CLC1605IST5X [CADEKA]

Single and Triple, 1.5GHz Amplifiers; 单路和三路, 1.5GHz的放大器
CLC1605IST5X
型号: CLC1605IST5X
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

Single and Triple, 1.5GHz Amplifiers
单路和三路, 1.5GHz的放大器

放大器
文件: 总20页 (文件大小:2564K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Amplify the Human Experience  
Co m l i n e a r ® CLC1605, CLC3605  
Single and Triple, 1.5GHz Amplifiers  
f e a t u r e s  
General Description  
nꢀ  
0.1dB gain flatness to 120MHz  
The COMLINEAR CLC1605 (single) and CLC3605 (triple) are high-perfor-  
mance, current feedback amplifiers that provide 1.5GHz unity gain band-  
width, ±0.1dB gain flatness to 120MHz, and 2,500V/μs slew rate. This high  
performance exceeds the requirements of high-definition television (HDTV)  
and other multimedia applications. These COMLINEAR high-performance am-  
plifiers also provide ample output current to drive multiple video loads.  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
0.01%/0.01˚ differential gain/phase  
1.2GHz -3dB bandwidth at G = 2  
700MHz large signal bandwidth  
2,500V/μs slew rate  
3.7nV/√Hz input voltage noise  
120mA output current  
Triple offers disable  
The COMLINEAR CLC1605 and CLC3605 are designed to operate from ±5V  
or +5V supplies. The CLC3605 offers a fast enable/disable feature to save  
power. While disabled, the outputs are in a high-impedance state to allow for  
multiplexing applications. The combination of high-speed, low-power, and ex-  
cellent video performance make these amplifiers well suited for use in many  
general purpose, high-speed applications including high-definition video, im-  
aging applications, and radar/communications receivers.  
Fully specified at 5V and ±5V supplies  
CLC1605: Pb-free SOT23-5  
CLC3605: Pb-free SOIC-16  
a p p l i c a t i o n s  
nꢀ  
RGB video line drivers  
nꢀ  
High definition video driver  
nꢀ  
Video switchers and routers  
nꢀ  
ADC buffer  
Typical Application - Driving Dual Video Loads  
nꢀ  
Active filters  
nꢀ  
High-speed instrumentation  
+Vs  
nꢀ  
Wide dynamic range IF amp  
nꢀ  
Radar/communication receivers  
75Ω  
Cable  
75Ω  
Input  
Cable  
75Ω  
75Ω  
Output A  
Output B  
75Ω  
75Ω  
75Ω  
R
f
R
g
75Ω  
Cable  
-Vs  
Ordering Information  
Part Number  
Package  
Pb-Free  
RoHS Compliant  
Operating Temperature Range Packaging Method  
CLC1605IST5X  
CLC3605ISO16X  
CLC3605ISO16  
SOT23-5  
SOIC-16  
SOIC-16  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Reel  
Reel  
Rail  
Moisture sensitivity level for all parts is MSL-1.  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
Data Sheet  
CLC1605 Pin Assignments  
CLC1605 Pin Configuration  
Pin No.  
Pin Name  
OUT  
Description  
1
2
3
4
5
Output  
OUT  
1
2
3
5
4
+V  
S
-V  
Negative supply  
Positive input  
Negative input  
Positive supply  
S
+IN  
-IN  
-V  
S
+
-
-IN  
+IN  
+V  
S
CLC3605 Pin Configuration  
Pin No.  
Pin Name  
-IN1  
Description  
Negative input, channel 1  
Positive input, channel 1  
Negative supply  
1
2
3
4
5
6
7
8
CLC3605 Pin Configuration  
+IN1  
-V  
S
-IN2  
Negative input, channel 2  
Positive input, channel 2  
Negative supply  
1
2
3
4
16  
15  
14  
13  
12  
11  
10  
9
+IN2  
-IN1  
+IN1  
-VS  
DIS1  
OUT1  
+VS  
-V  
S
+IN3  
-IN3  
Positive input, channel 3  
Negative input, channel 3  
-IN2  
DIS2  
OUT2  
+VS  
Disable pin. Enabled if pin is grounded, left float-  
9
DIS3  
ing or pulled below V , disabled if pin is pulled  
ON  
5
6
7
+IN2  
above V  
.
OFF  
-VS  
10  
11  
12  
OUT3  
Output, channel 3  
Positive supply  
+V  
S
+IN3  
OUT3  
DIS3  
OUT2  
DIS2  
Output, channel 2  
8
-IN3  
Disable pin. Enabled if pin is grounded, left float-  
13  
ing or pulled below V , disabled if pin is pulled  
ON  
above V  
.
OFF  
+V  
S
Positive supply  
14  
15  
OUT1  
Output, channel 1  
Disable pin. Enabled if pin is grounded, left float-  
16  
DIS1  
ing or pulled below V , disabled if pin is pulled  
ON  
above V  
.
OFF  
Disable Pin Truth Table  
Pin  
High  
Disabled  
Low*  
Enabled  
DIS  
*Default Open State  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
2
Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper de-  
vice function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
0
Max  
Unit  
Supply Voltage  
14  
V
V
Input Voltage Range  
Continuous Output Current  
-V -0.5V  
s
+V +0.5V  
s
120  
mA  
Reliability Information  
Parameter  
Min  
-65  
Typ  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
5-Lead SOT23  
150  
150  
260  
°C  
°C  
°C  
221  
68  
°C/W  
°C/W  
16-Lead SOIC  
Notes:  
Package thermal resistance (q ), JDEC standard, multi-layer test boards, still air.  
JA  
ESD Protection  
Product  
SOT23-5  
SOIC-16  
2kV  
Human Body Model (HBM)  
2kV  
1kV  
Charged Device Model (CDM)  
1kV  
Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Operating Temperature Range  
-40  
4.5  
+85  
12  
°C  
V
Supply Voltage Range  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
3
Data Sheet  
Electrical Characteristics at +5V  
T = 25°C, V = +5V, R = R =330Ω, R = 150Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
g
L
S
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Frequency Domain Response  
UGBW  
Unity Gain Bandwidth  
-3dB Bandwidth  
G = +1, VOUT = 0.5Vpp, Rf = 499Ω  
G = +2, VOUT = 0.5Vpp  
G = +2, VOUT = 1Vpp  
1250  
1000  
825  
MHz  
MHz  
MHz  
MHz  
MHz  
BWSS  
BWLS  
Large Signal Bandwidth  
0.1dB Gain Flatness  
0.1dB Gain Flatness  
BW0.1dBSS  
BW0.1dBLS  
100  
G = +2, VOUT = 0.5Vpp  
G = +2, VOUT = 1Vpp  
100  
Time Domain Response  
tR, tF  
tS  
Rise and Fall Time  
VOUT = 1V step; (10% to 90%)  
VOUT = 1V step  
0.6  
10  
ns  
ns  
Settling Time to 0.1%  
Overshoot  
OS  
SR  
VOUT = 0.2V step  
2V step  
1
%
Slew Rate  
1350  
V/µs  
Distortion/Noise Response  
HD2  
HD3  
THD  
DG  
2nd Harmonic Distortion  
VOUT = 1Vpp, 5MHz  
-75  
-85  
74  
dBc  
dBc  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Differential Gain  
VOUT = 1Vpp, 5MHz  
VOUT = 1Vpp, 5MHz  
dB  
0.04  
0.01  
37  
%
NTSC (3.58MHz), AC-coupled, RL = 150Ω  
NTSC (3.58MHz), AC-coupled, RL = 150Ω  
VOUT = 1Vpp, 10MHz  
DP  
Differential Phase  
°
IP3  
SFDR  
en  
Third Order Intercept  
Spurious Free Dynamic Range  
Input Voltage Noise  
dBm  
dBc  
VOUT = 1Vpp, 5MHz  
61  
> 1MHz  
3.7  
20  
nV/√Hz  
pA/√Hz  
pA/√Hz  
> 1MHz, Inverting  
in  
Input Current Noise  
> 1MHz, Non-Inverting  
Channel-to-channel 5MHz, VOUT = 2Vpp  
30  
XTALK  
Crosstalk  
60  
dB  
DC Performance  
VIO  
dVIO  
Ibn  
Input Offset Voltage  
Average Drift  
0
1.6  
3
mV  
µV/°C  
µA  
Input Bias Current - Non-Inverting  
Average Drift  
dIbn  
Ibi  
7
nA/°C  
µA  
Input Bias Current - Inverting  
Average Drift  
6
dIbi  
PSRR  
IS  
20  
58  
11  
nA/°C  
dB  
Power Supply Rejection Ratio  
Supply Current  
DC  
per channel  
mA  
Disable Characteristics - CLC3605 only  
TON  
Turn On Time  
Turn Off Time  
Off Isolation  
23  
350  
75  
ns  
ns  
dB  
TOFF  
OFFIOS  
5MHz, VOUT = 2Vpp  
VOFF  
Power Down Input Voltage  
DIS pin, disabled if pin is pulled above VOFF  
Disabled if DIS > 1.5V  
V
DIS pin, enabled if pin is grounded, left open  
or pulled below VON  
VON  
Enable Input Voltage  
Enabled if DIS < 0.5V  
V
ISD  
Disable Supply Current  
DIS pin is pulled to VS  
0.09  
mA  
Input Characteristics  
Non-inverting  
Inverting  
150  
70  
kΩ  
Ω
RIN  
CIN  
Input Resistance  
Input Capacitance  
1.0  
pF  
1.5 to  
3.5  
CMIR  
Common Mode Input Range  
V
CMRR  
Common Mode Rejection Ratio  
DC  
50  
dB  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
4
Data Sheet  
Electrical Characteristics at +5V continued  
T = 25°C, V = +5V, R = R =330Ω, R = 150Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
g
L
S
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Output Characteristics  
Closed Loop, DC  
0.1  
Ω
V
RO  
Output Resistance  
1.5 to  
3.5  
VOUT  
IOUT  
Output Voltage Swing  
Output Current  
RL = 150Ω  
±120  
mA  
nꢀꢅꢄꢈ:  
1. 100% tested at 25°C  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
5
Data Sheet  
Electrical Characteristics at ±5V  
T = 25°C, V = ±5V, R = R =330Ω, R = 150Ω to GND, G = 2; unless otherwise noted.  
A
s
f
g
L
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Frequency Domain Response  
UGBW  
Unity Gain Bandwidth  
-3dB Bandwidth  
G = +1, VOUT = 0.5Vpp, Rf = 499Ω  
G = +2, VOUT = 0.5Vpp  
G = +2, VOUT = 2Vpp  
1500  
1200  
700  
MHz  
MHz  
MHz  
MHz  
MHz  
BWSS  
BWLS  
Large Signal Bandwidth  
0.1dB Gain Flatness  
0.1dB Gain Flatness  
BW0.1dBSS  
BW0.1dBLS  
120  
G = +2, VOUT = 0.5Vpp  
G = +2, VOUT = 2Vpp  
120  
Time Domain Response  
tR, tF  
tS  
Rise and Fall Time  
VOUT = 2V step; (10% to 90%)  
VOUT = 2V step  
0.65  
13  
ns  
ns  
Settling Time to 0.1%  
Overshoot  
OS  
SR  
VOUT = 0.2V step  
2V step  
1
%
Slew Rate  
2500  
V/µs  
Distortion/Noise Response  
HD2  
HD3  
THD  
DG  
2nd Harmonic Distortion  
VOUT = 2Vpp, 5MHz  
-73  
-85  
72  
dBc  
dBc  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Differential Gain  
VOUT = 2Vpp, 5MHz  
VOUT = 2Vpp, 5MHz  
dB  
0.01  
0.01  
42  
%
NTSC (3.58MHz), AC-coupled, RL = 150Ω  
NTSC (3.58MHz), AC-coupled, RL = 150Ω  
VOUT = 2Vpp, 10MHz  
DP  
Differential Phase  
°
IP3  
SFDR  
en  
Third Order Intercept  
Spurious Free Dynamic Range  
Input Voltage Noise  
dBm  
dBc  
VOUT = 1Vpp, 5MHz  
73  
> 1MHz  
3.7  
20  
nV/√Hz  
pA/√Hz  
pA/√Hz  
> 1MHz, Inverting  
in  
Input Current Noise  
> 1MHz, Non-Inverting  
Channel-to-channel 5MHz  
30  
XTALK  
Crosstalk  
60  
dB  
DC Performance  
VIO  
dVIO  
Ibn  
Input Offset Voltage (1)  
-10  
-40  
-35  
40  
0
1.6  
19  
7
10  
40  
35  
mV  
µV/°C  
µA  
Average Drift  
Input Bias Current - Non-Inverting (1)  
Average Drift  
dIbn  
Ibi  
nA/°C  
µA  
Input Bias Current - Inverting (1)  
Average Drift  
6
dIbi  
PSRR  
IS  
20  
60  
12  
nA/°C  
dB  
Power Supply Rejection Ratio (1)  
Supply Current (1)  
DC  
per channel  
18  
mA  
Disable Characteristics - CLC3605 only  
TON  
Turn On Time  
Turn Off Time  
Off Isolation  
35  
410  
75  
ns  
ns  
dB  
TOFF  
OFFIOS  
5MHz, VOUT = 2Vpp  
VOFF  
Power Down Input Voltage  
DIS pin, disabled if pin is pulled above VOFF  
Disabled if DIS > 3V  
V
DIS pin, enabled if pin is grounded, left open  
or pulled below VON  
VON  
Enable Input Voltage  
Enabled if DIS < 1V  
V
ISD  
Disable Supply Current (1)  
per channel, DIS pin is pulled to VS  
0.1  
0.3  
mA  
Input Characteristics  
Non-inverting  
Inverting  
150  
70  
kΩ  
Ω
RIN  
CIN  
Input Resistance  
Input Capacitance  
1.0  
pF  
CMIR  
Common Mode Input Range  
±4.0  
V
CMRR  
Common Mode Rejection Ratio (1)  
DC  
40  
55  
dB  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
6
Data Sheet  
Electrical Characteristics at ±5V continued  
T = 25°C, V = ±5V, R = R =330Ω, R = 150Ω to GND, G = 2; unless otherwise noted.  
A
s
f
g
L
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Output Characteristics  
Closed Loop, DC  
0.1  
Ω
V
RO  
Output Resistance  
VOUT  
IOUT  
Output Voltage Swing  
Output Current  
RL = 150Ω (1)  
±3.0  
±3.8  
±280  
mA  
nꢀꢅꢄꢈ:  
1. 100% tested at 25°C  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
7
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = ±5V, R = R =330Ω, R = 150Ω to GND, G = 2; unless otherwise noted.  
A
s
f
g
L
Non-Inverting Frequency Response  
Inverting Frequency Response  
1
0
G = 1  
Rf = 499Ω  
G = -1  
G = -2  
3
G = 1  
Rf = 750Ω  
-1  
-2  
-3  
-4  
-5  
0
-3  
-6  
-9  
G = -5  
G = 2  
G = 5  
G = -10  
G = 1 0  
-6  
VOUT = 0.5Vpp  
VOUT = 0.5Vpp  
-7  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency Response vs. C  
Frequency Response vs. R  
L
L
1
0
5
4
3
CL = 1000pF  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
Rs = 3.3Ω  
2
CL = 500pF  
Rs = 5Ω  
1
0
CL = 100pF  
Rs = 10Ω  
-1  
-2  
-3  
-4  
RL = 100Ω  
CL = 50pF  
Rs = 15Ω  
RL = 50Ω  
CL = 20pF  
Rs = 20Ω  
VOUT = 0.5Vpp  
-5  
RL = 25Ω  
VOUT = 0.5Vpp  
-6  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Frequency Response vs. V  
Frequency Response vs. Temperature  
OUT  
1
0
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
VOUT = 4Vpp  
-1  
+ 25degC  
- 40degC  
+ 85degC  
-2  
-3  
-4  
VOUT = 2Vpp  
VOUT = 1Vpp  
-5  
VOUT = 0.2Vpp  
-6  
-7  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
10000  
Frequency (MHz)  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
8
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = ±5V, R = R =330Ω, R = 150Ω to GND, G = 2; unless otherwise noted.  
A
s
f
g
L
Non-Inverting Frequency Response at V = 5V  
Inverting Frequency Response at V = 5V  
S
S
1
0
G = 1  
Rf = 499Ω  
G = -1  
G = -2  
3
G = 1  
Rf = 750Ω  
-1  
0
G = -5  
-2  
G = 2  
-3  
-4  
-5  
-6  
-7  
G = -10  
-3  
G = 5  
G = 1 0  
-6  
VOUT = 0.5Vpp  
VOUT = 0.5Vpp  
-9  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Frequency Response vs. C at V = 5V  
Frequency Response vs. R at V = 5V  
L
S
L
S
1
0
3
2
CL = 1000pF  
Rs = 3.3Ω  
1
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
CL = 500pF  
Rs = 5Ω  
-1  
-2  
-3  
-4  
-5  
-6  
RL = 100Ω  
CL = 100pF  
Rs = 10Ω  
RL = 50Ω  
CL = 50pF  
Rs = 15Ω  
RL = 25Ω  
CL = 20pF  
Rs = 20Ω  
VOUT = 0.5Vpp  
VOUT = 0.5Vpp  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Frequency Response vs. V  
at V = 5V  
Frequency Response vs. Temperature at V = 5V  
OUT  
S
S
1
0
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
VOUT = 3Vpp  
-1  
-2  
+ 25degC  
VOUT = 2Vpp  
-3  
- 40degC  
-4  
VOUT = 1Vpp  
+ 85degC  
-5  
VOUT = 0.2Vpp  
-6  
-7  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
10000  
Frequency (MHz)  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
9
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = R =330Ω, R = 150Ω to GND, G = 2; unless otherwise noted.  
A
s
f
g
L
Gain Flatness  
Gain Flatness at V = 5V  
S
0.1  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
0
-0.1  
-0.2  
-0.3  
VOUT = 2Vpp  
RL = 150Ω  
Rf = 330Ω  
VOUT = 2Vpp  
RL = 150Ω  
Rf = 330Ω  
-0.4  
-0.5  
-0.5  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
-3dB Bandwidth vs. V  
-3dB Bandwidth vs. V  
at V = 5V  
OUT S  
OUT  
1800  
1600  
1400  
1200  
1000  
800  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
600  
400  
200  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOUT (VPP  
)
VOUT (VPP)  
Closed Loop Output Impedance vs. Frequency  
Input Voltage Noise  
10  
25  
V
= ±5.0V  
S
20  
15  
10  
5
1
0.1  
0.01  
0
10K  
100K  
1M  
10M  
100M  
0.0001 0.001  
0.01  
0.1  
1
10  
Frequency (Hz)  
Frequency (MHz)  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = R =330Ω, R = 150Ω to GND, G = 2; unless otherwise noted.  
A
s
f
g
L
2nd Harmonic Distortion vs. R  
3rd Harmonic Distortion vs. R  
L
L
-55  
-60  
-65  
-70  
-65  
RL = 150Ω  
-75  
-80  
RL = 150Ω  
-70  
-75  
-80  
-85  
-90  
-85  
-90  
RL = 1kΩ  
-95  
RL = 1kΩ  
-95  
VOUT = 2Vpp  
VOUT = 2Vpp  
-100  
-100  
0
5
10  
Frequency (MHz)  
15  
20  
0
5
10  
Frequency (MHz)  
15  
20  
2nd Harmonic Distortion vs. V  
3rd Harmonic Distortion vs. V  
OUT  
OUT  
-60  
-65  
-70  
-75  
-80  
-70  
10MHz  
-75  
-80  
10MHz  
5MHz  
1MHz  
-85  
-90  
5MHz  
-85  
-90  
1MHz  
-95  
-95  
RL = 150Ω  
0.5 0.75  
RL = 150Ω  
0.5 0.75  
-100  
-100  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp)  
CMRR vs. Frequency  
PSRR vs. Frequency  
-25  
0
V
= ±5.0V  
S
-30  
-35  
-40  
-45  
-50  
-55  
-10  
-20  
-30  
-40  
-50  
-60  
10k  
100k  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = R =330Ω, R = 150Ω to GND, G = 2; unless otherwise noted.  
A
s
f
g
L
Small Signal Pulse Response  
Small Signal Pulse Response at V = 5V  
S
0.125  
0.1  
2.625  
2.6  
0.075  
0.05  
2.575  
2.55  
2.525  
2.5  
0.025  
0
-0.025  
-0.05  
-0.075  
-0.1  
2.475  
2.45  
2.425  
2.4  
-0.125  
2.375  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
T im e ( n s )  
T im e ( n s )  
Large Signal Pulse Response  
Large Signal Pulse Response at V = 5V  
S
2.5  
2
4
3.5  
3
1.5  
1
0.5  
0
2.5  
2
-0.5  
-1  
-1.5  
-2  
1.5  
1
-2.5  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
T im e ( n s )  
T im e ( n s )  
Differential Gain & Phase AC Coupled Output  
Differential Gain & Phase DC Coupled Output  
0.01  
0.03  
0.005  
0.02  
0.01  
0
DP  
DG  
DG  
0
-0.005  
-0.01  
DP  
-0.01  
-0.02  
-0.03  
-0.015  
RL = 150Ω  
AC coupled  
RL = 150Ω  
DC coupled  
-0.02  
-0 .7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0 .7  
-0 .7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0 .7  
I n p u t Vo l t a g e ( V )  
I n p u t Vo l t a g e ( V )  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = R =330Ω, R = 150Ω to GND, G = 2; unless otherwise noted.  
A
s
f
g
L
Differential Gain & Phase AC Coupled Output at V = ±2.5V  
Differential Gain & Phase DC Coupled at V = ±2.5V  
S
S
0.01  
0.02  
DP  
0.01  
0
DP  
0
-0.01  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.02  
DG  
DG  
-0.03  
-0.04  
RL = 150Ω  
AC coupled  
RL = 150Ω  
DC coupled  
-0.05  
-0.35  
-0.25  
-0.15  
-0.05  
0.05  
0.15  
0.25  
0.35  
-0.35  
-0.25  
-0.15  
-0.05  
0.05  
0.15  
0.25  
0.35  
I n p u t Vo l t a g e ( V )  
I n p u t Vo l t a g e ( V )  
Crosstalk vs. Frequency (CLC3605)  
Crosstalk vs. Frequency at V =5V (CLC3605)  
S
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
VOUT = 2Vpp  
VOUT = 1Vpp  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Off Isolation vs. Frequency  
Off Isolation vs. Frequency at V =5V  
S
-45  
-50  
-45  
-50  
-55  
-55  
-60  
-60  
-65  
-65  
-70  
-70  
-75  
-75  
-80  
-80  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
VOUT = 2Vpp  
VOUT = 1Vpp  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
Data Sheet  
General Information - Current Feedback  
Technology  
Advantages of CFB Technology  
V
OUT  
x1  
Z *I  
err  
o
I
err  
The CLC1605 Family of amplifiers utilize current feedback  
(CFB) technology to achieve superior performance. The  
primary advantage of CFB technology is higher slew rate  
performance when compared to voltage feedback (VFB)  
architecture. High slew rate contributes directly to better  
large signal pulse response, full power bandwidth, and  
distortion.  
R
R
g
f
R
L
V
IN  
VOUT  
Rf  
1
=
+
Eq. 2  
V
Rg  
Rf  
Zo(jω)  
IN  
1 +  
CFB also alleviates the traditional trade-off between  
closed loop gain and usable bandwidth that is seen with  
a VFB amplifier. With CFB, the bandwidth is primarily de-  
Figure 2. Inverting Gain Configuration with First Order  
Transfer Function  
termined by the value of the feedback resistor, R . By us-  
f
ing optimum feedback resistor values, the bandwidth of a  
CFB amplifier remains nearly constant with different gain  
configurations.  
CFB Technology - Theory of Operation  
Figure 1 shows a simple representation of a current feed-  
back amplifier that is configured in the traditional non-  
inverting gain configuration.  
When designing with CFB amplifiers always abide by these  
basic rules:  
• Use the recommended feedback resistor value  
Instead of having two high-impedance inputs similar to a  
VFB amplifier, the inputs of a CFB amplifier are connected  
across a unity gain buffer. This buffer has a high imped-  
ance input and a low impedance output. It can source or  
• Do not use reactive (capacitors, diodes, inductors, etc.)  
elements in the direct feedback path  
• Avoid stray or parasitic capacitance across feedback re-  
sistors  
sink current (I ) as needed to force the non-inverting  
err  
input to track the value of Vin. The CFB architecture em-  
ploys a high gain trans-impedance stage that senses Ierr  
• Follow general high-speed amplifier layout guidelines  
and drives the output to a value of (Z (jω) * I ) volts.  
o
err  
• Ensure proper precautions have been made for driving  
capacitive loads  
With the application of negative feedback, the amplifier  
will drive the output to a voltage in a manner which tries  
to drive Ierr to zero. In practice, primarily due to limita-  
tions on the value of Z (jω), Ierr remains a small but  
o
finite value.  
V
IN  
V
OUT  
x1  
Z *I  
o err  
I
err  
A closer look at the closed loop transfer function (Eq.1)  
shows the effect of the trans-impedance, Z (jω) on the  
o
R
f
gain of the circuit. At low frequencies where Z (jω) is very  
R
L
o
large with respect to R , the second term of the equation  
f
R
g
approaches unity, allowing R and R to set the gain. At  
f
g
higher frequencies, the value of Z (jω) will roll off, and  
o
the effect of the secondary term will begin to dominate.  
The -3dB small signal parameter specifies the frequency  
VOUT  
Rf  
1
=
1 +  
+
Eq. 1  
where the value Z (jω) equals the value of R causing the  
o
f
V
Rg  
Rf  
Zo(jω)  
IN  
1 +  
gain to drop by 0.707 of the value at DC.  
For more information regarding current feedback ampli-  
fiers, visit www.cadeka.com for detailed application notes,  
such as AN-3: The Ins and Outs of Current Feedback Am-  
plifiers.  
Figure 1. Non-Inverting Gain Configuration with First  
Order Transfer Function  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
14  
Data Sheet  
CFB amplifiers can be used in unity gain configurations.  
Do not use the traditional voltage follower circuit, where  
the output is tied directly to the inverting input. With a  
CFB amplifier, a feedback resistor of appropriate value  
must be used to prevent unstable behavior. Refer to fig-  
ure 5 and Table 1. Although this seems cumbersome, it  
does allow a degree of freedom to adjust the passband  
characteristics.  
Application Information  
Basic Operation  
Figures 3, 4, and 5 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
+Vs  
6.8μF  
Feedback Resistor Selection  
One of the key design considerations when using a CFB  
0.1μF  
amplifier is the selection of the feedback resistor, R . R is  
f
f
Input  
+
-
used in conjunction with R to set the gain in the tradi-  
Output  
g
tional non-inverting and inverting circuit configurations.  
Refer to figures 3 and 4. As discussed in the Current Feed-  
back Technology section, the value of the feedback resis-  
tor has a pronounced effect on the frequency response of  
the circuit.  
RL  
0.1μF  
6.8μF  
Rf  
Rg  
G = 1 + (Rf/Rg)  
-Vs  
Table 1, provides recommended R and associated R val-  
f
g
ues for various gain settings. These values produce the  
optimum frequency response, maximum bandwidth with  
minimum peaking. Adjust these values to optimize perfor-  
mance for a specific application. The typical performance  
characteristics section includes plots that illustrate how  
Figure 3. Typical Non-Inverting Gain Circuit  
+Vs  
6.8μF  
the bandwidth is directly affected by the value of R at  
various gain settings.  
f
R1  
0.1μF  
+
Output  
Rg  
Input  
-
RL  
±0.1dB BW  
(MHz)  
-3dB BW  
(MHz)  
Gain  
(V/V  
0.1μF  
R (Ω)  
f
R (Ω)  
g
Rf  
1
2
499  
330  
330  
330  
-
167  
120  
66  
1500  
1200  
385  
6.8μF  
G = - (Rf/Rg)  
-Vs  
330  
82.5  
33  
For optimum input offset  
voltage set R1 = Rf || Rg  
5
10  
38  
245  
Figure 4. Typical Inverting Gain Circuit  
Table 1: Recommended R vs. Gain  
f
+Vs  
6.8μF  
In general, lowering the value of R from the recom-  
f
mended value will extend the bandwidth at the expense  
of additional high frequency gain peaking. This will cause  
increased overshoot and ringing in the pulse response  
0.1μF  
Input  
+
Output  
characteristics. Reducing R too much will eventually  
-
f
RL  
cause oscillatory behavior.  
0.1μF  
Rf  
Increasing the value of R will lower the bandwidth. Low-  
f
6.8μF  
G = 1  
ering the bandwidth creates a flatter frequency response  
and improves 0.1dB bandwidth performance. This is im-  
portant in applications such as video. Further increase in  
-Vs  
Rf is required for CFB amplifiers  
R will cause premature gain rolloff and adversely affect  
f
Figure 5. Typical Unity Gain (G=1) Circuit  
gain flatness.  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
15  
Data Sheet  
Driving Capacitive Loads  
In general, avoid adding any additional parasitic capaci-  
tance at this node. In addition, stray capacitance across  
Increased phase delay at the output due to capacitive load-  
ing can cause ringing, peaking in the frequency response,  
and possible unstable behavior. Use a series resistance,  
the R resistor can induce peaking and high frequency  
f
ringing. Refer to the lꢂyꢀꢊꢅ cꢀꢆꢈꢇdꢄꢃꢂꢅꢇꢀꢆꢈ section for  
additional information regarding high speed layout tech-  
niques.  
R , between the amplifier and the load to help improve  
S
stability and settling performance. Refer to Figure 6.  
Overdrive Recovery  
An overdrive condition is defined as the point when either  
one of the inputs or the output exceed their specified volt-  
age range. Overdrive recovery is the time needed for the  
amplifier to return to its normal or linear operating point.  
The recovery time varies, based on whether the input or  
output is overdriven and by how much the range is ex-  
ceeded. The CLC1605 Family will typically recover in less  
than 10ns from an overdrive condition. Figure 7 shows the  
CLC1605 in an overdriven condition.  
Input  
+
-
Rs  
Output  
CL  
RL  
Rf  
Rg  
Figure 6. Addition of R for Driving  
S
Capacitive Loads  
Table 2 provides the recommended R for various capaci-  
S
tive loads. The recommended R values result in <=0.5dB  
peaking in the frequency response. The Frequency Re-  
S
1.5  
1
6
VIN = 2Vpp  
G = 5  
4
sponse vs. C plot, on page 5, illustrates the response of  
L
the CLC1605 Family.  
Input  
0.5  
0
2
Output  
C (pF)  
R (Ω)  
-3dB BW (MHz)  
L
S
0
20  
50  
20  
15  
10  
5
350  
235  
170  
75  
-0.5  
-1  
-2  
-4  
-6  
100  
500  
1000  
-1.5  
3.3  
52  
0
20  
40  
60  
80 100 120 140 160 180 200  
T im e ( n s )  
Figure 7. Overdrive Recovery  
Power Dissipation  
Table 1: Recommended R vs. C  
S
L
For a given load capacitance, adjust R to optimize the  
S
tradeoff between settling time and bandwidth. In general,  
Power dissipation should not be a factor when operating  
under the stated 1000 ohm load condition. However, ap-  
plications with low impedance, DC coupled loads should  
be analyzed to ensure that maximum allowed junction  
temperature is not exceeded. Guidelines listed below can  
be used to verify that the particular application will not  
cause the device to operate beyond it’s intended operat-  
ing range.  
reducing R will increase bandwidth at the expense of ad-  
S
ditional overshoot and ringing.  
Parasitic Capacitance on the Inverting Input  
Physical connections between components create unin-  
tentional or parasitic resistive, capacitive, and inductive  
elements.  
Parasitic capacitance at the inverting input can be espe-  
cially troublesome with high frequency amplifiers. A para-  
sitic capacitance on this node will be in parallel with the  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction tem-  
perature, the package thermal resistance value Theta  
JA  
gain setting resistor R . At high frequencies, its imped-  
g
(Ө ) is used along with the total die power dissipation.  
JA  
ance can begin to raise the system gain by making R  
appear smaller.  
g
T
= T + (Ө × P )  
Ambient JA D  
Junction  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
16  
Data Sheet  
2.5  
2
Where T  
is the temperature of the working environment.  
Ambient  
SOIC-16  
In order to determine P , the power dissipated in the load  
D
needs to be subtracted from the total power delivered by  
the supplies.  
1.5  
1
P = P  
- P  
load  
D
supply  
Supply power is calculated by the standard power equa-  
tion.  
0.5  
0
SOT23-5  
P
= V  
× I  
supply  
supply RMS supply  
-40  
-20  
0
20  
40  
60  
80  
V
= V - V  
S+ S-  
supply  
Ambient Temperature (°C)  
Power delivered to a purely resistive load is:  
Figure 8. Maximum Power Derating  
2
P
= ((V  
)
)/Rload  
eff  
load  
LOAD RMS  
The effective load resistor (Rload ) will need to include  
eff  
the effect of the feedback network. For instance,  
Better thermal ratings can be achieved by maximizing PC  
board metallization at the package pins. However, be care-  
ful of stray capacitance on the input pins.  
Rload in figure 3 would be calculated as:  
eff  
R || (R + R )  
L
f
g
In addition, increased airflow across the package can also  
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load  
impedance is needed to determine the dissipated power.  
help to reduce the effective Ө of the package.  
JA  
In the event the outputs are momentarily shorted to a low  
impedance path, internal circuitry and output metallization  
are set to limit and handle up to 65mA of output current.  
However, extended duration under these conditions may  
not guarantee that the maximum junction temperature  
(+150°C) is not exceeded.  
Here, P can be found from  
D
P = P  
+ P  
- P  
D
Quiescent  
Dynamic Load  
Quiescent power can be derived from the specified I val-  
S
ues along with known supply voltage, V  
. Load power  
Supply  
Layout Considerations  
can be calculated as above with the desired signal ampli-  
tudes using:  
General layout and supply bypassing play major roles in  
high frequency performance. CaDeKa has evaluation  
boards to use as a guide for high frequency layout and as  
aid in device testing and characterization. Follow the steps  
below as a basis for high frequency layout:  
(V  
)
= V  
/ √2  
LOAD RMS  
PEAK  
( I  
)
= ( V  
)
/ Rload  
LOAD RMS  
LOAD RMS eff  
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
• Include 6.8µF and 0.1µF ceramic capacitors for power  
supply decoupling  
P
= (V - V  
)
× ( I )  
LOAD RMS  
DYNAMIC  
S+  
LOAD RMS  
• Place the 6.8µF capacitor within 0.75 inches of the power pin  
• Place the 0.1µF capacitor within 0.1 inches of the power pin  
Assuming the load is referenced in the middle of the power  
rails or V /2.  
supply  
• Remove the ground plane under and around the part,  
especially near the input and output pins to reduce para-  
sitic capacitance  
Figure 8 shows the maximum safe power dissipation in  
the package vs. the ambient temperature for the available  
packages.  
• Minimize all trace lengths to reduce series inductances  
Refer to the evaluation board layouts below for more in-  
formation.  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
17  
Data Sheet  
Evaluation Board Information  
The following evaluation boards are available to aid in the  
testing and layout of these devices:  
Evaluation Board #  
CEB002  
CEB013  
Products  
CLC1605  
CLC3605  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in Fig-  
ures 9-14. These evaluation boards are built for dual- sup-  
ply operation. Follow these steps to use the board in a  
single-supply application:  
Figure 10. CEB002 Top View  
1. Short -Vs to ground.  
2. Use C3 and C4, if the -V pin of the amplifier is not  
S
directly connected to the ground plane.  
Figure 11. CEB002 Bottom View  
Figure 9. CEB002 Schematic  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
18  
Data Sheet  
DIS1  
IN1  
16  
2
1
15  
12  
10  
RIN1  
RIN2  
RIN3  
RF1  
ROUT1  
ROUT2  
ROUT3  
OUT1  
OUT2  
OUT3  
RG1  
RG2  
RG3  
DIS2  
IN2  
13  
5
4
RF2  
11,14  
3,6  
DIS3  
IN3  
9
7
8
RF3  
Figure 14. CEB013 Bottom View  
Board Mounting Holes  
Figure 12. CEB013 Schematic  
Figure 13. CEB013 Top View  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
19  
Data Sheet  
Mechanical Dimensions  
SOT23-5 Package  
SOIC-16 Package  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
caDeKa Hꢄꢂdqꢊꢂꢃꢅꢄꢃꢈ Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
CADEKA, the CADEKA logo design, COMLINEAR, the COMLINEAR logo design, and ARCTIC are trademarks or registered trademarks of  
CADEKA Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Amplify the Human Experience  
Copyright ©2007-2008 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

CLC1606

1.3GHz Current Feedback Amplifier
CADEKA

CLC1606ISO8

1.3GHz Current Feedback Amplifier
CADEKA

CLC1606ISO8X

1.3GHz Current Feedback Amplifier
CADEKA

CLC1606IST5X

1.3GHz Current Feedback Amplifier
CADEKA

CLC175

175 Watts CLC Series
XPPOWER

CLC175US12

AC-DC Power Supplies
XPPOWER

CLC175US24

AC-DC Power Supplies
XPPOWER

CLC175US28

175 Watts CLC Series
XPPOWER

CLC175US48

AC-DC Power Supplies
XPPOWER

CLC175_12

175 Watts CLC Series
XPPOWER

CLC200

Fast Settling, Wideband Operational Amplifiers
NSC

CLC2000

High Output Current Dual Amplifier
CADEKA