AN-4003 [FAIRCHILD]

PC POWER SUPPLY DESIGN WITH KA3511; 与KA3511 PC电源的设计
AN-4003
型号: AN-4003
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

PC POWER SUPPLY DESIGN WITH KA3511
与KA3511 PC电源的设计

PC
文件: 总28页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
November 2,1999  
AN4003  
PC POWER SUPPLY DESIGN WITH KA3511  
Sang-Tae Im  
1. GENERAL DESCRIPTION  
The KA3511 is a fixed-frequency improved-performance pulse-width modulation control circuit with  
complete housekeeping circuitry for use in the secondary side of SMPS (Switched mode power  
supply). It contains various functions, which are precision voltage reference, over voltage protec-  
tion, under voltage protection, remote on/off control, power good signal generator and etc.  
OVP (Over voltage protection) section  
It has OVP functions for +3.3V,+5V,+12V and PT outputs. The circuit is made up of a comparator  
with four detecting inputs and without hysteresis voltage. Especially, PT (Pin16) is prepared for an  
extra OVP input or another protection signal.  
UVP (Under voltage protection) section  
It also has UVP functions for +3.3V, +5V, +12V outputs. The block is made up of a comparator with  
three detecting inputs and without hysteresis voltage.  
Remote on/off section  
Remote on/off section is used to control SMPS externally. If a high signal is supplied to the remote  
on/off input, PWM signal becomes a high state and all secondary outputs are grounded. The  
remote on/off signal is transferred with some on-delay and off-delay time of 8ms, 24ms respec-  
tively.  
Precision reference section  
±
The reference voltage trimmed to 2% (4.9V<Vref<5.1V)  
PG (Power good signal generator) section  
Power good signal generator is to monitor the voltage level of power supply for safe operation of a  
microprocessor.  
KA3511 requires few external components to accomplish a complete housekeeping circuits for  
SMPS. The KA3511 is available in a 22-pin dual in-line package.  
Rev C, November 1999  
1
ORDERING INFORMATION  
22-DIP-400  
Device  
Package  
Operating Temperature  
° °  
-25 C ~ 85 C  
KA3511  
22 DIP  
FEATURES  
• Complete PWM control and house keeping circuitry  
• Few external components  
• Precision voltage reference trimmed to 2%  
• Dual output for push-pull operation  
• Each output TR for 200mA sink current  
• Variable duty cycle by dead time control  
• Soft start capability by using dead time control  
• Double pulse suppression logic  
• Over voltage protection for 3.3V / 5V / 12V  
• Under voltage protection for 3.3V / 5V / 12V  
• One more external input for various protection (PT)  
• Remote on/off control function (PS-ON)  
• Latch function controlled by remote and protection input  
• Power good signal generator with hysteresis  
• 22-Pin dual in-line package  
2. BLOCK DIAGRAM  
22 C1  
R
T
7
8
D
Q
Q
OSCILLATOR  
C
T
PWM  
CONTROL  
C2  
E
20  
CK  
COMP  
2
21  
5
V5  
V12  
DELAY  
CONTROLLER  
DEAD TIME  
CONTROLLER  
R
S
REMOTE ON/OFF  
1.4V  
T
REM  
E/A(-)  
E/A(+)  
3
4
Q
6
REM  
(PS-ON)  
1.25V  
0.1V  
DEAD TIME  
CONTROL  
11  
PG  
19  
5V  
16  
15  
14  
PT  
INTERNAL  
BIAS  
V12  
12  
1
VREF  
V5  
VREF  
VREF  
VREF  
OVP  
13 V3.3  
Start Up  
PG  
COMP  
V
CC  
GENERATOR  
Ichag  
COMP1  
COMP2  
1.25V  
5V  
COMP3  
DET  
9
1.8V 0.6V  
0.6V  
1.8V  
1.25V  
UVP  
COMP  
1.25V  
10  
17  
18  
T
T
GND  
PG  
UVP  
2.2uF  
2.2uF  
Rev C, November 1999  
2
3. PIN DESCRIPTION  
C1  
E
C2  
DTC  
GND  
TUVP  
PT  
V12  
V5  
V3.3  
Vref  
#22  
#12  
KA3511  
#1  
#11  
VCC  
COMPE/A(-)  
EA(+)  
TREM  
REM  
RT  
CT  
DET  
GTP G P  
Pin  
No. Name I/O  
Pin  
Function  
Supply voltage  
No. Name I/O  
Function  
1
2
VCC  
COMP  
E/A(-)  
E/A(+)  
TREM  
REM  
RT  
I
O
I
12  
13  
14  
15  
16  
17  
Vref  
V3.3  
V5  
O
I
Precision reference VTG  
OVP, UVP input for 3.3V  
OVP, UVP input for 5V  
OVP, UVP input for 12V  
Extra protection input  
UVP delay  
E/A output  
3
E/A (-) input  
I
4
I
E/A (+) input  
V12  
PT  
I
5
I
Remote on/off delay  
Remote on/off input  
I
6
TUVP  
GND  
DTC  
C2  
I
7
I
Oscillation freq. setting R 18  
Oscillation freq. setting C 19  
Signal ground  
8
CT  
Deadtime control input  
Output 2  
9
DET  
TPG  
Detect input  
PG delay  
20  
21  
O
O
10  
11  
O
E
Power ground  
PG  
Power good signal output 22  
C1  
Output 1  
Rev C, November 1999  
3
Pin  
No. Name  
Function  
Supply voltage. Operating range is 14V~30V. VCC =20V, Ta=25 C at test.  
°
1
2
VCC  
COMP Error amplifier output. It is connected to non-inverting input of pulse width  
modulator comparator.  
3
4
E/A(-) Error amplifier inverting input. Its reference voltage is always 1.25V.  
E/A(+) Error amplifier non-inverting input feedback voltage.This pin may be used to  
sense power supply output voltage.  
5
6
TREM Remote on/off delay. Ton/Toff=8ms/24ms (Typ.) with C=0.1µF. Its high/low  
threshold voltage is 1.8V/0.6V.  
REM  
Remote on/off input. It is TTL operation and its threshold voltage is 1.4V. Voltage  
at this pin can reach normal 4.6V, with absolutely maximum voltage, 5.25V. If  
REM = “Low”, PWM = “Low”. That means the main SMPS is operational. When  
REM = “High”, then PWM = “High” and the main SMPS is turned-off.  
7
8
RT  
CT  
Oscillation frequency setting R. (Test Condition RT=10k )  
Oscillation frequency setting C. (Test Condition CT=0.01µF)  
Under-voltage detect pin. Its threshold voltage is 1.25V Typ.  
9
DET  
TPG  
10  
PG delay. Td=250ms (Typ) with CPG=2.2µF. The high/low threshold voltage are  
1.8V/0.6V and the voltage of Pin10 is clamped at 2.9V for noise margin.  
11  
PG  
Power good output signal. PG = “High” means that the power is “Good” for  
operation and PG = “Low” means “Power fail”.  
12  
13  
14  
15  
16  
Vref  
V3.3  
V5  
Precision voltage reference trimmed to 2%. (Typical Value = 5.03V)  
Over voltage protection for output 3.3V. (Typical Value = 4.1V)  
Over voltage protection for output 5V. (Typical Value = 6.2V)  
Over voltage protection for output 12V. (Typical Value = 14.2V)  
V12  
PT  
This is prepared for an extra OVP input or another protection signal. (Typical  
Value = 1.25V)  
17  
TUVP  
Timing pin for under voltage protection blank-out time. Its threshold voltage is  
1.8V and clamped at 2.9V after full charging. Target of delay time is 250ms and  
it is realized through external (C=2.2µF).  
18  
19  
GND  
DTC  
Signal ground.  
Deadtime control input. The dead-time control comparator has an effective  
120mV input offset which limits the minimum output dead time. Dead time may  
be imposed on the output by setting the dead time control input to a fixed  
voltage, ranging between 0V to 3.3V.  
20  
21  
22  
C2  
E
Output drive pin for push-pull operation.  
Power ground.  
C1  
Output drive pin for push-pull operation.  
Rev C, November 1999  
4
4. ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Supply voltage  
Symbol  
Value  
40  
Unit  
V
VCC  
Collector output voltage  
Collector output current  
Power dissipation  
V
C1, VC2  
40  
V
IC1, IC2  
PD  
200  
mA  
W
1
Operating temperature  
Storage temperature  
TOPR  
TSTG  
-25 to 85  
-65 to 150  
°C  
°C  
TEMPERATURE CHARACTERISTICS  
Value  
Typ.  
0.01  
Characteristic  
Symbol Min.  
Max.  
Unit  
Temperature coefficient of Vref (-25 °C<Ta<85°C)  
Vref/ T  
%/°C  
Rev C, November 1999  
5
5. ELECTRICAL CHARACTERISTICS  
(V =20V, T =25°C)  
CC  
A
Value  
Characteristic  
REFERENCE SECTION  
Reference output voltage  
Line regulation  
Symbol  
Test Condition  
Min. Typ. Max. Unit  
Vref  
Iref=1mA  
4.9  
5
5.1  
25  
15  
V
Vref.LINE 14V<VCC<30V  
2.0  
1.0  
0.01  
35  
mV  
Load regulation  
Vref.LOAD 1mA<Iref<10mA  
mV  
Temperature coefficient of Vref(1)  
Short-circuit output current  
OSCILLATOR SECTION  
Oscillation frequency  
Vref/ T  
-25°C<Ta<85°C  
Vref=0  
%/°C  
mA  
ISC  
15  
75  
fosc  
CT=0.01µF, RT=12k  
CT=0.01µF, RT=12k  
10  
2
kHz  
%
Frequency change with  
temperature(1)  
fosc/T  
DEAD TIME CONTROL SECTION  
Input bias current  
IB(DT)  
45  
-2.0 -10  
µA  
%
V
Maximum duty voltage  
Input threshold voltage  
DCMAX  
VTH(DT)  
Pin19 (DTC)=0V  
Zero Duty Cycle  
Max. Duty Cycle  
48  
3.0  
50  
3.3  
0
ERROR AMP SECTION  
Inverting reference voltage  
Input bias current  
Open-loop voltage gain(1)  
Unit-gain bandwidth(1)  
Output sink current  
Vref(EA)  
IB(EA)  
GVO  
1.20 1.25 1.30  
%
VCOMP=2.5V  
70  
-0.1 -1.0 µA  
0.5V<VCOMP<3.5V  
95  
650  
0.9  
dB  
kHz  
mA  
mA  
BW  
ISINK  
VCOMP=0.7V  
VCOMP=3.5V  
0.3  
Output source current  
PWM COMPARATOR SECTION  
Input threshold voltage  
OUTPUT SECTION  
ISOURCE  
-2.0 -4.0  
VTH(PWM) Zero Duty Cycle  
4
4.5  
V
V
Output saturation voltage  
Collector off-state current  
Rising time  
VCE(SAT)  
IC(off)  
TR  
IC=200mA  
1.1 1.3  
VCC=VC=30V, VE=0V  
2
100 µA  
100 200  
50 200  
ns  
ns  
Falling time  
TF  
PROTECTION SECTION  
Over voltage protection for 3.3V  
VOVP1  
3.8  
4.1 4.3  
V
Rev C, November 1999  
6
ELECTRICAL CHARACTERISTICS  
5.  
(continued)  
Value  
Characteristic  
Symbol  
VOVP2  
VOVP3  
VPT  
Test Condition  
Min. Typ. Max. Unit  
Over voltage protection for 5V  
Over voltage protection for 12V  
Input threshold voltage for PT  
Under voltage protection for 3.3V  
Under voltage protection for 5V  
Under voltage protection for 12V  
Charging current for UVP delay  
UVP Delay Time  
5.8 6.2 6.6  
13.5 14.2 15.0  
1.20 1.25 1.30  
2.1 2.3 2.5  
3.7 4.0 4.3  
V
V
VUVP1  
VUVP2  
VUVP3  
ICHG.UVP  
TD.UVP  
V
V
9.2  
10 10.8  
V
C=2.2µF, VTH =1.8V -10 -15 -23  
uA  
C=2.2µF  
100 260 500 ms  
REMOTE ON/OFF SECTION  
REM on input voltage  
VREMH  
VREML  
IREML  
IREM = -200µA  
2.0  
V
V
REM off input voltage  
0.8  
REM off input bias voltage  
REM on open voltage  
VREM =0.4V  
-1.6 mA  
VREM(OPEN)  
Ton  
2.0  
4
5.25  
14  
V
REM on delay time  
C=0.1µF  
C=0.1µF  
8
ms  
ms  
REM off delay time  
Toff  
16  
24  
34  
REMOTE ON/OFF SECTION(2)  
Detecting input voltage  
Detecting V5 voltage  
VIN(DET)  
V5(DET)  
HY1  
1.20 1.25 1.30  
4.1 4.3 4.5  
V
V
COMP1, 2  
COMP3  
Hysteresis voltage 1  
10  
0.6 1.2  
0.5  
40  
80  
mV  
V
Hysteresis voltage 2  
HY2  
k
PG output load resistor  
Charging current for PG delay  
PG delay time  
RPG  
1
2
ICHG.PG  
TD.PG  
C=2.2µF, VTH =1.8V -10 -15 -23  
uA  
C=2.2µF  
100 260 500 ms  
PG output saturation voltage  
TOTAL DEVICE  
VSAT(PG)  
IPG =10mA  
0.4 0.2  
V
Standby supply current  
ICC  
10  
20  
mA  
Notes:  
1. These Parameters, although guaranteed over their recommended operating conditions are not 100%  
tested in production.  
2. REM on delay time (Pin6 REM: “L” “H”),  
REM off delay time (Pin6 REM: “H” “L”)  
Rev C, November 1999  
7
6. BLOCK DESCRIPTION & APPLICATION INFORMATIONS  
6.1 OSCILLATOR BLOCK  
Vref  
12  
VCC  
1
12  
12  
RT  
CT  
Figure 1. Oscillator RT, CT  
The KA3511 is a fixed-frequency pulse width modulation control circuit. An internal-linear sawtooth  
oscillator is frequency-programmable by two external components, RT and CT. The oscillator fre-  
quency is determined by  
1.1  
= --------------------  
fosc  
×
RT CT  
300K  
100K  
VCC=15V  
0.001µF  
10K  
1K  
CT=0.01µF  
0.1µF  
1.0µF  
100  
30  
1K  
2K  
5K 10K  
20K  
50K 100K 200K  
500K 1M  
RT. TIMING RESISTANCE( )  
Figure 2. Oscillator Frequency vs. Timing Resistance  
6.2 PWM CONTROL BLOCK  
Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform  
across capacitor CT to either of two control signals. The NOR gates, which drive output transistors  
Q1 and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only  
during that portion of time when the sawtooth voltage is greater than the control signals. Therefore,  
an increase in control-signal amplitude causes a corresponding linear decrease of output pulse  
width. (Refer to the timing diagram shown in Figure 4)  
Rev C, November 1999  
8
RT  
CT  
7
8
OSCILLATOR  
Output  
Drive  
Q1  
Q2  
D
Q
Q
2
CK  
PWM  
CONTROL  
COMP  
4
3
0.12V  
DEAD TIME  
CONTROLLER  
1.25V  
Figure 3. PWM Control Block  
The control signals are external inputs that can be fed into the dead-time control, the error amplifier  
inputs, or the feedback input. The dead-time control comparator has an effective 120mV input off-  
set which limits the minimum output dead time. Dead time may be imposed on the output by set-  
ting the dead time control input to a fixed voltage, ranging between 0V to 3.3V.  
The pulse width modulator comparator provides a means for the error amplifier to adjust the output  
pulse width from the maximum percent on-time, established by the dead time control input, down  
to zero, as the voltage at the feedback pin varies from 0.5V to 3.5V. The error amplifier may be  
used to sense power-supply output voltage, and its output is connect to noninverting input of the  
pulse width modulator comparator. With this configuration, the amplifier that demands minimum  
output on time, dominates control of the loop.  
When capacitor CT is discharged, a positive pulse is generated on the output of the dead time  
comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2.  
The pulse-steering flip-flop directs the modulated pulses to each of the two output transistors  
always for push-pull operation. The output frequency is equal to half that of the oscillator.  
The KA3511 has an internal 5.0V reference capable of sourcing up to 10mA of load current for  
external bias circuits. The reference has an internal accuracy of ±2% with typical thermal drift of  
less than 50mV over an operating temperature range of -25°C to 85°C  
Rev C, November 1999  
9
Ct  
Feedback  
Dead-time  
control  
Ck  
Q
Q
Output Q1  
Output Q2  
Figure 4. Operating Waveform  
6.3 DEADTIME CONTROL for SOFT-START  
12  
Vref  
3mA  
+
C1  
22uF  
R1  
47k  
19  
DTC  
R2  
1k  
Remote  
ON/OFF  
Figure 5. Soft-Start Circuit  
Deadtime control for soft-start makes a power supply output rising time (Typ. 15ms) to reduce out-  
put ringing voltage for 3.3V, 5V, and 12V. If output rising time is too fast, output ringing voltage  
reaches OVP level.  
You can make a soft start function by add external components R1, R2 and C1 (refer to figure 5).  
At first the main power is turned-on, the deadtime control voltage keeps high state ( · = · 3V), and  
then go to the low voltage( · = · 105mV) that devided by R1, R2.  
R2  
= --------------------- ×  
VDTC LOW  
Vref(5V) = 104.9mV  
+
R1 R2  
Rev C, November 1999  
10  
So Output Duty Ratio will change from the minimum duty ratio to the maximum duty ratio.  
Also, if the remote voltage is high, the deadtime control voltage will keep 3V (=3mA xR2 (1k )) by  
the internal 3mA current source for soft start. Therefore, when the remote voltage is low, the dead-  
time control voltage will be changed from 3V to almost ground potential. And its soft start time  
dependent on external capacitor C1.  
6.4 OUTPUT VOLTAGE REGULATION  
+12V  
+5V  
COMP  
2
R1  
R2  
33k  
11k  
R5  
1k  
Vref  
E/A(+)  
4
3
PWM Control  
Comparator  
R3  
2kΩ  
C1  
103  
Err-Amp  
R4  
1kΩ  
1.25V  
E/A(-)  
Figure 6. Output Regulation Circuit  
+5V/+12V output voltages are determined by resistor ratio of R1,R2,R3 and R4. The resistor value  
can be changed by set condition and requirements.  
R5, C1 are the compensation circuit for stability.  
If output voltage (+5V or +12V) is increase, duty ratio of main power switch will be reduced by  
PWM control comparator signal and error amplifier output. Therefore the output voltage will be  
reduced.  
On the contrary, if output voltage (+5V or +12V) is reduce, duty ratio of main power switch will be  
increased by PWM control comparator signal and error amplifier output. Therefore the output volt-  
age will be increased. So the output voltage of power supply will be regulated.  
Rev C, November 1999  
11  
6.5 OVP BLOCK  
3.3V 5V 12V  
VO  
13  
14 15  
R1  
R2  
R101  
PT  
R3  
Vref=5V  
R5  
16  
D
A
SET of  
R/S Latch  
B
C
R102  
OVP COMP  
R4  
1.25V  
R6  
R102, R102  
: External Components  
OVP function is simply realized by connecting Pin13, Pin14, Pin15 to each secondary output. R1,  
2, 3, 4, 5, 6 are internal resistors of the IC. Each OVP level is determined by resistor ratio and the  
typical values are 4.1V/6.2V/14.2V.  
OVP Detecting voltage for +3.3V  
+
+
R1 R2  
R1 R2  
(
) = -------------------- ×  
= -------------------- ×  
=
VOVP 1 +3.3V  
VA  
Vref  
Vref  
Vref  
4.1V  
6.2V  
R2  
R2  
OVP Detecting voltage for +5V  
+
+
R3 R4  
R3 R4  
--------------------  
--------------------  
(
) =  
×
=
VB  
×
=
VOVP 2 +5V  
R4  
R4  
OVP Detecting voltage for +12V  
+
+
R5 R6  
R5 R6  
(
) = -------------------- ×  
= -------------------- ×  
=
14.2V  
VOVP 3 +12V  
VC  
R6  
R6  
Especially, pin16 (PT) is prepared for extra OVP input or another protection signal. That is, if you  
want over voltage protection of extra output voltage, then you can make a function with two exter-  
nal resistors.  
OVP Detecting voltage for PT  
+
+
R101 R102  
R101 R102  
= ------------------------------ ×  
= ------------------------------ ×  
VPT  
VD  
Vref  
R102  
R102  
In the case of OVP, system designer should know a fact that the main power can be dropped after  
a little time because of system delay, even if PWM is triggered by OVP.  
So when the OVP level is tested with a set, you should check the secondary outputs (+3.3V/+5V/  
+12V) and PG (Pin11) simultaneously. you can know the each OVP level as checking each output  
voltage in just time that PG (Pin11) is triggered from high to low.  
Rev C, November 1999  
12  
6.6 UVP BLOCK  
3.3V  
13  
5V  
14  
12V  
15  
R1  
R3  
Vref=5V  
R5  
A
B
SET of  
R2  
R/S Latch  
C
UVP COMP  
R2  
R6  
1.25V  
The KA3511 has UVP functions for +3.3V, +5V, +12V Outputs. The block is made up of three input  
comparators. Each UVP level is determined by resistor ratio and the typical values are 2.3V/4V/  
10V.  
UVP Detecting voltage for +3.3V  
+
+
R1 R2  
R1 R2  
(
) = -------------------- ×  
= -------------------- ×  
=
=
=
VUVP 1 +3.3V  
VA  
VA  
VA  
Vref  
Vref  
Vref  
2.3V  
4V  
R2  
R2  
UVP Detecting voltage for +5V  
) =  
+
+
R1 R2  
R1 R2  
--------------------  
--------------------  
(
×
=
×
VUVP 2 +5V  
R2  
R2  
UVP Detecting voltage for +12V  
+
+
R1 R2  
R1 R2  
= -------------------- ×  
R2  
(
) = -------------------- ×  
VUVP 3 +12V  
10V  
R2  
Rev C, November 1999  
13  
6.7 REMOTE ON/OFF & DELAY BLOCK  
Ton  
Toff  
Vref  
12  
PWM  
REM  
5V  
Ion  
Rpull  
Trem  
5
B
C
2.2V  
+
COMP  
1.8V  
Trem  
0.1uF  
0.6V  
COMP6  
Ion/Ioff  
PG  
Block  
Q1  
Q2  
6
REM  
Remote On/Off  
Figure 9. Remote ON/OFF Delay Block  
Remote ON/OFF section is controlled by a microprocessor. If a high signal is supplied to the  
remote ON/OFF input (Pin6), the output of COMP6 becomes high status. The output signal is  
transferred to ON/OFF delay block and PG block.  
If no signal is supplied to Pin6, Pin6 maintains high status (=5V) for Rpull.  
When Remote ON/OFF is high, it produces PWM (Pin6) “High” signal after ON delay time (about  
8ms) for stabilizing system.  
Then, all outputs (+3.3V, +5V, +12V) are grounded.  
When Remote ON/OFF is changed to “Low”, it produces PWM “Low” signal after OFF delay time  
(about 24ms) for stabilizing the system.  
If REM is low, then PWM is low. That means the main SMPS is operational. When REM is high,  
PWM is high and the main SMPS is turned-off.  
ON/OFF delay Time can be calculated by following equation.  
× ∆  
Ion  
µ ×  
µ
23 A  
Ctrem  
Von  
0.1 F 2V  
-----------------------------  
×
0.95  
--------------------------------------  
=
=
×
×
Ton  
Toff  
K1  
K2  
= 8.2msec  
= 24msec  
× ∆  
µ
8 A  
×
µ
Ctrem  
---------------------------------------  
Ioff  
Voff  
0.1 F 2.1V  
----------------------------------  
×
0.8  
(K1, K2: Constant value gotten by test)  
In above equation, typical capacitor value is 0.1uF. If the capacitor is changed to larger value, it  
can cause malfunction in case of AC power on at remote High. Because PWM maintains low sta-  
tus and main power turns on for on delay time. So you should use 0.1uF or smaller capacitor.  
Rev C, November 1999  
14  
6.8 R/S FLIP FLOP (LATCH) BLOCK  
R-S F/F (LATCH)  
PG BLOCK  
R-S FF  
REMOTE  
ON/OFF  
Q
OVP  
UVP  
S
R
NOR  
ON/OFF  
DELAY  
Start-up  
NOR  
Q
PG  
generator  
Delayed  
REMOTE  
Figure 10. R-S F/F Block Diagram  
OVP+  
SET  
RESET  
Low  
Qn+1  
Qn  
Qn+1  
Qn  
Low  
Low  
High  
High  
Low  
Low  
High  
Low  
High  
Low  
High  
High  
Low  
High  
Low  
High  
High  
There is a R-S F/F (Latch) circuit for shutdown operation in the KA3511. R-S F/F (Latch) is con-  
trolled by OVP, UVP, and some delayed remote ON/OFF signal.  
If any output of OVP or UVP is High, SET signal of R-S F/F is high status and it produces PWM  
“High” and main power is turned off. When remote signal is high, its delayed output signal is sup-  
plied to RESET port of R-S F/F and it produces SET low. So output Q is low status. At this time,  
PWM maintains high status by delayed remote high signal.  
After main power is turned-off by OVP/UVP and initialized by remote, if remote signal is changed to  
low, main power becomes operational.  
When you test KA3511, Remote ON/OFF signal should be toggled once for initializing.  
Rev C, November 1999  
15  
6.9 POWER GOOD SIGNAL GENERATOR  
Vref +5V  
12  
14  
V
CC  
R15  
1k  
R13  
Ichg  
11  
Vref  
Vref  
PG COMP  
R11  
60k  
PG  
COMP1  
Q3  
COMP3  
1.8V  
0.6V  
Q2  
DET  
9
COMP2  
10  
TPG  
Remote  
ON/OFF  
1.25V  
R12  
4.7k  
+
CPG  
2.2uF  
R14  
Figure 11. PG Signal Generator Block  
Power good signal generator curcuits generate “ON & OFF” signal depending on the status of out-  
put voltage to prevent the malfunctions of following systems like microprocessor and etc. from  
unstable outputs at power on & off. At power on, it produces PG “High” signal after some delay  
(about 250ms) for stabilizing outputs.  
At power off, it produces PG “Low” signal without delay by sensing the status of power source for  
protecting following systems. VCC detection point can be calculated by following equation. recom-  
mended values of R11, R12 are external components.  
R11  
R12  
=
×
+ ----------  
1 = 17.2V  
VDET  
1.25V  
COMP3 creates PG “Low” without delay when +5V output falls to less than 4.3V to prevent some  
malfunction at transient status, thus it improves system stability.  
When remote On/Off signal is high, it generates PG “Low” signal without delay. It means that PG  
becomes “Low” before main power is grounded.  
PG delay time (Td) is determined by capacitor value, threshold voltage of COMP3 and the charg-  
ing current and its equation is as following.  
Ichg  
×
Ichg  
µ ×  
µ
18 A  
V
PG Vth  
2.2 F 2V  
= ----------- ------------------------ = ----------------------------- ≈  
Td  
250ms  
Rev C, November 1999  
16  
Considering the lightning surge and noise, there are two types of protections. One is a few sec-  
onds delay between TPG and PG for safe operation and another is some noise margin of Pin10.  
Noise_Margin_of_TPG = V10(max) – Vth(L) = 2.9V – 0.6V = 2.3V  
7. ABOUT TEST METHOD  
You can verify the KA3511 with a SMPS set. But you should pay attention to the device damage  
problem by increasing VCC. You should remove the sub-board after +5Vsb drops to 0V and VCC of  
KA3511 is grounded and then fan stops under the Remote Low.  
– OVP function of +3.3V/+5V/+12V  
You can test OVP for +3.3V/+5V/+12V by shorting Pin16 and Pin17 to GND.  
– UVP function of +3.3V/+5V/+12V  
You can simply test UVP for +3.3V/+5V/+12V by shorting Pin16 to GND.  
– OVP input threshold voltage for PT  
The test condition is remote “Low” and you increase the supply voltage of pin16 using a DC  
power supply. When the voltage is over 1.2 x V, main power supply will shutdown. So, you can  
measure the shutdown point of main power supply, and that will be a OVP input threshold volt-  
age for PT.  
– Remote On/Off delay time  
You can measure the time difference of remote On/Off and the main power supply output as  
toggling the remote On/Off.  
– PG delay time  
In AC power-on time, secondary outputs are turned on and then after some delay time PG out-  
put is triggered from low to high. You can measure the time difference of +5V and PG in turn-on  
time.  
Rev C, November 1999  
17  
8. HOUSE KEEPING CIRCUIT  
2k(1W)  
2k(1W)  
Standby  
Supply  
1
2
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
VCC  
COMP  
E/A(-)  
E/A(+)  
TREM  
C1  
E
VCC=20V  
15k  
12V  
5V  
0.01uF  
3
C2  
11kΩ  
33kΩ  
4
DTC  
GND  
K
A
3
5
1
1
1.8kΩ  
5
+
0.1uF  
6
REM  
TUVP  
1k  
Micom  
+
2.2uF  
7
PT  
RT  
12kΩ  
8
12V  
V12  
V5  
CT  
+
0.01uF  
9
DET  
5V  
3V  
10  
11  
TPG  
V3.3  
Vref  
+
2.2uF  
PG  
PG  
+
1uF  
Using the KA3511 requires few external components to accomplish a complete housekeeping cir-  
cuits for SMPS.  
Rev C, November 1999  
18  
9. TYPICAL CHARACTERISTICS  
Bandgap Reference Voltage  
Temperature Characteristic  
V
-I  
CC CC  
0.014  
0.012  
5.010  
5.008  
0.010  
0.008  
5.006  
5.004  
0.006  
0.004  
0.002  
0.000  
5.002  
-40 -20  
0
20  
40  
60  
80 100 120 140  
0
10  
20  
30  
40  
Supply Voltage [V]  
TEMP [°C]  
PIN19(Dead Time Control Voltage)-Duty Cycle  
OVP for 3.3V  
50  
40  
5
4
3
2
31.1%  
30  
20  
10  
21.8%  
12.8%  
1
0
0
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.52.73 3.0  
Deadtime Control Voltage [V]  
V3.3 [V]  
OVP for 5V  
OVP for 12V  
7
6
5
4
3
2
5
4
3
2
1
0
1
0
5.0  
5.5  
6.0  
V5 [V]  
6.5  
7.0  
14.0  
14.2  
14.4  
14.6  
V12 [V]  
14.8  
15.0  
Rev C, November 1999  
19  
UVP for 3.3V  
OVP for PT  
5
4
3
2
5
4
3
2
1
0
1
0
21  
22  
23  
24  
25  
1.15  
1.20  
1.25  
1.30  
1.35  
Pin 13 (V3.3) Voltage [V]  
Vpt [V]  
UVP for 5V  
UVP for 12V  
5
5
4
3
4
3
2
2
1
0
1
0
9.0  
9.5  
10.0  
10.5  
11.0  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
Pin 15 (V12) Voltage [V]  
Pin 14 (V5) Voltage [V]  
Remote ON Charging Current  
REM ON/OFF Vth  
-0.000016  
5
4
-0.000018  
-0.000020  
3
2
1
-0.000022  
-0.000024  
0
0
1
2
3
4
5
0
50  
100  
150  
200  
250  
Vrem [V]  
Rev C, November 1999  
20  
Detecting V  
Voltage (DET)  
CC  
Remote ON Open Voltage  
5
5
4
3
4
3
2
1
2
1
0
0
0
1
2
3
4
5
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
Pin 9 (DET) Voltage [V]  
Detecting V5 Voltage  
Charging Current for PG  
-0.000005  
-0.000010  
-0.000015  
5
4
3
2
1
-0.000020  
0
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
0
20  
40  
60  
80 100 120 140 160  
Pin 14 (5V) Voltage [V]  
Short Circuit Current  
Hysteresis Voltage 2  
5
4
-0.032  
-0.033  
-0.034  
3
2
1
0
-0.035  
0
100  
200  
300  
400  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Pin 10 (TPG) Voltage [V]  
Rev C, November 1999  
21  
Error Amp Sink Current  
Reference Voltage  
0.002  
0.00  
5
4
3
2
1
-0.002  
-0.004  
-0.006  
-0.008  
0
0
20  
40  
60  
80  
100  
120 140  
0
10  
20  
30  
40  
Supply Voltage [V]  
Rev C, November 1999  
22  
10. PACKAGE DIMENSION  
22-DIP-400  
9.14 ±0.20  
0.360 ±0.008  
1
22  
12  
11  
10.16  
0.400  
3.81 ±0.20  
0.150 ±0.008  
0.51  
0.020  
MIN  
3.40 ±0.30  
0.134 ±0.012  
5.08  
MAX  
0.200  
Rev C, November 1999  
23  
11. EXPERIMENTAL RESULT  
CH1 : PS-ON  
CH2 : +5Vdc Output  
CH3 : PG Signal  
Figure 12. Rising Time of +5Vdc Output Voltage  
CH1 : PS-ON  
CH2 : +5Vdc Output  
CH3 : PG Signal  
Figure 13. PG Signal Delay Time  
Rev C, November 1999  
24  
CH1 : PS-ON  
CH2 : +5Vdc Output  
CH3 : PG Signal  
Figure 14. Power Down Warning  
CH1 : +3.3Vdc Output  
CH2 : +5Vdc Output  
CH3 : +12Vdc Output  
Figure 15. No Load Protection  
25  
Rev C, November 1999  
CH1 : Vcc  
CH2 : +5Vdc Output  
CH3 : PG Signal  
Figure 16. Vcc, +5Vdc Output vs. PG Signal (High)  
CH1 : Vcc  
CH2 : +5Vdc Output  
CH3 : PG Signal  
Figure 16. Vcc, +5Vdc Output vs. PG Signal (Low)  
Rev C, November 1999  
26  
12. APPLICATION CIRCUIT  
47K  
R6  
70K  
R5  
VCC  
IC1  
C1  
C2  
1
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
103  
Vcc  
C1  
E
2
3
COMP  
E/A(-)  
E/A(+)  
TREM  
REM  
RT  
R4  
C2  
1.2K  
15K  
4
POWER ON  
OUT REF  
DTC  
GND  
TUVP  
PT  
5
0.1uF  
6
R3  
C6  
56K  
2.2uF  
+
7
22uF  
8
12V OUT  
5V OUT  
CT  
V12  
V5  
103  
9
DET  
TPG  
PG  
10  
11  
3.3V OUT  
V3.3  
Vref  
2.2uF  
PG  
AR3511X  
D19  
D9  
C16  
100K  
VR1  
+
CT  
Reference  
1. Power Electronics by Marvin J. Fisher  
2. Principles Of Power Electronics by Kassakian  
AUTHOR:  
Sang-Tae Im: P-IC Application Team  
Tel. 82-32-680-1275  
Fax. 82-32-680-1317  
E-mail. sangtae.im@Fairchildsemi.co.kr  
Rev C, November 1999  
27  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench  
QFET™  
TinyLogic™  
UHC™  
VCX™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
QS™  
FAST®  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  

相关型号:

AN-4005

MAFL-009272 Improved rejection circuit 5 - 1002 / 1125 - 1550 MHz
TE

AN-400A

Low-Power Green-Mode PWM Flyback Power Controller
FAIRCHILD

AN-402

Quad 150 MHz Rail-to-Rail Amplifier
ADI

AN-414

Quad 150 MHz Rail-to-Rail Amplifier
ADI

AN-4150

Design Guidelines for Flyback Converters
FAIRCHILD

AN-4151

Half-bridge LLC Resonant Converter
FAIRCHILD

AN-4153

Designing Asymmetric PWM Half-Bridge Converters
FAIRCHILD

AN-417

Quad 150 MHz Rail-to-Rail Amplifier
ADI

AN-42036

PCB Grounding System and High Performance DC-DC Converters
FAIRCHILD

AN-42041

5th-Order S-Video Filter/Driver Reduces NTSC/PAL System Parts Count
FAIRCHILD

AN-42047

Power Factor Correction
FAIRCHILD

AN-45

3.3V, 3.2 Gbps Limiting Post Amplifier with Programmable Decision Threshold
MICREL