ACPL-331J-000E [AVAGO]

1.5 Amp Output Current IGBT Gate Driver Optocoupler; 1.5安培输出电流IGBT门极驱动光电耦合器
ACPL-331J-000E
型号: ACPL-331J-000E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1.5 Amp Output Current IGBT Gate Driver Optocoupler
1.5安培输出电流IGBT门极驱动光电耦合器

光电 双极性晶体管 栅 驱动
文件: 总22页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-331J  
1.5 Amp Output Current IGBT Gate Driver Optocoupler  
with Integrated (V ) Desaturation Detection, UVLO,  
CE  
Fault Status Feedback and Active Miller Clamping  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
The ACPL-331J is an advanced 1.5 A output current, easy- Under Voltage Lock-Out Protection (UVLO)  
to-use, intelligent gate driver which makes IGBT VCE fault  
protection compact, affordable, and easy-to implement.  
with Hysteresis  
Desaturation Detection  
Miller Clamping  
Features such as integrated  
V
CE  
detection, under  
voltage lockout (UVLO), “soft” IGBT turn-off, isolated  
open collector fault feedback and active Miller clamping  
provide maximum design flexibility and circuit protec-  
tion.  
Open Collector Isolated fault feedback  
“SoftIGBT Turn-off  
Fault Reset by next LED turn-on (low to high) after  
The ACPL-331J contains a AlGaAs LED. The LED is  
optically coupled to an integrated circuit with a power  
output stage. ACPL-331J is ideally suited for driving  
power IGBTs and MOSFETs used in motor control inverter  
applications. The voltage and current supplied by these  
optocouplers make them ideally suited for directly  
driving IGBTs with ratings up to 1200 V and 100 A. For  
IGBTs with higher ratings, the ACPL-331J can be used to  
drive a discrete power stage which drives the IGBT gate.  
fault mute period  
Available in SO-16 package  
Safety approvals: UL approved, 5000 V  
for 1  
RMS  
minute, CSA approved, IEC/EN/DIN-EN 60747-5-5  
approved V  
= 1230 V  
IORM  
PEAK  
Specifications  
1.5 A maximum peak output current  
1.0 A minimum peak output current  
The ACPL-331J has an insulation voltage of V  
= 1230  
IORM  
V
.
PEAK  
250 ns maximum propagation delay over  
temperature range  
Block Diagram  
13  
100 ns maximum pulse width distortion (PWD)  
50 kV/μs minimum common mode rejection (CMR)  
VCC2  
UVLO  
6, 7  
D
R
I
V
E
R
at V = 1500 V  
CM  
ANODE  
11  
5, 8  
VOUT  
I  
< 5 mA maximum supply current  
CC(max)  
CATHODE  
DESAT  
LED1  
14  
Wide V operating range: 15 V to 30 V over  
CC  
DESAT  
temperature range  
9, 12  
VEE  
SHIELD  
LED2  
1.0 A Miller Clamp. Clamp pin short to V if not used  
EE  
VCLAMP  
Wide operating temperature range: –40°C to 105°C  
2
10  
16  
VCC1  
VCLAMP  
VE  
Applications  
3
FAULT  
Isolated IGBT/Power MOSFET gate drive  
AC and brushless DC motor drives  
1, 4  
VS  
15  
VLED  
Industrial inverters and Uninterruptible Power Supply  
SHIELD  
(UPS)  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Pin Description  
Pin  
1
Symbol  
VS  
Description  
Input Ground  
1
2
3
4
5
6
7
8
VS  
2
VCC1  
FAULT  
Positive input supply voltage. (3.3 V to 5.5 V)  
VE 16  
VLED 15  
3
Fault output. FAULT changes from a high impedance state  
to a logic low output within 5 μs of the voltage on the  
DESAT pin exceeding an internal reference voltage of 6.5 V.  
FAULT output is an open collector which allows the FAULT  
outputs from all ACPL-331J in a circuit to be connected  
together in a “wired OR” forming a single fault bus for inter-  
facing directly to the micro-controller.  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
4
VS  
Input Ground  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
5
CATHODE Cathode  
6
ANODE  
ANODE  
Anode  
Anode  
VOUT 11  
7
8
CATHODE Cathode  
VCLAMP 10  
9
VEE  
Output supply voltage.  
10  
11  
12  
13  
14  
VCLAMP  
VOUT  
VEE  
Miller clamp  
VEE  
9
Gate drive voltage output  
Output supply voltage.  
Positive output supply voltage  
VCC2  
DESAT  
Desaturation voltage input. When the voltage on DESAT  
exceeds an internal reference voltage of 6.5 V while the  
IGBT is on, FAULT output is changed from a high impedance  
state to a logic low state within 5 μs.  
15  
16  
VLED  
LED anode. This pin must be left unconnected for guaran-  
teed data sheet performance. (For optical coupling testing  
only)  
VE  
Common (IGBT emitter) output supply voltage.  
Ordering Information  
ACPL-331J is UL Recognized with 5000 Vrms for 1 minute per UL1577.  
Option  
Surface  
Mount  
IEC/EN/DIN EN  
60747-5-5  
Part number  
RoHS Compliant  
-000E  
Package  
Tape& Reel  
Quantity  
ACPL-331J  
SO-16  
X
X
X
X
45 per tube  
850 per reel  
-500E  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
ACPL-331J-500E to order product of SO-16 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN  
60747-5-5 Safety Approval in RoHS compliant.  
Example 2:  
ACPL-331J-000E to order product of SO-16 Surface Mount package in tube packaging with IEC/EN/DIN EN  
60747-5-5 Safety Approval and RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and  
RoHS compliant option will use ‘-XXXE.  
2
Package Outline Drawings  
ACPL-331J 16-Lead Surface Mount Package  
0.0ꢀ8  
(0.457ꢁ  
0.050  
(ꢀ.270ꢁ  
LAND PATTERN RECOMMENDATION  
ꢀ6 ꢀ5 ꢀ4 ꢀ3 ꢀ2 ꢀꢀ ꢀ0  
9
TYPE NUMBER  
DATE CODE  
A 33ꢀJ  
YYWW  
0.458 (ꢀꢀ.63ꢁ  
0.295 0.0ꢀ0  
(7.493 0.254ꢁ  
0.085 (2.ꢀ6ꢁ  
2
3
4
5
6
7
8
0.406 0.ꢀ0  
(ꢀ0.3ꢀ2 0.254ꢁ  
0.025 (0.64ꢁ  
0.345 0.0ꢀ0  
(8.763 0.254ꢁ  
ALL LEADS  
9 °  
TO BE  
COPLANAR  
0.002  
0.ꢀ38 0.005  
(3.505 0.ꢀ27ꢁ  
0.0ꢀ8  
(0.457ꢁ  
0 - 8 °  
0.008 0.003  
(0.203 0.076ꢁ  
STANDOFF  
0.025 MIN.  
0.408 0.0ꢀ0  
(ꢀ0.363 0.254ꢁ  
Dimensions in inches (millimeters)  
Notes: Initial and continued variation in the color of the ACPL-  
331J’s white mold compound is normal and does note affect device  
performance or reliability.  
Floating Lead Protrusion is 0.25 mm (10 mils) max.  
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.  
3
Regulatory Information  
The ACPL-331J is approved by the following organizations:  
IEC/EN/DIN EN 60747-5-5  
UL  
Approval under:  
DIN EN 60747-5-5 (VDE 0884-5):2011-11  
EN 60747-5-5:2011  
Approval under UL 1577, component recognition  
program up to VISO = 5000 VRMS. File E55361.  
CSA  
Approval under CSA Component Acceptance Notice #5,  
File CA 88324.  
Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*  
Description  
Symbol  
Characteristic  
Unit  
Installation classification per DIN VDE 0110/39, Table 1  
for rated mains voltage ≤ 150 Vrms  
for rated mains voltage ≤ 300 Vrms  
for rated mains voltage ≤ 600 Vrms  
for rated mains voltage ≤ 1000Vrms  
I – IV  
I – IV  
I – IV  
I – III  
Climatic Classification  
40/100/21  
2
Pollution Degree (DIN VDE 0110/39)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b**,  
VIORM  
VPR  
1230  
2306  
Vpeak  
Vpeak  
VIORM x 1.875=VPR, 100% Production Test with tm=1 sec, Partial discharge < 5 pC  
Input to Output Test Voltage, Method a**,  
VIORM x 1.6=VPR, Type and Sample Test, tm=10 sec, Partial discharge < 5 pC  
VPR  
1968  
8000  
Vpeak  
Vpeak  
Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec)  
VIOTM  
Safety-limiting values – maximum values allowed in the event of a failure  
Case Temperature  
TS  
175  
°C  
Input Current  
IS, INPUT  
PS, OUTPUT  
RS  
400  
mA  
mW  
Ω
Output Power  
1200  
>109  
Insulation Resistance at TS, VIO = 500 V  
*
Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.  
Surface mount classification is class A in accordance with CECCOO802.  
** Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section IEC/EN/  
DIN EN 60747-5-5, for a detailed description of Method a and Method b partial discharge test profiles.  
Dependence of Safety Limiting Values on Temperature. (take from DS AV01-0579EN Pg.7)  
1400  
PS , OUTPUT  
PS , INPUT  
1200  
1000  
800  
600  
400  
200  
0
0
25 50 75 100 125 150 175 200  
TS - CASE TEMPERATURE - °C  
4
Table 2. Insulation and Safety Related Specifications  
Parameter  
Symbol  
ACPL-331J  
Units  
Conditions  
Minimum External Air  
Gap (Clearance)  
L(101)  
8.3  
mm  
Measured from input terminals to output terminals,  
shortest distance through air.  
Minimum External  
Tracking (Creepage)  
L(102)  
CTI  
8.3  
0.5  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body.  
Minimum Internal  
Plastic Gap (Internal  
Clearance)  
Through insulation distance conductor to conductor,  
usually the straight line distance thickness between the  
emitter and detector.  
Tracking Resistance  
(Comparative Tracking  
Index)  
>175  
IIIa  
V
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-55  
-40  
Max.  
125  
105  
125  
25  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
Output IC Junction Temperature  
Average Input Current  
TS  
TA  
°C  
2
2
1
TJ  
°C  
IF(AVG)  
IF(TRAN)  
mA  
A
Peak Transient Input Current  
(<1 μs pulse width, 300pps)  
1.0  
Reverse Input Voltage  
VR  
5
V
“HighPeak Output Current  
“LowPeak Output Current  
Positive Input Supply Voltage  
FAULT Output Current  
IOH(PEAK)  
IOL(PEAK)  
VCC1  
1.5  
1.5  
7.0  
A
3
3
A
-0.5  
8.0  
V
IFAULT  
mA  
V
FAULT Pin Voltage  
VFAULT  
(VCC2 - VEE  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
VCC1  
35  
Total Output Supply Voltage  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Gate Drive Output Voltage  
Peak Clamping Sinking Current  
Miller Clamping Pin Voltage  
DESAT Voltage  
)
V
(VE - VEE  
)
15  
V
6
(VCC2 - VE)  
VO(PEAK)  
IClamp  
VClamp  
VDESAT  
PO  
35 - (VE - VEE  
VCC2  
1.0  
)
V
V
A
-0.5  
VE  
VCC2  
VE + 10  
600  
V
V
Output IC Power Dissipation  
Input IC Power Dissipation  
Solder Reflow Temperature Profile  
mW  
mW  
2
2
PI  
150  
See Package Outline Drawings section  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min.  
- 40  
15  
0
Max.  
Units  
Note  
Operating Temperature  
Total Output Supply Voltage  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Input Current (ON)  
105  
°C  
V
2
7
4
(VCC2 - VEE  
)
30  
(VE - VEE  
)
15  
V
(VCC2 - VE)  
IF(ON)  
15  
8
30 - (VE - VEE  
12  
)
V
mA  
Input Voltage (OFF)  
VF(OFF)  
- 3.6  
0.8  
V
5
Table 5. Electrical Specifications (DC)  
Unless otherwise noted, all typical values at T = 25°C, V  
- V = 30 V, V - V = 0 V;  
EE E EE  
A
CC2  
all Minimum/Maximum specifications are at Recommended Operating Conditions.  
Parameter  
FAULT Logic Low  
Output Voltage  
Symbol  
VFAULTL  
Min.  
Typ.  
0.1  
Max.  
0.4  
Units  
V
Test Conditions  
Fig.  
Note  
IFAULT = 1.1 mA, VCC1 = 5.5V  
IFAULT = 1.1 mA, VCC1 = 3.3V  
VFAULT = 5.5 V, VCC1 = 5.5V  
VFAULT = 3.3 V, VCC1 = 3.3V  
0.1  
0.4  
V
FAULT Logic High  
Output Current  
IFAULTH  
0.02  
0.002  
-0.75  
0.5  
μA  
μA  
A
0.3  
High Level  
Output Current  
IOH  
-0.3  
-1.0  
0.3  
1.0  
90  
VO = VCC2 – 4  
VO = VCC2 – 15  
VO = VEE + 2.5  
4, 18  
5, 19  
5
3
5
3
6
A
Low Level  
Output Current  
IOL  
0.75  
140  
A
A
VO = VEE + 15  
Low Level Output Current  
During Fault Condition  
IOLF  
230  
0.5  
mA  
VOUT - VEE = 14 V  
High Level  
Output Voltage  
VOH  
VOL  
VCC-2.9 VCC-2.0  
V
V
V
A
IO = -650 μA  
2, 4,  
20  
7, 8, 9,  
23  
Low Level  
Output Voltage  
0.17  
2.0  
IO = 100 mA  
3, 5,  
21  
Clamp Pin Threshold  
Voltage  
VtClamp  
ICL  
Clamp Low Level  
Sinking Current  
0.21  
0.7  
VO = VEE + 2.5  
High Level Supply Current  
Low Level Supply Current  
ICC2H  
ICC2L  
ICHG  
2.5  
5
mA  
mA  
mA  
IO = 0 mA  
IO = 0 mA  
VDESAT = 2 V  
6, 7,  
23  
9
2.5  
5
Blanking Capacitor  
Charging Current  
0.13  
10  
-0.24  
-0.33  
8, 24  
25  
9, 10  
Blanking Capacitor  
Discharge Current  
IDSCHG  
30  
mA  
VDESAT = 7.0 V  
DESAT Threshold  
UVLO Threshold  
VDESAT  
VUVLO+  
VUVLO-  
6
6.5  
7.5  
V
V
V
V
VCC2 -VE >VUVLO-  
VO > 5 V  
9, 27  
9
10.5  
9.2  
11.6  
10.3  
1.3  
12.5  
11.1  
7, 9, 11  
7, 9, 12  
VO < 5 V  
UVLO Hysteresis  
(VUVLO+ 0.4  
- VUVLO-  
)
Threshold Input Current  
Low to High  
IFLH  
VFHL  
VF  
2.0  
6
mA  
V
IO = 0 mA, VO > 5 V  
Threshold Input Voltage  
High to Low  
0.8  
1.2  
Input Forward Voltage  
1.6  
1.95  
V
IF = 10 mA  
Temperature Coefficient  
of Input Forward Voltage  
ΔVF/ΔTA  
-1.3  
mV/°C  
Input Reverse Breakdown  
Voltage  
BVR  
5
V
IR = 10 μA  
Input Capacitance  
CIN  
70  
pF  
f = 1 MHz, VF = 0 V  
6
Table 6. Switching Specifications (AC)  
Unless otherwise noted, all typical values at T = 25°C, V  
- V = 30 V, V - V = 0 V;  
EE E EE  
A
CC2  
all Minimum/Maximum specifications are at Recommended Operating Conditions.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Propagation Delay Time  
to High Output Level  
tPLH  
100  
180  
250  
ns  
Rg = 20 Ω, Cg = 5 nF,  
f = 10 kHz,  
Duty Cycle = 50%,  
IF = 10 mA, VCC2 = 30 V  
1, 10,  
11, 12,  
13, 26  
13, 15  
Propagation Delay Time  
to Low Output Level  
tPHL  
100  
180  
20  
250  
ns  
Pulse Width Distortion  
PWD  
-100  
-150  
100  
150  
ns  
ns  
14, 17  
17, 16  
Propagation Delay Difference  
Between Any Two Parts or  
Channels  
(tPHL - tPLH  
PDD  
)
Rise Time  
tR  
tF  
50  
ns  
ns  
μs  
Fall Time  
50  
DESAT Sense to 90% VO Delay  
tDESAT(90%)  
tDESAT(10%)  
tDESAT(FAULT)  
0.15  
0.3  
1.5  
0.5  
CDESAT = 100pF, RF=2.1kΩ, 14, 27, 19  
Rg = 20 Ω, Cg = 5 nF,  
VCC2 = 30 V  
34  
DESAT Sense to 10% VO Delay  
1.1  
μs  
μs  
CDESAT = 100pF, RF=2.1kΩ , 15, 16,  
Rg = 20 Ω, Cg = 5 nF,  
VCC2 = 30 V  
17, 27,  
34  
DESAT Sense to Low Level  
FAULT Signal Delay  
0.25  
0.8  
CDESAT = 100 pF, RF = 2.1  
kΩ, CF = Open, Rg = 20 Ω,  
Cg = 5 nF, VCC2 = 30 V  
27, 34  
18  
CDESAT = 100 pF, RF = 2.1  
kΩ, CF = 1 nF, Rg = 20 Ω,  
Cg = 5 nF, VCC2 = 30 V  
DESAT Sense to DESAT  
Low Propagation Delay  
tDESAT(LOW)  
0.25  
μs  
CDESAT = 100pF, RF = 2.1  
27, 34  
34  
19  
20  
kΩ, Rg = 20 Ω, Cg = 5 nF,  
VCC2 = 30 V  
DESAT Input Mute  
tDESAT(MUTE)  
5
μs  
μs  
RESET to High Level FAULT  
Signal Delay  
tRESET(FAULT) 0.3  
1
2.0  
2.5  
CDESAT = 100pF,  
RF = 2.1 kΩ,  
Rg = 20 Ω, Cg = 5 nF,  
VCC1 = 5.5V, VCC2 = 30 V  
0.8  
1.5  
μs  
CDESAT = 100pF,  
RF = 2.1 kΩ,  
Rg = 20 Ω, Cg = 5 nF,  
VCC1 = 3.3V, VCC2 = 30 V  
Output High Level Common  
Mode Transient Immunity  
|CMH|  
|CML|  
15  
50  
15  
50  
25  
60  
25  
60  
kV/μs TA = 25°C, IF = 10 mA  
28, 29, 21  
VCM = 1500 V, VCC2 = 30 V, 30, 31  
RF = 2.1 kΩ, CF = 15 pF  
TA = 25°C, IF = 10 mA  
VCM = 1500 V, VCC2 = 30 V,  
RF = 2.1 kΩ, CF = 1 nF  
21, 26  
Output Low Level Common  
Mode Transient Immunity  
kV/μs TA = 25°C, VF = 0 V  
28, 29, 22  
VCM = 1500 V, VCC2 = 30 V, 30, 31  
RF = 2.1 kΩ, CF = 15 pF  
TA = 25°C, VF = 0 V  
VCM = 1500 V, VCC2 = 30 V,  
RF = 2.1 kΩ, CF = 1 nF  
7
Table 7. Package Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Input-Output Momentary  
Withstand Voltage  
VISO  
5000  
Vrms  
RH < 50%, t = 1 min.,  
TA = 25°C  
24, 25  
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
> 109  
1.3  
Ω
V
I-O = 500 V  
25  
CI-O  
pF  
freq=1 MHz  
TA = 25°C  
Output IC-to-Pins 9 &10  
Thermal Resistance  
θ09-10  
30  
°C/W  
Notes:  
1. Derate linearly above 70°C free air temperature at a rate of 0.3 mA/°C.  
2. In order to achieve the absolute maximum power dissipation specified, pins 4, 9, and 10 require ground plane connections and may require  
airflow. See the Thermal Model section in the application notes at the end of this data sheet for details on how to estimate junction temperature  
and power dissipation. In most cases the absolute maximum output IC junction temperature is the limiting factor. The actual power dissipation  
achievable will depend on the application environment (PCB Layout, air flow, part placement, etc.). See the Recommended PCB Layout section  
in the application notes for layout considerations. Output IC power dissipation is derated linearly at 10 mW/°C above 90°C. Input IC power  
dissipation does not require derating.  
3. Maximum pulse width = 10 μs. This value is intended to allow for component tolerances for designs with IO peak minimum = 1.0 A.  
Derate linearly from 2.0 A at +25°C to 1.5 A at +105°C. This compensates for increased I  
4. This supply is optional. Required only when negative gate drive is implemented.  
5. Maximum pulse width = 50 μs.  
due to changes in V over temperature.  
OPEAK  
OL  
6. See the Slow IGBT Gate Discharge During Fault Condition section in the applications notes at the end of this data sheet for further details.  
7. 15 V is the recommended minimum operating positive supply voltage (V - V ) to ensure adequate margin in excess of the maximum V  
UVLO+  
CC2  
E
threshold of 12.5 V. For High Level Output Voltage testing, V is measured with a dc load current. When driving capacitive loads, V will  
OH  
OH  
approach V as I approaches zero units.  
CC  
OH  
8. Maximum pulse width = 1.0 ms.  
9. Once V of the ACPL-331J is allowed to go high (V  
- V > V  
E
), the DESAT detection feature of the ACPL-331J will be the primary source of  
O
CC2  
UVLO+  
IGBT protection. UVLO is needed to ensure DESAT is functional. Once V  
is increased from 0V to above V , DESAT will remain functional  
UVLO+  
CC2  
until V  
is decreased below V . Thus, the DESAT detection and UVLO features of the ACPL-331J work in conjunction to ensure constant  
UVLO-  
CC2  
IGBT protection.  
10. See the DESAT fault detection blanking time section in the applications notes at the end of this data sheet for further details.  
11. This is the “increasing(i.e. turn-on or “positive goingdirection) of V - V  
CC2  
E
12. This is the “decreasing(i.e. turn-off or “negative goingdirection) of V  
13. This load condition approximates the gate load of a 1200 V/75A IGBT.  
- V  
CC2  
E
14. Pulse Width Distortion (PWD) is defined as |t  
- t | for any given unit.  
PHL PLH  
15. As measured from I to V .  
F
O
16. The difference between t  
and t  
between any two ACPL-331J parts under the same test conditions.  
PLH  
PHL  
17. As measured from ANODE, CATHODE of LED to V  
OUT  
18. This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes low.  
19. This is the amount of time the DESAT threshold must be exceeded before VOUT begins to go low, and the FAULT output to go low. This is supply  
voltage dependent.  
20. Auto Reset: This is the amount of time when VOUT will be asserted low after DESAT threshold is exceeded. See the Description of Operation  
(Auto Reset) topic in the application information section.  
21. Common mode transient immunity in the high state is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the  
CM  
CM  
output will remain in the high state (i.e., V > 15 V or FAULT > 2 V).  
O
22. Common mode transient immunity in the low state is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the  
CM  
CM  
output will remain in a low state (i.e., V < 1.0 V or FAULT < 0.8 V).  
O
23. To clamp the output voltage at V - 3 , a pull-down resistor between the output and V is recommended to sink a static current of 650 μA  
CC  
VBE  
EE  
while the output is high. See the Output Pull-Down Resistor section in the application notes at the end of this data sheet if an output pull-down  
resistor is not used.  
24. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 Vrms for 1 second. This test is  
performed before the 100% production test for partial discharge (method b) shown in IEC/EN/DIN EN 60747-5-5 Insulation Characteristic Table.  
25. This is a two-terminal measurement: pins 1-8 are shorted together and pins 9-16 are shorted together.  
26. Split resistors network with a ratio of 1:1 is needed at input LED1. See Figure 31.  
8
I
F
t
t
f
r
90%  
50%  
10%  
V
OUT  
t
t
PHL  
PLH  
Figure 1. Timing Curve  
0
-0.5  
-ꢀ  
0.25  
0.2  
____  
= -650uA  
I OUT  
0.ꢀ5  
0.ꢀ  
-ꢀ.5  
-2  
0.05  
0
-2.5  
-40  
-20  
0
20  
40  
60  
80  
ꢀ05  
-40  
-20  
0
20  
40  
60  
o C  
80  
ꢀ05  
TA - TEMPERATURE - oC  
TA - TEMPERATURE -  
Figure 2. VOH vs. temperature  
Figure 3. VOL vs. temperature  
4
30  
29  
28  
27  
26  
25  
_ _ _ _ ꢀ05 oC  
_ _ _ _ ꢀ05 oC  
______ 25 o C  
--------- -40 o C  
o
______ 25 C  
--------- -40 oC  
3
2
0
0.0  
0.2  
0.4  
0.6  
0.8  
ꢀ.0  
0
0.5  
ꢀ.5  
IOH - OUTPUT HIGH CURRENT - A  
IOL - OUTPUT LOW CURRENT - A  
Figure 4. VOH vs. IOH  
Figure 5. VOL vs. IOL  
9
2.65  
2.55  
2.45  
2.35  
2.25  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
--------- I  
CC2  
H
L
________ICC2  
_
- ---- ---- I  
CC2  
H
I
________ CC2  
L
-40  
-20  
0
20  
40  
60  
o C  
80  
105  
105  
105  
15  
20  
25  
30  
VCC2 - SUPPLY VOLTAGE - V  
T A - TEMPERATURE -  
Figure 6. ICC2 vs. temperature  
Figure 7. ICC2 vs. VCC2  
7.5  
-0.20  
7.0  
6.5  
6.0  
-0.25  
-0.30  
-0.35  
-40  
-20  
0
20  
40  
60  
o C  
80  
-40  
-20  
0
20  
40  
60  
o C  
80  
105  
T A - TEMPERATURE -  
T A -TEMPERATURE -  
Figure 8. ICHG vs. temperature  
Figure 9. DESAT threshold vs. temperature  
300  
300  
---------- t  
---------- t  
PLH  
PLH  
_______tPHL  
_______t  
PHL  
250  
200  
150  
100  
250  
200  
150  
100  
-40  
-20  
0
20  
40  
60  
80  
15  
20  
25  
30  
Vcc - SUPPLY VOLTAGE - V  
o
T
- TEMPERATURE -  
C
A
Figure 10. Propagation delay vs. temperature  
Figure 11. Propagation delay vs. supply voltage  
10  
300  
250  
200  
150  
100  
300  
200  
100  
0
---------- t  
_______t  
PLH  
---------- t  
_______ t  
PLH  
PHL  
PHL  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
LOAD RESISTANCE - ohm  
LOAD CAPACITANCE - nF  
Figure 12. Propagation delay vs. load resistance  
Figure 13. Propagation delay vs. load capacitance  
250  
2.0  
------- V CC2 =15V  
_____ VCC2 =30V  
1.5  
200  
150  
100  
1.0  
0.5  
0.0  
-40  
-20  
0
20  
40  
60  
80  
105  
-40  
-20  
0
20  
40  
60  
o C  
80  
105  
T A - TEMPERATURE - o C  
T A - TEMPERATURE -  
Figure 14. DESAT sense to 90% VOUT delay vs. temperature  
Figure 15. DESAT sense to 10% VOUT delay vs. temperature  
4.0  
0.012  
------- VCC2  
_____ VCC2  
=15V  
=30V  
------- V CC2 =15V  
_____ V CC2 =30V  
3.0  
2.0  
1.0  
0.0  
0.008  
0.004  
0.000  
10  
20  
30  
LOAD RESISTANCE-ohm  
40  
50  
0
10  
20  
30  
40  
50  
LOAD CAPACITANCE-nF  
Figure 16. DESAT sense to 10% VOUT delay vs. load resistance  
Figure 17. DESAT sense to 10% VOUT delay vs. load capacitance  
11  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
15V Pulsed  
+
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
_
IOUT  
VOUT 11  
30V  
0.1μF  
+
_
VCLAMP 10  
10mA  
VEE  
9
Figure 18. IOH Pulsed test circuit  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
15V Pulsed  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
IOUT  
VOUT 11  
30V  
0.1μF  
+
_
VCLAMP 10  
+
_
VEE  
9
Figure 19. IOL Pulsed test circuit  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT  
VOUT 11  
30V  
0.1μF  
+
_
VCLAMP 10  
650μA  
10mA  
VEE  
9
Figure 20. VOH Pulsed test circuit  
12  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
100mA  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT  
VOUT 11  
30V  
30V  
30V  
0.1μF  
+
_
VCLAMP 10  
VEE  
9
Figure 21. VOL Pulsed test circuit  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
ICC2  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT 11  
0.1μF  
+
_
VCLAMP 10  
10mA  
VEE  
9
Figure 22. ICC2H test circuit  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
ICC2  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT 11  
0.1μF  
+
_
VCLAMP 10  
VEE  
9
Figure 23. ICC2L test circuit  
13  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
ICHG  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT 11  
30V  
30V  
30V  
0.1μF  
+
_
VCLAMP 10  
10mA  
VEE  
9
Figure 24. ICHG Pulsed test circuit  
1
VS  
VE 16  
VLED 15  
_
+
7V  
2
VCC1  
3
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
IDSCHG  
4
5
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
6
VOUT 11  
0.1μF  
+
_
7
VCLAMP 10  
8
VEE  
9
Figure 25. IDSCHG test circuit  
1
2
3
4
5
6
7
VS  
VE 16  
VLED 15  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT  
VOUT 11  
0.1μF  
20Ω  
+
_
VCLAMP 10  
5nF  
8
VEE  
9
10mA, 10kHz,  
50% Duty Cycle  
Figure 26. tPLH, tPHL, tf, tr, test circuit  
14  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
VIN  
VCC1  
R =2.1kΩ  
F
VFAULT  
FAULT  
VS  
DESAT 14  
VCC2 13  
0.1μF  
C
F
+
5V  
_
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
VOUT  
VOUT 11  
30V  
0.1μF  
20Ω  
+
_
VCLAMP 10  
10mA  
5nF  
VEE  
9
Figure 27. tDESAT fault test circuit  
1
VS  
VE 16  
VLED 15  
5V  
2
VCC1  
R =2.1kΩ  
F
SCOPE  
3
FAULT  
VS  
DESAT 14  
VCC2 13  
C =15pF  
F
or 1nF  
30V  
4
5
6
7
8
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
20Ω  
VOUT 11  
0.1μF  
360Ω  
VCLAMP 10  
5nF  
VEE  
9
VCM  
Figure 28. CMR Test circuit LED2 off  
1
VS  
VE 16  
VLED 15  
5V  
2
VCC1  
R =2.1kΩ  
F
SCOPE  
3
FAULT  
VS  
DESAT 14  
VCC2 13  
C =15pF  
F
or 1nF  
30V  
4
5
6
7
8
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
20Ω  
VOUT 11  
0.1μF  
360Ω  
VCLAMP 10  
5nF  
VEE  
9
VCM  
Figure 29. CMR Test Circuit LED2 on  
15  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
5V  
VCC1  
R =2.1kΩ  
F
DESAT 14  
VCC2 13  
FAULT  
VS  
C =15pF  
F
or 1nF  
30V  
0.1μF  
CATHODE  
ANODE  
ANODE  
VEE 12  
SCOPE  
20Ω  
VOUT 11  
0.1μF  
360Ω  
VCLAMP 10  
5nF  
CATHODE  
VEE  
9
VCM  
Figure 30. CMR Test circuit LED1 off  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
5V  
VCC1  
R =2.1kΩ  
F
DESAT 14  
VCC2 13  
FAULT  
VS  
C =15pF  
F
or 1nF  
30V  
5
6
7
8
CATHODE  
ANODE  
0.1μF  
CATHODE  
ANODE  
ANODE  
VEE 12  
SCOPE  
20Ω  
ꢀꢁꢂŸ  
ꢀꢁꢂŸ  
5V  
VOUT 11  
ANODE  
0.1μF  
360Ω  
VCLAMP 10  
CATHODE  
5nF  
CATHODE  
VEE  
9
Split resistors network with a ratio of 1:1  
VCM  
Figure 31. CMR Test Circuit LED1 on  
16  
13  
Application Information  
VCC2  
UVLO  
6, 7  
5, 8  
Product Overview Description  
D
R
I
V
E
R
ANODE  
11  
The ACPL-331J is a highly integrated power control  
device that incorporates all the necessary components  
for a complete, isolated IGBT / MOSFET gate drive circuit  
with fault protection and feedback into one SO-16  
package. Active Miller clamp function eliminates the  
need of negative gate drive in most application and  
allows the use of simple bootstrap supply for high side  
driver. An optically isolated power output stage drives  
IGBTs with power ratings of up to 100 A and 1200 V. A  
high speed internal optical link minimizes the propaga-  
tion delays between the microcontroller and the IGBT  
while allowing the two systems to operate at very large  
common mode voltage differences that are common  
in industrial motor drives and other power switching  
applications. An output IC provides local protection  
for the IGBT to prevent damage during over current,  
and a second optical link provides a fully isolated fault  
status feedback signal for the microcontroller. A built  
in “watchdog” circuit, UVLO monitors the power stage  
supply voltage to prevent IGBT caused by insufficient  
gate drive voltages. This integrated IGBT gate driver is  
designed to increase the performance and reliability of  
a motor drive without the cost, size, and complexity of a  
discrete design.  
VOUT  
CATHODE  
DESAT  
LED1  
14  
DESAT  
9, 12  
VEE  
SHIELD  
LED2  
VCLAMP  
2
3
10  
16  
VCC1  
VCLAMP  
VE  
FAULT  
1, 4  
15  
VS  
VLED  
SHIELD  
Figure 32. Block Diagram of ACPL-331J  
Recommended Application Circuit  
The ACPL-331J has an LED input gate control, and an  
open collector fault output suitable for wired ‘OR’ ap-  
plications. The recommended application circuit shown  
in Figure 33 illustrates a typical gate drive implementa-  
tion using the ACPL-331J. The following describes about  
driving IGBT. However, it is also applicable to MOSFET.  
Depending upon the MOSFET or IGBT gate threshold  
requirements, designers may want to adjust the VCC  
Two light emitting diodes and two integrated circuits  
housed in the same SO-16 package provide the input  
control circuitry, the output power stage, and two optical  
channels. The output Detector IC is designed manufac-  
tured on a high voltage BiCMOS/Power DMOS process.  
The forward optical signal path, as indicated by LED1,  
transmits the gate control signal. The return optical signal  
path, as indicated by LED2, transmits the fault status  
feedback signal.  
supply voltage (Recommended V = 17.5V for IGBT and  
12.5V for MOSFET).  
CC  
The two supply bypass capacitors (0.1 μF) provide the  
large transient currents necessary during a switching  
transition. Because of the transient nature of the  
charging currents, a low current (5mA) power supply  
suffices. The desaturation diode D  
fast recovery type, t below 75ns (e.g. ERA34-10) and  
600V/1200V  
DESAT  
rr  
capacitor C  
are necessary external components for  
BLANK  
Under normal operation, the LED1 directly controls the  
IGBT gate through the isolated output detector IC, and  
LED2 remains off. When an IGBT fault is detected, the  
output detector IC immediately begins a “soft” shutdown  
sequence, reducing the IGBT current to zero in a con-  
trolled manner to avoid potential IGBT damage from  
inductive over voltages. Simultaneously, this fault status  
is transmitted back to the input via LED2, where the fault  
latch disables the gate control input and the active low  
fault output alerts the microcontroller.  
the fault detection circuitry. The gate resistor R serves to  
limit gate charge current and controls the IGBT collector  
voltage rise and fall times. The open collector fault  
G
output has a passive pull-up resistor R (2.1 kΩ) and a  
F
1000 pF filtering capacitor, C . A 47 kΩ pull down resistor  
F
R
on V  
provides a predictable high level  
PULL-DOWN  
OUT  
output voltage (V ). In this application, the IGBT gate  
OH  
driver will shut down when a fault is detected and fault  
reset by next cycle of IGBT turn on. Application notes are  
mentioned at the end of this datasheet.  
During power-up, the Under Voltage Lockout (UVLO)  
feature prevents the application of insufficient gate  
voltage to the IGBT, by forcing the ACPL-331J’s output  
low. Once the output is in the high state, the DESAT (V  
)
CE  
detection feature of the ACPL-331J provides IGBT pro-  
tection. Thus, UVLO and DESAT work in conjunction to  
provide constant IGBT protection.  
17  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
0.1μF  
VCC1  
CBLANK  
100 Ω  
RF  
CF  
DDESAT  
0.1μF  
+
FAULT  
VS  
DESAT 14  
VCC2 13  
_
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
+ HVDC  
+
_
RG  
+
VCE  
-
VOUT 11  
VCLAMP 10  
VEE  
Q1  
Q2  
R
3-PHASE  
AC  
RPULL-DOWN  
+
_
+
VCE  
-
9
- HVDC  
Figure 33. Recommended application circuit (Single Supply) with desaturation detection and active Miller Clamp  
Description of Operation  
Normal Operation  
During normal operation, V  
trolled by input LED current I (pins 5, 6, 7 and 8), with  
the IGBT collector-to-emitter voltage being monitored  
through DESAT. The FAULT output is high. See Figure 34.  
of the ACPL-331J is con-  
is an internal feedback channel which brings the FAULT  
output low for the purpose of notifying the micro-con-  
troller of the fault condition.  
OUT  
F
Fault Reset  
Fault Condition  
Once fault is detected, the output will be muted for 5 ꢀs  
(minimum). All input LED signals will be ignored during  
the mute period to allow the driver to completely soft  
The DESAT pin monitors the IGBT Vce voltage. When the  
voltage on the DESAT pin exceeds 6.5 V while the IGBT  
is on, VOUT is slowly brought low in order to “softly” shut-down the IGBT. The fault mechanism can be reset by  
turn-off the IGBT and prevent large di/dt induced  
voltages. Also Figure 34. Fault Timing diagram activated  
the next LED turn-on after the 5us (minimum) mute time.  
See Figure 34.  
tDESAT(LOW)  
IF  
Reset done  
during the next  
LED turn-on  
6.5V  
VDESAT  
tBLANK  
tDESAT(10%)  
90%  
VOUT  
10%  
tRESET(FAULT)  
tDESAT(90%)  
FAULT  
50%  
50%  
tDESAT(FAULT)  
tDESAT(MUTE)  
Figure 34. Fault Timing diagram  
18  
Output Control  
Slow IGBT Gate Discharge during Fault Condition  
The outputs (V  
trolled by the combination of I , UVLO and a detected  
IGBT Desat condition. Once UVLO is not active (V  
and FAULT) of the ACPL-331J are con-  
When a desaturation fault is detected, a weak pull-down  
device in the ACPL-331J output drive stage will turn on  
to ‘softly’ turn off the IGBT. This device slowly discharges  
the IGBT gate to prevent fast changes in drain current  
that could cause damaging voltage spikes due to lead  
and wire inductance. During the slow turn off, the large  
output pull-down device remains off until the output  
OUT  
F
-
CC2  
V > V  
), V  
UVLO  
is allowed to go high, and the DESAT  
E
OUT  
(pin 14) detection feature of the ACPL-331J will be the  
primary source of IGBT protection. Once V is increased  
from 0V to above V  
CC2  
, DESAT will remain functional  
UVLO+  
until V  
is decreased below V  
. Thus, the DESAT  
voltage falls below V + 2 Volts, at which time the large  
pull down device clamps the IGBT gate to V .  
EE  
CC2  
UVLO-  
EE  
detection and UVLO features of the ACPL-331J work in  
conjunction to ensure constant IGBT protection.  
DESAT Fault Detection Blanking Time  
Desaturation Detection and High Current Protection  
The DESAT fault detection circuitry must remain disabled  
for a short time period following the turn-on of the IGBT  
to allow the collector voltage to fall below the DESAT  
threshold. This time period, called the DESAT blanking  
time is controlled by the internal DESAT charge current,  
the DESAT voltage threshold, and the external DESAT  
capacitor.  
The ACPL-331J satisfies these criteria by combining a  
high speed, high output current driver, high voltage  
optical isolation between the input and output, local  
IGBT desaturation detection and shut down, and an  
optically isolated fault status feedback signal into a single  
16-pin surface mount package.  
The fault detection method, which is adopted in the  
ACPL-331J is to monitor the saturation (collector)  
voltage of the IGBT and to trigger a local fault shutdown  
sequence if the collector voltage exceeds a predeter-  
mined threshold. A small gate discharge device slowly  
reduces the high short circuit IGBT current to prevent  
damaging voltage spikes. Before the dissipated energy  
can reach destructive levels, the IGBT is shut off. During  
the off state of the IGBT, the fault detect circuitry is simply  
disabled to prevent false ‘faultsignals.  
The nominal blanking time is calculated in terms of  
external capacitance (C  
BLANK  
(V  
), and DESAT charge current (I  
DESAT  
C
x V  
/ I  
. The nominal blanking time with  
BLANK  
DESAT  
CHG  
the recommended 100pF capacitor is 100pF * 6.5 V / 240  
μA = 2.7 μsec.  
The capacitance value can be scaled slightly to adjust the  
blanking time, though a value smaller than 100 pF is not  
recommended. This nominal blanking time represents  
the longest time it will take for the ACPL-331J to respond  
to a DESAT fault condition. If the IGBT is turned on while  
the collector and emitter are shorted to the supply rails  
(switching into a short), the soft shut-down sequence  
will begin after approximately 3 μsec. If the IGBT collector  
and emitter are shorted to the supply rails after the IGBT  
is already on, the response time will be much quicker due  
to the parasitic parallel capacitance of the DESAT diode.  
The recommended 100pF capacitor should provide  
adequate blanking as well as fault response times for  
most applications.  
The alternative protection scheme of measuring IGBT  
current to prevent desaturation is effective if the short  
circuit capability of the power device is known, but  
this method will fail if the gate drive voltage decreases  
enough to only partially turn on the IGBT. By directly  
measuring the collector voltage, the ACPL-331J limits  
the power dissipation in the IGBT even with insufficient  
gate drive voltage. Another more subtle advantage of the  
desaturation detection method is that power dissipation  
in the IGBT is monitored, while the current sense method  
relies on a preset current threshold to predict the safe  
limit of operation. Therefore, an overly conservative over  
current threshold is not needed to protect the IGBT.  
I
UVLO(V -V )  
DESAT Function  
Not Active  
Pin 3 (FAULT) Output  
High  
V
OUT  
F
CC2  
E
ON  
ON  
ON  
OFF  
OFF  
Active  
Low  
Low  
High  
Low  
Low  
Not Active  
Not Active  
Active  
Active (with DESAT fault)  
Active (no DESAT fault)  
Not Active  
Low (FAULT)  
High (or no fault)  
High  
Not Active  
Not Active  
High  
19  
Under Voltage Lockout  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
The ACPL-331J Under Voltage Lockout (UVLO) feature is  
designed to prevent the application of insufficient gate  
voltage to the IGBT by forcing the ACPL-331J output  
low during power-up. IGBTs typically require gate  
voltages of 15 V to achieve their rated V  
At gate voltages below 13 V typically, the V  
increases dramatically, especially at higher currents.  
At very low gate voltages (below 10 V), the IGBT may  
operate in the linear region and quickly overheat.  
The UVLO function causes the output to be clamped  
VCC1  
FAULT  
VS  
DESAT 14  
VCC2 13  
VCC  
voltage.  
voltage  
CE(ON)  
CE(ON)  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
RG  
VOUT 11  
VCLAMP 10  
RPULL-DOWN  
whenever insufficient operating supply (V ) is applied.  
CC2  
Once V  
exceeds V  
(the positive-going UVLO  
CC2  
UVLO+  
VEE  
9
threshold), the UVLO clamp is released to allow the  
device output to turn on in response to input signals. As  
V
is increased from 0 V (at some level below V  
),  
CC2  
UVLO+  
Figure 35. Output pull-down resistor.  
first the DESAT protection circuitry becomes active. As  
is further increased (above V ), the UVLO clamp  
V
CC2  
UVLO+  
DESAT Pin Protection Resistor  
is released. Before the time the UVLO clamp is released,  
the DESAT protection is already active. Therefore, the  
UVLO and DESAT Fault detection feature work together  
to provide seamless protection regardless of supply  
The freewheeling of flyback diodes connected across  
the IGBTs can have large instantaneous forward voltage  
transients which greatly exceed the nominal forward  
voltage of the diode. This may result in a large negative  
voltage spike on the DESAT pin which will draw substan-  
tial current out of the driver if protection is not used. To  
limit this current to levels that will not damage the driver  
IC, a 100 ohm resistor should be inserted in series with  
the DESAT diode. The added resistance will not alter the  
DESAT threshold or the DESAT blanking time.  
voltage (V ).  
CC2  
Active Miller Clamp  
A Miller clamp allows the control of the Miller current  
during a high dV/dt situation and can eliminate the use  
of a negative supply voltage in most of the applications.  
During turn-off, the gate voltage is monitored and the  
clamp output is activated when gate voltage goes below  
2V (relative to V ). The clamp voltage is V +2.5V typ  
for a Miller current up to 1100mA. The clamp is disabled  
when the LED input is triggered again.  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
EE  
OL  
100pF  
100 Ω  
VCC1  
DDESAT  
FAULT  
VS  
DESAT 14  
VCC2 13  
Other Recommended Components  
VCC  
The application circuit in Figure 33 includes an output  
pull-down resistor, a DESAT pin protection resistor, a  
FAULT pin capacitor, and a FAULT pin pullup resistor and  
Active Miller Clamp connection.  
CATHODE  
ANODE  
ANODE  
CATHODE  
VEE 12  
RG  
VOUT 11  
Output Pull-Down Resistor  
VCLAMP 10  
During the output high transition, the output voltage  
VEE  
9
rapidly rises to within 3 diode drops of V . If the output  
CC2  
current then drops to zero due to a capacitive load, the  
output voltage will slowly rise from roughly V -3(V  
)
CC2  
BE  
Figure 36. DESAT pin protection.  
to V  
within a period of several microseconds. To limit  
CC2  
the output voltage to V -3(V ), a pull-down resistor,  
CC2  
BE  
R
between the output and V is recommend-  
PULL-DOWN  
EE  
ed to sink a static current of several 650 μA while the  
output is high. Pull-down resistor values are dependent  
on the amount of positive supply and can be adjusted  
according to the formula, R  
650 μA.  
= [V -3 * (V )] /  
pull-down  
CC2 BE  
20  
Capacitor on FAULT Pin for High CMR  
Pull-up Resistor on FAULT Pin  
Rapid common mode transients can affect the fault pin  
voltage while the fault output is in the high state. A 1000  
pF capacitor should be connected between the fault pin  
and ground to achieve adequate CMOS noise margins at  
the specified CMR value of 50 kV/μs.  
The FAULT pin is an open collector output and therefore  
requires a pull-up resistor to provide a high-level signal.  
Also the FAULT output can be wire ‘OR’ed together with  
other types of protection (e.g. over-temperature, over-  
voltage, over-current ) to alert the microcontroller.  
Other Possible Application Circuit (Output Stage)  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
DESAT 14  
VCC2 13  
VEE 12  
0.1μF 0.1μF  
VCC1  
FAULT  
VS  
Optional R2  
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
+ HVDC  
+
_
RG  
Optional R1  
+
VCE  
-
VOUT 11  
Q1  
Q2  
3-PHASE  
AC  
10  
VCLAMP  
+
RPULL-DOWN  
_
+
VCE  
-
*
VEE  
9
- HVDC  
Figure 37. IGBT drive with negative gate drive, external booster and desaturation detection (VCLAMP should be connected to VEE when it is not used) VCLAMP is  
used as secondary gate discharge path. * indicates component required for negative gate drive topology  
1
2
3
4
5
6
7
8
VS  
VE 16  
VLED 15  
DESAT 14  
VCC2 13  
VEE 12  
0.1μF 0.1μF  
VCC1  
FAULT  
VS  
Optional R2  
0.1μF  
CATHODE  
ANODE  
ANODE  
CATHODE  
+ HVDC  
+
_
RG  
Optional R1  
+
VCE  
-
VOUT 11  
Q1  
Q2  
3-PHASE  
AC  
10  
VCLAMP  
RPULL-DOWN  
+
VCE  
-
*
VEE  
9
- HVDC  
R3  
Figure 38. Large IGBT drive with negative gate drive, external booster. VCLAMP control secondary discharge path for higher power application.  
21  
Thermal Model  
where P = power into input IC and P = power into  
The ACPL-331J is designed to dissipate the majority of  
the heat through pins 1, 4, 5 & 8 for the input IC and pins  
i
o
output IC. Since θ and θ  
are dependent on PCB  
5A  
9,12A  
layout and airflow, their exact number may not be  
available. Therefore, a more accurate method of calcu-  
lating the junction temperature is with the following  
equations:  
9 & 12 for the output IC. (There are two V pins on the  
EE  
output side, pins 9 and 12, for this purpose.) Heat flow  
through other pins or through the package directly into  
ambient are considered negligible and not modeled  
here.  
T = P θ + T  
ji  
i
i5  
P5  
In order to achieve the power dissipation specified in  
the absolute maximum specification, it is imperative  
that pins 5, 9, and 12 have ground planes connected to  
them. As long as the maximum power specification is  
not exceeded, the only other limitation to the amount  
of power one can dissipate is the absolute maximum  
junction temperature specification of 125°C. The junction  
temperatures can be calculated with the following  
equations:  
T
= P θ  
+ T  
jo  
o
o9,12 P9,12  
These equations, however, require that the pin 5 and pins  
9, 12 temperatures be measured with a thermal couple  
on the pin at the ACPL-331J package edge.  
If the calculated junction temperatures for the thermal  
model in Figure 39 is higher than 125°C, the pin tem-  
perature for pins 9 and 12 should be measured (at the  
package edge) under worst case operating environment  
for a more accurate estimate of the junction tempera-  
tures.  
T = P (θ + θ ) + T  
ji  
i
i5  
5A  
A
T
jo  
= Po (θ  
+ θ  
) + T  
9,12A A  
o9,12  
Tji = junction temperature of input side IC  
Tjo = junction temperature of output side IC  
Tji  
Tjo  
T
T
P5 = pin 5 temperature at package edge  
P9,12 = pin 9 and 12 temperature at package edge  
TI1 = 60°C/W  
Tl9, 12 = 30°C/W  
θI5 = input side IC to pin 5 thermal resistance  
θ
θ
θ
o9,12 = output side IC to pin 9 and 12 thermal resistance  
5A = pin 5 to ambient thermal resistance  
9,12A = pin 9 and 12 to ambient thermal resistance  
TP9, 12  
9, 12A = 50°C/W*  
TP1  
T
1A = 50°C/W*  
T
*The θ5A and θ9,12A values shown here are for PCB layouts with reasonable air flow.  
This value may increase or decrease by a factor of 2 depending on PCB layout and/or airflow.  
TA  
Figure 39. ACPL-331J Thermal Model  
Related Application Notes  
AN5314 – Active Miller Clamp  
AN5324 - Desaturation Fault Detection  
AN5315 – “Soft”Turn-off Feature  
AN1043 – Common-Mode Noise : Sources and Solutions  
AN02-0310EN - Plastics Optocoupler Product ESD and Moisture Sensitivity  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.  
AV02-0119EN - October 25, 2012  

相关型号:

ACPL-331J-500E

1.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated (VCE) Desaturation Detection, UVLO, Fault Status Feedback and Active Miller Clamping
AVAGO

ACPL-332J

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated (VCE) Desaturation Detection, UVLO Fault Status Feedback and Active Miller Clamping
AVAGO

ACPL-332J-000E

2.5 Amp Output Current IGBT Gate Driver Optocoupler
AVAGO

ACPL-332J-500E

2.5 Amp Output Current IGBT Gate Driver Optocoupler
AVAGO

ACPL-333J

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated
AVAGO

ACPL-333J-000E

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated
AVAGO

ACPL-333J-500E

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated
AVAGO

ACPL-38JT-000E

Automotive Gate Drive Optocoupler with R2Coupler™ Isolation, 2.5 Amp Output Current, Integrated Desaturation (VCE) Detection and Fault Status Feedback
AVAGO

ACPL-4800

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-000E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, DIP-8
AVAGO

ACPL-4800-060E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO