NJU6674CJ [NJRC]

Liquid Crystal Driver, 171-Segment, CMOS, 10.38 X 2.51MM, DIE-286;
NJU6674CJ
型号: NJU6674CJ
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Liquid Crystal Driver, 171-Segment, CMOS, 10.38 X 2.51MM, DIE-286

驱动 接口集成电路
文件: 总42页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6674  
38-common x 132-segment+1-icon common  
Bitmap LCD Driver  
GENERAL DESCRIPTION  
PACKAGE  
The NJU6674 is a Bitmap LCD Driver to display  
graphics or characters.  
It contains 5,148 bits display data RAM, Microprocessor  
interface circuits, instruction decoder, 38-common and  
132-segment +1-icon common drivers.  
The bit image display data is transferred to the display  
data RAM by serial or 8-bit parallel interface.  
39 x 132 dots graphics or 10-character 3-line by 12 x 13  
dot character with icon are displayed by NJU6674 itself.  
The wide operating voltage from 2.4V to 3.3V and low  
operating current are suitable for small sized battery  
operated items.  
NJU6674CJ  
FEATURES  
Direct Correspondence between Display Data RAM and LCD Pixel  
Display Data RAM  
LCD Drivers  
: 5,148-bit  
: 132-seg, 38-com+1-icon com  
Bias select 1/5 bias or 1/6 bias  
Direct interface with 68 and 80 type MPU  
Serial interface (SI, SCL, A0, CS1B, CS2)  
Useful Instruction Set  
Display ON/OFF ,Display Start Line Set, Page Address Set, Column Address Set, Status Read,  
Display Data Write, Display Data Read, ADC Select, Inverse Display, Entire display ON/OFF, Bias Select,  
Read Modify Write, End, Reset, Power control set, Internal resistor ratio set, EVR Register Set,  
EVR Mode Set, Power saving  
Power Supply Circuits for LCD incorporated  
Step up circuit (x2, x3, x4), Regulator, Voltage Follower x4, V5 level is adjusted by internal bleeder  
resistancePrecision Electrical Variable Resistance (64-steps)  
Bias Stabilization Capacitor less  
Low power consumption  
Operating Voltage (All the voltages are based on VDD=0V.)  
Logic Operating  
-2.4 to -3.3V  
Voltage Booster Operating Voltage  
LCD Driving voltage  
-2.4 to -3.3 V  
-5.0 to -10.0V  
Rectangle outlook for COG  
Package outline: Bump-chip  
C-MOS Technology  
(Substrate: N)  
Ver.2003-04-08  
- 1 -  
NJU6674  
PAD LOCATION  
ALI_A1  
ALI_B2  
DUMMY1  
Chip Center  
Chip Size  
Chip Thickness  
Bump Size  
PAD Pitch  
Bump Height  
Bump Material  
:X=0µm,Y=0µm  
:X=10.38mm, Y= 2.51mm  
:400µm±30µm  
:78.16µm x 48.10µm  
:72µm(Min)  
S131  
S130  
DUMMY15  
CL  
VSS1  
CS1B  
CS2  
VDD  
RESB  
A0  
VSS1  
:17.5µm(Typ)  
:Au  
Voltage Boosting Polarity  
:Negative Voltage(VDD common)  
:N  
WRB(R/WB)  
RD(E)  
VDD  
D0  
Substrate  
D1  
D2  
D3  
D4  
Alignment marks  
D5  
D6(SCL)  
D7(SI)  
VDD  
VDD  
VDD  
VDD  
VSS1  
VSS1  
VSS1  
VSS2  
VSS2  
VSS2  
VSS2  
VOUT  
VOUT  
C3-  
110.34µm  
C3-  
C1+  
C1+  
C1-  
C1-  
C2-  
C2-  
C2+  
C2+  
VSS1  
VSS1  
VRS  
VRS  
VDD  
VDD  
V1  
Y
70.38µm  
X
V1  
V2  
ALI_B1, ALI_B2  
V2  
V3  
V3  
V4  
V4  
V5  
V5  
VR  
VR  
70.38µm  
VDD  
VDD  
TEST  
VDD  
CLS  
VSS1  
SEL68  
P/S  
VDD  
DUMMY16  
VSS1  
70.38µm  
IRS  
VDD  
DUMMY17  
ALI_A1, ALI_A2  
DUMMY25  
Note) Alignment Marks are not contains window.  
S1  
S0  
ALI_A2  
ALI_B1  
Ver.2003-04-08  
- 2 -  
NJU6674  
PAD COORDINATES  
Chip Size 10.38x2.51mm(Chip Center X=0µm, Y=0µm)  
PAD No.  
1
Terminal  
DUMMY1  
DUMMY2  
DUMMY3  
DUMMY4  
DUMMY5  
DUMMY6  
DUMMY7  
DUMMY8  
DUMMY9  
DUMMY10  
DUMMY11  
DUMMY12  
DUMMY13  
DUMMY14  
DUMMY15  
CL  
VSS1  
CS1B  
CS2  
VDD  
RESB  
A0  
VSS1  
WRB  
RDB  
VDD  
D0  
PAD No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Terminal  
C1+  
X= µm  
-4949  
-4877  
-4805  
-4733  
-4661  
-4589  
-4517  
-4445  
-4373  
-4301  
-4229  
-4157  
-4085  
-4013  
-3941  
-3869  
-3797  
-3725  
-3653  
-3581  
-3509  
-3437  
-3365  
-3293  
-3221  
-3149  
-2879  
-2599  
-2319  
-2039  
-1759  
-1479  
-1199  
-919  
-710  
-638  
-566  
-494  
-422  
-350  
-278  
-206  
-134  
-62  
10  
82  
154  
226  
298  
370  
Y= µm  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
X= µm  
442  
514  
586  
658  
730  
802  
874  
946  
Y= µm  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-1098  
-943  
2
3
4
5
6
7
8
9
C1-  
C1-  
C2-  
C2-  
C2+  
C2+  
VSS1  
VSS1  
VRS  
VRS  
VDD  
VDD  
V1  
V1  
V2  
V2  
V3  
V3  
V4  
V4  
V5  
V5  
VR  
VR  
1018  
1090  
1162  
1234  
1306  
1378  
1450  
1522  
1594  
1666  
1738  
1810  
1882  
1954  
2026  
2098  
2170  
2242  
2314  
2386  
2458  
2530  
2602  
2674  
2746  
2818  
2890  
2962  
3034  
3106  
3178  
3250  
3322  
3394  
3466  
3538  
3610  
3682  
3754  
5036  
5036  
5036  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
VDD  
VDD  
TEST  
VDD  
CLS  
VSS1  
SEL68  
P/S  
VDD  
DUMMY16  
VSS1  
D1  
D2  
D3  
D4  
D5  
D6(SCL)  
D7(SI)  
VDD  
VDD  
VDD  
VDD  
VSS1  
VSS1  
VSS1  
VSS2  
VSS2  
VSS2  
VSS2  
VOUT  
VOUT  
IRS  
VDD  
DUMMY17  
DUMMY18  
DUMMY19  
DUMMY20  
DUMMY21  
DUMMY22  
DUMMY23  
DUMMY24  
DUMMY25  
ALI_A2  
C18  
C3-  
C3-  
C1+  
C17  
-871  
Ver.2003-04-08  
- 3 -  
NJU6674  
PAD No.  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
Terminal  
PAD No.  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Terminal  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S51  
S52  
S53  
S54  
S55  
S56  
S57  
S58  
S59  
S60  
S61  
S62  
S63  
S64  
S65  
S66  
S67  
S68  
S69  
S70  
S71  
S72  
S73  
S74  
X= µm  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
5036  
4716  
4644  
4572  
4500  
4428  
4356  
4284  
4212  
4140  
4068  
3996  
3924  
3852  
3780  
3708  
3636  
3564  
3492  
3420  
3348  
3276  
3204  
3132  
3060  
2988  
Y= µm  
-799  
-727  
-655  
-583  
-511  
-439  
-367  
-295  
-223  
-151  
-79  
-7  
65  
137  
209  
281  
353  
425  
569  
X= µm  
2916  
2844  
2772  
2700  
2628  
2556  
2484  
2412  
2340  
2268  
2196  
2124  
2052  
1980  
1908  
1836  
1764  
1692  
1620  
1548  
1476  
1404  
1332  
1260  
1188  
1116  
1044  
972  
900  
828  
756  
684  
612  
540  
468  
396  
324  
252  
180  
108  
36  
-36  
Y= µm  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
C16  
C15  
C14  
C13  
C12  
C11  
C10  
C9  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
COMS  
DUMMY26  
DUMMY27  
DUMMY28  
DUMMY29  
DUMMY30  
DUMMY31  
ALI_B1  
S0  
641  
713  
785  
857  
929  
1089  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
-108  
-180  
-252  
-324  
-396  
-468  
-540  
-612  
Ver.2003-04-08  
- 4 -  
NJU6674  
PAD No.  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
Terminal  
S75  
PAD No.  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
Terminal  
S125  
X= µm  
-684  
-756  
-828  
-900  
Y= µm  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
X= µm  
-4284  
-4356  
-4428  
-4500  
-4572  
-4644  
-4716  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
-5036  
Y= µm  
1098  
1098  
1098  
1098  
1098  
1098  
1098  
1089  
929  
857  
785  
713  
641  
569  
497  
425  
353  
281  
209  
137  
65  
-7  
-79  
-151  
-223  
-295  
-367  
-439  
-511  
-583  
-655  
-727  
-799  
-871  
-943  
-1098  
S76  
S77  
S78  
S79  
S80  
S81  
S82  
S83  
S84  
S85  
S86  
S87  
S88  
S89  
S90  
S91  
S92  
S93  
S94  
S95  
S96  
S97  
S98  
S99  
S100  
S101  
S102  
S103  
S104  
S105  
S106  
S107  
S108  
S109  
S110  
S111  
S112  
S113  
S114  
S115  
S116  
S117  
S118  
S119  
S120  
S121  
S122  
S123  
S124  
S126  
S127  
S128  
S129  
S130  
S131  
-972  
-1044  
-1116  
-1188  
-1260  
-1332  
-1404  
-1476  
-1548  
-1620  
-1692  
-1764  
-1836  
-1908  
-1980  
-2052  
-2124  
-2196  
-2268  
-2340  
-2412  
-2484  
-2556  
-2628  
-2700  
-2772  
-2844  
-2916  
-2988  
-3060  
-3132  
-3204  
-3276  
-3348  
-3420  
-3492  
-3564  
-3636  
-3708  
-3780  
-3852  
-3924  
-3996  
-4068  
-4140  
-4212  
ALI_B2  
DUMMY32  
DUMMY33  
DUMMY34  
DUMMY35  
DUMMY36  
DUMMY37  
DUMMY38  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
COMS  
ALI_A1  
Ver.2003-04-08  
- 5 -  
NJU6674  
BLOCK DIAGRAM  
C0  
C18 S0  
S131 C37  
C19  
COMS  
VSS1  
VDD  
C
O
M
S
Common  
Drivers  
Segment  
Drivers  
Common  
Drivers  
V1 to V5  
5
C1+  
C1-  
C2+  
Common Timing  
Generator  
Shift  
Register  
Shift  
Register  
C2-  
C3-  
VOUT  
VSS2  
VR  
Display Data Latch 132 bits  
VRS  
IRS  
Display Data RAM  
132 x 39 bits  
Column Address Decoder  
Display  
Timing  
CL  
Generator  
Column Address Counter 8bit  
Column Address Register 8bit  
Oscillator  
CLS  
Multiplexer  
Status  
Instruction  
Decoder  
BF  
Bus Holder  
Internal Bus  
Reset  
RESB  
MPU Interface  
CS1B CS2  
A0  
P/S SEL68  
RDB WRB  
(E) (R/WB)  
D0 to D5  
D6(SCL)  
D7(SI)  
Ver.2003-04-08  
- 6 -  
NJU6674  
TERMINAL DESCRIPTION  
No.  
1 to 15  
85  
Symbol  
DUMMY1 to  
DUMMY38  
I/O  
Description  
Dummy Terminals.  
These are open terminals electrically.  
89 to 97  
119 to 124  
259 to 265  
20,26,  
Power  
VDD  
Power supply terminals.  
35 to 38,  
62 to 63,  
76 to 77,  
79,84,88  
17,23,  
VSS1  
GND Ground terminal.  
39 to 41,  
58 to 59,  
81,86  
42 to 45  
60 to 61  
64,65  
Power  
VSS2  
VRS  
V1  
Reference voltage for voltage booster  
External reference voltage input terminal.  
I
Power  
LCD Driving Voltage Supplying Terminal. When the internal voltage  
booster is not used, supply each level of LCD driving voltage from  
outside with following relation.  
66,67  
68,69  
V2  
V3  
70,71  
V4  
VDDV1V2V3V4V5VOUT  
72,73  
V5  
When the internal power supply is on, the internal circuits generate and  
supply following LCD bias voltage from V1 to V4 terminal.  
Bias  
1/5 Bias  
V1  
V2  
V3  
V4  
V5+4/5 VLCD  
V5+3/5 VLCD  
V5+2/5 VLCD  
V5+1/5 VLCD  
1/6 Bias  
V5+5/6 VLCD  
V5+4/6 VLCD  
V5+2/6 VLCD  
V5+1/6 VLCD  
VLCD=VDD-V5  
50,51  
52,53  
56,57  
54,55  
48,49  
46,47  
C1+  
C1-  
C2+  
C2-  
C3-  
VOUT  
O
Boosted capacitor connecting terminals used for voltage booster.  
O
I
Voltage booster output terminal. Connect the boosted capacitor  
between this terminal and VSS1  
.
74,75  
VR  
Voltage adjust terminal. V5 level is adjusted by external bleeder  
resistance connecting between VDD and V5 terminal.(IRS=”L”)  
IRS terminal connect with "H" at the time of built-in resistance used.  
“H” , this terminal must connect to "H" or "L".  
27  
28  
29  
30  
31  
32  
33  
34  
87  
D0  
D1  
D2  
D3  
D4  
I/O  
P/S="H": Tri-state bi-directional Data I/O terminal in 8-bit parallel  
operation.  
P/S="L" : Serial data input terminal. (D7 )  
Serial data clock signal input terminal. (D6 ) Data from SI is  
loaded at the rising edge of SCL and latched as the parallel  
data at 8th rising edge of SCL.  
D5  
D6(SCL)  
D7(SI)  
IRS  
I
Internal resistor select terminal  
“H”: Internal  
“L”: External  
This terminal must connect to "H" or "L".  
Ver.2003-04-08  
- 7 -  
NJU6674  
No.  
22  
Symbol  
A0  
I/O  
I
Description  
Connect to the Address bus of MPU. The data on the D0 to D7 is  
distinguished between Display data and Instruction by status of A0.  
A0  
H
L
Discrimination.  
Display Data  
Instruction  
21  
I
Reset terminal. When the RESB terminal goes to “L”, the initialization is  
performed.  
RESB  
Reset operation is executing during “L” state of RESB.  
18  
19  
I
I
CS1B  
CS2  
Chip select terminal. Data Input/Output are available during CS1B=”L” and  
CS2=”H”.  
25  
<In case of 80 Type MPU>  
RDB(E)  
RDB signal of 80 type MPU input terminal. Active "L"  
During this signal is "L" , D0 to D7 terminals are output.  
<In case of 68 Type MPU>  
Enable signal of 68 type MPU input terminal. Active "H"  
24  
I
<In case of 80 Type MPU>  
WRB(R/WB)  
Connect to the 80 type MPU WRB signal. Active "L".  
The data on the data bus input synchronizing the rise edge of this signal.  
<In case of 68 Type MPU>  
The read/write control signal of 68 type MPU input terminal.  
R/WB  
State  
H
Read  
L
Write  
82  
83  
SEL68  
P/S  
I
I
MPU interface type selection terminal.  
This terminal must connect to VDD or VSS.  
SEL68  
State  
H
L
68 Type  
80 Type  
Serial or parallel interface selection terminal.  
Chip  
Select  
Read  
/Write  
Data/Command  
Serial Clock  
P/S  
Data  
“H”  
A0  
A0  
D0 to D7  
-
CS1B,  
CS2  
RDB,  
WRB  
“L”  
SI(D7)  
-
SCL(D6)  
CS1B,  
CS2  
RAM data and status read operation do not work in mode of the serial  
interface.  
In case of the serial interface (P/S="L"),RDB and WRB must be fixed "VDD"  
or " VSS", and D0 to D5 are high impedance.  
80  
16  
I
Terminal to select whether or enable or disable the display clock internal  
oscillator circuit.  
CLS=”H” : Internal oscillator circuit is enable  
CLS=”L” : Internal oscillator circuit is disabled (requires external input)  
When CLS=”L”, input the display clock through the CL terminal.  
CLS  
CL  
I/O Display clock input/output terminal.  
The following is true depending on the CLS status.  
CLS  
CL  
“H”  
Output  
“L”  
Input  
Ver.2003-04-08  
- 8 -  
NJU6674  
No.  
117~99  
266 to 284  
Symbol  
C0 to C18  
I/O  
O
O
Description  
LCD driving signal output terminals.  
C
19 to C37  
Common output terminals  
Segment output terminals  
:C0 to C37  
:S0 to S131  
Common output terminal  
The following output voltages are selected by the combination of  
FR and status of common.  
Scan Data  
H
FR  
H
L
H
L
Output Voltage  
V5  
VDD  
V1  
L
V4  
126 to 257  
S0 to S131  
O
Power Save  
VDD  
Segment output terminal  
The following output voltages are selected by the combination of  
FR and data in the RAM.  
RAM  
Data  
H
FR  
Output Voltage  
Normal  
VDD  
V5  
Reverse  
V2  
H
L
V3  
L
H
L
V2  
V3  
VDD  
V5  
Power Save  
VDD  
118  
285  
COMS  
TEST  
O
I
COM output terminals for the indicator. Both terminals output the same  
signal.  
Leave these open if they are not used.  
78  
Maker testing terminal. Used for maker test (No connections )  
Ver.2003-04-08  
- 9 -  
NJU6674  
Functional description  
(1) Block circuits description  
(1-1) Busy Flag (BF)  
During internal operation, the LSI is being busy and can’t accept any instructions except “status read”.  
The BF data is output through D7 terminal by the “status read” instruction.  
When the cycle time (tcyc) mentioned in the “AC characteristics” is satisfied, the BF check isn’t required  
after each instruction, so that MPU processing performance can be improved.  
(1-2) Initial display line register  
The initial display line register assigns a DDRAM line address, which corresponds, to COM0 by “initial  
display line set” instruction. It is used for not only normal display but also vertical display scrolling and  
page switching without changing the contents of the DDRAM.  
However, the 39th address for icon display can’t be assigned for initial display line address.  
(1-3) Line counter  
The line counter provides a DDRAM line address. It initializes its contents at the switching of frame  
timing signal (FR), and also counts-up in synchronization with common timing signal.  
(1-4) Column address counter  
The column address counter is an 8-bit preset counter, which provides a DDRAM column address, and  
it is independent of below-mentioned page address register.  
It will increment (+1) the column address whenever “display data read” or “display data write”  
instructions are issued. However, the counter will be locked when no-existing address above (84)H are  
addressed. The count-lock will be able to be released by the “column address set” instruction again. The  
counter can invert the correspondence between the column address and segment driver direction by  
means of “ADC set” instruction.  
(1-5) Page address register  
The page address register provides a DDRAM page address.  
The page address “1 to 3” should be used the D0, D1, D2, D3, D4, D5 , D6, D7 are valid.  
The page address “4” should be used the only D0, D1, D2, D3, D4, D5 are valid.  
The last page address “5” should be used for icon display because the only D0 is valid.  
(1-6) Display data RAM (DDRAM)  
The DDRAM contains 5,148-bit, and stores display data, which are 1-to-1 correspondents to LCD panel  
pixels.  
When normal display mode, the display data “1” turns on and “0” turns off LCD pixels. When inverse  
display mode, “1” turns off and “0” turns on.  
Ver.2003-04-08  
- 10 -  
NJU6674  
Page Address  
(D2,D1,D0)  
Line  
Address  
Common  
Driver  
Data  
Display Pattern  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D0  
D0=0  
D0=1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
0, 0, 0  
0, 0, 1  
0, 1, 0  
0, 1, 1  
Page 0  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
COMM*  
Page 1  
Page 2  
Page 3  
1, 0, 0  
1, 0, 1  
Page 4  
Page 5  
Column  
Address(ADC)  
00 01 02 03 04 05  
83 82 81 80 7F 7E  
82 83  
01 00  
Segment Drivers S0 S1 S2 S3 S4 S5  
S130 S131  
*: COMM is independent of the “Initial display line set” instruction and always corresponds to the 39th line.  
Fig.1 Display data RAM (DDRAM) Map  
Ver.2003-04-08  
- 11 -  
NJU6674  
(1-7) Common direction register  
The common direction register specifies common driver’s scanning direction.  
Table 1.  
Common Drivers  
99 284  
C18  
PAD No. 117  
Pin name C0  
266  
C19  
C37  
Common direction  
select(D3)  
“L”  
“H”  
COM0  
COM37  
COM18  
COM19  
COM37  
COM0  
COM19  
COM18  
The duty ratio setting and output assignment register are so controlled to operate independently that  
duty ratio setting required to corresponding duty ratio for output assignment.  
(1-8) Reset Circuit  
The reset circuit initializes the LSI to the following status by using of the reset signal into the RESB  
terminal.  
Reset status using the RES terminal:  
1. Display off  
2. Normal Display (Non-inverse display)  
3. ADC select: Normal mode (D0=0)  
4. Power control register clear : D2, D1, D0=”0, 0, 0”  
5. Serial interface register clear  
6. LCD bias select  
: D0=”0”(1/6 bias)  
7. Entire display off  
: D0=”0” (Normal mode)  
8. Read modify write off  
9. Initial display line address : 00H  
10. Column address  
11. Page address  
: 00H  
: 0 page  
12. Common direction register : Normal mode (D3=0)  
13. V5 level is adjusted by external bleeder resistance : D2, D1, D0=”1, 0, 0”  
14. EVR mode off and EVR register : D5, D4, D3, D2, D1, D0=”1, 0, 0, 0, 0, 0”  
The RESB terminal should be connected to MPU’s reset terminal, and the reset operation should be  
executed at the same timing of the MPU reset.  
As described in the “DC characteristics”, it is necessary to input 10us(min.) or over “L” level signal  
into the RESB terminal in order to carry out the reset operation. The LSI will return to normal operation  
after about 1.0us(max.) from the rising edge of the rest signal.  
In case of using external power supply for LCD driving voltage, the RESB terminal is required to be  
being “L” level when the external power supply is turned-on.  
The “Reset” instruction in Table.4 can’t be substituted for the reset operation by using of the RESB  
terminal. It executes above-mentioned only 8 to 14 items.  
Ver.2003-04-08  
- 12 -  
NJU6674  
LCD driving circuits  
(a) Common and segment drivers  
LCD drivers consist of 38-common drivers, 132-segment divers and 1-icon-common driver.  
As shown in “LCD driving waveform”, LCD driving waveforms are generated by the combination of  
display data, common timing signal and internal FR timing signal.  
(b) Display data latch circuit  
The display data latch circuit temporally stores 132-bit display data transferred from the DDRAM in the  
synchronization with the common timing signal, and then it transfers these stored data to the segment  
drivers.  
“Display on/off”, “inverse display on/off” and “entire display on/off” instructions control only the contents  
of this latch circuit, they can’t change the contents of the DDRAM.  
In addition, the LCD display isn’t affected by the DDRAM accesses during its displaying because the  
data read-out timing from this latch circuit to the segment drivers is independent of accessing timing to the  
DDRAM.  
(c) Line counter and latch signal or latch Circuits  
The clock line counter and latch signal to the latch circuits are generated from the internal display clock  
(CL). The line address of display data RAM is renewed synchronizing with display clock (CL).  
132bits display data are latched in display latch circuits synchronizing with display clock, and then  
output to the LCD driving circuits. The display data transfer to the LCD driving circuits is executed  
independently with RAM access by the MPU.  
(d) Display timing generator  
The display timing generates the timing signal for the display system bay combination of the master  
clock CL and driving signal FR ( refer to Fig.2 ) The frame signal FR and LCD alternative signal generate  
LCD driving waveform on the two frame alternative driving method.  
(e) Common timing generation  
The common timing is generated by display clock CL (refer to Fig.2)  
37 38 1  
2
3
4
5 6 7 8  
36 37 38 1  
2
3
4
5 6  
7
CL  
(LSI internal signal)  
FR  
C0  
VDD  
V1  
V4  
V5  
VDD  
V1  
C1  
V4  
V5  
RAM  
DATA  
VDD  
V2  
Sn  
V3  
V5  
Fig.2 Waveform of Display Timing  
Ver.2003-04-08  
- 13 -  
NJU6674  
(f) Oscillator  
This is the low power consumption CR oscillator which provides the display clock and voltage converter  
timing clock. Either external or internal Oscillator can be selected by setting the CLS terminal to “L” or  
“H” as shown in below.  
CLS=”L” : External Oscillator  
CLS=”H” : Internal Oscillator  
When the internal oscillator is used, the CL terminal fixed to “H” or “L”.  
When the external oscillator is used, the CL terminal into display clock.  
(g) Internal power circuits  
The internal power circuits are composed of x4 boost voltage converter, output voltage regulator  
including 64-step EVR and voltage followers.  
The optimum values of the external passive components for the internal power circuits, such as  
capacitors for V1 to V5 terminals and feed back resistors for VR terminal, depend on LCD panel size.  
Therefore, it is necessary to evaluate the actual LCD module with these external components in order to  
determine the optimum values.  
Each portion of the internal power circuits is controlled by “power control set” instruction as shown in  
Table.2. In addition, the combination of power supply circuits is described in Table.3.  
Table.2 Power control set  
Bits  
Portions  
Status  
D2  
D1  
D0  
Voltage converter  
Voltage regulator  
Voltage followers  
1 :On  
1 :On  
1 :On  
0: Off  
0: Off  
0: Off  
Table.3 Power supply combinations  
Status  
D2  
D1  
D0  
Voltage  
converter  
Voltage  
regulator  
Voltage  
followers  
External  
voltage  
Capacitor  
terminals  
Using all internal power circuits  
Using voltage regulator and  
Voltage followers  
1
0
1
1
1
1
On  
Off  
On  
On  
On  
On  
VSS2  
OUT, VSS2  
Use  
Open  
V
Using voltage followers  
0
0
0
0
1
0
Off  
Off  
Off  
Off  
On  
Off  
VOUT, V5,  
VSS2  
Open  
Open  
Using only external power supply  
VOUT  
,
V1 to V5  
Note1) Capacitor input terminals: C1+, C1-, C2+, C2-, C3-  
Note2) Do not use other combinations except examples in Table.3.  
Note3) Connect decoupling capacitors on V1 to V5 terminals whenever using the voltage followers.  
Ver.2003-04-08  
- 14 -  
NJU6674  
- Power Supply applications  
Power Control Instruction  
D2 : Boost Circuit  
D1 : Voltage Regulator  
D0 : Voltage Follower  
(1) Internal power supply Example.  
V5 level is adjusted by internal bleeder  
resistance (IRS=”H”)  
(2) Internal power supply Example.  
V5 level is adjusted by internal bleeder  
resistance (IRS=”L”)  
All of the Internal Booster, Voltage Regulator,  
Voltage Follower using. (D2,D1,D0) = (1,1,1)  
All of the Internal Booster, Voltage Regulator,  
Voltage Follower using. (D2,D1,D0) = (1,1,1)  
IRS  
IRS  
V
V
V
V
V
DD  
V
V
V
V
V
DD  
+
+
+
+
+
+
+
+
+
+
+
+
C1-  
C1+  
C3-  
C2+  
C2-  
C1-  
C1+  
C3-  
C2+  
C2-  
1
1
+
+
+
+
2
2
3
3
4
4
V
V
V
5
V
V
V
5
OUT  
OUT  
SS2  
SS2  
V
DD  
VR  
V5  
V
DD  
VR  
V5  
*
:Bias capacitors are selected depending on the LCD panel.  
The evaluation in various display patterns should be experimented in the application.  
Ver.2003-04-08  
- 15 -  
NJU6674  
(3) Only VOUT Supply from outside Example.  
(4) Only VOUT Supply from outside Example.  
V5 level is adjusted by internal bleeder  
resistance (IRS=”L”)  
V5 level is adjusted by internal bleeder  
resistance (IRS=”H”)  
Internal Voltage Regulator,  
Voltage Follower using.  
(D2,D1,D0) = (0,1,1)  
Internal Voltage Regulator,  
Voltage Follower using.  
(D2,D1,D0) = (0,1,1)  
IRS  
IRS  
V
V
V
V
V
DD  
V
V
V
V
V
DD  
+
+
+
+
1
1
2
2
+
+
3
3
+
+
+
+
4
4
V
V
V
5
V
V
V
5
OUT  
OUT  
SS2  
SS2  
V
DD  
VR  
V5  
V
DD  
VR  
V5  
(5) VOUT and V5 Supply from outside Example.  
Internal Voltage Follower using.  
(D2,D1,D0) = (0,0,1)  
(6) External Power Supply Example.  
All of V1 to V5 and VOUT supply from outside  
(D2,D1,D0) = (0,0,0)  
V
V
V
V
V
DD  
V
V
V
V
V
DD  
+
+
+
+
1
1
2
2
3
3
4
4
V
V
V
5
V
V
V
5
OUT  
SS2  
OUT  
SS2  
: These switches should be open during the power save mode.  
: *Bias capacitors are selected depending on the LCD panel.  
The evaluation in various display patterns should be experimented in the application.  
Ver.2003-04-08  
- 16 -  
NJU6674  
INSTRUCTION SET  
The NJU6674 distinguishes the data on the data bus D7 to D0 as an instruction by combination of A0, RDB(E),  
WRB(R/W) signals. The decoding of the instruction and execution performs with only high speed internal timing without  
relation to the external clock. Therefore, no busy flag check required normally. In case of the serial interface, the data input  
as MSB(D7) first serially. Table.4 shows the instruction codes of the NJU6674.  
Table.4 Instruction table  
Instruction Code  
Instruction  
Description  
A0 RDB WRB D7 D6 D5 D4 D3 D2 D1 D0  
LCD Display ON/OFF  
D0=0:OFF D0=1:ON  
(a) Display ON/OFF  
0
0
0
0
1
1
1
1
0
0
0
0
1
0
1
0
0
0
1
0
0
0
1
0
1
1
1
0/1  
Initial display  
(b)  
Determine the Display Line of  
RAM to COM 0  
Start address  
Page  
Line set  
Set the page of DD RAM to the  
Page Address Register  
Set the Higher order 4 bits Column  
Address to the Reg.  
(c) Page address set  
1
0
0
1
1
0
*
Address  
Column address set  
(Upper 4-bit)  
Higher Order  
Culomn Address  
(d)  
Column address set  
(Lower 4-bit)  
Set the Lower order 4 bits Column  
Address to the Reg.  
Lower Order  
0
0
1
1
0(1)  
1
0
1
0
Culomn Address  
(e) Status read  
Status  
0
0
0
0
Read out the internal Status  
Write the data into the Display  
Data RAM  
(f) Display data write  
Write Data  
Read Data  
Read the data from the Display  
Data RAM  
(g) Display data read  
(h) ADC select  
1
0
0
0
1
1
1
0
0
Set the DD RAM vs Segment  
D0=0:Normal D0=1:Inverse  
Inverse the ON and OFF Display  
D0=0:Normal D0=1:Inverse  
Whole Display Turns ON  
D0=0:Normal D0=1: Whole Disp.  
ON  
1
1
0
0
1
1
0
0
0
0
0
1
0
1
0/1  
0/1  
Inverse display  
(i)  
On/Off  
Entire display  
On/Off  
(j)  
(k)  
(l)  
0
0
0
1
1
1
0
0
0
1
1
1
0
0
1
1
1
1
0
0
0
0
0
0
1
0
0
0
1
0
0/1  
0/1  
0
LCD bias select  
Set the LCD bias ratio  
D0=0:1/6  
Increment the Column Address  
Register when writing but  
no-change when reading  
D0=1:1/5  
Read modify write  
Release from the Read Modify  
write Mode  
(m) End  
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
0
1
0
*
1
1
*
0
0
*
(n) Reset  
Initialize the Internal Circuits  
Select common direction  
D3=0:Normal D3=1:Inverse  
Set the status of internal power  
Circuits  
Common direction  
(o)  
(p)  
(q)  
0/1  
select  
Power control set  
0
0
1
1
0
0
0
0
0
1
0
1
D2 D1 D0  
D2 D1 D0  
Internal resistor  
ratio set  
Set the status of internal  
resistor ratio (Ra/Rb)  
0
0
1
0
0
0
0
0
EVR mode set  
EVR register set  
Pawer save  
(r)  
(s)  
(t)  
0
0
1
1
0
0
1
*
0
0
1
Set EVR mode  
*
Setting Data  
Set EVR register  
Set the Power Save Mode  
(LCD Display OFF)  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
1
0
0
1
mode On/Off  
(u) NOP  
Reserve  
0
0
0
1
1
1
0
0
0
1
1
*
1
0
*
1
1
*
0
0
*
0
1
*
0
1
*
1
0
*
1
0
*
(v)  
Inhibited command  
(Inhibited)  
(w) Test  
0
1
0
1
0
1
0
1
1
1
0/1  
Inhibited command  
(*Don’t Care)  
Ver.2003-04-08  
- 17 -  
NJU6674  
(2) Instruction description  
(a) Display On/Off  
The “Display ON/OFF” instruction is used to control the display ON or OFF without changing the  
display data in the DDRAM.  
All of the COM terminals at the time of “Display OFF” and SEG terminals are set to VDD level.  
A0  
0
RDB WRB  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
1
D0  
D
1
0
D
0: Display Off  
1: Display On  
(b) Initial display line set  
This instruction specifies the DDRAM line address which corresponds to the COM0 position.  
By means of repeating this instruction, the initial display line address will be dynamically changed; it  
means smooth display scrolling will be enabled.  
A0  
0
RDB WRB  
D7  
0
D6  
1
D5  
A5  
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
D0  
A0  
1
0
A5  
0
0
:
A4  
0
0
:
A3  
0
0
:
A2  
A1  
A0  
Line address (HEX)  
0
0
:
0
0
:
0
1
:
00  
01  
:
:
:
:
:
:
:
:
1
0
0
1
0
1
25  
(c) Page address set  
In order to access to the DDRAM for writing or reading display data, both “page address set” and  
“column address set” instructions are required before accessing.  
The last page address “5” should be used for icon display because the only D0 is valid.  
A0  
0
RDB WRB  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
A2  
D1  
A1  
D0  
A0  
1
0
(*: Don’t Care)  
A2  
A1  
A0  
0
1
0
1
Page  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
2
3
4
5
0
1
Ver.2003-04-08  
- 18 -  
NJU6674  
(d) Column address set  
As above-mentioned, in order to access to the DDRAM for writing or reading display data, it is  
necessary to execute both “page address set” and “column address set” before accessing. The 8-bit  
column address data will be valid when both upper 4-bit and lower 4-bit data are set into the column  
address register.  
Once the column address is set, it will automatically increment (+1) whenever the DDRAM will be  
accessed, so that the DDRAM will be able to be continuously accessed without “column address set”  
instruction.  
The column address will stop increment and the page address will not be changed when the last  
address (83)H is addressed.  
A0  
0
RDB WRB  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
A7  
D2  
A6  
D1  
A5  
D0  
A4  
1
0
Upper 4-bit  
Lower 4-bit  
0
1
0
0
0
0
0
A3  
A2  
A1  
A0  
A7  
0
0
:
A6  
A5  
0
0
:
A4  
0
0
:
A3  
0
0
:
A2  
0
0
:
A1  
A0 Column address (HEX)  
0
0
:
0
0
:
0
1
:
00  
01  
:
:
:
:
:
:
:
:
:
:
1
0
0
0
0
0
1
1
83  
(e) Status read  
This instruction reads out the internal status regarding “busy flag”, “ADC select”, “display on/off” and  
“reset”.  
A0  
0
RDB WRB  
D7  
BUSY  
D6  
ADC  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
ON/OFF RESET  
0
1
BUSY: When D7 is “1”, the LSI is being busy and can’t accept any instructions.  
ADC: It shows the correspondence between the column address and segment drivers.  
When D6 is “0”, the column address (131-n) corresponds to segment driver n.  
When D6 is “1”, the column address (n) corresponds to segment driver n.  
Please be careful that read out data is opposite of “ADC select” instruction data.  
ON/OFF: It shows display on or off status.  
When D5 is “0”, the LSI is in display-on status.  
When D5 is “1”, the LSI is in display-off status.  
Please be careful that read out data is opposite of “Display On/Off” instruction data.  
RESET: It shows reset status.  
When D4 is “0”, the LSI is in normal operation.  
When D4 is “1”, the LSI is during reset operation.  
(f) Display data write  
This instruction writes display data into the selected column address on the DDRAM.  
The column address automatically increments (+1) whenever the display data is written by this  
instruction, so that this instruction can be continuously issued without “column address set” instruction.  
A0  
1
RDB WRB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
Write Data  
Ver.2003-04-08  
- 19 -  
NJU6674  
(g) Display data read  
This instruction reads out the display data stored in the selected column address on the DDRAM.  
The column address automatically increments (+1) whenever the display data is read out by this  
instruction, so that this instruction can be continuously issued without “column address set” instruction.  
After the ”column address set” instruction, a dummy read will be required, please refer to the (4-5).  
In case of using serial interface mode, this instruction can’t be used.  
A0  
1
RDB WRB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
Read Data  
(h) ADC select  
This instruction selects segment driver direction.  
The correspondence between the column address and segment driver direction is shown in Fig.1.  
Segment Driver Output order is inverse, when this instruction executes, therefore, the placement  
NJU6674 against the LCD panel becomes easy.  
A0  
0
RDB WRB  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
D
1
0
D
0: Clokwise Output(Normal)  
1: Counterclockwise Output(Inverse)  
(i) Inverse display On/Off  
This instruction inverses the status of turn-on or turn-off of entire LCD pixels. It doesn’t change the  
contents of the DDRAM.  
A0  
0
RDB WRB  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
1
D0  
D
1
0
D
0: Normal  
1: Inverse  
RAM data “1” correspond to “On”  
RAM data “0” correspond to “On”  
(j) Entire display On/Off  
This instruction turns on entire LCD pixels regardless the contents of the DDRAM. It doesn’t change the  
contents of DDRAM. This instruction executed prior to the “Normal or Inverse display On/Off Set”  
Instruction.  
A0  
0
RDB WRB  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
D
1
0
D
0: Normal Display  
1: Whole Display turns On  
When the “Entire display On” instruction is executed at Display Off states, the NJU6674 operates in  
Power Save Mode. (Refer “Power Save Mode”)  
(k) LCD bias set  
This instruction selects LCD bias value.  
A0  
0
RDB WRB  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
1
D0  
D
1
0
D
0: 1/6 bias  
1: 1/5 bias  
Ver.2003-04-08  
- 20 -  
NJU6674  
(l) Read modify write  
This instruction sets the Read Modify Write controlling the Column Address increment. In this mode,  
Column Address only increments when execute the display data “Write” instruction; but no change when  
the display data “Read” Instruction. This states is continued until the End instruction(m) execution. When  
the End instruction is executed, the Column Address goes back to the start address before the execution  
of this “Read Modify Write” instruction. This function reduces the load of MPU for repeating display data  
change of the fixed area.  
A0  
0
RDB WRB  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
1
0
*) In this “Read Modify Write” mode, out of display data “Read”/”Write”, any instructions except  
“Column Address Set” can be executed.  
The sequence of cursor blink display  
Page Address Set  
Set to the Start Address  
of Cursor Display(*)  
Column Address Set  
Start the Read Modify Write  
Read Modify Write  
Dummy Read  
Data Read  
The data is ignored  
Column Counter doesn’t increase  
Data inverse by MPU  
Data Write  
Column Counter increase  
Dummy Read  
Column Counter doesn’t increase  
Column Counter doesn’t increase  
Column Counter increase  
Data Read  
Data Write  
Dummy Read  
Data Read  
Data Write  
Column Counter doesn’t increase  
Column Counter doesn’t increase  
Column Counter increase  
End the Read Modify Write  
End  
No  
Finish?  
Yes  
Column Address goes  
back to the start address.(*)  
Ver.2003-04-08  
- 21 -  
NJU6674  
(m) End  
The “end” instruction cancels the read modify write mode and makes the column address return to the  
initial value just before “read modify write” is started.  
A0  
RDB WRB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
1
0
1
1
1
0
Return  
Column  
Address  
N
N+1  
N+2  
N+3  
N+m  
N
Read modify write  
End  
(n) Reset  
This instruction reset the LSI to the following status, however it doesn’t change the contents of the  
DDRAM. Please be careful that it can’t be substituted for the reset operation by using of the RESB  
terminal.  
Reset status by “reset” instruction:  
1: Read modify write off  
2: Initial display line address  
3: Column address  
: (00)H  
: (00)H  
4: Page address  
: (0) page  
5: Common direction register : Normal mode (D3=”0”)  
6: V5 level is adjusted by external bleeder resistance (D2, D1, D0=”1, 0, 0”)  
7: EVR register  
: (D5, D4, D3, D2, D1, D0=”1, 0, 0, 0, 0, 0”)  
A0  
0
RDB WRB  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
1
D0  
0
1
0
(o) Common driver direction select  
This instruction selects common driver direction.  
Please refer to (1-7) common driver direction for more detail  
.
A0  
0
RDB WRB  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D3  
D2  
*
D1  
*
D0  
*
1
0
(*: Don’t Care)  
D3 0: Normal (C0 C37)  
1: Inverse (C37 C0)  
Ver.2003-04-08  
- 22 -  
NJU6674  
(p) Power control set  
This instruction controls the status of internal power circuits. Please refer to the (1-9) LCD Driving  
Circuits (g) internal power circuits for more detail.  
A0  
RDB WRB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
0
0
1
0
1
D2  
D1  
D0  
D2 0: Voltage converter off  
1: Voltage converter on  
D1 0: Voltage regulator off  
1: Voltage regulator on  
D0 0: Voltage followers off  
1: Voltage followers on  
Note) The internal power supply must be Off when external power supply using.  
* The wait time depends on the C4 to C8, COUT capacitors, and VDD and V5 Voltage.  
Therefore it requires the actual evaluation using the LCD module to get the correct time.  
LCD Driving power supply ON/OFF sequences.  
The sequences below are required when the power supply turns ON/OFF. For the power supply turning on  
operation after the power-save mode(p), refer the “power save release” mentioned after.  
Turn ON seaquence  
Turn OFF seaquence  
E.V.R Register set  
Display OFF  
Entire Display ON  
Internal resister  
ratio set  
Power control OFF  
or  
Power control ON  
or  
Ext. Power Supply OFF  
Ext. Power Supply ON  
(wait time *1)  
Display OFF  
(wait time *1)  
Display ON  
NJU6674 Power OFF  
( 1) The Internal Power Supply rise time is depending on the condition of the Supply Voltage, VLCD=VDD-V5,  
External Capacitor of Booster, and External Capacitor connected to V1 to V5. To know the rise time  
correctly, test by using the actual LCD module. refer to (3-5) “LCD Driving Voltage Generation Circuits”.  
Ver.2003-04-08  
- 23 -  
NJU6674  
(q) Internal resistor ratio set  
The “Internal resistor ratio set” instruction is used to determine the internal resistor ratio for the  
voltage regulator.  
A0  
0
RDB WRB  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
0
D2  
A2  
D1  
A1  
D0  
A0  
1
0
D2  
0
0
0
0
1
1
1
1
D1  
0
0
1
1
0
0
1
1
D0  
0
1
0
1
0
1
0
1
Internal resistor ratio(1+Rb/Ra)  
Internal resistor ratio(1+Rb/Ra)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.4  
Minimum  
:
:
:
:
:
:
Maximum  
(r),(s) EVR set  
(r) EVR mode set  
This instruction sets the LSI into the EVR mode, and it is always used by the combination with  
“EVR register set”.  
The LSI can’t accept any instructions except the “EVR register set” during the EVR set mode. This  
mode will be released after the “EVR register set” instruction.  
A0  
0
RDB WRB  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
1
0
(s) EVR register set  
This instruction sets 6-bit data into the EVR register to determine the output voltage “V5” of the  
internal voltage regulator.  
A0  
0
RDB WRB  
D7  
*
D6  
*
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
1
0
(*: Don’t Care)  
D5  
0
0
:
D4  
0
0
:
D3  
0
0
:
D2  
D1  
D0  
V5  
Minimum  
0
0
:
0
0
:
0
1
:
:
:
:
:
:
:
:
:
:
1
1
1
1
1
1
Maximum  
When EVR doesn’t use, set the EVR register to D5, D4, D3, D2, D1, D0 = ”1, 0, 0, 0, 0, 0”.  
Ver.2003-04-08  
- 24 -  
NJU6674  
(t) Power Save(complex command)  
When Entire Display ON at the Display OFF states(inverse order also same), the internal cirsuits goes  
to the Power Save Mode and the operating curent is dramatically reduced, almost same as the standby  
current. The internal states in the Power Save Mode is shown as follows;  
1: The Oscillation Circuits and the Internal Power Supply Circuits stop the operation.  
2: LCD driving is stopped. Segment and Common drives output VDD level Voltage.  
3: The display data and the internal operating condition are remained and kept as just before enter the  
Power Save Mode.  
4: All the LCD driving bias voltage(V1 to V5) is fixed to the VDD level.  
The power save and its release perform according to the following sequences.  
Power Save Sequence *1  
Power Save Releace Sequence *2  
Display OFF  
Entire Display OFF  
(Wait Time) *3  
Entire Display ON  
*4  
Display ON  
*1: In the Power save sequence, the Power Save Mode starts after the Entire Display ON command is  
executed.  
*2: In the Power save Release sequence, Power Save Mode releases just after the Entire Display OFF  
instruction. The Display ON instruction is allowed to execute at any time after the Entire Display OFF  
instruction is completed.  
*3: The Internal Power Supply rise time depending on the condition of the Supply Voltage, VLCD=VDD-V5,  
External Capactor of Booster, and External Capacitor connected to V1 to V5. To Know the rise time  
correctly, test by using the actual LCDmodule.  
*4: LCD Driving waveform is output after the exection of the Display ON instruction execution.  
*5: In case of the external power supply operation, the external power supply should be turned off before  
the Power Save Mode and connected to the VDD for fixing the voltage. In this time, VOUT terminal also  
shold be made condition like as connection to VSS.  
(u) NOP  
This instruction is Non Operation Instruction.  
(v) Reserve, (w) Test  
This instruction is used only for manufacturer’s tests. (Don’t Inhibited command)  
Ver.2003-04-08  
- 25 -  
NJU6674  
(3) Internal Power Supply  
(3-1) Voltage converter  
The voltage converter generates maximum 4x boosted negative-voltage from the voltage between VDD  
and VSS2. The boosted voltage is output from the VOUT terminal.  
The internal oscillator is required to be operating when using this converter, because the divided signal  
provided from the oscillator is used for the internal timing of this circuit.  
The boosted voltage between VDD and VOUT must not exceed 10.0V.  
The voltage converter requires external capacitors for boosting as shown in below.  
The boosted voltage and VDD, VSS2  
VDD=+3V  
VDD=+2.5V  
V
V
V
V
SS2=0V  
OUT=-3V  
OUT=-6V  
OUT=-7.5V  
2x boost  
3x boost  
4x boost  
Example for connecting the capacitors  
4x boost  
3x boost  
2x boost  
VSS2  
VSS2  
C1-  
VSS2  
C1-  
C1+  
C3-  
C2+  
C1-  
C1+  
+
+
+
C1+  
+
+
+
+
+
C3-  
C2+  
C3-  
C2+  
C2-  
C2-  
C2-  
VOUT  
VOUT  
VOUT  
Ver.2003-04-08  
- 26 -  
NJU6674  
(3-2) Contrast Adjustment by the EVR function  
The EVR selects the VREG voltage out of following 64 conditions by setting 6-bit data into the EVR  
register. When the EVR function, VEV (refer:Fig-3-a Voltage Adjust Circuit) is controlled, and the LCD  
display contrast is adjusted. The EVR controls the voltage of VEV bay instruction and change the voltage  
of V5.  
A step with EVR is set like table shown below.  
n
63  
62  
61  
:
EVR register  
(0,0,0,0,0,0)  
V
EV [V]  
VLCD  
Minimum  
00H  
01H  
02H  
:
(99/162)VREG  
(100/162)VREG  
(101/162)VREG  
(0,0,0,0,0,1)  
(0,0,0,0,1,0)  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
2
1
0
3DH  
3EH  
3FH  
(1,1,1,1,0,1)  
(1,1,1,1,1,0)  
(1,1,1,1,1,1)  
(160/162)VREG  
(161/162)VREG  
(162/162)VREG  
:
:
Maximum  
*1: VLCD=VDD-V5  
*2 : In use of the EVR function, the voltage adjustment circuit must turn on by the power control instruction.  
(3-3) Setting for internal resistor ratio  
Either external or internal feedback resistors can be selected by setting the IRS terminal to “0” or”1”.  
The Internal resistor ratio selects 8 conditions of the feedback resistor ratio(1+Rb/Ra).The feed back  
resistor ratio(1+Rb/Ra) changing 3-bit data into the Internal resistor ratio register.  
IRS  
0
Ra, Rb  
External resistors  
Internal resistors  
1
Internal resistor ratio register:  
(Reference)  
(1+Rb/Ra)  
D2  
D1  
D0  
0
0
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.4  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Ver.2003-04-08  
- 27 -  
NJU6674  
(3-4) Voltage Adjust Circuit  
The boosted voltage of VOUT outputs V5 for VLCD driving through the voltage adjust circuit.  
This circuit is composed of high the VRS, 64-level EVR and internal feedback resistor.  
(a) Using Internal Resistor Ratio function (IRS=”1”)  
The LCD driving volatge V5 is determined in accordance with the setting for the EVR and the  
internal resistor ratio Instruction.  
The output voltage of V5 adjusted by changing with in the V5>VOUT  
The output voltage is caluculated by the following formula.  
.
V5=(1+Rb/Ra)VEV=(1+(Rb/Ra))(n/162)VREG  
(a-1)  
V
n
REG : External Constant voltage (VRS)  
: EVR value  
(EVR)  
VDD  
VEV  
VREG  
VRS  
V5  
VDD  
Ra  
Rb  
Fig-3-a Voltage Adjust Circuit  
Ver.2003-04-08  
- 28 -  
NJU6674  
(b) Using external Ra and Rb resistors  
In case that the external feedback resistors (Ra, Rb) are used by setting the IRS terminal to “0”,  
these external resistors are required to be placed between the VDD and VR and between the VR and  
V5 terminals. The LCD driving voltage V5 is determined in accordance with the setting for the EVR  
and the external resistor ratio.  
The output voltage of V5 adjusted by changing the Ra and Rb within the V5>VOUT  
The output voltage is caluculated by the following formula.  
.
V5=(1+(Rb’/Ra’))VEV=(1+(Rb’/Ra’))(1-(n/162))VREG (b-1)  
(EVR)  
VEV  
VDD  
VREG  
VRS  
VDD  
V5  
Ra’  
VR  
Rb’  
Fig-3-b Voltage Adjust Circuit  
< Designe example for R1 and R2 / Reference >  
Condition : Ta=25°C, n=31, VREG=-2.1V, EVR=1FH ,  
V5=(1+(Rb/Ra))(n/162)VREG  
-7=(1+(Rb’/Ra’))(1-(31/162) (-2.1)  
(b-2)  
Determined by the current flown between VDD-V5 / 5uA.  
Ra’+Rb’=1.4MΩ  
(b-3)  
Ra and Rb caluculated by above conditions and the formula of (b-2, b-3) to mentioned below;  
Rb’/Ra’=3.12  
Ra=340kΩ  
Rb=1060kΩ  
The adjustable V5 range and step voltage table shown below.  
V5  
Min.  
Typ.  
-7.0 (32 Step)  
52  
Max.  
UNIT  
[V]  
Adjustable Range  
-8.6 (63 Step)  
-5.3(0 Step)  
Step Voltage  
[mV]  
Ver.2003-04-08  
- 29 -  
NJU6674  
(3-5) LCD Driving Voltage Generation Circuits  
The LCD driving bias voltage of V1,V2,V3,V4 are generated by dividing the V5 voltage with the internal  
bleeder resistance and is supplied to the LCD driving circuits after the impedence conversion by the  
voltage follower.  
The external capacitors to V1 to V5 for Bias voltage stabilization may be removed in use of small size  
LCD panel. The equivalent load of LCD panel may be changed depending on display patterns. Therefore,  
it require display quality check on various display patterns actually without external capacitors. If the  
display quality is not so good, external capacitors should connects as show in Fig. 4. (If no need external  
capacitors as result of experiment, the application patterns (wiring) should be prepared for recovery.)  
Using the internal Power Supply  
Using the external Power Supply  
IRS  
VSS2  
VSS1  
COUT  
IRS  
VSS1  
VSS2  
VOUT  
C3-  
VOUT  
C3-  
C1  
C3  
+
+
C1+  
C1-  
C1+  
C1-  
C2+  
C2-  
V5  
C2  
C2+  
C2-  
R3  
R2  
R1  
V5  
VR  
VDD or VSS1  
VR  
VDD  
VDD  
V1  
VDD  
+
C4  
VDD  
V1  
+
+
+
C5  
C6  
C7  
C8  
V2  
V3  
V4  
External  
Voltage  
Generator  
V2  
V3  
V4  
+
V5  
VRS  
V5  
VSS1  
VRS  
Fig.4  
Reference set up value VLCD=VDD-V5=5..0 to 9.0V  
.
1 Short wiring or sealed wiring to the VR terminal is required due to  
the high impedance of VR terminal.  
2 Following connection of VOUT is required when external power  
supply using.  
When VSS>V5, VOUT=V5  
When VSSV5, VOUT=VSS  
3 Bias capacitors are selected depending on the LCD panel.  
The evaluation in various display patterns should be  
experimented in the application  
COUT  
C1, C2, C3  
C4 to C7  
R1  
1.0µF  
1.0µF  
0.1 to 0.47 µF  
264kΩ  
R2  
211kΩ  
R3  
925kΩ  
Ver.2003-04-08  
- 30 -  
NJU6674  
(4) MPU Interface  
(4-1) Interface type selection  
NJU6674 interfaces with MPU by 8-bit bi-directional data bus (D7 to D0) or serial (SI:D7). The 8 bit  
parallel or serial interface is determined by a condition of the P/S terminal connecting to “H” or “L” level as  
shown in Table 5. In case of the serial interface, status and RAM data read out operation is impossible.  
Table 5  
P/S  
H
L
I/F type  
Parallel  
Serial  
CS1B  
CS1B  
CS1B  
CS2  
CS2  
CS2  
A0  
A0  
A0  
RDB  
RDB  
-
WRB SEL68  
WRB SEL68  
D7  
D7  
SI  
D6  
D6  
SCL  
D5 - D0  
D5 - D0  
Hi-Z  
-
-
“Hi-Z” mark: Hi-impedance "-" mark: Fix to "H"or "L"  
(4-2) Parallel Interface  
The NJU6674 interfaces the 68- or 80-type MPU directly if the parallel interface (P/S=”H” is selected.  
The 68-type or 80-type MPU is selected by connecting the SEL68 terminal to “H” or “L” as shown in  
table 6.  
Table 6  
CS1B  
SEL68  
Type  
CS2  
CS2  
CS2  
A0  
A0  
A0  
RDB  
E
WRB  
R/WB  
WRB  
D7 - D0  
D7 - D0  
D7 - D0  
H
L
68-type MPU  
80-type MPU  
CS1B  
CS1B  
RDB  
(4-3) Discrimination of Data Bus Signal  
The NJU6674 discriminates the mean of signal on the data bus by the combination of A0, E, R/WB, and  
(RDB, WRB) signals as shown in Table 7.  
Table 7  
common  
68 type  
R/WB  
80 type  
Function  
A0  
H
H
L
RDB  
WRB  
H
L
H
L
L
H
L
H
L
H
L
Read Display Data  
Write Display Data  
Status Read  
L
H
Write into the Register(Instruction)  
Ver.2003-04-08  
- 31 -  
NJU6674  
(4-4) Serial Interface.(P/S="L")  
The serial interface of the NJU6674 consists of the 8-bit shift register and 3-bit counter. In case the  
chip is selected (CS1B=”L”, CS2=”H”), the input to D7(SI) and D6(SCL) becomes available, and in case that  
the chip isn’t selected, the shift register and the counter are reset to the initial condition.  
The data input from the terminal(SI) is MSB first like as the order of D7, D6,------ D0, by a serial interface,  
it is entered into with rise edge of serial clock(SCL). The data converted into parallel data of 8-bit with the  
rise edge of 8th serial clock and processed.  
It discriminates display data or instructions by A0 input terminal. A0 is read with rise edge of (8 X n)th of  
serial clock (SCL), it is recognized display data by A0=“H” and instruction by A0=“L” A0 input is read in the  
rise edge of (8 X n)th of serial clock (SCL) after chip select and distinguished.  
However,in case of RESB=“H” to “L” or CS1B=“L” to “H” and CS2=“H” to “L” with trasfered data does not  
fill 8 bit, attention is necessary because it will processed as there was command input. Always, input the  
data of (8 X n) style.  
The SCL signal must be careful of the termination reflection by the wiring length and the external noise  
and confirmation by the actual machine is recommended by it.  
CS1B, CS2  
SI  
SCL  
A0  
D4  
D6  
D5  
3
D7  
1
D6  
D1  
7
D0  
8
D7  
9
2
4
10  
Fig.5  
Ver.2003-04-08  
- 32 -  
NJU6674  
(4-5) Access to the Display Data RAM and Internal Register.  
The NJU6674 transfers data to the MPU through the bus holder with the internal data bus.  
In case of reading out the display data contents in the DD RAM, the data which was read in the first  
data read cycle (= the dummy read ) is memorized in the bus holder. Then the data is read out to the  
system bus from the bus holder in the next data read cycle. Also, In case that the MPU writes into DD  
RAM, the data is temporarily stored in the bus holder and is then written into DD RAM by the next data  
write cycle.  
Therefore, the limitation of the access to NJU6674 from MPU side is not access time (tACC, tDS) of  
Display Data RAM and the cycle time becomes dominant. With this, speed-up of the data transfer with the  
MPU becomes possible. In case of cycle time isn’t met, the MPU inserts NOP operation only and  
becomes an equivalent to an execution of wait operation on the satisfy condition in MPU.  
When setting an address, the data of the specified address isn’t output immediately by the read  
operation after setting an address, and the data of the specified address is output at the 2nd data read  
operation. Therefore, the dummy read is always necessary once after the address set and the write cycle.  
(See Fig. 6)  
The example of Read Modify Write operation is mentioned in (3)Instruction -l)The sequence of Inverse  
Display.  
Write Operation  
MPU  
WRB  
DATA  
N+2  
N+3  
N
N+1  
Internal  
timing  
Bus holder  
WRB  
N
N+1  
N+2  
N+3  
Read Operation  
MPU  
WRB  
RDB  
n
N
N
n+1  
Data read n+1  
DATA  
Address set N  
Data read n  
Dummy read  
WRB  
RDB  
Internal  
timing  
N
N+1  
N+2  
Column address  
Bus holder  
N
n
n+1  
n+2  
Fig.6  
(4-6) Chip Select  
CS1B, CS2 is Chip Select terminal. In case of CS1B="L" and CS2="H". the interface with MPU is  
available. In case of CS1B=”H” or CS2=”L”, the D0 to D7 are high impedance and A0, RDB, WRB, SI and  
SCL inputs are ignored. If the serial interface is selected when CS1B=”H” or CS2=”L” the shift register and  
counter are reset. However, the reset is always operated in any conditions of CS1B, CS2.  
Ver.2003-04-08  
- 33 -  
NJU6674  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
SYMBOL  
RATINGS  
UNIT  
V
-0.3 to +7.0  
-0.3 to +3.6(Used Tripler)  
-7.0 to +0.3  
Supply Voltage(1)  
VDD  
Supply Voltage(2)  
VSS2  
V
-3.6 to +0.3(Used Tripler)  
Supply Voltage(3)  
Supply Voltage(4)  
V5, VOUT  
VDD-11.0 to VDD+0.3  
V
V
V1,V2,V3,V4  
V5 to VDD+0.3  
Supply Voltage(5)  
Input Voltage  
VRS  
VIN  
-7.0 to +0.3  
-0.3 to VDD+0.3  
V
V
Operating  
Temperature  
Strage temperature  
Topr  
Tstg  
-40 to +85  
°C  
°C  
-55 to +125  
VDD  
VSS  
VDD  
V5  
Note 1) All voltage values are specified as VSS1=0V.  
Note 2) The relation of VDD>V1>V2>V3>V4>V5>VOUT; VDD>VSS1>VOUT must be maintained.  
In case of inputting external LCD driving voltage , the LCD drive voltage should start supplying to  
NJU6674 at the mean time of turning on VDD power supply or after turned on VDD.  
In use of the voltage boost circuit, the condition that the supply voltage: 11.0V> VDD -VOUT is necessary.  
Note 3) If the LSI are used on condition beyond the absolute maximum rating, the LSI may be destroyed.  
Using LSI within electrical characteristics is strongly recommended for normal operation.  
Use beyond the erectric characteristics conditions will cause malfunction and poor reliability.  
Note 4) Decoupling capacitor should be connected between VDD and VSS1 due to the stabilized operation for  
the voltage converter.  
Ver.2003-04-08  
- 34 -  
NJU6674  
DC Electrical Characteristics  
(VDD=2.4V to 3.3V, VSS=0V, Ta=-20 to 75°C)  
NOTE  
SYMBOL  
UNIT  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
Operating voltage (1)  
Operating voltage (2)  
Recommend  
VDD  
VSS  
2.4  
3.3  
VDD-2.4  
VDD-5.0  
V
V
1
VDD-3.3  
VDD-10.0  
VDD-10.0  
VDD-0.4xV5  
V5  
0.8 x VDD  
VSS  
V5  
Operating Available  
V
voltage(3)  
Available  
Available  
V1,V2 VLCD=VDD-V5  
V3,V4  
VIHC  
VILC  
VOHC D0 to D7  
VOLC  
ILI  
VDD  
VDD-0.6xV5  
VDD  
0.2 x VDD  
VDD  
A0, D0 to D7, RDB, WRB, RESB,  
CS1B, CS2, P/S, SEL68 Terminal  
“H” level input voltage  
“L” level input voltage  
“H” level output voltage  
“L” level output voltage  
V
V
IOH=-0.5mA  
IOL= 0.5mA  
0.8 x VDD  
VSS  
Terminal  
0.2 x VDD  
1.0  
All input terminals  
-1.0  
-3.0  
Input Leagage Current  
µA  
kΩ  
ILO D0 to D7 terminals, Hi-Z state  
3.0  
Ta=25°C, VLCD=8.0V  
Driver On-resistance  
Stand-by Current  
Input Terminal  
Capacitance  
Oscillation Frequency  
Reset Time  
RON  
3.0  
4.5  
5.0  
2
During Power Save Mode  
Ta=25°C  
IDDQ  
CIN  
0.01  
10.0  
12.5  
3
4
µA  
pF  
fOSC  
tR  
tRW  
10.2  
1.0  
10.0  
14.8  
kHz  
µs  
µs  
VDD= 3.0V Ta =25°C  
5
6
RESB terminal  
Reset “L” level pulse Width  
VDD1 3-times boost  
VDD2 4-times boost  
VRS  
2.4  
2.4  
VDD-5.0  
-10.0  
3.3  
2.5  
VDD-2.4  
-9.5  
V
Input voltage  
7
V
V
Output voltage  
On-resistance  
VOUT1 4-times boost, VDD=2.5V  
3-times boost,  
VDD=3.0V, COUT=1.0µF  
RTRI  
1600  
2600  
Adjustment range LCD  
driving voltage  
Voltage Follower  
Voltage boost operation off  
VOUT2  
VDD-10.0V  
VDD-5.0V  
VDD-5.0V  
V
V
8
9
V5  
Voltage adjustment circuit “OFF” VDD-10.0V  
VDD=3.0V, VRS=VDD-2.4V,  
EVR=00H,VOUT=VDD-10.0V  
Int. resistor ratio  
INTR  
3.0  
%
V5=No load ;Ta =25°C  
Power save mode  
IDDQ1  
IOUT1  
0.01  
51  
5
85  
µA  
µA  
VDD=3.0V, VLCD=5V, No access  
Com/Seg terminals non connect  
Display Checkerd pattern  
Operating Current  
10  
IOUT2  
12  
20  
µA  
Note 1) Although the NJU6674 can operate in wide range of the operating voltage, it shall not be guaranteed in  
a sudden voltage fluctuation during the access with MPU.  
Note 2) RON is the resistance values in supplying 0.1V voltage-difference beteen power supply terminals  
(V1,V2,V3,V4) and each output terminals (common/ segment). This is specified within the range of  
Operating Voltage(2).  
Note 3) Apply no access from MPU.  
Note 4) Apply A0, D0 to D7, RDB, WRB, CS1B, CS2, RESB, P/S, CL terminals.  
Note 5) tR ( Reset Time ) refers to the reset completion time of the internal circuits from the rise edge of the  
RESB signal.  
Note 6) Apply minimum pulse width of the RESB signal. To reset, the ”L” pulse over tRW shall be input.  
Note 7) Apply to the VDD when using 4-times boost.  
Note 8) The voltage adjustment circuit controls V5 within the range of the voltage follower operating voltage.  
Note 9) INTR : The calculation of (VLCD(Ideal)*1-(VLCD(Real))/VLCD(Ideal)) x100%  
*1 VLCD(Ideal)=Nx(1-63/162)x2.4 (N:Selected by the “Internal resistor ratio” )  
Ver.2003-04-08  
- 35 -  
NJU6674  
Note10) Each operating current shall be defined as being measured in the following condition.  
Power Control  
Operating Condition  
Voltage  
External Voltage  
Supply  
(Input terminal)  
Symbol  
D2  
D1  
D0  
Voltage  
converter  
Voltage  
Follower  
regulator  
IDD1  
IDD2  
1
0
1
0
1
0
Validity  
Validity  
Validity  
Use(VSS2)  
Invalidity  
Invalidity  
Invalidity  
Use(VOUT, V1 to V5)  
VDD  
VDD or VSS  
VDD-3V  
:IDD1  
1MΩ  
500kΩ  
1.6MΩ  
VR  
V5  
IR  
CLS CL VR  
VDD  
NJU6674  
A
VSS1  
C1+ C1- C3- C2+ C2-  
VOUT  
VSS2  
3V  
+
+
1.0µF  
1.0µF  
+
1.0µF  
10kΩ  
:IDD2  
VDD  
VDD  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
VDD  
VR  
VSS1 VSS2  
V5  
V4  
V2  
V3  
V1  
CLS  
VOUT  
CL  
VDD  
NJU6674  
C1- C2+  
A
C1+  
C3-  
C2-  
3V  
-5V  
Fig.7 MEASURMENT BLOCK DIAGRAM  
Ver.2003-04-08  
- 36 -  
NJU6674  
BUS TIMING CHARACTERISTICS  
Read and Write characteristics (80 type MPU)  
tCYC8  
A0, CS1B, CS2  
WRB, RDB  
tr  
tf  
tAW8  
tAH8  
tCCL  
tCCH  
tDH8  
tDS8  
D0 to D7  
(WRITE)  
tACC8  
tOH8  
D0 to D7  
(READ)  
(VDD=2.7V to 3.3V, Ta=-20 to 75°C)  
Parameter  
Address hold time  
Terminal  
tAH8  
Symbol  
Condition  
Min.  
Max.  
Unit  
TYP  
0
A0, CS1B,  
CS2  
0
Address set up time  
System cycle time  
tAW8  
tCYC8  
tCCL(W)  
tCCL(R)  
tCCH  
300  
60  
120  
60  
40  
25  
WRB,  
RDB  
Control “L” pulse width (Write)  
Control “L” pulse width (Read)  
Control “H” pulse width  
Data set up time  
tDS8  
tDH8  
ns  
D0 to D7  
Data set up time  
RD access time  
tACC8  
tOH8  
140  
100  
CL=100pF  
10  
Output disable time  
CS1B, CS2,  
WRB, RDB  
Input signal rising, falling edge  
tr, tf  
15  
A0, D0 to D7  
*:All timing based on 20% and 80% of VDD voltage level.  
Ver.2003-04-08  
- 37 -  
NJU6674  
Read and Write characteristics (68 type MPU)  
tCYC6  
E
tr  
tf  
tEWL  
tEWH  
R/WB  
tAW6  
tAH6  
A0, CS1B, CS2  
tDH6  
tDS6  
D0~D7  
(WRITE)  
tACC6  
tOH6  
D0~D7  
(
READ)  
(VDD=2.7V to 3.3V, Ta=-20 to 75°C)  
Parameter  
Symbol  
Terminal  
Condition  
Unit  
MIN  
TYP  
MAX  
Address hold time  
tAH6  
tAW6  
tCYC6  
0
A0, CS1B  
CS2, R/WB  
Address set up time  
System cycle time  
0
E
E
300  
120  
60  
WRITE  
Enable “H” pulse  
width (Read)  
tEWH  
tEWL  
READ  
WRITE  
READ  
60  
Enable “L” pulse  
width (Read)  
ns  
E
60  
Data set up time  
Data hold time  
tDS6  
tDH6  
tACC6  
tOH6  
40  
25  
D0 to D7  
RD access time  
Output disable time  
140  
100  
CL=100pF  
10  
E, R/WB,  
A0, D0 to D7  
Input signal rising, falling edge  
tr, tf  
15  
*:All timing based on 20% and 80% of VDD voltage level.  
*:tCYC6 shows the cycle of theE signal in active CS1B and CS2.  
Ver.2003-04-08  
- 38 -  
NJU6674  
Write characteristics (Serial interface)  
tCSH  
tCSS  
CS1B, CS2  
tSAS  
tSAH  
A0  
tSCYC  
tSLW  
tSHW  
SCL  
tr  
tf  
tSDS  
tSDH  
SI  
(VDD=2.7V to 3.3V, Ta=-20 to 75°C)  
Unit  
Parameter  
Serial clock cycle  
Symbol  
tSCYC  
Terminal  
Condition  
MIN  
TYP  
MAX  
250  
SCL  
SCL “H” pulse width  
SCL “L” pulse width  
Address set up time  
Address hold time  
Data set up time  
tSHW  
tSLW  
tSAS  
tSAH  
tSDS  
tSDH  
tCSS  
tCSH  
100  
100  
150  
150  
100  
100  
150  
150  
A0  
SI  
ns  
Data hold time  
CS-SCL time  
CS1B, CS2  
CS1B, CS2  
SCL, SI, A0  
Input signal rising, falling edge  
tf, tr  
15  
*:All timing based on 20% and 80% of VDD voltage level.  
Ver.2003-04-08  
- 39 -  
NJU6674  
LCD DRIVING WAVEFORM  
37 38  
0
1
2
3
4
0
1
2
3
4
5
37 38  
VDD  
VSS  
FR  
VDD  
V1  
V2  
V3  
V4  
V5  
C0  
C0  
C1  
C2  
C3  
VDD  
V1  
V2  
V3  
V4  
V5  
C4  
C5  
C1  
C6  
C7  
VDD  
V1  
V2  
V3  
V4  
V5  
C8  
C9  
C2  
C10  
C11  
C12  
C13  
VDD  
V1  
V2  
V3  
V4  
V5  
C14  
C15  
S0  
VDD  
V1  
V2  
V3  
V4  
V5  
S1  
V5  
V4  
V3  
V2  
V1  
VDD  
C0~S0  
-V1  
-V2  
-V3  
-V4  
-V5  
V5  
V4  
V3  
V2  
V1  
C0~S1  
VDD  
-V1  
-V2  
-V3  
-V4  
-V5  
Ver.2003-04-08  
- 40 -  
NJU6674  
APPLICATION CIRCUIT  
(1) Microprocessor Interface Example  
The NJU6674 interfaces to 80 type or 68 type MPU directly.  
And the serial interface also communicate with MPU.  
* : C86 terminal must be fixed VDD or VSS.  
80 Type MPU  
VCC  
VDD  
A0  
A0  
A1~A7  
IORQ  
SEL68  
CS1B  
CS2  
Decoder  
CPU  
NJU6674  
D0~D7  
D0~D7  
VDD  
RD  
RDB  
WR  
RES  
WRB  
RESB  
P/S  
GND  
VSS  
RESET  
Decoder  
RESET  
68 Type MPU  
VDD  
VCC  
VDD  
A0  
A0  
A1~A15  
VMA  
SEL68  
CS1B  
CS2  
CPU  
NJU6674  
D0~D7  
D0~D7  
VDD  
E
R/W  
RES  
E
R/WB  
RESB  
P/S  
GND  
VSS  
Serial Interface  
VDD  
VCC  
A0  
A0  
SEL68  
CS1B  
CS2  
A1~A7  
Decoder  
CPU  
NJU6674  
D7(SI)  
D6(SCL)  
Port 1  
Port 2  
P/S  
RES  
RESB  
GND  
VSS  
RESET  
Ver.2003-04-08  
- 41 -  
NJU6674  
MEMO  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
Ver.2003-04-08  
- 42 -  

相关型号:

NJU6675

BIT MAP LCD DRIVER
NJRC

NJU6675CH

BIT MAP LCD DRIVER
NJRC

NJU6675H

Liquid Crystal Driver, 154-Segment, CMOS, TCP-187
NJRC

NJU6676

64-Common X 132-Segment plus 1-Icon Bit Map Type LCD Controller and Driver
NJRC

NJU6676CH

64-Common X 132-Segment plus 1-Icon Bit Map Type LCD Controller and Driver
NJRC

NJU6676CL

Liquid Crystal Driver, 197-Segment, CMOS, 8.72 X 2.37 MM, DIE-276
NJRC

NJU6676H

Liquid Crystal Driver, 197-Segment, CMOS, TCP-276
NJRC

NJU6677

88-common x 132-segment BIT MAP LCD DRIVER
NJRC

NJU6677ACH

Liquid Crystal Driver, 220-Segment, CMOS, BUMP, DIE-264
NJRC

NJU6677ACJ

暂无描述
NJRC

NJU6677ACL

Liquid Crystal Driver, 220-Segment, CMOS, COF-264
NJRC

NJU6677ACL-G

Liquid Crystal Driver, 220-Segment, CMOS, BUMP, DIE-264
NJRC