AN-37 [ETC]

LinkSwitch-TN Design Guide ; 使用LinkSwitch -TN设计指南\n
AN-37
型号: AN-37
厂家: ETC    ETC
描述:

LinkSwitch-TN Design Guide
使用LinkSwitch -TN设计指南\n

文件: 总16页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
LinkSwitch-TN  
Design Guide  
Application Note AN-37  
• Universal input – the same power supply/product can be  
used worldwide  
• High power density – smaller size, no µF’s of X class  
capacitance needed  
• High efficiency – Full load efficiencies >75% typical for  
12 V output  
• Excellent line and load regulation  
• High efficiency at light load – ON/OFF control maintains  
high efficiency even at light load  
• Extremely energy efficient – input power <100 mW at no  
load  
• Entirely manufacturable in SMD  
• More robust to drop test mechanical shock  
• Fully fault protected (overload, short circuit and thermal  
faults)  
Introduction  
LinkSwitch-TNcombinesahighvoltagepowerMOSFETswitch  
with an ON/OFF controller in one device. It is completely self-  
poweredfromtheDRAINpin,hasajitteredswitchingfrequency  
for low EMI and is fully fault protected. Auto-restart limits  
device and circuit dissipation during overload and output short  
circuit while over temperature protection disables the internal  
MOSFET during thermal faults. The high thermal shutdown  
thresholdisidealforapplicationswheretheambienttemperature  
is high while the large hysteresis protects the PCB and  
surrounding components from high average temperatures.  
LinkSwitch-TN is designed for any application where a non-  
isolatedsupplyisrequiredsuchasappliances(coffeemachines,  
rice cookers, dishwashers, microwave ovens etc.), nightlights,  
emergency exit signs and LED drivers. LinkSwitch-TN can be  
configured in all common topologies to give a line or neutral  
referencedoutputandaninvertedornon-invertedoutputvoltage  
- ideal for applications using triacs for AC load control. Using  
a switching power supply rather than a passive dropper  
(capacitive or resistive) gives a number of advantages, some of  
which are listed below.  
• Scalable LinkSwitch-TN family allows the same basic  
design to be used from <50 mA to 360 mA  
Scope  
This application note is for engineers designing a non-isolated  
power supply using the LinkSwitch-TN family of devices. This  
DFB  
RFB  
CBP  
RBIAS  
CFB  
RF DIN2  
LIN  
FB  
BP  
S
+
D
L
LinkSwitch-TN  
CIN2  
AC  
Input  
VO  
DFW  
CO  
RPL  
CIN1  
DIN2  
PI-3764-121003  
1 (a)  
DFB  
RFB  
CBP  
RBIAS  
CFB  
RF DIN1  
LIN  
FB  
BP  
S
D
DFW  
LinkSwitch-TN  
CIN2  
AC  
Input  
L
VO  
CO  
RPL  
CIN1  
+
DIN2  
PI-3765-121003  
1 (b)  
Figure 1 (a). Basic Configuration using LinkSwitch-TN in a Buck Converter. Figure 1 (b) Basic Configuration using LinkSwitch-TN in a  
Buck-Boost Converter.  
January 2004  
AN-37  
document describes the design procedure for buck and buck-  
boost converters using the LinkSwitch-TN family of integrated  
off-line switchers. The objective of this document is to provide  
power supply engineers with guidelines in order to enable them  
to quickly build efficient and low cost buck or buck-boost  
converter based power supplies using low cost off-the-shelf  
inductors. Complete design equations are provided for the  
selection of the converter’s key components. Since the power  
MOSFET and controller are integrated into a single IC the  
design process is greatly simplified, the circuit configuration  
has few parts and no transformer is required. Therefore a quick  
startsectionisprovidedthatallowsoff-the-shelfcomponentsto  
be selected for common output voltages and currents.  
Quick Start  
Readers wanting to start immediately can use the following  
information to quickly select the components for a new design,  
using Figure 1 and Tables 1 and 2 as references.  
1) For AC input designs select the input stage (Table 9).  
2) Select the topology (Tables 1 and 2).  
- If better than ±10% output regulation is required,  
then use opto coupler feedback with suitable reference.  
3) Select the LinkSwitch-TN device, L, RFB or VZ, RBIAS, CFB,  
RZ and the reverse recovery time for DFW  
(Table 3: Buck, table 4:Buck-Boost).  
4) Select freewheeling diode to meet trr determined in step 3  
(Table 5).  
In addition to this application note a design spreadsheet is  
available within the PIXls tool in the PI Expert design software  
suite. The reader may also find the LinkSwitch-TN DAK  
engineering prototype board useful as an example of a working  
supply. Further details of support tools and updates to this  
document can be found at www.powerint.com.  
5) For direct feedback designs, if the minimum load < 3 mA  
then calculate RPL = VO / 3 mA.  
6) Select CO as 100 µF, 1.25 VO, low ESR type.  
7) Construct prototype and verify design.  
TOPOLOGY  
BASIC CIRCUIT SCHEMATIC  
KEY FEATURES  
High-Side  
Buck –  
Direct  
1) Output referenced to input  
2) Positive output (VO) with respect to -VIN  
3) Step down – VO < VIN  
FB  
BP  
S
Feedback  
4) Low cost direct feedback (±10% typ.)  
D
+
+
LinkSwitch-TN  
VIN  
VO  
PI-3751-121003  
High-Side  
Buck Boost –  
Direct  
1) Output referenced to input  
2) Negative output (VO) with respect to -VIN  
3) Step down – VO > VIN or VO < VIN  
4) Low cost direct feedback (± 10% typ.)  
5) Fail-safe – output is not subjected to input  
voltage if the internal MOSFET fails  
6) Ideal for driving LEDs – better accuracy and  
temperature stability than low-side Buck  
constant current LED driver  
Feedback  
FB  
BP  
S
D
+
LinkSwitch-TN  
VIN  
VO  
+
PI-3794-121503  
Notes  
1. Low cost, directly sensed feedback typically achieves overall regulation tolerance of ± 10%.  
2. To ensure output regulation a pre-load may be required to maintain a minimum load current of 3 mA (Buck and Buck-Boost only).  
3. Boost topology (step up) also possible but not shown.  
Table 1. LinkSwitch-TN Circuit Configurations Using Directly Sensed Feedback.  
A
1/04  
2
AN-37  
TOPOLOGY  
BASIC CIRCUIT SCHEMATIC  
KEY FEATURES  
High-Side  
Buck –  
Optocoupler  
Feedback  
1) Output referenced to input  
2) Positive output (VO) with respect to -VIN  
3) Step down – VO < VIN  
FB  
BP  
S
D
+
+
RZ  
4) Optocoupler feedback  
LinkSwitch-TN  
- Accuracy only limited by reference choice  
- Low cost non-safety rated optocoupler  
- No pre-load required  
VIN  
VO  
VZ  
5) Minimum no-load consumption  
PI-3796-121903  
Low-Side  
Buck –  
Optocoupler  
Feedback  
1) Output referenced to input  
2) Negative output (VO) with respect to +VIN  
3) Step down – VO < VIN  
+
+
RZ  
LinkSwitch-TN  
VIN  
VO  
4) Optocoupler feedback  
VZ  
- Accuracy only limited by reference choice  
- Low cost non-safety rated optocoupler  
- No pre-load required  
BP  
FB  
D
S
PI-3797-121903  
Low-Side  
1) Output referenced to input  
+
Buck Boost –  
Optocoupler  
Feedback  
VZ  
2) Positive output (VO) with respect to +VIN  
3) Step up/down – VO > VIN or VO < VIN  
4) Optocoupler feedback  
LinkSwitch-TN  
VIN  
VO  
RZ  
- Accuracy only limited by reference choice  
- Low cost non-safety rated optocoupler  
- No pre-load required  
BP  
FB  
+
D
S
PI-3798-121903  
5) Fail-safe – output is not subjected to input  
voltage if the internal MOSFET fails  
6) Minimum no-load consumption  
Notes  
1. Performance of opto feedback only limited by accuracy of reference (Zener or IC).  
2. Optocoupler does not need to be safety approved.  
3. Reference bias current provides minimum load. The value of RZ is determined by Zener test current or reference IC bias current.  
Typically 470 to 2 k, 1/8 W, 5%  
4. Boost topology (step-up) is also possible but not shown.  
5. Optocoupler feedback provides lowest no-load consumption.  
Table 2. LinkSwitch-TN Circuit Configurations Using Optocoupler Feedback.  
A
1/04  
3
AN-37  
INDUCTOR  
TOKIN  
VOUT IOUT(MAX)  
LNK30X MODE DIODE trr  
RFB  
VZ  
µH IRMS (mA)  
COILCRAFT  
MDCM  
CCM  
120  
160  
175  
225  
280  
360  
680 220  
680 230  
680 320  
680 340  
680 440  
680 430  
SBC2-681-211  
SBC2-681-211  
SBC3-681-211  
SBC4-681-211  
SBC4-681-211  
SBC4-681-211  
RFB0807-681  
RFB0807-681  
RFB0810-681  
RFB0810-681  
RFB0810-681  
RFB0810-681  
75 ns  
35 ns  
75 ns  
35 ns  
75 ns  
35 ns  
LNK304  
LNK305  
LNK306  
MDCM  
CCM  
3.84 k3.9 V  
5
MDCM  
CCM  
MDCM  
MDCM  
CCM  
85  
120  
160  
175  
225  
280  
360  
680 180  
1000 230  
1500 320  
680 340  
1000 440  
680 430  
1500 400  
SBC2-681-211  
SBC3-102-281  
SBC3-152-251  
SBC3-681-361  
SBC4-102-291  
SBC4-681-431  
SBC6-152-451  
RFB0807-681  
RFB0807-102  
RFB0810-152  
RFB0810-681  
RFB0810-102  
RFB0810-681  
RFB1010-152  
75 ns  
75 ns  
35 ns  
75 ns  
35 ns  
75 ns  
35 ns  
LNK304  
MDCM  
CCM  
11.86 k11 V  
12  
LNK305  
LNK306  
MDCM  
CCM  
MDCM  
MDCM  
CCM  
70  
120  
160  
175  
225  
280  
360  
680 160  
1200 210  
1800 210  
820 310  
1200 310  
820 390  
1500 390  
SBC2-681-211  
RFB0807-681  
RFB0807-122  
RFB0810-182  
RFB0810-821  
RFB1010-122  
RFB1010-821  
RFB1010-152  
75 ns  
75 ns  
35 ns  
LNK304  
LNK305  
-
-
-
-
MDCM  
15  
24  
75 ns 15.29 k13 V  
CCM  
MDCM  
CCM  
35 ns  
75 ns  
35 ns  
LNK306  
-
SBC6-152-451  
MDCM  
MDCM  
CCM  
MDCM  
CCM  
50  
120  
160  
175  
225  
280  
360  
680 130  
1500 190  
2200 180  
1200 280  
1500 280  
1200 350  
2200 360  
SBC2-681-211  
SBC4-152-221  
SBC4-222-211  
-
SBC6-152-451  
-
RFB0807-681  
RFB0810-152  
RFB0810-222  
RFB0810-122  
RFB1010-152  
RFB1010-122  
-
75 ns  
75 ns  
35 ns  
LNK304  
LNK305  
25.6 k22 V  
75 ns  
35 ns  
75 ns  
35 ns  
LNK306  
MDCM  
CCM  
SBC6-222-351  
Other Standard Components  
RBIAS: 2 k, 1%, 1/8 W  
CBP: 0.1 µF, 50 V Ceramic  
CFB: 10 µF, 1.25 VO  
DFB: 1N4005GP  
RZ:  
470 to 2 k, 1/8 W, 5%  
Table 3. Components Quick Select for Buck Converters.  
A
1/04  
4
AN-37  
INDUCTOR  
TOKIN  
VOUT IOUT(MAX)  
LNK30X MODE DIODE trr  
RFB  
VZ  
µH IRMS (mA)  
COILCRAFT  
MDCM  
75 ns  
120  
160  
175  
225  
280  
360  
680 220  
680 230  
680 340  
680 320  
680 440  
680 430  
SBC2-681-211  
SBC2-681-211  
SBC3-681-361  
SBC4-681-431  
SBC4-681-431  
SBC4-681-431  
RFB0807-681  
RFB0807-681  
RFB0810-681  
RFB0810-681  
RFB0810-681  
RFB0810-681  
LNK304  
CCM  
35 ns  
MDCM  
CCM  
75 ns  
35 ns  
75 ns  
35 ns  
LNK305  
LNK306  
3.84 k3.9 V  
5
MDCM  
CCM  
MDCM  
MDCM  
CCM  
MDCM  
CCM  
70  
120  
160  
175  
225  
280  
360  
680 180  
1200 220  
1800 210  
820 320  
1200 310  
820 410  
1800 410  
SBC2-681-211  
RFB0807-681  
RFB1010-122  
RFB0807-182  
RFB0807-821  
RFB0810-122  
RFB0810-821  
RFB1010-182  
75 ns  
75 ns  
35 ns  
75 ns  
35 ns  
75 ns  
35 ns  
LNK304  
-
-
-
-
-
-
11.86 k11 V  
12  
15  
24  
LNK305  
LNK306  
MDCM  
CCM  
MDCM  
MDCM  
50  
120  
160  
175  
225  
280  
360  
680 180  
1500 220  
2200 220  
1000 320  
1500 320  
1200 400  
2200 410  
SBC2-681-211  
SBC3-152-251  
SBC4-222-211  
SBC4-102-291  
SBC4-152-251  
-
RFB0807-681  
RFB0807-152  
RFB0810-222  
RFB0810-102  
RFB0810-152  
RFB0810-122  
RFB1010-222  
75 ns  
75 ns  
35 ns  
75 ns  
35 ns  
75 ns  
35 ns  
LNK304  
LNK305  
CCM  
MDCM  
15.29 k13 V  
CCM  
LNK306 MDCM  
CCM  
SBC6-222-351  
35  
120  
160  
175  
225  
280  
360  
680 180  
2200 210  
3300 210  
1800 300  
2200 290  
1800 370  
3300 410  
SBC2-681-211  
SBC3-222-191  
SBC4-332-161  
RFB0807-681  
RFB0810-222  
RFB0810-332  
RFB0810-182  
RFB1010-222  
RFB1010-182  
-
MDCM  
MDCM  
CCM  
MDCM  
CCM  
MDCM  
CCM  
75 ns  
75 ns  
35 ns  
75 ns  
35 ns  
75 ns  
35 ns  
LNK304  
25.6 k22 V  
-
LNK305  
LNK306  
SBC4-222-211  
-
-
Other Standard Components  
RBIAS: 2 k, 1%, 1/8 W  
CBP: 0.1 µF, 50 V Ceramic  
CFB: 10 µF, 1.25 VO  
DFB: 1N4005GP  
RZ:  
470 to 2 k, 1/8 W, 5%  
Table 4. Components Quick Select for Buck-Boost Converters.  
V
I
t
rr  
RRM  
F
PART NO.  
MANUFACTURER  
PACKAGE  
(V)  
600  
600  
600  
600  
600  
600  
600  
(A)  
1
(ns)  
50  
75  
30  
35  
20  
20  
75  
MUR160  
UF4005  
BYV26C  
FE1A  
Leaded  
Leaded  
Leaded  
Leaded  
Leaded  
SMD  
Vishay  
Vishay  
1
1
Vishay/Philips  
Vishay  
1
STTA10 6  
STTA10 6U  
US1J  
1
ST Microelectronics  
ST Microelectronics  
Vishay  
1
1
SMD  
Table 5. List of Ultra-Fast Diodes Suitable for use as the Freewheeling Diode.  
A
1/04  
5
AN-37  
To regulate the output, an ON/OFF control scheme is used as  
illustrated in Table 6. As the decision to switch is made on a  
cycle by cycle basis, the resultant power supply has extremely  
good transient response and removes the need for control loop  
compensationcomponents. Ifnofeedbackisreceivedfor50ms  
then the supply enters auto restart.  
LinkSwitch-TN Circuit Design  
LinkSwitch-TN Operation  
The basic circuit configuration for a Buck converter using  
LinkSwitch-TN is shown in Figure 1a.  
= MOSFET  
Enabled  
Reference  
Schematic  
and Key  
FB  
BP  
S
D
+
+
LinkSwitch-TN  
VIN  
VO  
= MOSFET  
Disabled -  
Cycle Skipped  
PI-3784-121603  
ID  
At beginning of each cycle the FEEDBACK  
(FB) pin is sampled.  
• If IFB < 49 µA then next cycle occurs  
• If IFB > 49 µA then next switching cycle  
is skipped  
Is IFB  
>49 µA?  
No  
No Yes  
No  
No  
Yes Yes No  
Normal  
Operation  
High load – few cycles skipped  
Low load – many cycles skipped  
PI-3767-121903  
IFB < 49 µA, > 50 ms  
= Auto Restart  
If no feedback (IFB < 49 µA) for > 50 ms  
then output switching is disabled for  
approximately 800 ms.  
Auto Restart  
50 ms  
800 ms  
Auto Restart = 50 ms ON / 800 ms OFF  
PI-3768-121603  
Table 6. LinkSwitch-TN Operation.  
A
1/04  
6
AN-37  
To allow direct sensing of the output voltage, without the need  
forareference(ZenerdiodeorreferenceIC), theFBpinvoltage  
is tightly toleranced over the entire operating temperature  
range. For example, this allows a 12 V design with an overall  
output tolerance of ±10%. For higher performance, an opto-  
coupler can be used with a reference as shown in table 2. Since  
the optocoupler just provides level shifting, it does not need to  
be safety rated or approved. The use of an optocoupler also  
allows flexibility in the location of the device, for example it  
allows a buck converter configuration with the LinkSwitch-TN  
in the low side return rail, reducing EMI as the SOURCE pins  
and connected components are no longer part of the switching  
node.  
freewheeling diode, and the average current through the output  
inductor are slightly lower in the Buck topology as compared to  
the Buck-Boost topology.  
Selecting the Operating Mode – MDCM and CCM  
Operation  
At the start of a design, select between mostly discontinuous  
conduction mode (MDCM) and continuous conduction mode  
(CCM) as this decides the selection of the LinkSwitch-TN  
device, freewheeling diode and inductor. For maximum output  
currentselectCCM,forallothercasesMDCMisrecommended.  
Overall, select the operating mode and components to give the  
lowest overall solution cost. Table 7 summarizes the trade-offs  
between the two operating modes.  
Selecting the Topology  
IfpossibleusetheBucktopology, theBucktopologymaximizes  
the available output power from a given LinkSwitch-TN and  
inductor value. Also, the voltage stress on the power switch and  
Additional differences between CCM and MDCM include  
better transient response for DCM and lower output ripple (for  
same capacitor ESR) for CCM. However these differences, at  
COMPARISON OF CCM AND MDCM OPERATING MODES  
OPERATING MODE  
MDCM  
CCM  
IL  
IL  
IO  
IO  
Operating  
Description  
t
t
tON  
tOFF  
tIDLE  
tON  
tOFF  
PI-3769-121803  
PI-3770-121503  
Inductor current falls to zero during tOFF  
,
Current flows continuously in the inductor for  
Borderline between MDCM and CCM when the entire duration of a switching cycle.  
tIDLE = 0.  
Lower Cost  
Lower value, smaller size.  
Higher Cost  
Higher value, larger size.  
Inductor  
Lower Cost  
75 ns ultra-fast reverse recovery type  
(35 ns for ambient >70 °C).  
Higher Cost  
35 ns ultra-fast recovery type required.  
Freewheeling  
Diode  
Potentially Higher Cost  
Potentially Lowest Cost  
May require larger device to deliver required May allow smaller device to deliver required  
LinkSwitch-TN  
output current–depends on required output  
current.  
output current–depends on required output  
current.  
Higher Efficiency  
Lower switching losses.  
Lower Efficiency  
Higher switching losses.  
Efficiency  
Overall  
Typically Lower Cost  
Typically Higher Cost  
Table 7. Comparison of Mostly Discontinuous Conduction (MDCM) and Continuous Conduction (CCM) Modes of Operation.  
A
1/04  
7
AN-37  
the low output currents of LinkSwitch-TN applications, are  
Output Power, PO: in Watts.  
normally not significant.  
Power supply efficiency, η: 0.7 for a 12 V output, 0.55 for a  
5 V output if no better reference data available.  
The conduction mode CCM or MDCM of a Buck or Buck-  
Boost converter primarily depends on input voltage, output  
voltage, output current and device current limit. The input  
voltage, output voltage and output current are fixed design  
parameters therefore the LinkSwitch-TN (current limit) is the  
only design parameter that sets the conduction mode.  
Total Capacitance CIN(TOTAL)  
µF/POUT (CIN1 + CIN2)  
AC Input  
Voltage (VAC)  
Half Wave  
Full Wave  
Rectification  
Rectification  
100/115  
230  
6-8  
1-2  
6-8  
3-4  
1
The phrase “mostly discontinuous” is used as with on-off  
control, since a few switching cycles may exhibit continuous  
inductor current, the majority of the switching cycles will be in  
the discontinuous conduction mode. A design can be made  
fully discontinuous but that will limit the available output  
current, making the design less cost effective.  
Universal  
3-4  
Table 10. Suggested Total Input Capacitance Values for Different  
Input Voltage Ranges.  
Step 2. Determine AC Input Stage  
Step-by-Step Design Procedure  
The input stage comprises fusible resistor(s) input rectification  
diodes and line filter network. The fusible resistor should be  
chosen as flame proof and depending on the differential line  
input surge requirements, a wire wound type may be required.  
The fusible resistor(s) provides fuse safety, inrush current  
limiting and differential mode noise attenuation.  
Step 1. Determine System Requirements VACMIN  
VACMAX, PO, VO, fL, η  
,
Determine the input voltage range from Table 8.  
Input (VAC)  
100/115  
230  
VACMIN  
85  
VACMAX  
132  
For designs 1 W it is lower cost to use half-wave rectification,  
>1 W full wave rectification (smaller input capacitors). The  
EMI performance of half wave rectified designs is improved by  
adding a second diode in the lower return rail. This provides  
EMI gating (EMI currents only flow when the diode is  
conducting)andalsodoublesdifferentialsurgewithstandasthe  
surge voltage is shared across two diodes. Table 9 shows the  
recommendedinputstagebasedonoutputpowerforauniversal  
input design while Table 10 shows how to adjust the input  
capacitance for other input voltage ranges.  
195  
85  
265  
Universal  
265  
Table 8. Standard Worldwide Input Line Voltage Ranges.  
Line Frequency, fL: 50 or 60 Hz, for half-wave rectification  
use fL/2.  
Output Voltage, VO: in Volts.  
POUT  
0.25 W  
0.25-1 W  
> 1 W  
DIN1-4  
LIN  
**  
+
+
+
LIN  
**  
+
RF1  
DIN1  
RF1  
DIN1  
RF1  
DIN1  
RF2  
RF1  
**  
CIN  
AC  
IN  
AC  
IN  
AC  
IN  
**  
CIN1  
CIN2  
CIN1  
CIN2  
AC IN  
CIN1  
CIN2  
*
*
*
*
DIN2  
DIN2  
DIN2  
RF2  
PI-3772-121603  
PI-3771-121603  
PI-3773-121603  
PI-3774-121603  
85-265 VAC  
Input Stage  
RF1, RF2: 100-470 ,  
0.5 W, Fusible  
RF1: 8.2 , 1 W Fusible  
RF2: 100 , 0.5 W,  
Flame proof  
RF1: 8.2 , 1 W Fusible  
LIN: 470 µH-2.2 mH,  
0.05 A-0.3 A  
RF1: 8.2 , 1 W Fusible  
LIN: 470 µH-2.2 mH,  
0.05 A-0.3 A  
CIN: 2.2 µF, 400 V  
DIN1, DIN2: 1N4007, 1 A,  
1000 V  
CIN1, CIN2: 3.3 µF,  
400 V each  
CIN1, CIN2: 4 µF/WOUT  
400 V each  
,
CIN1, CIN2: 2 µF/WOUT,  
400 V each  
DIN1, DIN2: 1N4007, 1 A,  
1000 V  
DIN1, DIN2: 1N4007, 1 A,  
1000 V  
DIN1, DIN2: 1N4005, 1 A,  
600 V  
*Optional for improved EMI and line surge performance. Remove for designs requiring no impedance in return rail.  
**Increase value to meet required differential line surge performance.  
Comments  
Table 9. Recommended AC Input Stages For Universal Input.  
A
1/04  
8
AN-37  
Step 3. Determine Minimum and Maximum DC Input  
Voltages VMIN and VMAX Based on AC Input Voltage  
Step 5. Select the Output Inductor  
Tables3and4provideinductorvaluesandRMScurrentratings  
for common output voltages and currents based on the  
calculations in the design spreadsheet. Select the next nearest  
higher voltage and/or current above the required output  
specification. Alternatively the PIXls spreadsheet tool in the  
PI Expert software design suite or Appendix A can be used to  
calculate the exact inductor value (Eq. A7) and RMS current  
rating (Eq. A20).  
Calculate VMAX as  
(1)  
VMAX  
= 2 VACMAX  
Assuming that the value of input fusible resistor is small, the  
voltage drop across it can be ignored.  
Assume bridge diode conduction time of tc = 3 ms if no other  
data available.  
It is recommended that the value of inductor chosen should be  
closer to LTYP rather than 1.5 LTYP due to lower DC resistance  
Derive minimum input voltage VMIN  
and higher RMS rating. The lower limit of 680 µH limits the  
maximum di/dt to prevent very high peak current values.  
Tables 3 and 4 provide reference part numbers for standard  
inductors from two suppliers.  
1
2 P  
tC  
O
2 f  
L
2
(2)  
VMIN  
=
2 V  
ACMIN  
(
)
680 µH < LTYP < L < 1.5LTYP  
η CIN (TOTAL)  
(5)  
If VMIN is 70 V then increase value of CIN(TOTAL)  
.
For LinkSwitch-TN designs the mode of operation is not  
dependent on the inductor value. The mode of operation is a  
function of load current and current limit of the chosen device,  
theinductorvaluemerelysetstheaverageswitchingfrequency.  
Step 4. Select LinkSwitch-TN Device Based on  
Output Current and Current Limit  
Decide on operating mode - refer to Table 7.  
Figure 2 shows a typical standard inductor manufacturer’s data  
sheet. The value of off-the-shelf “drum core / dog bone / I core”  
inductors will drop up to 20% in value as the current increases.  
TheconstantKL_TOL inequation(A7)andthedesignspreadsheet  
adjusts for both this drop and the initial inductance value  
tolerance.  
For MDCM operation, the output current (IO) should be less  
than or equal to half the value of the minimum current limit of  
the chosen device from the data sheet.  
(3)  
ILIMIT _ MIN > 2 IO  
Forexampleifa680µH, 360mAinductorisrequired, referring  
to Figure 2, the tolerance is 10% and an estimated 9.5% for the  
reduction in inductance at the operating current (approximately  
For CCM operation, the device should be chosen such that the  
output current IO, is more than 50%, but less than 80% of the  
minimum current limit ILIMIT_MIN  
.
[0.36/0.38] 10). ThereforethevalueofKL_TOL =1.195(19.5%).  
If no data is available assume a KL_TOL of 1.15 (15%).  
0.5ILIMIT _ MIN < IO < 0.8ILIMIT _ MIN  
(4)  
Not all the energy stored in the inductor is delivered to the load,  
due to losses in the inductor itself. To compensate for this a loss  
Please see data sheet for LinkSwitch-TN current limit values.  
Inductance and Current Rating  
Current Rating  
for 40 °C Rise  
Current Rating  
for Value -10%  
Tolerance  
for 20 °C Rise  
SBC3 Series (SBC3-  
Model  
-
)
Inductance  
Rdc  
(W)  
Rated Current  
Current (Reference Value)  
(A)  
(A)  
L(mH/ at 10 kHz  
max.  
T = 20 °C  
T = 40 °C  
L change rate -10%  
681-361  
102-281  
152-251  
222-191  
332-151  
680±10%  
1000±10%  
1500±10%  
2200±10%  
3300±10%  
1.62  
2.37  
3.64  
5.62  
7.66  
0.36  
0.28  
0.25  
0.19  
0.15  
0.50  
0.39  
0.35  
0.26  
0.21  
0.38  
0.31  
0.26  
0.21  
0.17  
PI-3783-121003  
Figure 2. Example of Standard Inductor Data Sheet.  
A
1/04  
9
AN-37  
factor KLOSS is used. This has a recommended value of between  
50%and66%ofthetotalsupplylossesasgivenbyequation(5).  
For example, a design with an overall efficiency (η) of 0.75  
would have a KLOSS value of between 0.875 and 0.833.  
Let the value of RBIAS = 2 k; this biases the feedback network  
at a current of 0.8 mA. Hence the value of RFB is given by  
V V R  
V 1.65 V 2 kΩ  
VO VFB  
(
)
(
=
)
O
FB  
BIAS  
O
RFB  
=
=
VFB  
VFB + IFB RBIAS  
1.748 V  
(
)
+ IFB  
1η   
2 1η   
(
)
(
)
RBIAS  
(6)  
KLOSS = 1−  
to 1−  
(10)  
2
3
Step 9. Select the Feedback Diode and Capacitor  
Step 6. Select Freewheeling Diode  
For the feedback capacitor, use a 10 µF general purpose  
For MDCM operation at tAMB 70 °C, select an ultra-fast diode  
with trr 75 ns. At tAMB >70 °C, trr 35 ns.  
electrolytic capacitor with a voltage rating 1.25 VO.  
For the feedback diode, use a glass passivated 1N4005GP or  
For CCM operation, select an ultra-fast diode with trr 35 ns.  
1N4937GP device with a voltage rating of 1.25 VMAX  
Step 10. Select Bypass Capacitor  
Use 0.1 µF, 50 V ceramic capacitor.  
.
Allowing 25% design margin for the freewheeling diode,  
(7)  
VPIV > 1.25VMAX  
The diode must be able to conduct the full load current. Thus  
Step 11. Select Pre-load Resistor  
(8)  
For direct feedback designs if the minimum load <3 mA then  
calculate RPL = VO / 3 mA.  
IF > 1.25IO  
Table 5 lists common freewheeling diode choices.  
Other information  
Step 7. Select Output Capacitor  
Startup Into Non-Resistive Loads  
The output capacitor should be chosen based on the output  
voltage ripple requirement. Typically the output voltage ripple  
is dominated by the capacitor ESR and can be estimated as:  
If the total system capacitance is >100 µF or the output voltage  
is >12 V, then the output may fail to reach regulation during  
start-up. Thismayalsobetruewhentheloadisnotresistive, for  
example the output is supplying a motor or fan.  
VRIPPLE  
(9)  
ESRMAX  
=
ILIMIT  
To increase the startup time, a soft-start capacitor can be added  
across the feedback resistor, as shown in Figure 3. The value of  
this soft-start capacitor is typically in the range of 0.47 µF to  
where VRIPPLE is the maximum output ripple specification and  
ILIMIT is the LinkSwitch-TN current limit. The capacitor ESR  
value should be specified approximately at the switching  
frequency of 66 kHz.  
47 µF with a voltage rating of 1.25 VO. Figure 4 shows the  
effect of CSS used on a 12 V, 150 mA design driving a motor  
load.  
Capacitor values above 100 µF are not recommended as they  
can prevent the output voltage from reaching regulation during  
the 50 ms period prior to auto-restart. If more capacitance is  
required, then a soft-start capacitor should be added (see Other  
Information section).  
CSS  
RFB  
Step 8. Select the Feedback Resistors  
FB  
BP  
S
The values of RFB and RBIAS are selected such that at the  
regulated output voltage, the voltage on the FEEDBACK pin  
(VFB) is 1.65 V. This voltage is specified for a FEEDBACK pin  
current (IFB) of 49 µA.  
D
+
+
LinkSwitch-TN  
VIN  
VO  
PI-3775-121003  
Figure 3. Example Schematic Showing Placement of Soft-Start  
Capacitor.  
A
1/04  
10  
AN-37  
14  
12  
10  
8
No soft-start capacitor. Output  
never reaches regulation (in  
auto-restart).  
FB  
BP  
S
+7 V  
D
+
LinkSwitch-TN  
6V8  
VIN  
RTN  
-5 V  
6
4
5V1  
PI-3776-121003  
2
0
Figure 5. Example Circuit – Generating Dual Output Voltages.  
-2  
2.5  
Time (s)  
5
0
Generating Negative and Positive Outputs  
Inapplianceapplicationsthereisoftenarequirementtogenerate  
both an AC line referenced positive and negative output. This  
can be accomplished using the circuit in Figure 5. The two  
zener diodes have a voltage rating close to the required output  
voltage for each rail and ensure that regulation is maintained  
when one rail is lightly and the other heavily loaded. The  
LinkSwitch-TN circuit is designed as if it were a single output  
voltage with an output current equal to the sum of both outputs.  
The magnitude sum of the output voltages in this example being  
12 V.  
14  
12  
10  
8
6
4
2
Constant Current Circuit Configuration (LED Driver)  
0
-2  
The circuit shown in Figure 5 is ideal for driving constant  
current loads such as LEDs. It uses the tight tolerance and  
temperature stable FEEDBACK pin of LinkSwitch-TN as the  
reference to provide an accurate output current.  
2.5  
Time (s)  
5
0
14  
12  
10  
8
RFB  
300  
Optional  
See Text  
VRFB DFB  
RBIAS  
2 kΩ  
FB  
BP  
S
RSENSE  
IO  
6
4
D
+
DFW  
LinkSwitch-TN  
CSENSE  
L
VIN  
CO  
2
0
PI-3795-122403  
-2  
Figure 6. High-Side Buck-Boost Constant Current Output  
Configuration.  
2.5  
Time (s)  
5
0
To generate a constant current output, the average output  
current is converted to a voltage by resistor RSENSE and capacitor  
Figure 4. Example of Using Soft-Start Capacitor to Enable Driving  
a 12 V, 0.15 A Motor Load. All Measurements were made  
at 85 VAC (worst case condition).  
CSENSE and fed into the FEEDBACK pin via RFB and RBIAS  
.
With the values of RBIAS and RFB as shown, the value of RSENSE  
should be chosen to generate a voltage drop of 2 V at the  
A
1/04  
11  
AN-37  
required output current. Capacitor CSENSE filters the voltage  
across RSENSE, which is modulated by inductor ripple current.  
The value of CSENSE should be large enough to minimize the  
ripple voltage, especially in MDCM designs. A value of CSENSE  
is selected such that the time constant (t) of RSENSE and CSENSE is  
greater than 20 times that of the switching period (15 µs). The  
Recommended Layout Considerations  
Traces carrying high currents should be as short in length and  
thick in width, as possible. These are the traces which connect  
the input capacitor, LinkSwitch-TN, inductor, freewheeling  
diode and the output capacitor.  
peak voltage seen by CSENSE is equal to RSENSE ILIMIT(MAX)  
.
Most off-the-shelf inductors are drum core inductors or dog-  
bone inductors. These inductors do not have a good closed  
magneticpath,andareasourceofsignificantmagneticcoupling.  
They are a source of differential mode noise and for this reason,  
they should be placed as far away as possible from the AC input  
lines.  
The output capacitor is optional; however with no output  
capacitor the load will see the full peak current (ILIMIT) of the  
selected LinkSwitch-TN. Increase the value of CO (typically in  
the range of 100 nF to 10 uF) to reduce the peak current to an  
acceptable level for the load.  
If the load is disconnected, feedback is lost and the large output  
voltage which results may cause circuit failure. To prevent this,  
a second voltage control loop, DFB and VRFB, can be added as  
shown if Figure 6. This also requires that CO is fitted. The  
voltage of the Zener is selected as the next standard value above  
the maximum voltage across the LED string when it is in  
constant current operation.  
Appendix A  
Calculations for Inductor Value for Buck and Buck-  
Boost Topologies  
There is a minimum value of inductance that is required to  
deliver the specified output power, regardless of line voltage  
and operating mode.  
The same design equations / design spreadsheet can be used as  
for a standard buck-boost design, with the following additional  
considerations.  
VIN-VO  
VL  
1. VO = LED VF Number of LEDs per string  
t
2. IO = LED IF Number of strings  
3. Lower efficiency estimate due to RSENSE losses (enter  
VO  
RSENSE into design spreadsheet as inductor resistance)  
4. Set RBIAS = 2 kand RFB = 300 Ω  
5. RSENSE = 2/IO  
ILimit  
IL  
6. CSENSE = 20 (15 µs/RSENSE  
)
7. Select CO based on acceptable output ripple current  
through the load  
IO  
t
8. If the load can be disconnected or for additional fault  
protection, add voltage feedback components DFB and  
VRFB, in addition to CO.  
tON  
tIDLE  
tOFF  
PI-3778-121803  
Figure 7. Inductor Voltage and Inductor Current of a Buck  
Converter in DCM.  
Thermal Environment  
As a general case, Figure 7 shows the inductor current in  
discontinuous conduction mode (DCM). The following  
expressions are valid for both CCM as well as DCM operation.  
There are three unique intervals in DCM as can be seen from  
Figure 7. Interval tON is when the LinkSwitch-TN is ON and the  
freewheeling diode is OFF. Current ramps up in the inductor  
fromaninitialvalueofzero.Thepeakcurrentisthecurrentlimit  
ILIMIT of the device. Interval tOFF is when the LinkSwitch-TN is  
OFF and the freewheeling diode is ON. Current ramps down to  
zero during this interval. Interval tIDLE is when both the  
LinkSwitch-TNandfreewheelingdiodeareOFF,andtheinductor  
current is zero.  
To ensure good thermal performance, the SOURCE pin  
temperature should be maintained below 100 °C, by providing  
adequate heatsinking.  
For applications with high ambient temperature (>50 °C), it is  
recommendedtobuildandtestthepowersupplyatthemaximum  
operatingambienttemperature,andensurethatthereisadequate  
thermal margin. The figures for maximum output current  
providedinthedatasheet correspondtoanambienttemperature  
of 50 °C, and may need to be thermally derated. Also, it is  
recommended to use ultra fast (35 ns) low reverse recovery  
diodes at higher operating temperatures (>70 °C).  
A
1/04  
12  
AN-37  
In CCM this idle state does not exist and thus tIDLE = 0.  
1
2
IRIPPLE LMIN  
I  
+ IINITIAL  
(
)
LIMIT _ MIN  
VMIN VDS VO  
RIPPLE LMIN  
1
Neglecting the forward voltage drop of the freewheeling diode,  
we can express the current swing at the end of interval tON in a  
buck converter as  
IO =  
1
2
I
TSW _ MAX  
+
I  
(
+ IINITIAL  
LIMIT _ MIN  
)
VO  
(A5)  
VMIN VDS VO  
I t  
= I  
=
tON  
(
)
ON  
RIPPLE  
2 V I V  
VDS VO  
(
O ) (  
)
LMIN  
O
MIN  
LMIN  
=
2
2
I
IINITIAL FS  
V  
VDS  
(
)
(
)
LIMIT _ MIN  
MIN  
MIN  
IRIPPLE = 2 I  
IO tIDLE = 0 for CCM  
(
)
)
(
)
LIMIT _ MIN  
(A6)  
IRIPPLE = ILIMIT _ MIN  
,
tIDLE > 0 for DCM  
(
(A1)  
Thishoweverdoesnotaccountforthelosseswithintheinductor  
(resistance of winding and core losses) and the freewheeling  
diode,whichwilllimitthemaximumpowerdeliveringcapability  
and thus reduce the maximum output current. The minimum  
inductance must compensate for these losses in order to deliver  
specified full load power. An estimate of these losses can be  
made by estimating the total losses in the power supply, and  
then allocating part of these losses to the inductor and diode.  
This is done by the loss factor KLOSS which increases the size of  
the inductor accordingly.  
where  
IRIPPLE = Inductor Ripple Current  
ILIMIT_MIN = Minimum current limit  
VMIN = Minimum DC Bus Voltage  
VDS = On state Drain to Source Voltage drop  
VO = Output Voltage  
LMIN = Minimum Inductance  
Similarly, we can express the current swing at the end of  
interval tOFF as  
Furthermore, typical inductors for this type of application are  
bobbin core or dog bone chokes. The specified current rating  
refertoatemperatureriseof20°Cor40°Candtoaninductance  
drop of 10%. We must incorporate an Inductance Tolerance  
FactorKL_TOL withintheexpressionforminimuminductance,to  
accountforthismanufacturingtolerance. Thetypicalinductance  
value thus can be expressed as  
VO  
I t  
(
= I  
=
tOFF  
)
OFF  
RIPPLE  
(A2)  
LMIN  
The initial current through the inductor at the beginning of each  
switching cycle can be expressed as  
IINITIAL = ILIMIT _ MIN IRIPPLE  
(A3)  
VO IO  
2 KL _ TOL  
V  
VDS VO  
(
)
MIN  
K
LOSS   
LTYP  
=
The average current through the inductor over one switching  
cycle is equal to the output current IO. This current can be  
expressed as  
2
2
I
IINITIAL FS  
V  
VDS  
(
)
(
)
LIMIT _ MIN  
MIN  
MIN  
(A7)  
1
2
1
2
where  
I  
+ IINITIAL t  
+
ON  
(
)
LIMIT _ MIN  
1
IO =  
TSW _ MAX  
KLOSS isalossfactor,whichaccountsfortheoff-statetotallosses  
of the inductor.  
I
+ IINITIAL t  
+ 0 tIDLE  
OFF  
(
)
LIMIT _ MIN  
(A4)  
KL_TOL is the Inductor Tolerance Factor and can be between 1.1  
and 1.2. A typical value is 1.15.  
where  
IO = Output Current.  
TSW_MAX = the switching interval corresponding to minimum  
switching frequency FSMIN  
With this typical inductance we can express maximum output  
power as  
.
1
2
2
P
=
LTYP I  
IINITIAL  
LIMIT _ MIN  
(
)
O _ MAX  
2
Substituting for tON and tOFF from equations (A1) and (A2) we  
have  
VMIN VDS  
KLOSS  
(A8)  
FSMIN  
VMIN VDS VO KL _ TOL  
A
1/04  
13  
AN-37  
SimilarlyforBuck-BoosttopologytheexpressionsforLTYP and  
PO_MAX are  
The current through the LinkSwitch-TN as a function of time is  
given by  
VMIN VDS VO  
VO IO  
iSW t = I  
( )  
+
t ,0 < t tON  
2 KL _ TOL  
INITIAL  
L
K
LOSS   
LTYP  
=
2
2
(A9)  
I
IINITIAL FS  
(
)
LIMIT _ MIN  
MIN  
iSW t = 0 ,t < t tON  
( )  
ON  
(A14)  
The current through the Freewheeling diode as a function of  
time is given by  
1
2
2
P
=
LTYP (ILIMIT _ MIN IINITIAL  
)
O _ MAX  
(A10)  
2
iD t = 0, 0 < t tON  
( )  
Average Switching Frequency  
VO  
iD t = I  
( )  
,tON < t tSW  
LIMIT _ MIN  
(A15)  
(A16)  
L
SinceLinkSwitch-TNusesanon-offtypeofcontrol,thefrequency  
of switching is non-uniform due to cycle skipping. We can  
average this switching frequency by substituting the maximum  
powerastheoutputpowerinequation(A8).Simplifying,wehave  
VO  
L
iD t = 0, ILIMIT _ MIN  
( )  
t < 0  
And the current through the inductor as a function of time is  
given by  
2 VO IO KL _ TOL  
VMIN VDS VO  
VMIN VDS  
FSAVG  
=
i t = i t + i  
t
L ( ) SW ( ) D( )  
(A17)  
2
2
L I  
IINITIAL K  
LOSS  
(
)
LIMIT  
(A11)  
From the definition of RMS currents we can express the RMS  
currentsthroughtheswitch, freewheelingdiodeandinductoras  
follows  
Similarly for Buck-Boost converter, simplifying equation (A9)  
we have  
tON  
1
iSW _ RMS  
=
iSW t  
2 dt  
( )  
(A18)  
KL _ TOL  
2 VO IO  
TAVG  
0
FSAVG  
=
2
2
KLOSS  
L I  
IINITIAL K  
LOSS  
(
)
LIMIT  
(A12)  
tON +tOFF  
1
iD _ RMS  
=
iD t  
2 dt  
( )  
Calculation of RMS Currents  
(A19)  
(A20)  
TAVG  
tON  
The RMS current value through the inductor is mainly required  
to ensure that the inductor is appropriately sized and will not  
over heat. Also, RMS currents through the LinkSwitch-TN and  
freewheeling diode are required to estimate losses in the power  
supply.  
TAVG  
1
iL _ RMS  
=
i
t + i t  
2 dt  
SW ( ) ( )  
D
(
)
TAVG  
0
Since the switch and freewheeling diode currents fall to zero  
during the turn off and turn on intervals respectively, the RMS  
inductor current is simplified to  
Assuming CCM operation, the initial current in the inductor in  
steady state is given by  
VO  
2
2
IINITIAL = ILIMIT _ MIN  
tOFF  
iL _ RMS = iSW _ RMS + iD _ RMS  
(A13)  
(A21)  
L
For DCM operation this initial current will be zero.  
A
1/04  
14  
AN-37  
Table A1 lists the design equations for important parameters  
using the Buck and Buck-Boost topologies.  
PARAMETER BUCK  
BUCK-BOOST  
LTYP  
VO IO  
VO IO  
2 KL ⋅  
2 KL ⋅  
V  
VDS VO  
(
)
MIN  
K
K
L _ LOSS   
L _ LOSS   
LTYP  
=
LTYP  
=
2
2
2
2
I
IINITIAL FS  
I
IINITIAL FS  
V  
VDS  
(
)
(
)
(
)
LIMIT _ MIN  
MIN  
LIMIT _ MIN  
MIN  
MIN  
2 VO IO KL  
VMIN VDS VO  
VMIN VDS  
2 VO IO  
KL  
KL _ LOSS  
FAVG  
FSTYP  
=
FSAVG  
=
2
2
2
L I  
IINITIAL K  
L I  
IINITIAL  
(
)
(
)
LIMIT  
L _ LOSS  
LIMIT  
iSW(t)  
VMIN VDS  
VMIN VDS VO  
iSW t = i  
( )  
+
t ,t tON  
iSW t = i  
( )  
+
t ,t tON  
INIT  
INIT  
LinkSwitch-TN  
Current  
L
L
iSW t = 0 ,t > t  
( )  
iSW t = 0 ,t > t  
( )  
ON  
ON  
VO  
VO  
iD t = I  
( )  
t ,t > tON  
id(t)  
iD t = I  
( )  
t ,t > tON  
LIMIT _ MIN  
LIMIT _ MIN  
L
L
Diode  
Forward  
Current  
VO  
VO  
L
iD t = 0 , I  
( )  
t < 0  
L
iD t = 0 , I  
( )  
t < 0  
LIMIT _ MIN  
LIMIT _ MIN  
iD t = 0 ,t t  
( )  
iD t = 0 ,t t  
( )  
ON  
ON  
iL(t) Inductor  
Current  
i t = i t + i  
t
L ( ) SW ( ) D( )  
i t = i t + i t  
L ( ) SW ( ) D( )  
Max Drain  
Voltage  
VMAX + VO  
VMAX  
Table A1. Circuit Characteristics for Buck and Buck-Boost Topologies.  
A
1/04  
15  
AN-37  
For the latest updates, visit our Web site: www.powerint.com  
PATENT INFORMATION  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not  
assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others.  
The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S.  
and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents  
may be found at www.powerint.com.  
LIFE SUPPORT POLICY  
POWER INTEGRATIONS' PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. Life support devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when  
properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, LinkSwitch and EcoSmart are registered trademarks of Power Integrations.  
PI Expert and DPA-Switch are trademarks of Power Integrations. ©Copyright 2004, Power Integrations  
SINGAPORE (ASIA PACIFIC  
HEADQUARTERS)  
Power Integrations, Singapore  
51 Newton Road  
#15-08/10 Goldhill Plaza  
Singapore, 308900  
WORLD HEADQUARTERS  
Power Integrations  
5245 Hellyer Avenue  
CHINA (SHENZHEN)  
Power Integrations  
ITALY  
Power Integrations S.r.l.  
Via Vittorio Veneto 12,  
Bresso  
Milano, 20091, Italy  
Phone:  
Fax:  
International Holdings, Inc.  
Rm# 1705, Bao Hua Bldg.  
1016 Hua Qiang Bei Lu  
Shenzhen Guangdong,  
518031, China  
San Jose, CA 95138, USA.  
Main:  
+1-408-414-9200  
Customer Service:  
+39-028-928-6001  
+39-028-928-6009  
Phone:  
Fax:  
+65-6358-2160  
+65-6358-2015  
Phone:  
Fax:  
+1-408-414-9665  
+1-408-414-9765  
Phone:  
Fax:  
+86-755-8367-5143  
+86-755-8377-9610  
e-mail: eurosales@powerint.com  
e-mail: singaporesales@powerint.com  
e-mail: usasales@powerint.com  
e-mail: chinasales@powerint.com  
AMERICAS  
JAPAN  
TAIWAN  
GERMANY  
Power Integrations  
4335 South Lee Street,  
Suite G  
Power Integrations, K.K.  
Keihin-Tatemono 1st Bldg.  
12-20 Shin-Yokohama  
2-Chome,  
Kohoku-ku, Yokohama-shi,  
Kanagawa 222-0033, Japan  
Power Integrations  
Power Integrations GmbH  
Rueckerstrasse 3  
D-80336, Muenchen, Germany  
Phone: +49-895-527-3910  
Fax: +49-895-527-3920  
International Holdings, Inc.  
5F-1, No. 316, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Buford, GA 30518, USA  
Phone:  
Fax:  
+1-678-714-6033  
+1-678-714-6012  
Taipei, Taiwan 114, R.O.C.  
Phone:  
Fax:  
+886-2-2659-4570  
+886-2-2659-4550  
e-mail: eurosales@powerint.com  
e-mail: usasales@powerint.com  
Phone:  
Fax:  
+81-45-471-1021  
+81-45-471-3717  
e-mail: taiwansales@powerint.com  
e-mail: japansales@powerint.com  
UK (EUROPE & AFRICA  
HEADQUARTERS)  
Power Integrations (Europe) Ltd.  
1st Floor, St. James’s House  
East Street  
CHINA (SHANGHAI)  
Power Integrations  
International Holdings, Inc.  
Rm 807, Pacheer  
INDIA (TECHNICAL SUPPORT)  
Innovatech  
261/A, Ground Floor  
7th Main, 17th Cross,  
Sadashivanagar  
KOREA  
Power Integrations  
International Holdings, Inc.  
8th Floor, DongSung Bldg.  
17-8 Yoido-dong,  
Commercial Centre  
Farnham  
Surrey  
GU9 7TJ  
United Kingdom  
555 Nanjing West Road  
Shanghai, 200041, China  
Bangalore 560080  
Youngdeungpo-gu,  
Seoul, 150-874, Korea  
Phone:  
Fax:  
+91-80-5113-8020  
+91-80-5113-8023  
Phone:  
Fax:  
+86-21-6215-5548  
+86-21-6215-2468  
Phone:  
Fax:  
+82-2-782-2840  
+82-2-782-4427  
e-mail: indiasales@powerint.com  
Phone: +44 (0) 1252-730-140  
Fax: +44 (0) 1252-727-689  
e-mail: eurosales@powerint.com  
e-mail: chinasales@powerint.com  
e-mail: koreasales@powerint.com  
APPLICATIONS HOTLINE  
World Wide +1-408-414-9660  
APPLICATIONS FAX  
World Wide +1-408-414-9760  
A
1/04  
16  

相关型号:

AN-388

USING SIGMA-DELTA CONVERTERS-PART1
ADI

AN-40

Application Note 40
MICREL

AN-4003

PC POWER SUPPLY DESIGN WITH KA3511
FAIRCHILD

AN-4005

MAFL-009272 Improved rejection circuit 5 - 1002 / 1125 - 1550 MHz
TE

AN-400A

Low-Power Green-Mode PWM Flyback Power Controller
FAIRCHILD

AN-402

Quad 150 MHz Rail-to-Rail Amplifier
ADI

AN-414

Quad 150 MHz Rail-to-Rail Amplifier
ADI

AN-4150

Design Guidelines for Flyback Converters
FAIRCHILD

AN-4151

Half-bridge LLC Resonant Converter
FAIRCHILD

AN-4153

Designing Asymmetric PWM Half-Bridge Converters
FAIRCHILD

AN-417

Quad 150 MHz Rail-to-Rail Amplifier
ADI

AN-42036

PCB Grounding System and High Performance DC-DC Converters
FAIRCHILD