CLC1606ISO8X [CADEKA]

1.3GHz Current Feedback Amplifier; 1.3GHz的电流反馈放大器
CLC1606ISO8X
型号: CLC1606ISO8X
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

1.3GHz Current Feedback Amplifier
1.3GHz的电流反馈放大器

放大器
文件: 总18页 (文件大小:2386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Amplify the Human Experience  
Co m l i n e a r ® CLC1606  
1.3GHz Current Feedback Amplifier  
f e a t u r e s  
General Description  
nꢀ  
1.2GHz -3dB bandwidth at G=2  
The COMLINEAR CLC1606 is a high-performance, current feedback ampli-  
fier with superior bandwith and video specifications. The CLC1606 provides  
1.3GHz unity gain bandwidth, ±0.1dB gain flatness to 150MHz, and provides  
3,300V/μs slew rate exceeding the requirements of high-definition television  
(HDTV) and other multimedia applications. The COMLINEAR CLC1606 high-  
performance amplifier also provide ample output current to drive multiple  
video loads.  
nꢀ  
nꢀ  
3,300V/μs slew rate  
0.01%/0.01˚ differential gain/  
phase error  
nꢀ  
nꢀ  
nꢀ  
7.5mA supply current  
875MHz large signal bandwidth  
120mA output current (easily drives  
three video loads)  
nꢀ  
nꢀ  
nꢀ  
Fully specified at 5V and ±5V supplies  
CLC1606: Pb-free SOT23-5  
CLC1606: Pb-free SOIC-8  
The COMLINEAR CLC1606 is designed to operate from ±5V or +5V supplies.  
It consumes only 7.5mA of supply current. The combination of high-speed  
and excellent video performance make the CLC1606 well suited for use in  
many general purpose, high-speed applications including standard definition  
and high definition video. Data communications applications benefit from  
the CLC1606’s total harmonic distortion of -68dBc at 10MHz and fast settling  
time to 0.1%.  
a p p l i c a t i o n s  
nꢀ  
RGB video line drivers  
nꢀ  
High definition video driver  
nꢀ  
Video switchers and routers  
nꢀ  
ADC buffer  
nꢀ  
Active filters  
Typical Application - Driving Dual Video Loads  
nꢀ  
High-speed instrumentation  
nꢀ  
Wide dynamic range IF amp  
Ordering Information  
Part Number  
Package  
Pb-Free  
Yes  
RoHS Compliant  
Operating Temperature Range Packaging Method  
CLC1606IST5X  
CLC1606ISO8  
CLC1606ISO8X  
SOT23-5  
SOIC-8  
SOIC-8  
Yes  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Reel  
Rail  
Yes  
Yes  
Reel  
Moisture sensitivity level for all parts is MSL-1.  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
Data Sheet  
SOT23-5 Pin Assignments  
SOT23-5 Pin Configuration  
Pin No.  
Pin Name  
OUT  
Description  
1
2
3
4
Output  
OUT  
1
2
3
5
4
+V  
S
-V  
Negative supply  
Positive input  
Negative input  
S
-V  
S
+
-
+IN  
-IN  
-IN  
+IN  
5
+V  
Positive supply  
S
SOIC Pin Configuration  
SOIC Pin Assignments  
Pin No.  
Pin Name  
NC  
Description  
1
2
3
4
5
6
7
8
No connect  
-IN1  
Negative input, channel 1  
Positive input, channel 1  
Negative supply  
No connect  
1
8
7
NC  
+V  
NC  
+IN1  
2
3
4
-IN1  
S
-V  
S
NC  
6
5
OUT  
NC  
+IN1  
OUT  
Output  
-V  
S
+V  
Positive supply  
No connect  
S
NC  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
2
Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper de-  
vice function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
0
Max  
Unit  
Supply Voltage  
14  
V
V
Input Voltage Range  
Continuous Output Current  
-V -0.5V  
s
+V +0.5V  
s
120  
mA  
Reliability Information  
Parameter  
Min  
-65  
Typ  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
5-Lead SOT23  
150  
150  
260  
°C  
°C  
°C  
221  
100  
°C/W  
°C/W  
8-Lead SOIC  
Notes:  
Package thermal resistance (q ), JDEC standard, multi-layer test boards, still air.  
JA  
ESD Protection  
Product  
SOT23-5  
Human Body Model (HBM)  
2kV  
1kV  
Charged Device Model (CDM)  
Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Operating Temperature Range  
Supply Voltage Range  
-40  
4.5  
+85  
°C  
V
12  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
3
Data Sheet  
Electrical Characteristics at +5V  
T = 25°C, V = +5V, R = 270Ω, R = 150Ω to V /2, G = 2; unless otherwise noted.  
A
s
f
L
S
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Frequency Domain Response  
UGBW  
-3dB Bandwidth  
G = +1, Rf = 390Ω, VOUT = 0.5Vpp  
G = +2, VOUT = 0.5Vpp  
G = +2, VOUT = 1Vpp  
1000  
900  
800  
132  
140  
MHz  
MHz  
MHz  
MHz  
MHz  
BWSS  
-3dB Bandwidth  
BWLS  
Large Signal Bandwidth  
0.1dB Gain Flatness  
0.1dB Gain Flatness  
BW0.1dBSS  
BW0.1dBLS  
G = +2, VOUT = 0.5Vpp  
G = +2, VOUT = 1Vpp  
Time Domain Response  
tR, tF  
tS  
Rise and Fall Time  
VOUT = 1V step; (10% to 90%)  
VOUT = 1V step  
0.6  
10  
ns  
ns  
Settling Time to 0.1%  
Overshoot  
OS  
SR  
VOUT = 0.2V step  
1V step  
1
%
Slew Rate  
1500  
V/µs  
Distortion/Noise Response  
HD2  
HD3  
THD  
IP3  
DG  
2nd Harmonic Distortion  
1Vpp, 5MHz  
-74  
-70  
68  
dBc  
dBc  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Third-Order Intercept  
Differential Gain  
1Vpp, 5MHz  
1Vpp, 5MHz  
dB  
1Vpp, 10MHz  
36  
dBm  
%
0.01  
0.01  
3
NTSC (3.58MHz), AC-coupled, RL = 150Ω  
NTSC (3.58MHz), AC-coupled, RL = 150Ω  
> 1MHz  
DP  
Differential Phase  
°
en  
Input Voltage Noise  
nV/√Hz  
pA/√Hz  
pA/√Hz  
> 1MHz, Inverting  
> 1MHz, Non-inverting  
20  
ini  
Input Current Noise  
30  
DC Performance  
VIO  
dVIO  
Ibn  
Input Offset Voltage  
Average Drift  
0
mV  
µV/°C  
µA  
3.7  
Input Bias Current - Non-Inverting  
Average Drift  
±3.0  
100  
±6.0  
56  
dIbn  
Ibi  
nA/°C  
µA  
Input Bias Current - Inverting  
Average Drift  
dIbi  
PSRR  
IS  
nA/°C  
dB  
Power Supply Rejection Ratio  
Supply Current  
DC  
55  
6.5  
mA  
Input Characteristics  
Non-inverting  
Inverting  
150  
70  
kΩ  
Ω
RIN  
CIN  
Input Resistance  
Input Capacitance  
1.0  
pF  
CMIR  
Common Mode Input Range  
±1.5  
V
CMRR  
Common Mode Rejection Ratio  
DC  
50  
dB  
Output Characteristics  
Closed Loop, DC  
0.1  
Ω
V
RO  
Output Resistance  
VOUT  
IOUT  
Output Voltage Swing  
Output Current  
RL = 150Ω  
±1.5  
±120  
mA  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
4
Data Sheet  
Electrical Characteristics at ±5V  
T = 25°C, V = ±5V, R = 270Ω, R = 150Ω, G = 2; unless otherwise noted.  
A
s
f
L
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Frequency Domain Response  
UGBW  
-3dB Bandwidth  
G = +1, Rf = 390Ω, VOUT = 0.5Vpp  
G = +2, VOUT = 0.5Vpp  
G = +2, VOUT = 2Vpp  
1300  
1200  
875  
MHz  
MHz  
MHz  
MHz  
MHz  
BWSS  
-3dB Bandwidth  
BWLS  
Large Signal Bandwidth  
0.1dB Gain Flatness  
0.1dB Gain Flatness  
BW0.1dBSS  
BW0.1dBLS  
150  
G = +2, VOUT = 0.5Vpp  
G = +2, VOUT = 2Vpp  
150  
Time Domain Response  
tR, tF  
tS  
Rise and Fall Time  
VOUT = 2V step; (10% to 90%)  
VOUT = 2V step  
0.5  
13  
ns  
ns  
Settling Time to 0.1%  
Overshoot  
OS  
SR  
VOUT = 0.2V step  
2V step  
1
%
Slew Rate  
3300  
V/µs  
Distortion/Noise Response  
HD2  
HD3  
THD  
IP3  
DG  
2nd Harmonic Distortion  
2Vpp, 5MHz  
-71  
-71  
-68  
39  
dBc  
dBc  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Third-Order Intercept  
Differential Gain  
2Vpp, 5MHz  
2Vpp, 5MHz  
dB  
2Vpp, 10MHz  
dBm  
%
0.01  
0.01  
3
NTSC (3.58MHz), AC-coupled, RL = 150Ω  
NTSC (3.58MHz), AC-coupled, RL = 150Ω  
> 1MHz  
DP  
Differential Phase  
°
en  
Input Voltage Noise  
nV/√Hz  
pA/√Hz  
pA/√Hz  
> 1MHz, Inverting  
> 1MHz, Non-inverting  
20  
ini  
Input Current Noise - Inverting  
30  
DC Performance  
VIO  
dVIO  
Ibn  
Input Offset Voltage(1)  
-10  
-45  
-50  
40  
0.5  
3.7  
10  
45  
50  
mV  
µV/°C  
µA  
Average Drift  
Input Bias Current - Non-Inverting (1)  
Average Drift  
±3.0  
100  
±7.0  
56  
dIbn  
Ibi  
nA/°C  
µA  
Input Bias Current - Inverting (1)  
Average Drift  
dIbi  
PSRR  
IS  
nA/°C  
dB  
Power Supply Rejection Ratio (1)  
Supply Current (1)  
DC  
50  
7.5  
9.5  
mA  
Input Characteristics  
Non-inverting  
Inverting  
150  
170  
1.0  
kΩ  
k
RIN  
CIN  
Input Resistance  
Input Capacitance  
pF  
CMIR  
Common Mode Input Range  
±4.0  
V
CMRR  
Common Mode Rejection Ratio (1)  
DC  
40  
50  
dB  
Output Characteristics  
Closed Loop, DC  
0.1  
Ω
V
RO  
Output Resistance  
VOUT  
IOUT  
Output Voltage Swing  
Output Current  
RL = 150Ω (1)  
±3.0  
±3.7  
±280  
mA  
nꢀꢅꢄꢈ:  
1. 100% tested at 25°C  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
5
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = ±5V, R = 270Ω, R = 150Ω, G = 2; unless otherwise noted.  
A
s
f
L
Non-Inverting Frequency Response  
Inverting Frequency Response  
3
G = 1  
3
Rf = 390Ω  
G = -1  
G = 1  
Rf = 499Ω  
0
-3  
-6  
0
-3  
-6  
-9  
G = -2  
G = -5  
G = 2  
G = 5  
G = -10  
G = 1 0  
VOUT = 0.5Vpp  
VOUT = 0.5Vpp  
-9  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Frequency Response vs. C  
Frequency Response vs. R  
L
L
1
0
6
5
4
CL = 1000pF  
s = 3 . 3 Ω  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
3
R
2
CL = 500pF  
R
s = 5 Ω  
1
0
CL = 100pF  
R
s = 1 0 Ω  
-1  
-2  
-3  
-4  
RL = 100Ω  
RL = 50Ω  
CL = 50pF  
s = 1 5 Ω  
R
CL = 20pF  
VOUT = 0.5Vpp  
RL = 25Ω  
-5  
VOUT = 0.5Vpp  
R
s = 2 0 Ω  
-6  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Frequency Response vs. V  
Frequency Response vs. Temperature  
OUT  
3
2
2
1
1
0
0
-1  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
+ 25degC  
VOUT = 1Vpp  
-2  
- 40degC  
-3  
-4  
-5  
-6  
-7  
VOUT = 2Vpp  
VOUT = 4Vpp  
+ 85degC  
VOUT = 0.2Vpp  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
10000  
Frequency (MHz)  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
6
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = ±5V, R = 270Ω, R = 150Ω, G = 2; unless otherwise noted.  
A
s
f
L
Non-Inverting Frequency Response at V = 5V  
Inverting Frequency Response at V = 5V  
S
S
2
3
G = 1  
Rf = 390Ω  
1
0
G = -1  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
G = 2  
G = -2  
G = 5  
G = -5  
-3  
G = -10  
G = 1 0  
-6  
VOUT = 0.5Vpp  
VOUT = 0.5Vpp  
-9  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency Response vs. C at V = 5V  
Frequency Response vs. R at V = 5V  
L
S
L
S
1
0
4
3
2
CL = 1000pF  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
R
s = 3 . 3 Ω  
1
CL = 500pF  
R
s = 5 Ω  
0
-1  
-2  
-3  
-4  
-5  
-6  
CL = 100pF  
RL = 100Ω  
R
s = 1 0 Ω  
RL = 50Ω  
RL = 25Ω  
CL = 50pF  
s = 1 5 Ω  
R
CL = 20pF  
VOUT = 0.5Vpp  
VOUT = 0.5Vpp  
R
s = 2 0 Ω  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Frequency Response vs. V  
at V = 5V  
Frequency Response vs. Temperature at V = 5V  
OUT  
S
S
2
1
2
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-1  
VOUT = 1Vpp  
-2  
+ 25degC  
-3  
VOUT = 2Vpp  
VOUT = 3Vpp  
-4  
-5  
-6  
-7  
- 40degC  
+ 85degC  
VOUT = 0.2Vpp  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
10000  
Frequency (MHz)  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
7
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 270Ω, R = 150Ω, G = 2; unless otherwise noted.  
A
s
f
L
Gain Flatness  
Gain Flatness at V = 5V  
S
1 .7  
1.5  
1.3  
1.1  
0.9  
0 .7  
0.8  
0 .7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.3  
0.1  
-0.1  
-0.3  
-0.1  
-0.2  
VOUT = 2Vpp  
RL = 150Ω  
Rf = 270Ω  
VOUT = 2Vpp  
RL = 150Ω  
Rf = 270Ω  
-0.3  
-0.4  
-0.5  
-0.5  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
-3dB Bandwidth vs. V  
at G=10  
-3dB Bandwidth vs. V  
at G=10, V = 5V  
OUT S  
OUT  
600  
450  
550  
500  
450  
400  
400  
350  
300  
250  
350  
G = 10  
300  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOUT (VPP  
)
VOUT (VPP)  
Closed Loop Output Impedance vs. Frequency  
Input Voltage Noise  
2.0  
20  
V
= ±5.0V  
S
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
15  
10  
5
0
10K  
100K  
1M  
10M  
100M  
0.0001 0.001  
0.01  
0.1  
1
10  
Frequency (Hz)  
Frequency (MHz)  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
8
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 270Ω, R = 150Ω, G = 2; unless otherwise noted.  
A
s
f
L
2nd Harmonic Distortion vs. R  
3rd Harmonic Distortion vs. R  
L
L
-55  
-60  
-55  
-60  
RL = 150Ω  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-65  
RL = 150Ω  
-70  
-75  
-80  
-85  
-90  
RL = 499Ω  
RL = 499Ω  
-95  
VOUT = 2Vpp  
VOUT = 2Vpp  
-100  
0
5
10  
Frequency (MHz)  
15  
20  
0
5
10  
Frequency (MHz)  
15  
20  
2nd Harmonic Distortion vs. V  
3rd Harmonic Distortion vs. V  
OUT  
OUT  
-60  
-60  
-65  
-70  
-75  
-80  
-85  
-65  
-70  
-75  
10MHz  
10MHz  
5MHz  
5MHz  
-80  
-85  
-90  
1MHz  
-90  
-95  
1MHz  
RL = 150Ω  
RL = 150Ω  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp)  
CMRR vs. Frequency  
PSRR vs. Frequency  
0
0
V
= ±5.0V  
S
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
10k  
100k  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
9
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 270Ω, R = 150Ω, G = 2; unless otherwise noted.  
A
s
f
L
Small Signal Pulse Response  
Small Signal Pulse Response at V = 5V  
S
0.125  
0.1  
2.625  
2.6  
0.075  
0.05  
2.575  
2.55  
2.525  
2.5  
0.025  
0
-0.025  
-0.05  
-0.075  
-0.1  
2.475  
2.45  
2.425  
2.4  
-0.125  
2.375  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
T im e ( n s )  
T im e ( n s )  
Large Signal Pulse Response  
Large Signal Pulse Response at V = 5V  
S
3
4
3.5  
3
2
1
0
2.5  
2
-1  
-2  
-3  
1.5  
1
0
20  
40  
60  
80  
100  
T im e ( n s )  
120  
140  
160  
180  
200  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
T im e ( n s )  
Differential Gain & Phase AC Coupled Output  
Differential Gain & Phase DC Coupled Output  
0.02  
0.015  
0.01  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
DP  
0.005  
DG  
0
DP  
DG  
-0.005  
-0.01  
RL = 150Ω  
AC coupled  
-0.01  
-0.02  
RL = 150Ω  
DC coupled  
-0.015  
-0 .7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0 .7  
-0 .7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0 .7  
I n p u t Vo l t a g e ( V )  
I n p u t Vo l t a g e ( V )  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 270Ω, R = 150Ω, G = 2; unless otherwise noted.  
A
s
f
L
Differential Gain & Phase AC Coupled Output at V = ±2.5V  
Differential Gain & Phase DC Coupled at V = ±2.5V  
S
S
0.01  
0.05  
0.04  
0.005  
DP  
0.03  
0.02  
0.01  
0
DP  
0
-0.005  
-0.01  
-0.015  
-0.02  
DG  
-0.01  
-0.02  
-0.03  
-0.04  
DG  
-0.025  
-0.03  
RL = 150Ω  
AC coupled  
RL = 150Ω  
DC coupled  
-0.35  
-0.25  
-0.15  
-0.05  
0.05  
0.15  
0.25  
0.35  
-0.35  
-0.25  
-0.15  
-0.05  
0.05  
0.15  
0.25  
0.35  
I n p u t Vo l t a g e ( V )  
I n p u t Vo l t a g e ( V )  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
Data Sheet  
General Information - Current Feedback  
Technology  
Advantages of CFB Technology  
V
OUT  
x1  
Z *I  
err  
o
I
err  
The CLC1606 Family of amplifiers utilize current feedback  
(CFB) technology to achieve superior performance. The  
primary advantage of CFB technology is higher slew rate  
performance when compared to voltage feedback (VFB)  
architecture. High slew rate contributes directly to better  
large signal pulse response, full power bandwidth, and  
distortion.  
R
R
g
f
R
L
V
IN  
VOUT  
Rf  
1
=
+
Eq. 2  
V
Rg  
Rf  
Zo(jω)  
IN  
1 +  
CFB also alleviates the traditional trade-off between  
closed loop gain and usable bandwidth that is seen with  
a VFB amplifier. With CFB, the bandwidth is primarily de-  
Figure 2. Inverting Gain Configuration with First Order  
Transfer Function  
termined by the value of the feedback resistor, R . By us-  
f
ing optimum feedback resistor values, the bandwidth of a  
CFB amplifier remains nearly constant with different gain  
configurations.  
CFB Technology - Theory of Operation  
Figure 1 shows a simple representation of a current feed-  
back amplifier that is configured in the traditional non-  
inverting gain configuration.  
When designing with CFB amplifiers always abide by these  
basic rules:  
• Use the recommended feedback resistor value  
Instead of having two high-impedance inputs similar to a  
VFB amplifier, the inputs of a CFB amplifier are connected  
across a unity gain buffer. This buffer has a high imped-  
ance input and a low impedance output. It can source or  
• Do not use reactive (capacitors, diodes, inductors, etc.)  
elements in the direct feedback path  
• Avoid stray or parasitic capacitance across feedback re-  
sistors  
sink current (I ) as needed to force the non-inverting  
err  
input to track the value of Vin. The CFB architecture em-  
ploys a high gain trans-impedance stage that senses Ierr  
• Follow general high-speed amplifier layout guidelines  
and drives the output to a value of (Z (jω) * I ) volts.  
o
err  
• Ensure proper precautions have been made for driving  
capacitive loads  
With the application of negative feedback, the amplifier  
will drive the output to a voltage in a manner which tries  
to drive Ierr to zero. In practice, primarily due to limita-  
tions on the value of Z (jω), Ierr remains a small but  
o
finite value.  
V
IN  
V
OUT  
x1  
Z *I  
o err  
I
err  
A closer look at the closed loop transfer function (Eq.1)  
shows the effect of the trans-impedance, Z (jω) on the  
o
R
f
gain of the circuit. At low frequencies where Z (jω) is very  
R
L
o
large with respect to R , the second term of the equation  
f
R
g
approaches unity, allowing R and R to set the gain. At  
f
g
higher frequencies, the value of Z (jω) will roll off, and  
o
the effect of the secondary term will begin to dominate.  
The -3dB small signal parameter specifies the frequency  
VOUT  
Rf  
1
=
1 +  
+
Eq. 1  
where the value Z (jω) equals the value of R causing the  
o
f
V
Rg  
Rf  
Zo(jω)  
IN  
1 +  
gain to drop by 0.707 of the value at DC.  
For more information regarding current feedback ampli-  
fiers, visit www.cadeka.com for detailed application notes,  
such as AN-3: The Ins and Outs of Current Feedback Am-  
plifiers.  
Figure 1. Non-Inverting Gain Configuration with First  
Order Transfer Function  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
Data Sheet  
CFB amplifiers can be used in unity gain configurations.  
Do not use the traditional voltage follower circuit, where  
the output is tied directly to the inverting input. With a  
CFB amplifier, a feedback resistor of appropriate value  
must be used to prevent unstable behavior. Refer to fig-  
ure 5 and Table 1. Although this seems cumbersome, it  
does allow a degree of freedom to adjust the passband  
characteristics.  
Application Information  
Basic Operation  
Figures 3, 4, and 5 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
+Vs  
6.8μF  
Feedback Resistor Selection  
One of the key design considerations when using a CFB  
0.1μF  
amplifier is the selection of the feedback resistor, R . R is  
f
f
Input  
+
-
used in conjunction with R to set the gain in the tradi-  
Output  
g
tional non-inverting and inverting circuit configurations.  
Refer to figures 3 and 4. As discussed in the Current Feed-  
back Technology section, the value of the feedback resis-  
tor has a pronounced effect on the frequency response of  
the circuit.  
RL  
0.1μF  
6.8μF  
Rf  
Rg  
G = 1 + (Rf/Rg)  
-Vs  
Table 1, provides recommended R and associated R val-  
f
g
ues for various gain settings. These values produce the  
optimum frequency response, maximum bandwidth with  
minimum peaking. Adjust these values to optimize perfor-  
mance for a specific application. The typical performance  
characteristics section includes plots that illustrate how  
Figure 3. Typical Non-Inverting Gain Circuit  
+Vs  
6.8μF  
the bandwidth is directly affected by the value of R at  
various gain settings.  
R1  
f
0.1μF  
+
Output  
Rg  
Input  
-
RL  
0.1μF  
Rf  
±0.1dB BW  
(MHz)  
-3dB BW  
(MHz)  
Gain  
(V/V  
R (Ω)  
R (Ω)  
f
g
6.8μF  
G = - (Rf/Rg)  
-Vs  
1
2
5
390  
270  
270  
-
136  
150  
115  
1300  
1200  
750  
For optimum input offset  
voltage set R1 = Rf || Rg  
270  
67.5  
Figure 4. Typical Inverting Gain Circuit  
Table 1: Recommended R vs. Gain  
f
+Vs  
6.8μF  
In general, lowering the value of R from the recom-  
f
mended value will extend the bandwidth at the expense  
of additional high frequency gain peaking. This will cause  
increased overshoot and ringing in the pulse response  
0.1μF  
Input  
+
Output  
characteristics. Reducing R too much will eventually  
-
f
RL  
cause oscillatory behavior.  
0.1μF  
Rf  
Increasing the value of R will lower the bandwidth. Low-  
f
6.8μF  
G = 1  
ering the bandwidth creates a flatter frequency response  
and improves 0.1dB bandwidth performance. This is im-  
portant in applications such as video. Further increase in  
-Vs  
Rf is required for CFB amplifiers  
R will cause premature gain rolloff and adversely affect  
f
Figure 5. Typical Unity Gain (G=1) Circuit  
gain flatness.  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
Data Sheet  
Driving Capacitive Loads  
ringing. Refer to the lꢂyꢀꢊꢅ cꢀꢆꢈꢇdꢄꢃꢂꢅꢇꢀꢆꢈ section for  
additional information regarding high speed layout tech-  
niques.  
Increased phase delay at the output due to capacitive load-  
ing can cause ringing, peaking in the frequency response,  
and possible unstable behavior. Use a series resistance,  
Overdrive Recovery  
R , between the amplifier and the load to help improve  
stability and settling performance. Refer to Figure 6.  
S
An overdrive condition is defined as the point when either  
one of the inputs or the output exceed their specified volt-  
age range. Overdrive recovery is the time needed for the  
amplifier to return to its normal or linear operating point.  
The recovery time varies, based on whether the input or  
output is overdriven and by how much the range is ex-  
ceeded. The CLC1606 Family will typically recover in less  
than 10ns from an overdrive condition. Figure 7 shows the  
CLC1606 in an overdriven condition.  
Input  
+
-
Rs  
Output  
CL  
RL  
Rf  
Rg  
Figure 6. Addition of R for Driving  
S
1.5  
1
6
Capacitive Loads  
VIN = 2Vpp  
G = 5  
4
Table 2 provides the recommended R for various capaci-  
S
Input  
tive loads. The recommended R values result in <=0.5dB  
S
Output  
0.5  
0
2
peaking in the frequency response. The Frequency Re-  
sponse vs. C plot, on page 5, illustrates the response of  
L
0
the CLC1606 Family.  
-0.5  
-1  
-2  
-4  
-6  
C (pF)  
L
R (Ω)  
-3dB BW (MHz)  
S
20  
20  
10  
375  
180  
58  
-1.5  
100  
0
20  
40  
60  
80 100 120 140 160 180 200  
1000  
3.3  
T im e ( n s )  
Figure 7. Overdrive Recovery  
Power Dissipation  
Table 1: Recommended R vs. C  
S
L
For a given load capacitance, adjust R to optimize the  
tradeoff between settling time and bandwidth. In general,  
S
Power dissipation should not be a factor when operating  
under the stated 1000 ohm load condition. However, ap-  
plications with low impedance, DC coupled loads should  
be analyzed to ensure that maximum allowed junction  
temperature is not exceeded. Guidelines listed below can  
be used to verify that the particular application will not  
cause the device to operate beyond it’s intended operat-  
ing range.  
reducing R will increase bandwidth at the expense of ad-  
S
ditional overshoot and ringing.  
Parasitic Capacitance on the Inverting Input  
Physical connections between components create unin-  
tentional or parasitic resistive, capacitive, and inductive  
elements.  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction tem-  
Parasitic capacitance at the inverting input can be espe-  
cially troublesome with high frequency amplifiers. A para-  
sitic capacitance on this node will be in parallel with the  
perature, the package thermal resistance value Theta  
JA  
(Ө ) is used along with the total die power dissipation.  
JA  
gain setting resistor R . At high frequencies, its imped-  
g
ance can begin to raise the system gain by making R  
g
appear smaller.  
T
= T + (Ө × P )  
Ambient JA D  
Junction  
In general, avoid adding any additional parasitic capaci-  
tance at this node. In addition, stray capacitance across  
Where T  
is the temperature of the working environment.  
the R resistor can induce peaking and high frequency  
Ambient  
f
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
14  
Data Sheet  
In order to determine P , the power dissipated in the load  
needs to be subtracted from the total power delivered by  
the supplies.  
D
2
1.5  
1
P = P  
- P  
load  
D
supply  
Supply power is calculated by the standard power equa-  
SOIC-8  
tion.  
P
= V  
× I  
supply  
supply RMS supply  
0.5  
0
SOT23-5  
V
= V - V  
S+ S-  
supply  
Power delivered to a purely resistive load is:  
-40  
-20  
0
20  
40  
60  
80  
2
P
= ((V  
)
)/Rload  
eff  
load  
LOAD RMS  
Ambient Temperature (°C)  
The effective load resistor (Rload ) will need to include  
eff  
the effect of the feedback network. For instance,  
Figure 8. Maximum Power Derating  
Rload in figure 3 would be calculated as:  
eff  
R || (R + R )  
Better thermal ratings can be achieved by maximizing PC  
board metallization at the package pins. However, be care-  
ful of stray capacitance on the input pins.  
L
f
g
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load In addition, increased airflow across the package can also  
impedance is needed to determine the dissipated power. help to reduce the effective Ө of the package.  
JA  
Here, P can be found from  
D
In the event the outputs are momentarily shorted to a low  
impedance path, internal circuitry and output metallization  
are set to limit and handle up to 65mA of output current.  
However, extended duration under these conditions may  
not guarantee that the maximum junction temperature  
(+150°C) is not exceeded.  
P = P  
+ P  
- P  
D
Quiescent  
Dynamic Load  
Quiescent power can be derived from the specified I val-  
ues along with known supply voltage, V  
can be calculated as above with the desired signal ampli-  
tudes using:  
S
. Load power  
Supply  
Layout Considerations  
(V  
)
= V  
/ √2  
LOAD RMS  
PEAK  
General layout and supply bypassing play major roles in  
high frequency performance. CaDeKa has evaluation  
boards to use as a guide for high frequency layout and as  
aid in device testing and characterization. Follow the steps  
below as a basis for high frequency layout:  
( I  
)
= ( V  
)
/ Rload  
LOAD RMS  
LOAD RMS eff  
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
P
= (V - V  
)
× ( I )  
LOAD RMS  
DYNAMIC  
S+  
LOAD RMS  
• Include 6.8µF and 0.1µF ceramic capacitors for power  
supply decoupling  
Assuming the load is referenced in the middle of the power  
rails or V /2.  
supply  
• Place the 6.8µF capacitor within 0.75 inches of the power pin  
• Place the 0.1µF capacitor within 0.1 inches of the power pin  
Figure 8 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 8 and 14 lead  
SOIC packages.  
• Remove the ground plane under and around the part,  
especially near the input and output pins to reduce para-  
sitic capacitance  
• Minimize all trace lengths to reduce series inductances  
Refer to the evaluation board layouts below for more in-  
formation.  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
15  
Data Sheet  
Evaluation Board Information  
The following evaluation boards are available to aid in the  
testing and layout of these devices:  
Evaluation Board #  
CEB002  
CEB003  
Products  
CLC1606IST5X  
CLC1606ISO8X  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in Fig-  
ures 9-14. These evaluation boards are built for dual- sup-  
ply operation. Follow these steps to use the board in a  
single-supply application:  
Figure 10. CEB002 Top View  
1. Short -Vs to ground.  
2. Use C3 and C4, if the -V pin of the amplifier is not  
S
directly connected to the ground plane.  
Figure 11. CEB002 Bottom View  
Figure 9. CEB002 Schematic  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
16  
Data Sheet  
Figure 14. CEB003 Bottom View  
Figure 12. CEB003 Schematic  
Figure 13. CEB003 Top View  
©2007-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
17  
Data Sheet  
Mechanical Dimensions  
SOT23-5 Package  
SOIC-8 Package  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
caDeKa Hꢄꢂdqꢊꢂꢃꢅꢄꢃꢈ Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5452 (toll free)  
CADEKA, the CADEKA logo design, COMLINEAR, the COMLINEAR logo design, and ARCTIC are trademarks or registered trademarks of  
CADEKA Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Amplify the Human Experience  
Copyright ©2007-2008 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

CLC1606IST5X

1.3GHz Current Feedback Amplifier
CADEKA

CLC175

175 Watts CLC Series
XPPOWER

CLC175US12

AC-DC Power Supplies
XPPOWER

CLC175US24

AC-DC Power Supplies
XPPOWER

CLC175US28

175 Watts CLC Series
XPPOWER

CLC175US48

AC-DC Power Supplies
XPPOWER

CLC175_12

175 Watts CLC Series
XPPOWER

CLC200

Fast Settling, Wideband Operational Amplifiers
NSC

CLC2000

High Output Current Dual Amplifier
CADEKA

CLC2000ISO8

High Output Current Dual Amplifier
CADEKA

CLC2000ISO8X

High Output Current Dual Amplifier
CADEKA

CLC2003ISO8

Operational Amplifier, 2 Func, BIPolar, PDSO8,
EXAR