NJU6673CH [NJRC]

Liquid Crystal Driver, 125-Segment, CMOS, BUMP, DIE-212;
NJU6673CH
型号: NJU6673CH
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Liquid Crystal Driver, 125-Segment, CMOS, BUMP, DIE-212

驱动 接口集成电路
文件: 总38页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6673  
PRELIMINARY  
25-common x 100-segment  
BITMAP LCD DRIVER  
GENERAL DESCRIPTION  
PACKAGE OUTLINE  
The NJU6673 is a 25-common x 100-segment bit map  
LCD driver to display graphics or characters.  
It contains 2,500 bits display data RAM, microprocessor  
interface circuits, instruction decoder, and common and  
segment drivers.  
An image data from MPU through the serial or 8-bit  
parallel interface are stored into the 2,500 bits internal  
displayed on the LCD panel through the commons and  
segments drivers.  
NJU6673CL  
The NJU6673 displays 25 x 100 dots graphics or  
7-character 2-line by 12 x 13 dots character.  
The NJU6673 contains a built-in OSC circuit for  
reducing external components.  
And it features an  
electrical variable resistor. As result, it reduces the  
operating current.  
The operating voltage from 2.4V to 5.5V and low  
operating current are suitable for small size battery  
operation items.  
FEATURES  
Direct Correspondence of Display Data RAM to LCD Pixel  
Display Data RAM  
LCD Drivers  
2,500 bits  
25-common and 100-segment  
Selectable Duty and Bias Ratio ; 1/25 Duty 1/6 Bias or 1/15 Duty 1/5 Bias  
Direct connection to 8-bit Microprocessor interface for both of 68 and 80 type MPU  
Serial Interface (SI, SCL, A0, CS)  
Useful instruction set  
Display ON/OFF, Display Start Line Set, Page Address Set, Column Address Set, Status Read,  
Write Display Data, Read Display Data, Normal or Inverse ON/OFF Set, Static Drive ON/Normal Display,  
EVR Register Set, Read Modify Write, End, Reset, Internal Power Supply ON/OFF, Driver Output ON/OFF,  
Power Save and ADC select.  
Power Supply Circuits for LCD;  
Available attractive operation for small LCD panel without external capacitors for bias stabilization.  
Booster Circuits(3 times maximum, Voltage boosting polarity : Negative (VDD Common)),  
Regulator, Voltage Follower(x 4)  
Precision Electrical Variable Resistance (16 Steps)  
Low Power Consumption  
Operating Voltage  
LCD Driving Voltage  
Package Outline  
2.4V to 5.5V  
6.0V to 10V  
COF / TCP / Bumped Chip  
C-MOS Technology (Substrate : N)  
01/04/19  
- 1 -  
NJU6673  
PAD LOCATION  
ALI_A2  
ALI_B1  
DUMMY15  
S0  
DUMMY12  
DUMMY11  
V1  
S1  
V1  
V1  
V2  
V2  
V2  
V3  
V3  
V3  
V4  
V4  
V4  
V5  
V5  
V5  
VR  
VR  
VR  
DUMMY10  
VDD  
VDD  
VDD  
VOUT  
VOUT  
VOUT  
C2-  
C2-  
C2-  
C2+  
C2+  
C2+  
C1-  
X
C1-  
C1-  
C1+  
C1+  
C1+  
DUMMY9  
DUMMY8  
VSS  
VSS  
Y
VSS  
DUMMY7  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DUMMY6  
DUMMY5  
DUMMY4  
DUMMY3  
CDIR  
DUTY  
RD  
WR  
A0  
CS  
OSC  
T1  
T2  
VSS  
VSS  
VSS  
SEL68  
P/S  
VDD  
VDD  
VDD  
S98  
S99  
RES  
DUMMY2  
DUMMY1  
DUMMY16  
ALI_B2  
Chip Center  
Chip Size  
Chip Thickness  
Bump Size  
Pad Pitch  
Bump Height  
Bump Material  
: X=0µm, Y=0µm  
: X=7.54mm, Y=2.09mm  
: 625µm±30µm  
: 78.16µm x 48.10µm  
: 70µm(Min.)  
: 15µm(Typ.)  
: Au  
Voltage boosting polarity : Negative Voltage(VDD Common)  
Substrate : N  
- 2 -  
NJU6673  
TERMINAL DESCRIPTION  
Chip Size 7.54x2.09mm(Chip Center X=0µm, Y=0µm)  
PAD No.  
1
Terminal  
DUMMY1  
DUMMY2  
RES  
VDD  
VDD  
VDD  
P/S  
SEL68  
VSS  
VSS  
VSS  
T2  
T1  
OSC1  
CS  
A0  
PAD No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Terminal  
VOUT  
VOUT  
VOUT  
X= µm  
-3536  
-3466  
-3396  
-3326  
-3256  
-3186  
-3116  
-3046  
-2976  
-2906  
-2836  
-2766  
-2696  
-2626  
-2556  
-2486  
-2416  
-2346  
-2276  
-2206  
-2136  
-2066  
-1996  
-1926  
-1715  
-1435  
-1155  
-875  
-595  
-315  
-35  
245  
455  
525  
595  
665  
735  
805  
875  
945  
Y= µm  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
X= µm  
1715  
1786  
1856  
1926  
1996  
2066  
2136  
2206  
2276  
2346  
2416  
2486  
2556  
2626  
2696  
2766  
2836  
2906  
2976  
3046  
3116  
3186  
3256  
3326  
3396  
3466  
3536  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3616  
3536  
3466  
3396  
3326  
Y= µm  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-891  
-745  
-675  
-605  
-535  
-465  
-395  
-325  
-255  
-185  
-115  
-45  
2
3
4
5
6
7
8
9
VDD  
VDD  
VDD  
DUMMY10  
VR  
VR  
VR  
V5  
V5  
V5  
V4  
V4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
V4  
V3  
WR  
V3  
V3  
V2  
V2  
V2  
V1  
V1  
V1  
RD  
DUTY  
CDIR  
DUMMY3  
DUMMY4  
DUMMY5  
DUMMY6  
D0  
D1  
D2  
D3  
D4  
DUMMY11  
DUMMY12  
ALI_A2  
DUMMY13  
D5  
DUMMY14  
D6(SCL)  
D7(SI)  
DUMMY7  
VSS  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
VSS  
VSS  
DUMMY8  
DUMMY9  
C1+  
C1+  
C9  
25  
95  
166  
236  
306  
376  
873  
891  
C1+  
1015  
1085  
1155  
1225  
1295  
1365  
1435  
1505  
1575  
1645  
C10  
C11  
C12  
C13  
C14  
ALI_B1  
DUMMY15  
S0  
C1-  
C1-  
C1-  
C2+  
C2+  
C2+  
C2-  
891  
891  
891  
C2-  
S1  
S2  
C2-  
- 3 -  
NJU6673  
PAD No.  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
Terminal  
PAD No.  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Terminal  
S53  
X= µm  
3256  
3186  
3116  
3046  
2976  
2906  
2836  
2766  
2696  
2626  
2556  
2486  
2416  
2346  
2276  
2206  
2136  
2066  
1996  
1926  
1856  
1786  
1715  
1645  
1575  
1505  
1435  
1365  
1295  
1225  
1155  
1085  
1015  
945  
875  
805  
735  
665  
595  
525  
455  
385  
315  
245  
175  
105  
35  
-35  
-105  
-175  
Y= µm  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
X= µm  
-245  
-315  
-385  
-455  
-525  
-595  
-665  
-735  
Y= µm  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
891  
873  
25  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S54  
S55  
S56  
S57  
S58  
S59  
S60  
S61  
S62  
S63  
S64  
S65  
S66  
S67  
S68  
S69  
S70  
S71  
S72  
S73  
S74  
S75  
S76  
S77  
S78  
S79  
S80  
S81  
S82  
S83  
S84  
S85  
S86  
S87  
S88  
S89  
S90  
S91  
S92  
S93  
S94  
S95  
S96  
S97  
S98  
S99  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S51  
S52  
-805  
-875  
-945  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
-1015  
-1085  
-1155  
-1225  
-1295  
-1365  
-1435  
-1505  
-1575  
-1645  
-1715  
-1786  
-1856  
-1926  
-1996  
-2066  
-2136  
-2206  
-2276  
-2346  
-2416  
-2486  
-2556  
-2626  
-2696  
-2766  
-2836  
-2906  
-2976  
-3046  
-3116  
-3186  
-3256  
-3326  
-3396  
-3466  
-3536  
-3616  
-3616  
DUMMY16  
ALI_B2  
C24  
- 4 -  
NJU6673  
PAD No.  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
Terminal  
C23  
X= µm  
-3616  
-3616  
-3616  
-3616  
-3616  
-3616  
-3616  
-3616  
-3616  
-3616  
-3616  
-3616  
Y= µm  
-45  
C22  
C21  
C20  
C19  
C18  
C17  
C16  
C15  
-115  
-185  
-255  
-325  
-395  
-465  
-535  
-605  
-675  
-745  
-891  
DUMMY17  
DUMMY18  
ALI_A1  
212  
Alignment marks  
110.34µm  
70.38µm  
70.38µm  
70.38µm  
ALI_B1, ALI_B2  
ALI_A1, ALI_A2  
Note) Alignment Marks are not contains window.  
- 5 -  
NJU6673  
BLOCK DIAGRAM  
C0  
C14 S0  
S99 C24  
C15  
Vss  
VDD  
COM  
Driver  
SEG  
Driver  
COM  
Driver  
CDIR  
V1 to V5  
5
C1+  
COM, SEG  
Timing  
Generator  
Shift  
Register  
Shift  
Register  
C1-  
C2+  
C2-  
Display Data Latch 100  
T1  
T2  
Display Data RAM  
100 x 25 bit  
VR  
Column Address Decoder  
DUTY  
OSC  
Display  
Timing  
Generator  
Column Address Counter 8bit  
Column Address Register 8bit  
OSC.  
Multiplexer  
Status  
Instruction  
Decoder  
BF  
Bus Holder  
Internal Bus  
Reset  
RES  
CPU interface  
WR  
SEL68  
CS A0 RD  
D0 to D5  
P/S  
D6(SCL)  
D7(SI)  
- 6 -  
NJU6673  
TERMINAL DESCRIPTION  
No.  
Symbol  
I/O  
Function  
1,  
2,  
21-  
24,  
33,  
37,  
38,  
57,  
76,  
77,  
79,  
80,  
97,  
198,  
210,  
211  
4,5,6  
9-11,  
34-36  
73-75  
70-72  
67-69  
64-66  
61-63  
DUMMY1  
DUMMY2  
DUMMY3 -  
DUMMY6  
DUMMY7  
DUMMY8  
DUMMY9  
DUMMY10  
DUMMY11  
DUMMY12  
DUMMY13  
DUMMY14  
DUMMY15  
DUMMY16  
DUMMY17  
DUMMY18  
VDD  
Dummy Terminal.  
These are open terminals electrically.  
Power Power supply terminal. (+2.4 to +5.5V)  
GND Ground terminal. (0V)  
VSS  
V1  
V2  
V3  
V4  
V5  
LCD Driving Voltage Supplying Terminals.  
In case of external power supply operation without internal power supply  
operation, each level of LCD driving voltage is supplied from outside  
fitting with following relation.  
VDDV1V2V3V4V5VOUT  
In case of internal power supply, LCD driving voltages V1 to V4  
depending on the bias selection are supplied as shown in follows;  
Power  
Duty  
Bias  
V1  
V2  
V3  
V4  
1/15 Duty 1/5 Bias V5+4/5 VLCD V5+3/5 VLCD V5+2/5 VLCD V5+1/5 VLCD  
1/25 Duty 1/6 Bias V5+5/6 VLCD V5+4/6 VLCD V5+2/6 VLCD V5+1/6 VLCD  
VLCD=VDD-V5  
39-41  
42-44  
45-47  
48-50  
C1+  
C1-  
C2+  
C2-  
O
Condenser connecting terminals for internal Voltage Booster.  
Boosting time is selected by each connected condenser.  
In case of 3-time boost operation, connect the condenser between C1+  
and C1-, C2+ and C2-.  
In case of 2-time boost operation, connect the condenser between C2+  
and C2-, connect C2+ to C1+, and C1- should be open.  
Boosted voltage output terminal. Connects the capacitor between VOUT  
terminal and VSS.  
VLCD voltage adjustment terminal. The gain of VLCD setup circuit for V5  
level is adjusted by external resistor.  
51-53  
58-60  
VOUT  
VR  
O
I
13  
12  
T1,  
T2  
I
LCD bias voltage control terminals.  
Voltage  
T1  
T2  
Voltage adjustor  
V/F circuit  
booster circuit  
L
H
H
H/L  
L
H
Available  
Not available  
Not available  
Available  
Available  
Not available  
Available  
Available  
Available  
25  
26  
27  
28  
29  
30  
31  
32  
D0  
D1  
D2  
D3  
D4  
I/O  
Data input / output terminals.  
In parallel interface Mode (P/S=”H”)  
I/O terminals of 8-bit bus.  
In Serial interface Mode(P/S=”L”)  
D7:Input terminal of serial data (SI).  
D6:Input terminal of serial data clock (SCL).  
D5 to D0 terminals are High impedance.  
D5  
D6(SCL)  
D7(SI)  
When CS=”H” , D0 to D7 terminals are high-impedance.  
- 7 -  
NJU6673  
No.  
16  
Symbol  
A0  
I/O  
I
Function  
Data discremination signal input terminal. The signal from MPU  
discreminates transmitted data between Display data and Instruction.  
A0  
H
L
Discremination  
Display Data  
Instruction  
3
I
I
Reset terminal.  
Reset operation is executing during “L” state of RES.  
RES  
CS  
15  
Chip select signal input terminal.  
Data Input/Output are available during CS ="L".  
18  
I
RD (E)  
RD(80 type) or E(68 type) signal input terminal.  
<In 80 type MPU mode>(SEL68=”L”)  
RD signal from 80 type MPU input terminal. Active”L”.  
D0 to D7 terminals are output during ”L” level.  
<In 68 type MPU mode>(SEL68=”H”)  
Enable signal from 68 type MPU input terminal. Active "H"  
WR (80 type) or R/W(68 type) signal input terminal.  
<In 80 Type MPU mode>(SEL68=”L”)  
17  
I
WR(R/W)  
WR signal from 80 type MPU input . Active "L".  
The data transmitted during WR=”L” are fetched at the rising edge of  
WR.  
<In 68 Type MPU mode>  
R/w signal from 68 type MPU input terminal.  
R/W  
H
L
State  
Read  
Write  
8
7
SEL68  
P/S  
I
I
MPU interface type selection terminal.  
This terminal must connect to VDD or VSS  
SEL68  
State  
H
L
68 type  
80 type  
Parallel or Serial interface selection signal input terminal.  
Chip Data  
Select /Command  
P/S Inter face  
Data Read/Write Serial CLK  
“H”  
“L”  
A0  
A0  
D0-D7  
SI(D7)  
-
Parallel  
Serial  
CS  
CS  
RD, WR  
-
SCL(D6)  
In case of the serial interface (P/S="L")  
RAM data and status read operation do not work in mode of the serial  
interface. RD and WR terminals must fix to "H" or "L".  
D0 to D5 terminals are high impedance.  
14  
OSC  
O
Maker Testing Clock output terminal.  
The terminal is recommended to open.  
- 8 -  
NJU6673  
No.  
81-95  
Symbol  
C0-C14  
I/O  
O
Function  
LCD driving signal output terminals.  
Common output terminals  
Segment output terminals  
Common Output Terminal  
:C0 to C24  
:S0 to S99  
Following output voltages is selected by the combination of  
alternating(FR) signal and Common scanning data.  
Scan data  
FR  
H
L
H
L
Output Voltage  
98-197  
S0-S99  
O
O
V5  
VDD  
V1  
H
L
V4  
Segment output terminal  
Following output voltages is selected by the combination of  
alternating(FR) signal and display data in the DD RAM.  
200-209  
C24-C15  
Output Voltage  
RAM data  
FR  
Normal  
VDD  
V5  
Reverse  
V2  
H
L
H
L
H
L
V3  
V2  
V3  
VDD  
V5  
19  
20  
DUTY  
CDIR  
I
I
Duty and Bias selection terminal.  
DUTY  
H
L
Duty  
1/15  
1/25  
Bias  
1/5  
1/6  
Common Driver Assignment selection terminal.  
CDIR  
Common Output terminals  
H
L
Reverse (C24C0)  
Normal (C0C24)  
- 9 -  
NJU6673  
FUNCTIONAL DESCRIPTION  
(1) Description for each blocks  
(1-1) Busy Flag (BF)  
The Busy Flag (BF) is set to logical “1” in busy of internal execution by an instruction, and any  
instruction excepting for the “Status Read” is disable at this time. Busy Flag is outputted through D7  
terminal by “Status Read” instruction. Although another instructions should be inputted after check of  
Busy Flag, no need to check Busy flag if the system cycle time (tCYC) as shown in AC  
CHARACTERISTICS is secured completely.  
(1-2) Display Start Line Register  
The Display Start Line Register is a register to set a display data RAM address corresponding to the  
COM0 display line (the top line normally) for the vertical scroll on the LCD, Page address change and so  
forth. The Display Start Line Address set instruction sets the 8-bit display start address into this register.  
(1-3) Line Counter  
Line Counter is reset when the internal FR signal is switched and outputs the line address of the display  
data RAM by count up operation synchronizing with common cycle of NJU6673.  
(1-4) Column Address Counter  
Column Address Counter is the 8-bit preset-able counter to point the column address of the display data  
RAM (DD RAM) as shown in Fig. 1. The counter is incremented automatically after the display data  
read/write instructions execution. When the Column address counter reaches to the maximum existing  
address by the increment operations, the count up operation (increment) is frozen. However, when new  
address is set to the column address counter again, it restarts the count up operation from a set address.  
The operation of Column Address Counter is independent against Page Address Register.  
By the address inverse instruction (ADC select) as shown in Fig. 1, Column Address Decoder reverses  
the correspondence between Column address and Segment output of display data RAM.  
(1-5) Page Address Register  
Page Address Register assigns the page address of the display data RAM as shown in Fig. 1. In case  
of accessing from the MPU with changing the page address, Page Address Set instruction is required.  
(1-6) Display Data RAM  
The Display data RAM (DD RAM) is the bit map RAM consisting of 2,500 bits to store the display data  
corresponding to the LCD pixel on LCD panel.  
In Normal Display : “1” Turn-On Display, 0”=Turn-Off Display  
In Reveres Display: 1” Turn-Off Display, “0”=Turn-On Display  
DD RAM output 100 bits parallel data addressed by line address counter then the data latched in the  
display data latch. Asynchronous data access to the DD RAM is available due to the access to the DD  
RAM from the MPU and latch to the display data latch operation are done independently.  
(1-7) Common Driver Assignment  
The scanning order can be assigned by set Common Driver Assignment selection terminal as shown on  
Table 1.  
Table 1 Common Driver Order Assignment  
COM Outputs Terminals  
PAD No. 81  
Pin name C0  
95  
C14  
200  
C24  
209  
C15  
COM Driver Assignment  
selection terminal  
“L”  
“H”  
COM0  
COM24  
COM14  
COM10  
COM24  
COM0  
COM10  
COM14  
The duty ratio setting and output assignment register are so controlled to operate independently that  
duty ratio setting required to corresponding duty ratio for output assignment.  
- 10 -  
NJU6673  
Page  
Address  
Line  
Address  
COM output  
example 1  
Data  
Display Pattern  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D0=0  
D0=1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C0  
C1  
C2  
C3  
C4  
D1, D0  
(0, 0)  
Page 0  
COM  
output  
example 2  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
D1, D0  
(0, 1)  
Page 1  
C5  
C6  
C7  
C8  
C9  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C10  
C11  
C12  
C13  
C14  
D1, D0  
(1, 0)  
Page 2  
Page 3  
D1, D0(1, 1)  
Column  
Address(ADC)  
00 01 02 03 04 05  
63 62 61 60 5F 5E  
62 63  
01 00  
Segment output  
S0 S1 S2 S3 S4 S5  
S98 S99  
COM output example1 : 1/25Duty, set Display Start Line 08H  
COM output example2 : 1/15Duty, set Display Start Line 08H  
Fig.1 Correspondence with Display Data RAM Address  
- 11 -  
NJU6673  
(1-8) Reset Circuit  
Reset circuit operates the following initializations when the condition of RES terminal goes to "L" level.  
Initialization  
1. Display Off  
2. Normal Display (Non-inverse display)  
3. ADC Select : Normal (ADC Instruction D0=”0”)  
4. Read Modify Write Mode Off  
5. Voltage Booster off, Voltage Regulator off, Voltage follower off  
6. Clear the serial interface register  
7. Driver Output Off  
8. Set the Display Start Line Register to 00H  
9. Set the Column Address Counter to 00H  
10. Set the Page Address Register to page “0”  
11. Set the EVR register to 00H  
The RES terminal connects to the reset terminal of the MPU synchronization with the MPU initialization  
as shown in “the MPU interface” in the Application Circuit section. The “L” level input signal as reset  
signal must keep the period over than 10µs as shown in DC Characteristics. The NJU6673 takes 1µs for  
the reset operation after the rising edge of the RES signal.  
The reset operation by RES =”L” initializes each resister setting as above reset status, but the internal  
oscillation circuit and output terminals (D0 to D7) are not affected.  
To avoid the lock-up, the reset operation by the RES terminal must be required every time when power  
terns on. The reset operation by the reset instruction, function 8 to 11 operations mentioned above is  
performed.  
The RES terminal must be keep “L” level when the power terns on in not use of the built-in LCD power  
supply circuit for no affect to the internal execution.  
(1-9) LCD Driving  
(a)LCD Driving Circuits  
LCD driver is 125 sets of multiplexer consisting of 100 segments and 25 commons drivers to output  
LCD driving voltage. The common driver outputs the common scan signals formed with the shift register.  
The segment driver outputs the segment driving signal determined by a combination of display data in the  
DD RAM, common timing, FR signal, and alternating signal for LCD. The output wave forms of  
segment/common are shown in LCD DRIVING WAVEFORM.  
(b)Display Data Latch Circuits  
Display Data Latch Circuit latches the 100 bits display data outputted from the DD RAM addressed by  
the Line address counter to LCD driver at every common signal cycle temporarily. The original data in  
the DD RAM is not changed because of the Normal/Reverse display, Display On/Off, Static drive On/Off  
instruction processes only stored data in this Display Data Latch Circuit.  
(c) Line Counter and Latch signal of Latch Circuits  
The count clock to Line Counter and the latch clock to Display Data Latch Circuit are formed using the  
internal display clock (CL). The display data of 100 bits from Display Data RAM pointed by the line  
address synchronizing with the internal display clock are latched into the Display Data Latch Circuit and  
are outputted to LCD driving circuits.  
The display data read out operation from DD RAM to the LCD Driver Circuit is completely independent  
operation with an access to the display data RAM from MPU.  
- 12 -  
NJU6673  
(d)Display Timing Generaton Circuit  
The display timing generation circuit generates the internal timing of the display system by the master  
clock and the internal FR signal. As for it, the internal FR signal and the LCD alternating signal generate  
the wave form of 2-frame alternating drive wave form or the n-line inverse drive method for the LCD  
Driving circuit.  
(e)Common Timing Generation  
The Common Timing Generator generates the common timing signal from the display clock (CL).  
24 25 1  
2
3
4
5 6 7 8  
23 24 25 1  
2
3
4
5 6  
7
CL  
FR  
VDD  
V1  
C0  
C1  
V4  
V5  
VDD  
V1  
V4  
V5  
RAM  
DATA  
VDD  
V2  
Sn  
V3  
V5  
Fig. .2  
(f) Oscillation Circuit  
The Oscillation Circuit is a low power type CR oscillator using an internal resistor and capacitor. The  
oscillator output is using for the display timing clock and for the voltage booster circuit. And the display  
clock(CL) is generated from this oscillator output frequency by dividing.  
Table 2 The relation between duty and divide  
Duty  
1/15  
1/10  
1/25  
1/6  
Divide  
- 13 -  
NJU6673  
(g)Power Supply Circuit  
The internal power supply circuit generates the voltage for driving LCD. It consists of voltage booster  
circuits (3-Time maximum), voltage regulator circuits, and voltage followers.  
The operation of internal Power Supply Circuits is controlled by the Internal Power Supply On/Off  
Instruction. When the Internal Power Supply Off Instruction is executed, all of the voltage booster circuits,  
regulator circuits, voltage follower circuits are turned off. In this time, the bias voltage of V1, V2, V3, V4, V5  
and VOUT for the LCD should be supplied from outside, terminals C1+, C1-, C2+, C2- and VR should be  
open. The status of internal power supply is selected by T1 and T2 terminals. Furthermore the external  
power supply operates with some of internal power supply function.  
Table3 The Relation Between Power Supply Circuit And T1, T2 Terminal  
Voltage  
Booster  
ON  
OFF  
OFF  
Ext.Power  
Supply  
-
VOUT  
V5, VOUT  
C1+, C1-,  
C2+, C2-  
T1  
T2  
Voltage Adj. Buffer(V/F)  
VR Term.  
Open  
L
H
H
L/H  
L
H
ON  
ON  
ON  
ON  
ON  
Open  
Open  
OFF  
When (T1, T2)=(H, L), C1+, C1-, C2+, C2- terminals for voltage booster circuits are open because the  
voltage booster circuits doesn't operate. Therefore LCD driving voltage to the VOUT terminal should be  
supplied from outside.  
When (T1, T2)=(H, H), terminals for voltage booster circuits and VR are open, because the voltage  
booster circuits and Voltage adjust circuits do not operate.  
The internal power supply Circuits is designed specially for a small-size LCD like as normal cellular  
phone size LCD panel. When NJU6673 apply to the large size LCD panel application (large capacitive  
load), external power supply is required to keep good display condition.  
The external capacitors to V1 to V5 for Bias voltage stabilization may be removed in use of small size  
LCD panel. The equivalent load of LCD panel may be changed depending on display patterns. Therefore,  
it require display quality check on various display patterns actually without external capacitors. If the  
display quality is not so good, external capacitors should connects as show in (3-4)LCD Driving Voltage  
Generation Circuits -Fig. 4. (If no need external capacitors as result of experiment, the application  
patterns (wiring) should be prepared for recovery.)  
- 14 -  
NJU6673  
! Power Supply applications  
(1) Internal power supply example.  
All of the Internal Booster, Voltage Regulator,  
Voltage Follower using.  
(2) Only VOUT Supply from outside Example.  
Internal Voltage Regulator,  
Voltage Follower using  
Internal power supply ON (instruction)  
(T1, T2)=(L, L)  
Internal power supply ON (Instruction)  
(T1, T2)=(H, L)  
T1  
T2  
VDD  
VDD  
T1  
T2  
+
+
+
+
+
V1  
C1+  
C1-  
+
+
+
+
+
+
+
V1  
V2  
V3  
V4  
V5  
V2  
V3  
V4  
V5  
C2+  
C2-  
+
VOUT  
VSS  
VOUT  
VSS  
VDD  
V5  
VR  
VDD  
V5  
VR  
(3) VOUT and V5 supply from outside Example.  
Internal Voltage Follower using.  
Internal power supply (Instruction)  
(T1, T2)=(H, H)  
(4) External Power Supply Example.  
All of V1 to V5 and VOUT supply from outside  
Internal power supply (Instruction)  
(T1, T2)=(H, H)  
T1  
T2  
VDD  
VDD  
T1  
T2  
+
+
+
+
V1  
V2  
V1  
V1  
V3  
V3  
V4  
V5  
V3  
V5  
VOUT  
VSS  
VOUT  
VSS  
: These switches should be open during the power save mode.  
- 15 -  
NJU6673  
(2) Instruction  
The NJU6673 distinguishes the signal on the data bus D0 to D7 as an Instruction by combination of A0 , RD  
and WR(R/W). The decode of the instruction and execution performs with only high speed Internal timing  
without relation to the external clock. Therefore no busy flag check required normally. In case of serial  
interface, the data input as MSB(D7) first serially. The Table. 4 shows the instruction codes of the NJU6673.  
Table 4 Instruction Code  
(*:Don't Care)  
Code  
Instruction  
Description  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
LCD Display ON/OFF  
D0=0:OFF D0=1:ON  
Determine the Display Line of  
RAM to COM 0  
Set the page of DD RAM to the  
Page Address Register  
Set the Higher order 3 bits  
Column Address to the Reg.  
Set the Lower order 4 bits  
Column Address to the Reg.  
Read out the internal Status  
Display ON/OFF  
Display Start  
(a)  
(b)  
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
1
0
1
0
1
1
1
0
0
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
1
*
0
1
1
1
0/1  
Start address  
Line Set  
Page  
(c) Page Address Set  
1
0
0
1
1
0
*
*
Address  
Column Address Set  
High Order 3bits  
Column Address Set  
Lower Order 4bits  
High Order  
Column  
0
(d)  
Lower Order  
Column Add  
(e) Status Read  
Status  
0
0
0
0
Write the data into the Display  
Data RAM  
Read the data from the Display  
Data RAM  
Inverse the ON and OFF  
Display  
(f) Write Display Data  
(g) Read Display Data  
Write Data  
Read Data  
Normal or Inverse of  
ON/OFF Set  
Static Drive ON  
(h)  
1
1
1
0
0
1
1
0
0
0
0
0
0
1
1
1
0
0/1  
0/1  
Whole Display Turns ON  
D0=0: Normal D0=1: Whole Disp. ON  
(i)  
/Normal Display  
Set the V5 output level to the  
EVR register  
(j) EVR Register Set  
0
Setting Data  
Increment the Column Address  
Register when writing but  
no-change when reading  
Release from the Read Modify  
write Mode  
(k) Read Modify Write  
0
1
0
1
1
1
0
0
0
0
0
(l) End  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
1
1
1
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
1
0
1
1
0
1
0
Initialize the Internal Circuits  
(m) Reset  
0
Internal Power  
(n)  
0:Int. Power Supply OFF  
1:Int. Power Supply ON  
D0=0: LCD Driver Outputs OFF  
D0=1: LCD Driver Outputs ON  
0/1  
0/1  
Supply ON/OFF  
Driver Outputs  
ON/OFF  
(o)  
Set the Power Save Mode  
(LCD Display OFF + Whole  
Display Turns ON)  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
1
0
0
1
Power Save  
(q)  
(Complex command)  
Set the DD RAM vs Segment  
D0=0 :Normal D0= 1:Inverse  
(p) ADC Select  
0
1
0
1
0
1
0
0
0
0
0/1  
- 16 -  
NJU6673  
(2-1) Explanation of Instruction Code  
(a)Display On/Off  
It executes the On/Off control of the whole display without relation to the DD RAM or any internal  
conditions.  
A0  
0
RD  
1
WR  
0
D7  
1
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
1
D0  
D
D
0: Display Off  
1: Display On  
(b)Display Start Line  
It sets the DD RAM line address corresponding to the COM0 terminal (normally assigned to the top  
display line). In this instruction execution, the display area is automatically set by the lines that correspond  
to the display duty ratio to the upward direction of the line address. Changing the line address by this  
instruction performs smooth scrolling to a vertical direction. In this time, the DD RAM data are unchanged.  
A0  
0
RD  
1
WR  
0
D7  
0
D6  
1
D5  
*
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
D0  
A0  
A4  
0
0
A3  
0
0
A2  
0
0
:
A1  
0
0
A0  
0
1
Line Address(HEX)  
00  
01  
:
:
:
1
1
0
0
0
18  
(c) Page Address Set  
When MPU accesses to the DD RAM, a page address is set by page Address Set instruction before  
writing the data (Note:the change of page address is not affected to the display).  
A0  
0
RD  
1
WR  
0
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
A1  
D0  
A0  
*:Don’t Care  
A1  
0
0
1
1
A0  
0
1
0
1
Page  
0
1
2
3
- 17 -  
NJU6673  
(d)Column Address  
When MPU accesses to the DD RAM, row address set by Page Address Set instruction is required with  
the column address before writing the data. The column address set requires twice address set which are  
higher order 3 bits address set and lower order 4 bits. When the MPU accesses to the DDRAM  
continuously, the column address increments automatically from the set address after each data access.  
Therefore, the MPU can transmit only the Data continuously without setting the column address at every  
transmission time. The increment of the column address is stopped at the maximum column address plus  
1 limited by each display mode. When the column address count up is stopped, the row address is not  
changed.  
A0  
0
RD  
1
WR  
0
D7  
0
D6  
0
D5  
0
D4  
1
D3  
0
D2  
A6  
D1  
A5  
D0  
A4  
Higher Order  
Lower Order  
0
1
0
0
0
0
0
A3  
A2  
A1  
A0  
A6  
0
0
A5  
0
0
A4  
0
0
A 3  
0
0
:
A2  
0
0
A1  
0
0
A0  
0
1
Column Address (HEX)  
00  
01  
:
:
:
1
1
0
0
0
1
1
63  
(e)Status Read  
This instruction reads out the internal status of "BUSY", "ADC", "ON/OFF" and "RESET" as follows.  
A0  
0
RD  
0
WR  
1
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
BUSY ADC ON/OFF RESET  
BUSY:BUSY=1 indicate the operating or the Reset cycle.  
The instruction can be input after the BUSY status change to "0".  
ADC : Indicate the output correspondence of column (segment) address and segment driver.  
0: Counterclockwise Output  
1: Clockwise Output  
(Inverse)  
(Normal)  
Note) The data “0=Inverse” and “1=Normal” of ADC status is inverted with the ADC select  
Instruction of "1=Inverse" and "0=Normal".  
ON/OFF: Indicate the whole display On/Off status.  
0: Whole Display "On”  
1: Whole Display "Off"  
Note) The data "0=On" and "1=Off" of Display On/Off status is inverted with the Display  
On/Off instruction data of "1=On" and "0=Off".  
RESET :Indicate the initializing by RES signal or reset instruction.  
0: Not Reset status  
1: In the Reset status  
(f) Write Display Data  
It writes the data on the data bus into the DD RAM column address increments automatically after data  
writing, therefore, the MPU can write the data into the DD RAM continuosly without the address setting at  
every writing time once the starting address is set.  
A0  
1
RD  
1
WR  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Write Data  
- 18 -  
NJU6673  
(g)Read Display Data  
This instruction reads out the 8-bit data from DD RAM addressed by the column and the page  
address.The column address automatically increments after the 8-bit read out, therefore, the MPU can  
read the data from the DD RAM continuously without the address setting at every reading time once the  
starting address is set. Note that the dummy read is required just after setting the column address  
(see”(4-4)Access to the DD RAM and the Internal Register”). In the serial interface mode, the display data  
is unable to read out.  
A0  
1
RD  
0
WR  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Read Data  
(h)Normal or Inverse On/Off Set  
It changes the display condition of normal or reverse for entire display area. The execution of this  
instruction does not change the display data in the DD RAM.  
A0  
0
RD  
1
WR  
0
D7  
1
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
1
D0  
D
D
0: Normal  
1: Inverse  
RAM data “1” correspond to “On”  
RAM data “0” correspond to “On”  
(i) Static Drive  
This instruction turns all the pixels ON regardless the data stored in the DD RAM. In this time, the data  
in DD RAM are remained and unchanged. This instruction is executed prior to the “Normal or Inverse  
On/Off Set” instruction.  
A0  
RD  
WR  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
0
1
0
0
1
0
D
D
0: Normal Display  
1: Whole Display turns On  
(j) EVR Register Set  
It controls the voltage regulator circuit of the internal LCD power supply to adjust the LCD display  
contrast by changing the LCD driving voltage “V5”. By data setting into the EVR register, the LCD driving  
voltage “V5” selects out of 16 steps of regulated voltage. The voltage adjustable range of “D5” is fixed by  
the external resistors. For details, refer the section”(3-2) Voltage Adjust Circuits”.  
A0  
0
RD  
1
WR  
0
D7  
1
D6  
0
D5  
0
D4  
0
D3  
A3  
D2  
A2  
D1  
A1  
D0  
A0  
A3  
0
A2  
0
A1  
0
A0  
0
VLCD  
Low  
:
:
:
:
1
1
1
1
High  
VLCD=VDD-V5  
When EVR doesn't use, set the EVR register to (0,0,0,0).  
- 19 -  
NJU6673  
(k) Read Modify Write  
This instruction sets the Read Modify Write controlling the page address increment. In this mode, the  
Column Address only increments when execute the display data “Write instruction; but no change when  
the display data “Read “ Instruction. This status is continued until the End instruction execution. When the  
End instruction is executed, the Column Address goes back to the start address before the execution of  
this “Read Modify Write” instruction. This function reduces the load of MPU for repeating display data  
change of the fixed area (ex. cursor blink)  
A0  
0
RD  
1
WR  
0
D7  
1
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Note) In this “Read Modify Write” mode, out of display data “Read”/”Write”, any instructions except “Column  
Address Set” can be executed.  
The Example of Read Modify Write Sequence  
Page Address Set  
Set to the Start  
Address of Curs or  
Display  
Column Address Set  
Start to the  
Read Modify Write  
Read Modify Write  
Dummy Read  
The data is ignored  
Column Counter doesn’t increase  
Data Read  
Column Counter  
doesn’t increase  
Data Write  
Data inverse by MPU  
Column Counter increase  
Column Counter doesn’t increase  
Dummy Read  
Data Read  
Column Counter doesn’t increase  
Column Counter increase  
Data Write  
Column Counter doesn’t increase  
Dummy Read  
Data Read  
Column Counter doesn’t increase  
Column Counter increase  
Data Write  
End  
End the Read Modify Write  
No  
Finish?  
Yes  
- 20 -  
NJU6673  
(l) End  
This instruction releases the Read Modify Write mode and the column address back to the address  
where the read modify write mode setting.  
A0  
0
RD  
1
WR  
0
D7  
1
D6  
1
D5  
1
D4  
0
D3  
1
D2  
1
D1  
1
D0  
0
Return  
Column Address  
(m) Reset  
N
N+1  
N+2  
N+3  
N+m  
N
Read Modify write set  
End  
This instruction executes the following initialization. The reset by the reset signal input to the RES  
terminal (hardware reset) is required when power turns on. This reset instruction does not use instead of  
this hardware reset when power turns on.  
Initialization  
1) Set the Display Start Line Register to 00H.  
2) Set the Column Address Counter to 00H.  
3) Set the page Page Address Register to page “0”.  
4) Set the EVR Register to 0H.  
The DD RAM is not affected of this initialization.  
A0  
0
RD  
1
WR  
0
D7  
1
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
1
D0  
0
(n)Internal Power Supply ON/OFF  
This instruction control ON and OFF for the internal Voltage Converter, Voltage Regulator and Voltage  
Follower circuits. For the Booster circuits operation, the oscillation circuits must be in operation.  
A0  
0
RD  
1
WR  
0
D7  
0
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
D
D
0: Internal Power Supply Off  
1: Internal Power Supply On  
The internal Power Supply must be Off when external power supply using.  
*1 The set up period of internal power supply On depends on the step up capacitors, voltage stabilizer  
capacitors, VDD and VLCD. Therefore it requires the actual evaluation using the LCD module to get the  
correct time.(Refer to the (3-4) Fig.4)  
- 21 -  
NJU6673  
(o)Driver Outputs ON/OFF  
This instruction controlls ON/OFF of the LCD Driver Outputs.  
A0  
0
RD  
1
WR  
0
D7  
1
D6  
0
D5  
1
D4  
0
D3  
1
D2  
0
D1  
1
D0  
D
D
0: LCD driving waveform output Off  
1: LCD driving waveform output On  
The NJU6673 implements low power LCD driving voltage generator circuit and requires the following  
Power supply ON/OFF sequence.  
LCD Driving power supply ON/OFF sequences  
The sequences below are required when the power supply turns ON/OFF.For the power supply turning on  
operation after the power-save mode, refer the “power save release sequence” mentioned after.  
Turn ON sequence  
Turn OFF sequence  
Display OFF  
E.V.R. Register set  
Whole Display ON  
Internal Power Supply ON  
or  
External Power supply ON  
Internal Power Supply OFF  
or  
External Power supply OFF  
(Wait Time) *1  
Driving Outputs ON  
NJU6673 Power OFF  
*1 : The Internal Power Supply rise time is depending on the condition of the Supply Voltage, VLCD=VDD-V5  
External Capacitor of Booster, and External Capacitor connected to V1 to V5. To know the rise time  
correctly, test by using the actual LCD module.  
- 22 -  
NJU6673  
(p)Power Save(complex command)  
When Static Drive ON at the Display OFF status(inverse order also same), the internal circuits goes to  
the Power Save Mode and the operating current is dramatically reduced, almost same as the standby  
current. The internal status in the Power Save Mode is shown as follows;  
1: The Oscillation Circuits and the Internal Power Supply Circuits stop the operation.  
2: LCD driving is stopped. Segment and Common drivers output VDD level voltage.  
3: The display data and the internal operating condition are remained and kept as just before enter the  
Power Save Mode.  
4: All the LCD driving bias voltage(V1 to V5) is fixed to the VDD level.  
The power save and its release perform according to the following sequences.  
! Power Save Sequence  
! Power Save Release Sequence  
(Static Drive ON)  
Display OFF  
Normal Display  
Display ON  
Static Drive ON  
Driver Outputs OFF  
(Wait Time)  
Driver Outputs ON  
The NJU6673 constantly spends the current without the execution of the Driver Outputs OFF instruction.  
The LCD drive waveform is not output until the Driver Outputs ON instruction is executed.  
*1 : In the Power Save sequence, the Power Save Mode starts after the Static Drive ON bcommand is  
executed.  
*2 : In the Power Save Release sequence, the Power Save Mode releases just after the Static Drive OFF  
instruction execution. The Display ON instruction is allowed to execute at any time after the Static Drive  
OFF instruction is completed.  
*3 : The Internal Power Supply rise time is depending on the condition of the Supply Voltage, VLCD=VDD-V5 ,  
External Capacitor of Booster, and External Capacitor connected to V1 to V5. To know the rise time  
correctry, test by using the actual LCD module.  
*4 : LCD driving waveform is output after the exection of the Driver Outputs ON instruction execution.  
*5 : In case of the external power supply operation, the external power supply should be turned off before  
the Power Save Mode and connected to the VDD for fixing the voltage of VOUT terminal. In this time, VOUT  
terminal also should be made codition like as disconection to the lowest voltage of the system.  
(q)ADC Select  
This instruction determines the correspondence of Column in the DD RAM with the Segment Driver  
Outputs. Segment Driver Outout order is inverse when this instruction executes, therefore, the placement  
the NJU6673 against the LCD panel becomes easy.  
A0  
0
RD  
1
WR  
0
D7  
1
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0/1  
D
0: Clokwise Output(Normal)  
1: Counterclockwise Output(Inverse)  
- 23 -  
NJU6673  
(3) Internal Power Supply  
(3-1) Voltage tripler  
The 3-time voltage booster circuit outputs the negative Voltage(VDD Common) boosted 3 times of  
VDD-VSS from the VOUT terminal with connecting the five capacitors between C1+ and C1-, C2+ and C2-, and  
SS and VOUT. In case of the 2-time voltage booster operation, connect the two capacitor between C2+ and  
V
C2-, VSS and VOUT, then connect the C1+ and C2+ terminals. Voltage Booster circuits requires the clock  
signals from internal oscillation circuit or the external clock signal. therefore, the internal oscillation  
circuits or the external clock supplier must be operating when the voltage booster is in operation.  
The boosted voltage of VDD-VOUT must be 10V or less.  
The boost voltage and the capacitor connection are shown below.  
The boosted voltage and VDD, VSS  
VDD=+3V  
VSS=0V  
V
OUT=-3V  
OUT=-6V  
V
2 time voltage  
3 time voltage  
(3-2) Voltage Adjust Circuits  
The boosted voltage of VOUT outputs V5 for LCD driving through the voltage adjust circuits. The output  
voltage of V5 is adjusted by Ra and Rb within the range of |V5| < |VOUT|.  
The output is calculated by the following formula(1).  
VLCD = VDD-V5 = (1+Rb/Ra)VREG  
(1)  
The VREG voltage is a reference voltage generated by the built-in bleeder registance. VREG is adjustable  
by EVR functions (see section 3-3).  
For minor adjustment of V5, it is recommended that the Ra and Rb is composed of R2 as variable  
resistor and R1 and R3 as fixed resistors, constant should be connected to VDD terminal,VR and V5 ,as  
shown below.  
VDD  
VREG  
Ra  
R1  
+
VR  
V5  
-
R2  
VOUT  
R3  
Rb  
Fig-3 Voltage Adjust Circuit  
<Design example for R1, R2 and R3 / Reference>  
-
R1+R2+R3=3.1MΩ  
(Determined by the current flown between VDD- V5)  
-
Variable voltage range by the R2. -3.2V to -6.3V (VLCD= VDD- V5=6.2V to 9.3V)  
(Determined by the LCD electrical characteristics)  
-
-
VREG=3V(In case of EVR=(F)H)  
- R1, R2 and R3 are calculated by above conditions and the formula of (1) to mentioned below;  
R1=1.0M,  
R2=0.5M,  
R3=1.6MΩ  
Note) V5 voltage is generated referencing with VREG voltage beased on the supply voltage (VDD and VSS) as  
shown in above figure. Therefore, VLCD (VDD-V5) is affected including the gain (Rb/Ra) by the fluctuation  
of VREG voltage based on the supply voltage. The power supply voltage should be stabilized for V5 stable  
operation.  
- 24 -  
NJU6673  
(3-3) Contrast Adjustment by the EVR function  
The EVR selects the VREG voltage out of the following 16 conditions by setting 4-bit data into the EVR  
register. With the EVR function, VREG is controlled, and the LCD display contrast is adjusted. The EVR  
controls the voltage of VREG by instruction and changes the voltage of V5.  
A step with EVR is set like table shown below.  
EVR register  
(0, 0, 0, 0)  
V
REG [V]  
VLCD  
Low  
:
:
0H  
1H  
2H  
:
(135/150)(VDD-VSS)  
(136/150)(VDD-VSS)  
(137/150)(VDD-VSS)  
:
(0, 0, 0, 1)  
(0, 0, 1, 0)  
:
:
:
:
:
:
:
EH  
FH  
(1, 1, 1, 0)  
(1, 1, 1, 1)  
(149/150)(VDD-VSS)  
(150/150)(VDD-VSS)  
High  
*
In use of the EVR function, the voltage adjustment circuit must turn on by the power supply instruction.  
Adjustable range of the LCD driving voltage by EVR function  
The adjustable range is decided by the power supply voltage VDD and the ratio of external resistors Ra and  
Rb.  
[ Design example for the adjustable range / Reference ]  
- Condition VDD =3.0V, VSS=0V  
Ra=1M, Rb=1M( Ra:Rb=1:1 )  
The adjustable range and the step voltage are calculated as follows in the above condition.  
In case of setting 00H in the EVR register,  
VLCD  
= ((Ra+Rb)/Ra) VREG  
= (2/1)[(135/150)3.0]  
= 5.4V  
In case of setting 0FH in the EVR register,  
VLCD  
= ((Ra+Rb)/Ra) VREG  
= (2/1)[(150/150)3.0]  
= 6.0V  
(min.)0H  
5.4  
(max.)FH  
6.0 [V]  
[mV]  
Adjustable Range  
Step Voltage  
40  
- 25 -  
NJU6673  
(3-4) LCD Driving Voltage Generation Circuits  
The LCD driving bias voltage of V1,V2,V3,V4 are generated by dividing the V5 voltage with the internal  
bleeder resistance and is supplied to the LCD driving circuits after the impedence conversion by the  
voltage follower.  
The external capacitors to V1 to V5 for Bias voltage stabilization may be removed in use of small size  
LCD panel. The equivalent load of LCD panel may be changed depending on display patterns. Therefore,  
it require display quality check on various display patterns actually without external capacitors. If the  
display quality is not so good, external capacitors should connects as show in Fig. 4. (If no need external  
capacitors as result of experiment, the application patterns (wiring) should be prepared for recovery.)  
Using the internal Power Supply  
Using the external Power Supply  
VSS  
VSS  
C1+  
C1+  
+
+
C1-  
C1  
C2+  
+
C1-  
C2+  
COUT  
C2-  
C2-  
C2  
2  
VOUT  
V
OUT  
R3  
V5  
NJU6673  
V5  
NJU6673  
1  
VR  
VR  
R2  
R1  
VDD  
VDD  
C3  
+
+
+
V1  
V2  
V3  
V1  
V2  
C4  
C5  
External  
Voltage  
V3  
Generator  
C6  
C7  
+
+
V4  
V5  
V4  
V5  
Fig.4  
Reference set up value VLCD=VDD- V5=6.2-9.3V  
COUT  
C1, C2  
C3-C7  
R1  
to 1.0µF  
to 1.0µF  
0.1 to 0.47 µF  
1MΩ  
1 Short wiring or sealed wiring to the VR terminal is required due to  
the high impedance of VR terminal.  
2 Following connection of VOUT is required when external power  
supply using.  
When VSSV5VOUTV5  
When VSSV5VOUTVSS  
R2  
500kΩ  
1.6MΩ  
R3  
- 26 -  
NJU6673  
(4) MPU Interface  
(4-1) Interface type selection  
Two MPU interface types are available in the NJU6673: by 1) 8-bit bi-directional data bus (D7 to D0), 2)  
serial data input (SI:D7). The interface type (the 8 bit parallel or serial interface) is determined by the  
condition of the P/S terminals connecting to “H” or “L” level as shown in Table 5. In case of the serial  
interface, neither the status read-out nor the RAM data read-out operation is allowed..  
Table 5  
P/S  
H
I/F type  
Parallel  
Serial  
CS  
CS  
CS  
A0  
A0  
A0  
RD  
RD  
-
WR  
WR  
-
SEL68  
SEL68  
-
D7  
D7  
SI  
D6  
D6  
D5-D0  
D5-D0  
Hi-Z  
L
SCL  
Parallel Interface  
The NJU6673 interfaces the 68- or 80-type MPU directly if the parallel interface (P/S=”H” is selected.  
The 68-type or 80-type MPU is selected by connecting the SEL68 terminal to “H” or “L” as shown in  
table 6.  
Table 6  
CS  
RD  
WR  
SEL68  
Type  
A0  
A0  
A0  
D7-D0  
D7-D0  
D7-D0  
CS  
CS  
H
L
68 type MPU  
80 type MPU  
E
R/W  
WR  
RD  
(4-2) Discrimination of Data Bus Signal  
The NJU6673 discriminates the mean of signal on the data bus by the combination of A0, E, R/W, and  
(RD, WR) signals as shown in Table 7.  
Table 7  
common  
68 type  
R/W  
H
80 type  
Function  
A0  
H
H
L
RD  
WR  
H
L
H
L
Read Display Data  
Write Display Data  
Status Read  
L
H
L
H
L
L
H
L
Write into the Register(Instruction)  
- 27 -  
NJU6673  
(4-3) Serial Interface.(P/S="L")  
The serial interface of the NJU6673 consists of the 8-bit shift register and 3-bit counter. In case the  
chip is selected (CS=L), the input to D7(SI) and D6(SCL) becomes available, and in case that the chip isn’t  
selected, the shift register and the counter are reset to the initial condition.  
The data input from the terminal(SI) is MSB first like as the order of D7, D6,------ D0, by a serial interface,  
it is entered into with rise edge of serial clock(SCL). The data converted into parallel data of 8-bit with the  
rise edge of 8th serial clock and processed.  
It discriminates display data or instructions by A0 input terminal. A0 is read with rise edge of (8 X n)th of  
serial clock (SCL), it is recognized display data by A0=“H” and instruction by A0=“L” A0 input is read in the  
rise edge of (8 X n)th of serial clock (SCL) after chip select and distinguished.  
However,in case of RES=“H” to “L” or CS=“L” to “H” with trasfered data does not fill 8 bit, attention is  
necessary because it will processed as there was command input. Always, input the data of (8 X n) style.  
The SCL signal must be careful of the termination reflection by the wiring length and the external noise  
and confirmation by the actual machine is recommended by it.  
CS  
SI  
D4  
D6  
D5  
3
D7  
1
D6  
D1  
7
D0  
8
D7  
9
SCL  
A0  
2
4
10  
Fig.5  
- 28 -  
NJU6673  
(4-4) Access to the Display Data RAM and Internal Register.  
The NJU6673 transfers data to the MPU through the bus holder with the internal data bus.  
In case of reading out the display data contents in the DD RAM, the data which was read in the first  
data read cycle (= the dummy read ) is memorized in the bus holder. Then the data is read out to the  
system bus from the bus holder in the next data read cycle. Also, In case that the MPU writes into DD  
RAM, the data is temporarily stored in the bus holder and is then written into DD RAM by the next data  
write cycle.  
Therefore, the limitation of the access to NJU6673 from MPU side is not access time (tACC,tDS) of  
Display Data RAM and the cycle time becomes dominant. With this, speed-up of the data transfer with the  
MPU becomes possible. In case of cycle time isn’t met, the MPU inserts NOP operation only and  
becomes an equivalent to an execution of wait operation on the satisfy condition in MPU.  
When setting an address, the data of the specified address isn’t output immediately by the read  
operation after setting an address, and the data of the specified address is output at the 2nd data read  
operation. Therefore, the dummy read is always necessary once after the address set and the write cycle.  
(See Fig. 6)  
The example of Read Modify Write operation is mentioned in (2-1)Instruction -k)The sequence of  
Inverse Display.  
Write Operation  
WR  
MPU  
N+2  
N+3  
N
N+1  
DATA  
I/O Buffer  
WR  
N
N+1  
N+2  
N+3  
Internal  
timing  
Read Operation  
MPU  
WR  
RD  
N
N
+1  
DATA  
Address set N Dummy Read Data Read n Data Read n+1  
WR  
RD  
N
N+1  
N+2  
Column Address  
I/O Buffer  
Internal  
timing  
N
+1  
+2  
Fig.6  
(4-5) Chip Select  
CS is Chip Select terminal. In case of CS="L". the interface with MPU is available. In case of CS=”H”,  
the D0 to D7 are high impedance and A0, RD, WR, SI and SCL inputs are ignored. If the serial interface is  
selected when CS=”H” the shift register and counter are reset. However, the reset is always operated in  
any conditions of CS.  
- 29 -  
NJU6673  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
SYMBOL  
RATINGS  
-0.3 - +7.0  
-0.3 -+3.6(Used Tripler)  
VDD-11.0 - VDD+0.3  
UNIT  
V
Supply Voltage(1)  
VDD  
Supply Voltage(2)  
Supply Voltage(3)  
V5  
V1,V2,V3,V4  
VIN  
V
V
V
V5-VDD+0.3  
-0.3-VDD+0.3  
Input Voltage  
Operating  
Temperature  
Topr  
Tstg  
-30-+80  
°C  
°C  
Strage temperature  
-55-+125  
VDD  
VSS  
VDD  
V5  
Note 1) All voltage values are specified as VSS=0V.  
Note 2) The relation of VDD>V1>V2>V3>V4>V5>VOUT; VDD>VSS>VOUT must be maintained.  
In case of inputting external LCD driving voltage , the LCD drive voltage should start supplying to  
NJU6673 at the mean time of turning on VDD power supply or after turned on VDD  
.
In use of the voltage boost circuit, the condition that the supply voltage: 11.0V> VDD -VOUT is necessary.  
Note 3) If the LSI are used on condition beyond the absolute maximum rating, the LSI may be destroyed.  
Using LSI within electrical characteristics is strongly recommended for normal operation.  
Use beyond the erectric characteristics conditions will cause malfunction and poor reliability.  
Note 4) Decoupling capacitor should be connected between VDD and VSS due to the stabilized operation for  
the voltage converter.  
- 30 -  
NJU6673  
ELECTRICAL CHARACTERISTICS  
(VDD=2.4V-3.6V, VSS=0V, Ta=-20 to 75°C)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT NOTE  
Recommend  
Available  
Recommend  
Available  
Available  
Available  
Operating  
voltage(1)  
2.4  
2.4  
VDD-10.0  
VDD-10.0  
VDD-0.6VLCD  
V5  
3.0  
3.6  
5.5  
VDD-5.0  
VDD  
V
V
1
V5  
Operating  
voltage(2)  
V1,V2  
V3,V4  
VDD  
VDD-0.4VLCD  
VDD  
VLCD=VDD-V5  
0.8VDD  
VSS  
0.8VDD  
VSS  
-1.0  
-3.0  
High Level VIHC  
Low Level VILC  
High Level VOHC  
Low Level VOLC  
ILI  
Input  
Voltage  
Output  
Voltage  
A0, D0-D7, RD, WR, RES, CS  
P/S, SEL68, DUTY, CDIR Terminal  
V
V
0.2VDD  
VDD  
0.2VDD  
1.0  
IOH=-0.5mA  
D0-D7  
Terminal  
IOL= 0.5mA  
All input terminals  
D0 to D7 terminals, Hi-Z state  
Input Leagage Current  
µA  
IL0  
3.0  
Driver On-resistance  
RON  
IDDQ  
CIN  
3.0  
T.B.D  
10  
4.5  
2
4
3
Ta=25°C, VLCD=8.0V  
During Power Save Mode  
Ta=25°C  
kΩ  
µA  
pF  
Stand-by Current  
Input Terminal  
Capacitance  
T.B.D  
Oscillation Frequency fOSC  
T.B.D  
1.0  
T.B.D  
T.B.D  
kHz  
VDD= 3.0V Ta =25°C  
RES terminal  
Reset Time  
Reset “L”  
tR  
5
6
µs  
tRW  
10  
µs  
level pulse Width  
VDD1  
VDD2  
2.4  
2.4  
-6.6  
5.5  
3.3  
-5.5  
Input voltage  
V
V
3-times boost  
7
Output voltage  
On-resistance  
VOUT1 3-times boost,VDD=3.0V  
3-times boost,  
VDD=3.0V, COUT=1.0µF  
RTRI  
T.B.D  
T.B.D  
Adjustment range  
LCD driving oltage  
Voltage Follower  
Voltage Regulator  
f
VOUT2 Voltage boost operation off  
VDD-10.0V  
VDD-5.0V  
V
8
9
V5  
VREG%  
Voltage adjustment circuit “OFF” VDD-10.0V  
VDD-5.0V  
T.B.D  
V
%
VDD=3.0V; Ta =25°C  
VDD=3.0V, VLCD=8V,  
Display Checkerd pattern  
IOUT1  
IOUT2  
T.B.D  
T.B.D  
T.B.D  
T.B.D  
µA  
µA  
Operating Current  
Note 1) Although the NJU6673 can operate in wide range of the operating voltage, it shall not be guaranteed in  
a sudden voltage fluctuation during the access with MPU.  
Note 2) RON is the resistance values in supplying 0.1V voltage-difference beteen power supply terminals  
(V1,V2,V3,V4) and each output terminals (common/ segment). This is specified within the range of  
Operating Voltage(2).  
Note 3) Apply A0, D0 to D7,RD,WR,CS,RES,SEL68,P/S,T1,T2,DUTY,CDIR terminals.  
Note 4) Apply no access from MPU.  
Note 5) tR ( Reset Time ) refers to the reset completion time of the internal circuits from the rise edge of the RES  
signal.  
Note 6) Apply minimum pulse width of the RES signal. To reset, the ”L” pulse over tRW shall be input. .  
Note 7) Apply to the VDD when using 3-times boost.  
Note 8) The voltage adjustment circuit controls V5 within the range of the voltage follower operating voltage.  
- 31 -  
NJU6673  
Note 9) Each operating current shall be defined as being measured in the following condition.  
External Voltage  
Oprating Condition  
Voltage  
Status  
Supply  
SYMBOL  
Voltage  
booster  
Voltage  
Follower  
T1  
T2  
(Input terminal)  
adjustment  
IOUT1  
IOUT2  
L
H
L/H  
H
Unuse  
Use (VOUT,V5)  
Validity  
Invalidity  
Validity  
Invalidity  
Validity  
Invalidity  
LCD output terminal Open.  
Display on, Display checered pattern, No access from MPU  
Set VLCD=8V  
Internal Oscillator : Validity  
MEASUREMENT BLOCK DIAGRAM  
: IOUT1  
500kΩ  
1MΩ  
1.6MΩ  
VR  
V5  
VDD  
T1  
T2  
NJU6673  
A
VSS C1+  
C1-  
C2+ C2-  
VOUT  
+
+
+
1µF  
1µF  
1µF  
: IOUT2  
-5V  
10k10k10k10k10kΩ  
VDD V1  
V2  
V3  
V4  
V5 VOUT  
VDD  
T1  
T2  
NJU6673  
A
VSS C1+  
C1-  
C2+ C2-  
- 32 -  
NJU6673  
BUS TIMING CHARACTERISTICS  
Read/Write operation sequence(80 type MPU)  
tCYC8  
A0  
tr  
tf  
tAW8  
tAH8  
tCCL  
WR, RD  
(CS)  
tCCH  
tDH8  
tDS8  
D0-D7  
(Write)  
tACC8  
tOH8  
D0-D7  
(Read)  
(VDD=2.4V-3.6V, Ta=-20 to 75°C)  
UNIT  
PARAMETER  
SYMBOL SIGNAL CONDITION  
MIN  
32  
TYP  
MAX  
Address Hold Time  
Address Setup Time  
System Cycle Time  
tAH8  
tAW8  
tCYC8  
tCCL(W)  
tCCL(R)  
tCCH  
A0, CS  
32  
560  
75  
WR, RD  
WR, "L"  
Control  
250  
RD, "L"  
"H"  
Pulse Width  
275  
150  
44  
ns  
Data Setup Time  
Data Hold Time  
tDS8  
tDH8  
DD-D7  
tACC8  
175  
44  
RD Access Time  
Output Disable Time  
CL=100pF  
tOH8  
tr, tf  
0
CS,WR,RD  
Rise Time, Fall Time  
15  
Note 1) All timing based on 20% and 80% of VDD voltage level.  
- 33 -  
NJU6673  
Read/Write operation sequence(68 type MPU)  
tCYC6  
E
tr  
tf  
tEWL  
tEWH  
R/W  
tAW6  
tAH6  
A0, CS  
tDH6  
tDS6  
D0-D7  
(Write)  
tACC6  
tOH6  
D0-D7  
(Read)  
(VDD=2.4V-3.6V, Ta=-20 to 75°C)  
PARAMETER  
Address Hold Time  
Address Setup Time  
SYMBOL SIGNAL CONDITION  
MIN  
32  
TYP  
MAX UNIT  
A0,CS  
R/W  
tAH6  
tAW6  
tCYC6  
32  
E
E
560  
250  
62  
System Cycle Time  
READ  
WRITE  
Enable  
Pulse Width  
tEWH  
ns  
Data Setup Time  
Data Hold Time  
Access Time  
Output Disable Time  
Rise Time, Fall Time  
tDS6  
150  
50  
tDH6  
tACC6  
tOH6  
D0-D7  
tr, tf  
175  
56  
CL=100pF  
0
E
15  
Note 1) All timing based on 20% and 80% of VDD voltage level.  
Note 2) tCYC6 shows the cycle of the E signal in active CS.  
- 34 -  
NJU6673  
Write operation sequence(Serial Interface)  
tCSH  
tCSS  
CS  
tSAS  
tSAH  
A0  
tSCYC1  
tSLW  
tSHW  
SCL  
SI  
tr  
tf  
tSDS  
tSDH  
(VDD=2.4V-3.6V, Ta=-20 to 75°C)  
PARAMETER  
SYMBOL SIGNAL CONDITION  
MIN  
TYP  
MAX UNIT  
Serial Clock cycle  
tSCYC  
1000  
SCL  
SCL "H" Pulse width  
SCL "L" Pulse width  
Address Setup Time  
Address Hold Time  
Data Setup Time  
tSHW  
tSLW  
tSAS  
tSAH  
tSDS  
tSDH  
tCSS  
tCSH  
tf, tr  
300  
300  
250  
400  
250  
100  
60  
A0  
SI  
ns  
Data Hold Time  
CS-SCL Time  
CS  
800  
Rise time, Fall Time  
SCL  
15  
Note 1) All timing are based on 20% and 80% of VDD voltage level.  
- 35 -  
NJU6673  
LCD DRIVING WAVERORM  
VDD  
VSS  
FR  
VDD  
V1  
V2  
V3  
V4  
V5  
C0  
C0  
C1  
C2  
C3  
VDD  
V1  
V2  
V3  
V4  
V5  
C4  
C5  
C1  
C6  
C7  
VDD  
V1  
V2  
V3  
V4  
V5  
C8  
C9  
C2  
S0  
C10  
C11  
C12  
C13  
VDD  
V1  
V2  
V3  
V4  
V5  
C14  
C15  
VDD  
V1  
V2  
V3  
V4  
V5  
S1  
V5  
V4  
V3  
V2  
V1  
VDD  
C0-S0  
-V1  
-V2  
-V3  
-V4  
-V5  
V5  
V4  
V3  
V2  
V1  
C0-S1  
VDD  
-V1  
-V2  
-V3  
-V4  
-V5  
- 36 -  
NJU6673  
APPLICATION CIRCUIT  
Microprocessor Interface Example  
The NJU6673 is connectable to 80-type MPU or 68-type. In use of Serial Interface, it is possible to be controlled  
by the signal line with the more small being.  
*:SEL68 terminal shall be connected to VDD or VSS.  
80 type MPU  
VCC  
VDD  
A0  
A0  
A1-A7  
IORQ  
SEL68  
CS  
Decoder  
MPU  
NJU6673  
D0-D7  
D0-D7  
VDD  
RD  
RD  
WR  
RES  
WR  
RES  
P/S  
GND  
VSS  
RESET  
68 type MPU  
VDD  
VCC  
VDD  
A0  
A0  
A1-A15  
VMA  
SEL68  
CS  
Decoder  
MPU  
NJU6673  
D0-D7  
D0-D7  
VDD  
E
E
R/W  
RES  
R/W  
RES  
P/S  
GND  
VSS  
RESE  
Serial Interface  
VDD  
VCC  
A0  
A0  
SEL68  
CS  
A1-A7  
Decoder  
MPU  
NJU6673  
D7(SI)  
D6(SCL)  
Port 1  
Port 2  
P/S  
RES  
RES  
GND  
VSS  
RESE  
- 37 -  
NJU6673  
MEMO  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
- 38 -  

相关型号:

NJU6673CL

25-common x 100-segment BITMAP LCD DRIVER
NJRC

NJU6673H

Liquid Crystal Driver, 125-Segment, CMOS, TCP
NJRC

NJU6673T

Liquid Crystal Driver, 125-Segment, CMOS, COF
NJRC

NJU6674

38-common x 132-segment + 1-icon common Bitmap LCD Driver
ETC

NJU6674CJ

Liquid Crystal Driver, 171-Segment, CMOS, 10.38 X 2.51MM, DIE-286
NJRC

NJU6675

BIT MAP LCD DRIVER
NJRC

NJU6675CH

BIT MAP LCD DRIVER
NJRC

NJU6675H

Liquid Crystal Driver, 154-Segment, CMOS, TCP-187
NJRC

NJU6676

64-Common X 132-Segment plus 1-Icon Bit Map Type LCD Controller and Driver
NJRC

NJU6676CH

64-Common X 132-Segment plus 1-Icon Bit Map Type LCD Controller and Driver
NJRC

NJU6676CL

Liquid Crystal Driver, 197-Segment, CMOS, 8.72 X 2.37 MM, DIE-276
NJRC

NJU6676H

Liquid Crystal Driver, 197-Segment, CMOS, TCP-276
NJRC