AN-32 [ETC]

TOPSwitch-GX Flyback Design Methodology ; TOPSwitch-GX的反激式设计方法\n
AN-32
型号: AN-32
厂家: ETC    ETC
描述:

TOPSwitch-GX Flyback Design Methodology
TOPSwitch-GX的反激式设计方法\n

文件: 总16页 (文件大小:134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
TOPSwitch®-GX Flyback  
Design Methodology  
Application Note AN-32  
Designing an off-line power supply involves many aspects of  
electrical engineering: analog and digital circuits, bipolar and  
MOS power device characteristics, magnetics, thermal  
considerations, safety requirements, control loop stability, etc.  
This represents an enormous challenge involving complex  
trade-offs with a large number of design variables. As a result,  
newoff-linepowersupplydevelopmenthasalwaysbeentedious  
and time consuming even for the experts in the field. This  
application note introduces a simple, yet highly efficient  
methodology for the design of TOPSwitch-GX family based  
off-line power supplies. For TOPSwitch-GX Flyback designs,  
Power Integrations recommends the use of PI Expert which  
implements this design methodology and also includes a  
knowledgebaseandoptimizationfeatureformakingkeydesign  
choices, further reducing design time.  
and a step-by-step design procedure. The flow chart shows the  
design sequence at a conceptual level for TOPSwitch-GX  
flybackpowersupplydesign. Thestep-by-stepproceduregives  
details within each step of the design flow chart, including  
empiricaldesignguidelinesandlook-uptables.Allkeyequations  
and guidelines are provided wherever possible to assist the  
readers in better understanding and/or further optimization.  
Basic Circuit Configuration  
Because of the high level integration of TOPSwitch-GX, many  
power supply design issues are resolved in the chip. Far fewer  
issues are left to be addressed externally, resulting in one  
common circuit configuration for all applications. Different  
output power levels may require different values for some  
circuit components, but the circuit configuration stays  
unchanged. TOPSwitch-GX is a feature-rich product family.  
Advanced features like under-voltage, overvoltage, external  
ILIMIT, line feed forward, and remote ON/OFF are easily  
implemented with a minimal number of external components,  
but do involve additional design considerations. Please refer to  
the TOPSwitch-GX data sheet for details. Other application  
Introduction  
The design of a switching power supply, by nature, is an  
iterative process with many variables requiring adjustment to  
optimize the design. The design method described in this  
document consists of two major sections: A design flow chart  
Output Post Filter L, C  
Clamp Zener  
Output Capacitor  
Blocking Diode  
+V  
-
D
+
V
O
-
Line Sense  
Resistor  
+
+V  
-
V
+
B
DB  
-
V
AC  
Bias Capacitor  
C
IN  
TOPSwitch-GX  
L
D
S
CONTROL  
C
X
F
Feedback Circuit  
fS = 132 kHz if connected as shown.  
For fS = 66 kHz, connect "F" Pin to "C" Pin  
(fS option not available with P or G package)  
External ILIMIT Resistor CONTROL Pin Capacitor  
(optional)  
and Series Resistor  
PI-3038-091102  
Figure 1. Typical TOPSwitch-GX Flyback Power Supply.  
December 2002  
AN-32  
1. System Requirements  
VACMIN, VACMAX, fL, VO, PO, η, Z  
Step 1-2  
Determine System Level Requirements  
and Choose Feedback Circuit  
2. Choose Feedback Circuit & VB  
3. Determine CIN, VMIN, VMAX  
4. Determine VOR, VCLO  
5. Set KP  
6. Determine DMAX  
Step 3-11  
Choose The Smallest TOPSwitch-GX  
For The Required Power  
7. Calculate Primary Peak Current IP  
8. Calculate Primary RMS Current IRMS  
9. Choose TOPSwitch-GX & fS Using AN-29  
10. Set ILIMIT Reduction Factor KI  
Calculate ILIMIT (min) & ILIMIT (max)  
From Step 23  
N
11. IP ILIMIT (min)  
Y
To Step 12  
PI-3039-080502  
Figure 2A. TOPSwitch-GX Design Flow Chart. Step 1 to 11.  
specificissuessuchasconstantcurrent,constantpoweroutputs,  
etc. are beyond the scope of this application note. However,  
suchrequirementsmaybesatisfiedbyaddingadditionalcircuitry  
to the basic converter configuration. The only part of the circuit  
configuration that may change from application to application  
isthefeedbackcircuitry.Dependingonthepowersupplyoutput  
specifications, one of the four feedback circuits, shown in  
Figures 3, 4, 5 and 6, will be chosen for the application.  
Design Flow  
Figures 2A, 2B and 2C present a design flow chart showing the  
complete design procedure in 37 steps. With the basic circuit  
configuration shown in Figure 1 as its foundation, the logic  
behind this design approach can be summarized as follows:  
1. Determine system requirements and decide on feedback  
circuit accordingly.  
The basic circuit configuration used in TOPSwitch-GX flyback  
power supplies is shown in Figure 1, which also serves as the  
reference circuit for component identifications used in the  
description throughout this application note.  
2. Choose the smallest TOPSwitch-GX capable of the  
required output power.  
3. Design the smallest transformer for the TOPSwitch-GX  
chosen.  
4. Select all other components in Figure 1 to complete the  
design.  
B
12/02  
2
AN-32  
From Step 11  
12. Determine LP  
13. Choose Core & Bobbin  
Determine Ae, Le, AL, BW  
Y
N
14. Set NS, L  
22. NS, L Iterated  
15. Calculate NP, NB  
16. Calculate OD, DIA, AWG  
17. Calculate BM  
N
18. BM 3000  
Y
19. Calculate Lg, CMA  
Step 12-28  
Design the Smallest Transformer  
to work with the TOPSwitch-GX Chosen  
N
20. Lg 0.10 mm  
Y
N
21. 200 CMA 500  
Y
N
23. BP 4200  
To Step 10  
Y
24. Calculate ISP  
25. Calculate ISRMS  
26. Calculate ODS, DIAS, AWGS  
27. Calculate IRIPPLE  
28. Calculate PIVS, PIVB  
To Step 29  
PI-3040-091802  
Figure 2B. TOPSwitch-GX Design Flow Chart. Step 12 to 28.  
B
12/02  
3
AN-32  
From Step 28  
29. Select Clamp Zener & Blocking Diode  
30. Select Output Rectifier  
31. Select Output Capacitor  
32. Select Output Post Filter L, C  
33. Select Bias Rectifier  
34. Select Bias Capacitor  
Step 29-37  
Select Other Components  
35. Select CONTROL Pin Capacitor  
& Series Resistor  
36. Select Feedback Circuit Compenents  
According to Reference Feedback Circuits  
in Figures 3, 4, 5 and 6  
37. Select Bridge Rectifier  
Design  
Complete  
PI-2584-091402  
Figure 2C. TOPSwitch-GX Design Flow Chart. Step 29 to 37.  
The overriding objective of this procedure is “design for cost  
effectiveness.” Using smaller components usually leads to a  
less expensive power supply. However, for applications with  
stringent size or weight limitations, the designer may need to  
strike a compromise between cost and specific design  
requirementsinordertoachievetheoptimumcosteffectiveness  
for the end product.  
B
12/02  
4
AN-32  
Step-by-Step Design Procedure  
• Power supply efficiency, η: 0.8 if no better reference data  
available. (Refer to AN-29)  
ThisdesignprocedureusesthePIExpertdesignsoftware(available  
from Power Integrations), which contains all the important  
equations required for a TOPSwitch-GX flyback power supply  
design,andautomatesmostcalculations.Designersare,therefore,  
relievedfromthetediouscalculationsinvolvedinthecomplicated  
and highly iterative design process. Look-up tables and empirical  
designguidelinesareprovidedinthisprocedurewhereappropriate  
to facilitate the design task.  
• Loss allocation factor, Z: If Z = 1, all losses are on the  
secondary side. If Z = 0, all losses are on the primary side.  
Set Z = 0.5 if no better reference data is available.  
Step 2. Choose feedback circuit and bias voltage VB based  
on output requirements  
Feedback  
Circuit  
VB Circuit Load* Line  
(V) Tolerance Reg. Reg.  
Total  
Reg.  
Step 1. Determine system requirements: VACMAX, VACMIN  
,
fL, VO, PO, η, Z  
Pri./Basic 5.8 ±10%  
Pri./Enhan. 27.8 ±5%  
±5% ±1.5% ±16.5%  
±2.5% ±1.5% ±9%  
±1% ±0.5% ±6.5%  
±0.2% ±0.2% ±1.4%  
• Minimum AC input voltage, VACMIN: in volts.  
• Maximum AC input voltage, VACMAX: in volts.  
• Recommended AC input ranges:  
Opto/Zener 12  
Opto/TL431 12  
±5%  
±1%  
*Over 10% to 100% Load Range.  
Table 2.  
Input (VAC)  
Universal  
VACMIN (VAC) VACMAX (VAC)  
85  
265  
265  
• Use primary feedback for lowest cost (for low power  
applications only).  
230 or 115 with doubler  
195  
• Use Opto/Zener for low cost, good output accuracy.  
• Use Opto/TL431 for best output accuracy.  
• Set bias voltage VB according to Table 2.  
• Choose optocoupler from Table 3.  
Table 1.  
• Line frequency, fL: 50 Hz or 60 Hz.  
• Output voltage, VO: in Volts.  
• Output power: PO: in Watts.  
+
+
VO  
-
VAC  
CIN  
Feedback Circuit  
TOPSwitch-GX  
15  
D
S
L
CONTROL  
C
X
F
CIRCUIT PERFORMANCE  
Circuit Tolerance ±10%  
Load Regulation ±5%  
Line Regulation ±1.5%  
PI-3331-112202  
Figure 3. Primary/Basic Feedback Circuit.  
B
12/02  
5
AN-32  
+
+
VO  
-
VAC  
CIRCUIT PERFORMANCE  
Circuit Tolerance ±5%  
Load Regulation ±2.5%  
Line Regulation ±1.5%  
CIN  
15 Ω  
TOPSwitch-GX  
1N5251D  
22 V  
1%  
D
S
L
CONTROL  
C
Feedback Circuit  
X
F
100 nF  
50 V  
PI-3330-091102  
Figure 4. Primary/Enhanced Feedback Circuit.  
+
+
VO  
-
VAC  
47 Ω  
CIN  
CIRCUIT PERFORMANCE  
Circuit Tolerance ±5%  
Load Regulation ±1%  
Line Regulation ±0.5%  
∗∗  
470 Ω  
TOPSwitch-GX  
LTV817A  
D
S
L
CONTROL  
C
Feedback Circuit  
X
F
Zener, 2%  
47 is suitable for VO up to 7.5V. For VO > 7.5V, a higher value may be required for optimum transient response.  
∗∗  
470 is good for Zeners with IZT = 5 mA. Lower values are needed for Zeners with higher IZT. (E.g. 150 for IZT = 20 mA).  
PI-3328-112202  
Figure 5. Opto/Zener Feedback Circuit.  
B
12/02  
6
AN-32  
+
+
VO  
-
VAC  
470 (VO = 12 V)  
100 (VO = 5 V)  
CIRCUIT PERFORMANCE  
Circuit Tolerance ±1%  
Load Regulation ±0.2%  
Line Regulation ±0.2%  
CIN  
UTV817A  
TOPSwitch-GX  
1 kΩ  
D
S
L
CONTROL  
C
VO - 2.5  
R =  
X10 kΩ  
100 nF  
2.5  
3.3 kΩ  
X
F
TL431  
10 kΩ  
Feedback Circuit  
PI-3329-112202  
Figure 6. Opto/TL431 Feedback Circuit.  
Step 3. Determine minimum and maximum DC input  
voltagesVMIN,VMAX andinputstoragecapacitanceCIN based  
on AC input voltage and PO (Figure 7)  
P/N  
CTR(%) BVCEO Manufacturer  
4 Pin DIP  
PC123Y6  
PC817X1  
SFH615A-2  
SFH617A-2  
SFH618A-2  
ISP817A  
LTV817A  
LTV816A  
LTV123A  
K1010A  
6 Pin DIP  
LTV702FB  
LTV703FB  
LTV713FA  
K2010  
80-160 70 V Sharp  
80-160 70 V Sharp  
• Choose input storage capacitor, CIN per Table 4.  
63-125 70 V Vishay, Isocom  
63-125 70 V Vishay, Isocom  
63-125 55 V Vishay, Isocom  
80-160 35 V Vishay, Isocom  
80-160 35 V Liteon  
80-160 80 V Liteon  
80-160 70 V Liteon  
60-160 60 V Cosmo  
Input (VAC)  
Universal  
CIN (µF/Watt of PO) VMIN (V)  
2 ~ 3  
1
90  
230 or 115 with doubler  
Table 4  
240  
63-125 70 V Liteon  
63-125 70 V Liteon  
80-160 35 V Liteon  
60-160 60 V Cosmo  
• Set bridge rectifier conduction time, tC = 3 ms.  
• Derive minimum DC input voltage VMIN  
PC702V2NSZX 63-125 70 V Sharp  
PC703V2NSZX 63-125 70 V Sharp  
PC713V1NSZX 80-160 35 V Sharp  
PC714V1NSZX 80-160 35 V Sharp  
1
2 × P ×  
t  
C   
O
2 × f  
VMIN = (2 × VA2CMIN ) −  
L
η × CIN  
MOC8102  
MOC8103  
MOC8105  
CNY17F-2  
73-117 30 V Vishay, Isocom  
where units are volts, watts, Hz, seconds and farads  
108-173 30 V Vishay, Isocom  
63-133 30 V Vishay, Isocom  
63-125 70 V Vishay, Isocom,  
Liteon  
• Calculate maximum DC input voltage VMAX  
:
VMAX = 2 × VACMAX  
Table 3. Optocoupler  
B
12/02  
7
AN-32  
Step 4. Determine reflected output voltage VOR and clamp  
Zener voltage VCLO (Figure 8)  
TOPSwitch-GX when and only when current limit is set  
externally with current limit reduction as a function of line  
voltage. Compared to Zener clamps, designs using RCD  
clamps usually have lower efficiency at light load. In  
addition, great care must be taken in RCD clamp design.  
Because of its inherent variation in clamp voltage across  
load range, if not designed properly, an RCD clamp may  
fail to protect TOPSwitch-GX, especially under startup or  
output overload conditions.  
• Set reflected output voltage, VOR = 100 V for multiple  
output, 120 V for single output. These values optimize  
cross-regulation and efficiency. To obtain the maximum  
output power from a given TOPSwitch-GX device, set  
VOR = 135 V.  
• RCD (Resistor/Capacitor/Diode) clamp may be used with  
VACMIN × 2  
V+  
VMIN  
t
C
P = Output Power  
O
f
t
= Line Frequency  
(50 or 60 Hz)  
L
= Conduction Angle  
Use 3 ms if unknown  
C
η = Efficiency  
PI-2585-012500  
Figure 7. Input Voltage Waveform.  
BV  
700 V  
DSS  
Margin = 53 V (95 V)  
647 V (605 V)  
627 V (585 V)  
Blocking Diode Forward Recovery = 20 V  
555 V (525 V)  
495 V (475 V)  
V
V
CLM  
CLO  
V
= 120 V (100 V)  
OR  
V
MAX  
375 V  
V
= 1.5 x V  
= 1.4 x V  
= 180 V (150 V)  
CLO  
CLM  
OR  
V
= 252 V (210 V)  
CLO  
0 V  
0 V  
Universal/230 VAC Input  
Use V  
= 120 V (100 V) and 180 V (150 V) Zener Clamp  
For Single (Multiple) Output  
OR  
PI-3336-091402  
Figure 8. Reflected Voltage VOR and Clamp Zener Voltage VCLO  
.
B
12/02  
8
AN-32  
Step 5. Set current waveform parameter KP for desired  
mode of operation and current waveform: KP KRP for KP  
1.0 and KP KDP for KP 1.0 (Figures 9 and 10)  
IR  
IP  
KP KRP =  
• For KP 1.0, KP KRP, continuous mode (see Figure 9)  
I
R
Primary  
I
IR  
P
KP KRP  
=
where IR is primary ripple current and IP  
IP  
is primary peak current.  
• For KP 1.0, KP KDP, discontinuous mode (see Figure 10)  
(a) Continuous, K < 1  
P
VOR × (1DMAX  
)
KP KDP  
=
I
I
P
Primary  
R
(VMIN VDS ) × DMAX  
• For continuous mode design, set  
KP = 0.4 for universal input  
(b) Borderline Continuous/Discontinuous, K = 1  
P
0.6 for 230 VAC or 115 VAC with doubler.  
PI-2587-011400  
• For discontinuous mode design, set KP = 1.0.  
• KP must be kept within the range specified in Table 5.  
Figure 9. Continuous Mode Current Waveform, KP 1.  
(1-D) x T  
=
KP KDP  
t
T = 1/fS  
Primary  
D x T  
(1-D) x T  
t
Secondary  
(a) Discontinuous, K > 1  
P
T = 1/fS  
Primary  
D x T  
(1-D) x T = t  
Secondary  
(b) Boarderline Discontinuous/Continuous, K = 1  
P
PI-2578-011800  
Figure 10. Discontinuous Mode Current Waveform, KP 1.  
B
12/02  
9
AN-32  
Step 9. Choose TOPSwitch-GXbased on AC input voltage,  
VO, PO and η using AN-29 selection curves  
KP  
Input (VAC)  
Continuous  
Mode  
Discontinuous  
Mode  
• ChoosethesmallestTOPSwitch-GXusingTOPSwitch-GX  
Selection Curves in AN-29.  
• Identify appropriate selection curves according to AC  
input voltage and output voltage, VO.  
• Continuous mode: Use selection curves as is.  
• Discontinuous mode: Use selection curves with the output  
power derated by 33%. This effectively makes a 10 W  
discontinuous design equivalent to a 15 W continuous  
design in TOPSwitch-GX selection.  
Universal  
230  
0.4~1.0  
0.6~1.0  
1.0  
1.0  
Table 5  
Step 6. Determine DMAX based on VMIN and VOR  
• Switching Frequency fS: For DIP and SMP packages, set  
fS = 132 kHz. For TO-220 package, choose between  
66 kHz and 132 kHz.  
• Continuous mode  
VOR  
DMAX  
=
(VMIN VDS ) + VOR  
Step 10. Set ILIMIT reduction factor KI for External ILIMIT  
• Discontinuous mode  
external ILIMIT  
where 0.3 KI 1.0  
KI =  
default ILIMIT  
VOR  
DMAX  
=
• KI is set by the value of the resistor connected between M  
pinandSOURCEpin(RefertoTOPSwitch-GXdatasheet).  
• For applications demanding very high efficiency, a  
TOPSwitch-GX bigger than necessary may be used by  
lowering ILIMIT externally to take advantage of the lower  
KP × (VMIN VDS ) + VOR  
• Set TOPSwitch-GX Drain to Source voltage, VDS = 10 V.  
Step 7. Calculate primary peak current IP  
• Continuous mode (KP 1.0)  
RDS(ON)  
.
• If no special requirement, set KI = 1.0.  
• Calculate ILIMIT(min) and ILIMIT(max)  
IAVG  
IP =  
ILIMIT(min) = default ILIMIT(min) ×KI  
ILIMIT(max) = default ILIMIT(max) ×KI  
K
P   
1−  
× DMAX  
2
• Discontinuous mode (KP 1.0)  
Step 11. Validate TOPSwitch-GX selection by checking IP  
2 ×IAVG  
IP =  
against ILIMIT(min)  
DMAX  
• For KI = 1.0, check IP 0.96 x ILIMIT(min).  
• For KI < 1.0, check IP 0.94 x ILIMIT(min).  
• Choose larger TOPSwitch-GX if necessary.  
PO  
• Input average current  
IAVG  
=
η ×VMIN  
Step 12. Calculate primary inductance LP  
Step 8. Calculate primary RMS current IRMS  
• Continuous mode  
• Continuous mode  
106 ×PO  
Z × (1η) + η  
2
KP  
LP =  
×
2
K
IRMS = IP × DMAX  
×
KP+1  
P   
η
IP × KP × 1−  
× fS (min)  
3
2
where units are µH, watts, amps and Hz  
• Discontinuous mode  
IP2  
• Discontinuous mode.  
106 × PO  
Z × (1η) + η  
IRMS = DMAX  
×
3
LP =  
×
2
1
η
IP × × fS (min)  
2
where units are µH, watts, amps and Hz  
B
12/02  
10  
AN-32  
• Z is loss allocation factor and η is efficiency from Step 1.  
Step 14. Set value for number of primary layers L and  
number of secondary turns NS (may need iteration)  
Step 13. Choose core and bobbin based on fS and PO using  
Table 6 and determine Ae, Le, AL and BW from core and  
bobbin catalog  
• Starting with L = 2 (Keep 1.0 L 2.0 throughout  
iteration).  
• Starting with NS = 0.6 turn/volt.  
• Both L and NS may need iteration.  
• Core effective cross-sectional area, Ae: in cm2.  
• Core effective path length, Le: in cm.  
• Core ungapped effective inductance, AL: in nH/turn2.  
• Bobbin width, BW: in mm.  
Step 15. Calculatenumberof primaryturnsNP andnumber  
of bias turns NB  
• Choose core and bobbin based on fS, PO and construction  
type.  
• Diode forward voltages: 0.7 V for ultra-fast P/N diode and  
0.5 V for Schottky diode.  
• Set output rectifier forward voltage, VD.  
• Set bias rectifier forward voltage, VDB.  
• Calculate number of primary turns.  
66 kHz  
Triple  
Insulated  
Wire  
132 kHz  
Triple  
Insulated  
Wire  
Output  
Power  
Margin  
Wound  
Margin  
Wound  
VOR  
NP = NS ×  
EF12.6  
EE13  
EF16  
EE16  
EE19  
EI22  
EI22  
EE19  
EI22/19/6 EF16  
EEL16  
EF20  
EI25  
EF12.6  
EE13  
EI22  
EE19  
E122/19/6  
EEL16  
VO + VD  
• Calculate number of bias turns NB.  
EE16  
0-10 W  
VB + VDB  
NB = NS ×  
EI22/19/6 EEL19  
VO + VD  
EF20  
EI28  
EEL22  
EE19  
EI22  
EF20  
EI25  
10 W-  
20 W  
Step 16. DetermineprimarywindingwireparametersOD,  
DIA, AWG  
EF25 EI22/19/6 EEL19  
EF20  
EF25  
EI30  
EPC30  
EEL25  
E30/15/7  
EER28  
E128  
• Primary wire outside diameter in mm.  
20 W-  
30 W  
L × (BW 2 × M)  
EI28  
EI30  
EF25  
EEL22  
EF25  
EI30  
OD =  
NP  
E30/15/7 ETD29  
EER28  
30 W-  
50 W  
where L is number of primary layers,  
BW is bobbin width in mm,  
M is safety margin in mm.  
EI35  
EI33/29/  
13-Z  
EER28L  
EF32  
EPC30  
ETD29  
EI35  
EF32  
EI28  
EI30  
EEL25  
E30/15/7  
EER28  
ETD29  
EI35  
EI33/29/  
13-Z  
EER28L  
EF32  
ETD34  
EI40  
• Determine primary wire bare conductor diameter DIA and  
primary wire gauge AWG.  
50 W-  
70 W  
ETD34  
ETD34  
EI40  
Step 17 to Step 22. Check BM, CMA and Lg. Iterate if  
necessary by changing L, NS or core/bobbin until within  
specified range  
E36/18/11 E36/18/11 E30/15/7  
EI40  
EER35  
EER28  
ETD29  
70 W-  
100 W  
• Set safety margin, M. Use 3 mm (118 mils) for margin  
wound and zero for triple insulated secondary.  
• Maximum flux density: 3000 BM 2000, in gauss or  
0.3 BM 0.2, in tesla.  
ETD39  
EER40  
ETD39  
EER40  
EI35  
EF32  
100 W-  
150 W  
E42/21/15 ETD34 E36/18/11  
EER35  
E42/21/15 E42/21/20 E36/18/11 ETD39  
E42/21/20 E55/28/21 EI40 EER40  
100 × IP ×LP  
BM =  
E55/28/21  
ETD39 E42/21/15  
EER40 E42/21/20  
E42/21/15 E55/28/21  
E42/21/20  
NP ×Ae  
>150W  
where units are gauss, amps, µH and cm2  
E55/28/21  
Table 6. Transformer Core.  
B
12/02  
11  
AN-32  
• Gap length in mm: Lg 0.1  
Step 26. Determine secondary winding wire parameters  
ODS, DIAS, AWGS  
NP2  
1
• Secondary wire outside diameter in mm  
Lg= 40 × π ×Ae ×  
1000 × L  
A
L   
P
BW (2 × M)  
where Lg in mm, Ae in cm2, AL in nH/turn2 and  
ODS =  
NS  
LP in µH  
• Secondary wire bare conductor diameter in mm  
• Primary winding current capacity in circular mils per amp:  
500 CMA 200  
4 × CMAS × ISRMS 25.4  
DIAS =  
×
1.27 × DIA2 ×  
π
1.27 × π  
1000  
2
1000  
25.4  
4
CMA =  
×
where CMAS is secondary winding current capacity  
in circular mils per amp. Minimum wire diameter is  
calculated by using a CMAS of 200.  
IRMS  
where DIA is the bare conductor diameter in mm  
• Iterate by changing L, NS, core/bobbin according to Table 7.  
• Determine secondary winding wire gauge AWGS based on  
DIAS. If the bare conductor diameter of the wire is larger  
than that of the 27 AWG for 132 kHz or 25 AWG for  
66kHz,aparallelwindingusingmultiplestrandsofthinner  
wire should be used to minimize skin effect.  
BM  
-
Lg  
-
CMA  
L
NS  
Step 27. Determine output capacitor ripple current IRIPPLE  
core  
size  
• Output capacitor ripple current  
IRIPPLE = IS2RMS IO2  
Table 7.  
Step 23. Check BP 4200 . If necessary, reduce current  
where IO is the output DC current  
limit by lowering ILIMIT reduction factor KI  
Step 28. Determine maximum peak inverse voltages PIVS,  
PIVB for secondary and bias windings  
ILIMIT(max)  
BP =  
× BM  
IP  
• Secondary winding maximum peak inverse voltage.  
• Check BP 4200 gauss (0.42 tesla) to avoid transformer  
saturation at startup and output over load.  
• Decrease KI, if necessary, until BP 4200.  
NS  
PIV = VO + (VMAX  
×
)
S
NP  
• Bias winding maximum peak inverse voltage.  
Step 24. Calculate secondary peak current ISP  
NB  
NP  
PIVB = VB + (VMAX  
×
)
ISP= IP ×  
NP  
NS  
Step 29. Select clamp Zener and blocking diode per Table 8  
for primary clamping based on VOR and the type of output  
Step 25. Calculate secondary RMS current ISRMS  
Blocking  
Diode  
BYV26C  
MUR160 P6KE150  
UF4005  
Clamp  
Zener  
• Continuous mode  
PS Output  
VOR  
2
KP  
ISRMS = ISP × 1D  
×
KP +1  
(
)
MAX  
Multiple Output 100 V  
3
BYV26C  
• Discontinuous mode  
MUR160 P6KE180  
UF4005  
Single Output  
120 V  
1DMAX  
3 ×KP  
ISRMS = ISP ×  
Table 8.  
B
12/02  
12  
AN-32  
Step 30. Select output rectifier per Table 9  
Step 31. Select output capacitor  
• VR 1.25 xPIVS; where PIVS is from Step 28 and VR is the  
rated reverse voltage of the rectifier diode.  
• ID 3 x IO; where ID is the diode rated DC current and  
IO = PO / VO.  
• Ripple current specification at 105 °C, 100 kHz: Must be  
equal to or larger than IRIPPLE, where IRIPPLE is from Step 27.  
• ESR specification: Use low ESR, electrolytic capacitor.  
Output switching ripple voltage is ISP x ESR , where ISP is  
from Step 24.  
Rec. Diode VR(V) ID(A) Package Manufacturer  
Examples:  
Schottky  
1N5819  
SB140  
Output  
Output Capacitor  
40  
40  
60  
60  
60  
40  
40  
40  
60  
60  
40  
60  
45  
1
1
1
1
1.1  
3
3
3
3
3
Axial General Semi  
Axial General Semi  
Axial General Semi  
Axial IR  
5 V to 24 V, 1 A 330 µF, 35 V, low ESR, electrolytic  
SB160  
MBR160  
11DQ06  
1N5822  
SB340  
MBR340  
SB360  
MBR360  
SB540  
SB560  
UnitedChemicon  
Axial IR  
LXZ35VB331M10X16LL  
Rubycon 35YXG330M10x16  
Panasonic EEUFC1V331  
Axial General Semi  
Axial General Semi  
Axial IR  
Axial General Semi  
Axial IR  
Axial General Semi  
Axial General Semi  
TO-220 General Semi  
IR  
5 V to 24 V, 2 A 1000 µF, 35 V, low ESR, electrolytic  
United Chemicon  
5
5
7.5  
LXZ35VB102M12X25LL  
Rubycon 35YXG1000M12.5x25  
Panasonic EEUFC1V102  
MBR745  
MBR760  
MBR1045  
60  
45  
7.5  
10  
TO-220 General Semi  
TO-220 General Semi  
IR  
TO-220 General Semi  
TO-220 General Semi  
TO-220 General Semi  
IR  
Step 32.  
Select output post filter L, C  
• Inductor L: 2.2 µH to 4.7 µH. Use ferrite bead for low  
current (1A) output and standard off-the-shelf choke for  
highercurrentoutput. Increasechokecurrentratingorwire  
size, if necessary, to avoid significant DC voltage drop.  
• Capacitor C:100 µF to 330 µF, 35 V, electrolytic  
MBR1060  
MBR10100  
MBR1645  
60  
100  
45  
10  
10  
16  
MBR1660  
60  
16  
TO-220 General Semi  
Examples for 100 µF, 35 V, electrolytic:  
MBR2045CT 45 20(2x10) TO-220 General Semi  
United Chemicon KMG35VB101M6X11LL  
Rubycon 35YXA100M6.3x11  
IR  
MBR2060CT 60 20(2x10) TO-220 General Semi  
Panasonic ECA1VHG101  
MBR20100  
100 20(2x10) TO-220 General Semi  
IR  
Step 33. Select bias rectifier from Table 10  
UFR  
UF4002  
UF4003  
MUR120  
EGP20D  
100  
200  
200  
200  
1
1
1
2
2
Axial General Semi  
Axial General Semi  
Axial General Semi  
Axial General Semi  
Axial General Semi  
Philips  
Axial General Semi  
Axial General Semi  
Axial General Semi  
Axial General Semi  
Philips  
TO-220 General Semi  
TO-220 General Semi  
Philips  
TO-220 General Semi  
Philips  
• VR 1.25 xPIVB; where PIVB is from Step 28 and VR is the  
rated reverse voltage of the rectifier diode.  
Rectifier  
VR (V)  
Manufacturer  
BYV27-200 200  
BAV21  
UF4003  
1N4148  
200  
200  
75  
Philips  
General Semi  
Motorola  
UF5401  
UF5402  
EGP30D  
100  
200  
200  
3
3
3
Table 10.  
BYV28-200 200  
3.5  
Step 34. Select bias capacitor  
MUR420 200  
4
8
BYW29-200 200  
BYV32-200 200  
• Use 0.1 µF, 50 V, ceramic.  
18  
Step 35. SelectCONTROLpincapacitorandseriesresistor  
• CONTROLpincapacitor:47µF,10V,lowcostelectrolytic  
Table 9.  
(Do not use low ESR capacitor).  
B
12/02  
13  
AN-32  
• Series resistor: 6.8 , 1/4 W (Not needed if KP 1, i.e.  
discontinuous mode).  
Step 36. Select feedback circuit components according to  
applicable reference feedback circuits shown in Figures 3,  
4, 5 and 6  
• Applicable reference circuit: Identified in Step 2.  
Step 37. Select input bridge rectifier  
2
• VR 1.25 x  
x VACMAX; where VACMAX is from Step 1.  
• ID 2 x IAVE; where ID is the bridge rectifier rated current  
and IAVE is average input current.  
P
OUT  
I
=
Note:  
;
AVE  
VMIN × η  
where VMIN is from Step 3 and η from Step 1.  
B
12/02  
14  
AN-32  
Customization of secondary designs for each output  
The turns for each secondary winding are calculated based on  
the respective output voltage VO(n):  
Appendix A  
Multiple Output Flyback Power  
Supply Design  
VO(n) + VD(n)  
NS(n) = NS ×  
The only difference between a multiple output flyback power  
supply and a single output flyback power supply of the same  
total output power is in the secondary side design. Instead of  
delivering all power to one output as in the single output case,  
a multiple output flyback distributes its output power among  
severaloutputs.Therefore,thedesignprocedurefortheprimary  
side stays the same, while that for the secondary side demands  
further considerations.  
V + VD  
Output rectifier maximum inverse voltage is  
NS (n)  
PIV (n) = VMAX  
×
+ VO(n)  
S
NP  
With output RMS current ISRMS(n), secondary number of turns  
NS(n) and output rectifier maximum inverse voltage PIVS(n)  
known, the secondary side design for each output can now be  
carried out exactly the same way as for the single output design.  
Design with lumped output power  
One simple way of doing multiple output flyback design is  
described in detail in AN-22, “Designing Multiple Output  
FlybackPowerSupplieswithTOPSwitch”. Thedesignmethod  
starts with a single output equivalent by lumping output power  
ofalloutputstoonemainoutput.SecondarypeakcurrentISP and  
RMS current ISRMS are derived. Output average current IO  
corresponding to the lumped power is also calculated.  
Secondary winding wire size  
TheTOPSwitch-GXdesignspreadsheetassumesaCMAof200  
whencalculatingsecondarywindingwirediameters.Thisgives  
the minimum wire sizes required for the RMS currents of each  
output using seperate windings. Designers may wish to use  
larger size wire for better thermal performance. Other  
considerations such as skin effect and bobbin coverage may  
suggest the use of a smaller wire by using multiple strands  
wound in parallel. In addition, practical considerations in  
transformer manufacturing may also dictate the wire size.  
Assumption for simplification  
The current waveforms in the individual output windings are  
determinedbytheimpedanceineachcircuit,whichisafunction  
of leakage inductance, rectifier characteristics, capacitor value  
and most importantly, output load. Although this current  
waveform may not be exactly the same from output to output,  
it is reasonable to assume that, to the first order, all output  
currents have the same shape as for the single output equivalent  
of lumped power.  
Output RMS current vs. average current  
The output average current is always equal to the DC load  
current, while the RMS value is determined by current wave  
shape. Since the current wave shapes are assumed to be the  
sameforalloutputs, theirratioofRMStoaveragecurrentsmust  
also be identical. Therefore, with the output average current  
known, the RMS current for each output winding can be  
calculated as  
ISRMS  
ISRMS(n) =IO(n) ×  
IO  
where ISRMS(n) and IO(n) are the secondary RMS current and  
output average current of the nth output and ISRMS and IO are the  
secondary RMS current and output average current for the  
lumped single output equivalent design.  
B
12/02  
15  
AN-32  
For the latest updates, visit our Web site: www.powerint.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.  
Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it  
convey any license under its patent rights or the rights of others.  
The products and applications illustrated herein may be covered by one or more U.S. and foreign patents or potentially by  
pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents  
may be found at www.powerint.com.  
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch and EcoSmart are registered trademarks of Power  
Integrations, Inc. PI Expert is a trademark of Power Integrations, Inc. ©Copyright 2002, Power Integrations, Inc.  
WORLD HEADQUARTERS  
AMERICAS  
Power Integrations, Inc.  
5245 Hellyer Avenue  
San Jose, CA 95138 USA  
EUROPE & AFRICA  
Power Integrations (Europe) Ltd.  
Centennial Court  
Easthampstead Road  
Bracknell  
SINGAPORE  
TAIWAN  
Power Integrations, Singapore  
51 Goldhill Plaza #16-05  
Republic of Singapore 308900  
Power Integrations  
International Holdings, Inc.  
17F-3, No. 510  
Chung Hsiao E. Rd.,  
Sec. 5,  
Phone:  
Fax:  
+65-6358-2160  
+65-6358-2015  
Main:  
+1 408-414-9200  
Berkshire, RG12 1YQ  
United Kingdom  
Customer Service:  
e-mail: singaporesales@powerint.com  
Taipei, Taiwan 110, R.O.C.  
Phone:  
Fax:  
+1 408-414-9665  
+1 408-414-9765  
Phone:  
Fax:  
+44-1344-462-300  
+44-1344-311-732  
Phone:  
Fax:  
+886-2-2727-1221  
+886-2-2727-1223  
e-mail: usasales@powerint.com  
e-mail: eurosales@powerint.com  
e-mail: taiwansales@powerint.com  
CHINA  
KOREA  
Power Integrations  
International Holdings, Inc.  
8th Floor, DongSung Building,  
17-8 Yoido-dong, Youngdeungpo-gu, Kohoku-ku, Yokohama-shi,  
Seoul, 150-874, Korea Kanagawa 222-0033, Japan  
JAPAN  
INDIA (Technical Support)  
Innovatech  
#1, 8th Main Road  
Vasanthnagar  
Power Integrations  
International Holdings, Inc.  
Rm# 1705, Bao Hua Bldg.  
1016 Hua Qiang Bei Lu  
Shenzhen Guangdong, 518031  
China  
Power Integrations, K.K.  
Keihin-Tatemono 1st Bldg.  
12-20 Shin-Yokohama 2-Chome  
Bangalore, India 560052  
Phone:  
Fax:  
+91-80-226-6023  
+91-80-228-9727  
Phone:  
Fax:  
+82-2-782-2840  
+82-2-782-4427  
Phone:  
Fax:  
+81-45-471-1021  
+81-45-471-3717  
Phone:  
Fax:  
+86-755-8367-5143  
+86-755-8377-9610  
e-mail: indiasales@powerint.com  
e-mail: koreasales@powerint.com  
e-mail: japansales@powerint.com  
e-mail: chinasales@powerint.com  
APPLICATIONS HOTLINE  
APPLICATIONS FAX  
World Wide +1-408-414-9660  
World Wide +1-408-414-9760  
B
12/02  
16  

相关型号:

AN-345

GROUNDING FOR LOW-AND HIGH-FREQUENCY CIRCUITS
ADI

AN-35

LinkSwitch Design Guide
ETC

AN-357

Low Cost, Dual/Triple Video Amplifiers
ADI

AN-358

Low Cost, Dual/Triple Video Amplifiers
ADI

AN-37

LinkSwitch-TN Design Guide
ETC

AN-388

USING SIGMA-DELTA CONVERTERS-PART1
ADI

AN-40

Application Note 40
MICREL

AN-4003

PC POWER SUPPLY DESIGN WITH KA3511
FAIRCHILD

AN-4005

MAFL-009272 Improved rejection circuit 5 - 1002 / 1125 - 1550 MHz
TE

AN-400A

Low-Power Green-Mode PWM Flyback Power Controller
FAIRCHILD

AN-402

Quad 150 MHz Rail-to-Rail Amplifier
ADI

AN-414

Quad 150 MHz Rail-to-Rail Amplifier
ADI