
tRDD6  
A0  
tAS6  
tAH6  
tELR6  
CSB  
tEHR6  
tCYC6  
tCSH6  
tCSS6  
tWCS6  
E(RDB)  
tRDH6  
Out Put  
D7 to D0  
tRDD6  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
PARAMETER  
A0 Hold Time  
A0 Set Up Time  
SYMBOL CONDITION  
MIN.  
50  
0
MAX.  
UNIT  
ns  
ns  
TERMINAL  
tAS8  
tAH8  
-
A0  
CSB Hold Time  
CSB Set Up Time  
tCSH8  
tCSS8  
tWCS8  
tCYC8  
tWRLR8  
tWRHR8  
100  
100  
500  
2100  
1150  
700  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
CSB  
CSB ”H” Level Width  
System Cycle Time  
Read ”L” Pulse Width  
Read ”H” Pulse Width  
Read Data Out Delay Time  
Read Data Hold Time  
-
RDB  
tRDD8  
tRDH8  
1150  
CL=100pF  
D7 to D0  
0
Note) Each timing is specified based on 0.2xVDD and 0.8xVDD.  
* : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L".  
Ver.2012-11-22  
- 70 -  
NJU6657  
Preliminary  
- System bus write timing (68 type MPU)  
A0  
tAS6  
tAH6  
RW(WRB)  
tWCS6  
CSB  
tCSH6  
tCSS6  
tELR6  
tEHR6  
E(RDB)  
tCYC6  
D7 to D0  
tRDH6  
Out Put  
tRDD6  
A0  
tAS6  
tAH6  
RW(WRB)  
CSB  
tCYC6  
tELR6  
tEHR6  
tCSH6  
tCSS6  
E(RDB)  
D7 to D0  
tWCS6  
tRDH6  
Out Put  
tRDD6  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
PARAMETER  
A0 Hold Time  
A0 Set Up Time  
SYMBOL CONDITION  
MIN.  
50  
0
MAX.  
UNIT  
ns  
ns  
TERMINAL  
tAS6  
tAH6  
-
A0  
CSB Hold Time  
tCSH6  
tCSS6  
tWCS6  
tCYC6  
tELW6  
tEHW6  
tDS6  
100  
100  
500  
1350  
700  
550  
250  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
CSB  
CSB Set Up Time  
CSB ”H” Level Pulse Width  
System Cycle Time  
Enable “L” Pulse Time  
Enable “H” Pulse Time  
Data Set Up Time  
Data Hold Time  
-
-
E
D7 to D0  
tDH6  
Note) Each timing is specified based on 0.2xVDD and 0.8xVDD.  
* : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L".  
Ver.2012-11-22  
- 71 -  
NJU6657  
Preliminary  
- System bus read timing (68 Type MPU)  
A0  
tAS6  
tAH6  
RW(WRB)  
CSB  
tWCS6  
tCSH6  
tCSS6  
tELR6  
tEHR6  
E(RDB)  
tCYC6  
D7 to D0  
tRDH6  
Out Put  
tRDD6  
A0  
tAS6  
tAH6  
RW(WRB)  
CSB  
tCYC6  
tELR6  
tEHR6  
tCSH6  
tCSS6  
E(RDB)  
D7 to D0  
tWCS6  
tRDH6  
Out Put  
tRDD6  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
PARAMETER  
A0 Hold Time  
A0 Set Up Time  
SYMBOL CONDITION  
MIN.  
50  
0
MAX.  
UNIT  
ns  
ns  
TERMINAL  
tAS6  
tAH6  
-
A0  
CSB Hold Time  
CSB Set Up Time  
tCSH6  
tCSS6  
tWCS6  
tCYC6  
tELR6  
tEHR6  
100  
100  
500  
2100  
700  
1150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
CSB  
CSB ”H” Level Pulse Width  
System Cycle Time  
Enable “L” Pulse Width  
Enable “H” Pulse Width  
Read Data Out Daley Time  
Read Data Hold Time  
-
E
tRDD6  
tRDH6  
1150  
CL=100pF  
D7 to D0  
0
Note ) Each timing is specified based on 0.2xVDD and 0.8xVDD  
.
* : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L".  
Ver.2012-11-22  
- 72 -  
NJU6657  
Preliminary  
- Serial interface timing (5-wire/3-wire)  
A0  
RW(WRB)  
CSB  
tWCSS  
tCSS  
tCSH  
tSLW  
tSHW  
SCL(D6)  
tCYCS  
tDHS  
Input  
tDSS  
SDA Input  
tSOD  
tSOD  
SDA Output  
Output  
Output  
Output  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
PARAMETER  
Serial Clock Cycle  
SCL “H” Pulse Width  
SCL ”L” Pulse Width  
Data Set Up Time  
Data Hold Time  
Serial Data Output Delay Time  
CSB – SCL Time  
SYMBOL CONDITION  
MIN.  
650  
300  
300  
200  
200  
MAX.  
UNIT  
ns  
ns  
ns  
ns  
TERMINAL  
tCYCS  
tSHW  
tSLW  
tDSS  
tDHS  
-
SCL  
-
SDA  
SDA  
ns  
tSOD  
tCSS  
tCSH  
-
250  
ns  
ns  
ns  
CL=50pF  
400  
200  
CSB Hold Time  
-
CSB  
CSB "H” Level Pulse Width  
tWCSS  
200  
ns  
Note 13) Each timing is specified based on 0.2xVDD and 0.8xVDD  
.
Ver.2012-11-22  
- 73 -  
NJU6657  
Preliminary  
- External clock input timing  
OSC1  
FCP  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
PARAMETER  
External clock frequency  
External clock duty  
SYMBOL  
fCP  
MIN.  
-
35  
MAX.  
200  
65  
CONDITION  
OSC1  
UNIT  
kHz  
%
duty  
- Reset input timing  
RESb  
tRW  
tR  
During reset  
End of reset  
Internal  
circuit status  
(VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C)  
PARAMETER  
Reset Time  
Reset “L” Puls width  
SYMBOL  
MIN.  
-
1
MAX.  
1
-
CONDITION  
UNIT  
tR  
tRW  
µs  
ms  
Ver.2012-11-22  
- 74 -  
NJU6657  
Preliminary  
LCD DRIVING WAVEFORM  
86 87  
0
1
2
3
4
0
1
2
3
4
5
86 87  
VDD  
VSS  
FR  
VLCD  
V1  
V2  
V3  
V4  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM0  
VSS  
VLCD  
V1  
V2  
V3  
V4  
VSS  
COM1  
COM2  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
VLCD  
V1  
V2  
V3  
S
E
G
1
S S S  
E E E  
G G G  
S
E
V4  
VSS  
G
0
2
3
4
VLCD  
V1  
V2  
V3  
V4  
VSS  
SEG0  
SEG1  
VLCD  
V1  
V2  
V3  
V4  
VSS  
VSS  
V4  
V3  
V2  
V1  
VLCD  
-V1  
-V2  
-V3  
-V4  
-VSS  
COM0-SEG0  
VSS  
V4  
V3  
V2  
V1  
VLCD  
-V1  
-V2  
-V3  
-V4  
-VSS  
COM0-SEG1  
Ver.2012-11-22  
- 75 -  
NJU6657  
Preliminary  
Precautions In Mounting COG  
Power supply voltage may drop instantaneously in synchronization with the timing of generating instantaneous current as  
in the time when the display clock is switched. If the ITO wiring resistance of the power supply pin is high at this time, power  
supply voltge in the IC chip may greatly, leading to malfunction. To supply stable power to the IC, decrease the wiring  
impedance of the power line as low as possible.  
The ITO layout suggestion is shown as below;  
(i) VSS, VSSA, VSSE. ( Connects to system GND. )  
NJU6657  
PAD  
PAD  
PAD  
PAD  
PAD  
PAD  
Separate by ITO  
FPC-PIN  
FPC-PIN  
() VDD,VEE. ( Connects to system VDD. )  
NJU6657  
PAD  
PAD  
PAD  
PAD  
Separate by ITO  
FPC-PIN  
FPC-PIN  
Ver.2012-11-22  
- 76 -  
NJU6657  
Preliminary  
APPLICATION CIRCUIT  
(1) Microprocessor Interface Example  
The NJU6657 interfaces to 80 type or 68 type MPU directly. And the serial interface also communicate with MPU.  
* : C86 terminal must be fixed VDD or VSS.  
80 Type MPU  
2.4 to 3.6V  
VCC  
VDD  
A0  
A1~A7  
IORQb  
D0~D7  
RDb  
A0  
D0~D7  
Decoder  
8
7
NJU6657  
(80 CPU)  
CSB  
RDB  
WRB  
RSTB  
WRb  
RESb  
GND  
VSS  
Reset input  
68 Type MPU  
2.4 to 3.6V  
VCC  
VDD  
A0  
A1~A15  
VMA  
D0~D7  
E
A0  
D0~D7  
Decoder  
8
15  
NJU6657  
(68 CPU)  
CSB  
RDB(E)  
R/W  
RESb  
WRB(R/W)  
RSTB  
GND  
VSS  
Reset input  
Serial Interface  
2.4 to 3.6V  
VCC  
VDD  
A0  
A0  
A1~A7  
SDA  
Decoder  
7
(CPU)  
NJU6657  
PORT1  
PORT2  
RESb  
CSB  
SCL  
RSTB  
GND  
VSS  
Reset input  
Ver.2012-11-22  
- 77 -  
NJU6657  
Preliminary  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
Ver.2012-11-22  
- 78 -  

相关型号:

NJU6673

25-common x 100-segment BITMAP LCD DRIVER
NJRC

NJU6673CH

Liquid Crystal Driver, 125-Segment, CMOS, BUMP, DIE-212
NJRC

NJU6673CL

25-common x 100-segment BITMAP LCD DRIVER
NJRC

NJU6673H

Liquid Crystal Driver, 125-Segment, CMOS, TCP
NJRC

NJU6673T

Liquid Crystal Driver, 125-Segment, CMOS, COF
NJRC

NJU6674

38-common x 132-segment + 1-icon common Bitmap LCD Driver
ETC

NJU6674CJ

Liquid Crystal Driver, 171-Segment, CMOS, 10.38 X 2.51MM, DIE-286
NJRC

NJU6675

BIT MAP LCD DRIVER
NJRC

NJU6675CH

BIT MAP LCD DRIVER
NJRC

NJU6675H

Liquid Crystal Driver, 154-Segment, CMOS, TCP-187
NJRC

NJU6676

64-Common X 132-Segment plus 1-Icon Bit Map Type LCD Controller and Driver
NJRC

NJU6676CH

64-Common X 132-Segment plus 1-Icon Bit Map Type LCD Controller and Driver
NJRC