ACPL-4800-000E [AVAGO]

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler; 高CMR智能功率模块和门驱动接口光电耦合器
ACPL-4800-000E
型号: ACPL-4800-000E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
高CMR智能功率模块和门驱动接口光电耦合器

光电 输出元件 栅 驱动
文件: 总10页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-4800  
High CMR Intelligent Power Module and  
Gate Drive Interface Optocoupler  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
Performance Specified for Fast IPM Applications over  
The ACPL-4800 fast speed optocoupler contains a GaAsP  
LED and photo detector with built-in Schmitt trigger to  
provide logic-compatible waveforms, eliminating the need  
for additional wave shaping. The totem pole output elimi-  
nates the need for a pull up resistor and allows for direct  
drive Intelligent Power Module or gate drive.  
Industrial Temperature Range: -40°C to 100°C  
Wide Operating V Range: 4.5 to 20 Volts  
CC  
Typical Propagation Delays 150 ns  
Maximum Pulse Width Distortion  
PWD = 250 ns  
Propagation Delay Difference  
Functional Diagram  
Min. –100 ns, Max. 250 ns  
30 kV/µs Minimum Common Mode Transient Immunity  
NC  
ANODE  
CATHODE  
NC  
1
2
3
4
8
7
6
5
V
CC  
at V = 1000 V  
CM  
NC  
Hysteresis  
Totem Pole Output (No Pull-up Resistor Required)  
Safety Approval:  
V
O
GND  
UL 1577, 3750 V / 1 minute  
rms  
SHIELD  
CSA File CA88324, Notice #5  
IEC/EN/DIN EN 60747-5-2, V  
= 630 V  
peak  
IORM  
TRUTH TABLE  
(POSITIVE LOGIC)  
Applications  
IPM Interface Isolation  
LED  
V
O
HIGH  
LOW  
ON  
OFF  
Isolated IGBT/MOSFET Gate Drive  
AC and Brushless DC Servo Motor Drives  
Low Power Inverters  
Note: The connection of a 0.1 µF  
bypass capacitor between pins 5  
& 8 is recommended.  
General Digital Isolation  
Schematic  
I
CC  
V
V
CC  
O
8
6
I
I
O
F
2
+
V
F
-
3
GND  
SHIELD  
5
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and /or degradation which may be induced by ESD.  
Ordering Information  
ACPL-4800 is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance  
Notice #5, File CA 88324.  
Option  
RoHS  
Compliant  
IEC/EN/DIN EN  
60747-5-2  
Part number  
Package  
Surface Mount  
Gull Wing  
Tape& Reel  
Quantity  
-000E  
-300E  
-500E  
-060E  
-360E  
-560E  
50 per tube  
50 per tube  
1000 per reel  
50 per tube  
50 per tube  
1000 per reel  
X
X
X
X
X
ACPL-4800  
300mil DIP-8  
X
X
X
X
X
X
X
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
ACPL-4800-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging  
with IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant.  
Example 2:  
ACPL-4800-000E to order product of 300mil DIP package in tube packaging and RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Package Outline Drawings  
DIP-8 Package  
7.62 0.25  
(0.300 0.010)  
9.65 0.25  
(0.380 0.010)  
8
7
6
5
6.35 0.25  
(0.250 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
1
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5˚ TYP.  
+ 0.003)  
- 0.002)  
3.56 0.13  
(0.140 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 0.320  
0.65 (0.025) MAX.  
(0.043 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"V" = OPTION 060  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.54 0.25  
(0.100 0.010)  
2
DIP-8 Package with Gull Wing Surface Mount Option 300  
LAND PATTERN RECOMMENDATION  
1.016 (0.040)  
9.65 0.25  
(0.380 0.010)  
6
8
1
7
5
6.350 0.25  
(0.250 0.010)  
10.9 (0.430)  
2.0 (0.080)  
3
2
4
1.27 (0.050)  
9.65 0.25  
(0.380 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 0.25  
(0.300 0.010)  
+ 0.076  
- 0.051  
0.254  
3.56 0.13  
(0.140 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 0.320  
(0.043 0.013)  
0.635 0.25  
(0.025 0.010)  
12˚ NOM.  
0.635 0.130  
(0.025 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
3
Solder Reflow Temperature Profile (Gull Wing Surface Mount Option 300 Parts)  
300  
PREHEATING RATE 3˚C + 1˚Cꢀ-0.5˚CꢀSEC.  
REFLOW HEATING RATE 2.5˚C 0.5˚CꢀSEC.  
PEAK  
TEMP.  
245˚C  
PEAK  
TEMP.  
240¡C  
PEAK  
TEMP.  
230˚C  
200  
2.5˚C 0.5˚CꢀSEC.  
SOLDERING  
TIME  
200˚C  
30  
160˚C  
SEC.  
150˚C  
140˚C  
30  
SEC.  
3˚C + 1˚Cꢀ-0.5˚C  
100  
PREHEATING TIME  
150˚C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used  
Recommended Pb-Free IR Profile  
TIME WITHIN 5˚C of ACTUAL  
PEAK TEMPERATURE  
t
p
20-40 SEC.  
260 +0ꢀ-5˚C  
Tp  
TL  
217˚C  
RAMP-UP  
3˚CꢀSEC. MAX.  
150 - 200 ˚C  
RAMP-DOWN  
6˚CꢀSEC. MAX.  
Tsmax  
Tsmin  
ts  
tL  
60 to 150 SEC.  
PREHEAT  
60to180SEC.  
25  
t 25˚C to PEAK  
TIME (SECONDS)  
NOTES:  
THE TIME FROM 25 C to PEAK TEMPERATURE = 8 MINUTES MAX.  
Tsmax = 200˚C, Tsmin = 150˚C  
Note: Non-halide flux should be used  
4
Insulation and Safety Related Specifications  
Parameter  
Symbol  
8-Pin DIP  
Unit  
Conditions  
Minimum External Air  
Gap(External Clearance)  
L(101)  
7.1  
mm  
Measured from input terminals to output terminals,  
shortest distance through air.  
Minimum External Track-  
ing (External Creepage)  
L(102)  
7.4  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body.  
Minimum Internal Plastic  
Gap (Internal Clearance)  
0.08  
Through insulation distance, conductor to conductor,  
usually the direct distance between the photo emitter  
and photo detector inside the optocoupler cavity.  
Minimum Internal Tracking  
(Internal Creepage)  
NA  
mm  
mm  
Measured from input terminals to output terminals,  
along internal cavity.  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
200  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
IIIa  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics (Option 060)  
Description  
Symbol  
Characteristic  
Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 V  
for rated mains voltage 450 V  
Climatic Classification  
I-IV  
rms  
I-III  
rms  
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
V
630  
V
V
IORM  
peak  
1181  
PR  
peak  
V
IORM  
x 1.875=V ,100% Production Test with t =1 sec, Partial discharge < 5 pC  
PR m  
Input to Output Test Voltage, Method a*  
x 1.5=V , Type and Sample Test, t =60 sec, Partial discharge < 5 pC  
V
V
945  
V
V
PR  
peak  
V
IORM  
PR  
m
Highest Allowable Over-voltage(Transient Over-voltage t = 10 sec)  
6000  
ini  
IOTM  
peak  
Safety-limiting values - maximum values allowed in the event of a failure.  
Case Temperature  
T
175  
230  
600  
°C  
S
Input Current  
I
mA  
mW  
S, INPUT  
Output Power (refer to Thermal Derating Curve)  
P
S, OUT-  
PUT  
9
Insulation Resistance at T , V = 500 V  
R
S
>10  
W
S
IO  
*
Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section, (IEC/EN/DIN  
EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles.  
Note:  
Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.  
5
Thermal Derating Curve  
800  
PS (mW)  
IS (mA)  
700  
600  
500  
400  
300  
200  
100  
0
0
25 50 75 100 125 150 175 200  
o
TA - CASE TEMPERATURE -  
C
Absolute Maximum Rating  
Parameter  
Symbol  
Min.  
Max.  
Units  
Note  
Storage Temperature  
T
S
-55  
125  
°C  
Operating Temperature  
T
-40  
100  
10  
°C  
A
Average Forward Input Current  
Peak Transient Input Current  
( 1 µs Pulse Width, 300 pps)  
I
I
mA  
F(AVG)  
F(TRAN)  
1.0  
40  
5
A
mA  
V
( 200 µs Pulse Width, < 1% Duty Cycle)  
Reverse Input Voltage  
V
R
Average Output Current  
I
25  
25  
25  
210  
mA  
V
O
Supply Voltage  
V
V
0
CC  
O
Output Voltage  
-0.5  
V
Total Package Power Dissipation  
Lead Solder Temperature (Through Hole Parts Only)  
Solder Reflow Temperature Profile (Surface Mount Parts Only)  
P
mW  
1
T
260 °C for 10 sec., 1.6 mm below seating plane  
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
4.5  
6
Max.  
20  
Units  
V
Power Supply Voltage  
Forward Input Current (ON)  
Forward Input Voltage (OFF)  
Operating Temperature  
V
CC  
I
10  
mA  
V
F(ON)  
V
-
0.8  
100  
F(OFF)  
T
A
-40  
C
6
Electrical Specification  
-40°C T 100°C, 4.5V V 20V, 6mA I  
10 mA, 0V V 0.8 V, unless otherwise specified.  
F(OFF)  
A
CC  
F(ON)  
All Typicals at T = 25°C.  
A
Parameter  
Sym. Min. Typ.  
Max. Units  
0.5  
Test Conditions  
Fig. Note  
Logic Low  
V
V
I
OL  
= 6.4 mA  
1, 3  
OL  
Output Voltage  
Logic High  
Output Voltage  
V
2.4  
2.7  
V
CC  
- 1.1V  
V
I
I
= -2.6 mA  
= -0.4 mA  
2, 3,  
7
OH  
OH  
OH  
Output Leakage  
I
100 µA  
Vcc = 5 V  
I = 10mA  
F
OHH  
Current(V  
=
OUT  
500  
Vcc = 20 V  
V
+0.5V)  
CC  
Logic Low  
Supply Current  
I
I
I
I
1.9  
2.0  
1.5  
1.6  
3.0  
3.0  
2.5  
2.5  
mA  
mA  
mA  
mA  
V
Vcc = 5.5 V  
Vcc = 20 V  
Vcc = 5.5 V  
Vcc = 20 V  
V = 0 V  
F
I = Open  
O
CCL  
CCH  
OSL  
OSH  
Logic High  
Supply Current  
I = 10 mA  
F
I = Open  
O
Logic Low Short Circuit  
Output Current  
25  
50  
V
V
V
V
= Vcc = 5.5 V  
= Vcc = 20 V  
V =0V  
F
2
O
O
Logic High Short  
Circuit Output Current  
-25  
-50  
1.7  
= 5.5 V  
= 20 V  
I =6mA  
2
CC  
CC  
F
V =GND  
O
Input Forward Voltage  
V
1.5  
T = 25 C  
A
I =6mA  
F
4
F
1.85  
Input Reverse  
BV  
5
V
I = 10 µA  
R
R
Breakdown Voltage  
Input Diode  
Temperature Coefficient DT  
DV  
-1.7  
60  
mV/  
°C  
I = 6 mA  
F
F
A
Input Capacitance  
C
IN  
pF  
f = 1 MHz, V = 0 V  
3
F
7
Switching Specifications (AC)  
-40°C T 100°C, 4.5V V 20V, 6mA I  
10 mA, 0V V  
0.8V.  
A
CC  
F(ON)  
F(OFF)  
All Typicals at T = 25°C, I  
= 6 mA unless otherwise specified.  
A
F(ON)  
Parameter  
Sym.  
Min.  
Typ. Max. Units Test Conditions  
Fig.  
Note  
Propagation Delay Time  
to Logic Low Output  
Leve  
t
150 350 ns  
With Peaking Capacitor  
5,6  
5
PHL  
PLH  
Propagation Delay Time  
to Logic High Output  
Level  
t
110 350 ns  
With Peaking Capacitor  
5,6  
5
Pulse Width Distortion  
PWD  
PDD  
250 ns  
250 ns  
| t  
- t  
|
8
PHL PLH  
Propagation Delay Dif-  
ference Between Any 2  
Parts  
-100  
10  
Output Rise Time (10-  
90%)  
t
t
16  
20  
ns  
ns  
5,8  
5,8  
9
r
f
Output Fall Time (90-  
10%)  
Logic High Common  
Mode Transient Immu-  
nity  
|CM |  
-30000  
30000  
V/µs |V | = 1000 V, I = 6.0 mA,  
6
6
H
CM  
F
V
= 5 V, T = 25 C  
CC  
A
Logic Low Common  
Mode Transient Immu-  
nity  
|CM |  
V/µs |V | = 1000 V, V = 0 V, V  
CC  
9
L
CM  
F
= 5 V, T = 25 C  
A
Package Characteristics  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
RH < 50%, t = 1 min.T  
A
= 25°C  
Fig. Note  
Input-Output Momentary  
Withstand Voltage*  
V
3750  
V
rms  
4,7  
ISO  
12  
Input-Output Resistance  
Input-Output Capacitance  
R
10  
W
V
= 500 Vdc  
4
4
I-O  
I-O  
C
0.6  
pF  
f = 1 MHz, V = 0 Vdc  
I-O  
I-O  
*
The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage  
rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level  
safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,publication number 5963-2203E.  
Notes:  
1. Derate total package power dissipation, P , linearly above 70°C free-air temperature at a rate of 4.5 mW/°C.  
T
2. Duration of output short circuit time should not exceed 10 ms.  
3. Input capacitance is measured between pin 2 and pin 3.  
4. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.  
5. The t  
propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the  
PLH  
output pulse. The t  
propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing  
PHL  
edge of the output pulse.  
C is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, V > 2.0 V. C  
MH  
6.  
O
ML  
is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, V < 0.8 V.  
O
7. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for one second (leakage detec-  
tion current limit, II-O 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN  
60747-5-2 Insulation Characteristics Table, if applicable.  
8. Pulse Width Distortion (PWD) is defined as |t  
- t  
| for any given device.  
PHL PLH  
9. Use of a 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.  
10. The difference between t  
and t  
between any two devices under the same test condition.  
PLH  
PHL  
8
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
0
VCC = 4.5V  
IF = 6mA  
VCC = 4.5/20V  
VF = 0V  
-5  
IO = 6.4mA  
-10  
VCC = 4.5V  
VO = 2.7V  
VCC = 20V  
-15  
-20  
-25  
VO = 2.4V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TA - TEMPERATURE - ˚C  
TA - TEMPERATURE - ˚C  
Figure 1. Typical Logic Low Output Voltage vs. Temputer  
Figure 2. Typical Logic High Output Current vs. Temputer  
4.5  
4
1000  
TA = 25 ˚C  
IO = -2.6mA  
100  
IF  
3.5  
3
+
VF  
10  
-
2.5  
2
1.0  
0.1  
1.5  
1
TA = 25C  
VCC = 4.5V  
0.01  
0.5  
0
IO = 6.4mA  
1
0.001  
0
2
3
4
5
1.1  
1.2  
1.3  
1.4  
1.5  
VF - FORWARD VOLTAGE - V  
IF - INPUT CURRENT - mA  
Figure 3. Typical Output Voltage vs. Forward Input Current  
Figure 4. Typical Input Diode Forward Characteristic  
PULSE GEN.  
tr = tf 5 ns  
f = 100 kHz  
10 % DUTY  
CYCLE  
VO = 5 V  
ZO = 50  
VCC  
=
THE PROBE AND JIG CAPACITANCES  
ARE INCLUDED IN C1 AND C2.  
OUTPUT VO  
MONITORING  
NODE  
* 0.1 µF BYPASS  
R
1.10 k 681 Ω  
3 mA 5 mA  
330 Ω  
10 mA  
5 V  
1
IF (ON)  
1
2
3
4
8
7
6
5
*
619 Ω  
ALL DIODES ARE 1N916 OR 1N3064.  
D
1
INPUT  
MONITORING  
NODE  
I
(ON)  
F
D2  
D3  
D4  
C2  
=
INPUT IF  
50 % I F (ON)  
0 mA  
15 pF  
5 kΩ  
R1  
C1  
120 pF  
=
t PLH  
tPHL  
VOH  
1.3 V  
VOL  
OUTPUT VO  
Figure 5. Test Circuit for tPLH,tPHL,tr,tf  
9
230  
210  
190  
170  
150  
130  
110  
90  
25  
20  
15  
10  
5
TA = 25oC  
IO = -2.6mA  
tPHL  
VCC = 20V  
IF = 10mA  
tPLH  
70  
0
50  
-60  
-40 -20  
0
20  
40  
60  
80  
100 120  
0
5
10  
15  
20  
25  
TA - TEMPERATURE - C  
VCC - SUPPLY VOLTAGE - V  
Figure 6. Typical Propagation Delays vs.Temperature.  
Figure 7. Typical Logic High Output Voltage vs. Supply Voltage  
200  
180  
160  
VCC  
IF (mA)  
10  
1
2
3
4
8
7
6
5
A
0.1 µF  
BYPASS  
6
B
tPHL  
140  
RIN  
120  
100  
OUTPUT VO  
MONITORING  
NODE  
+
-
VFF  
IF (mA)  
6
10  
VCM  
-
80  
+
PULSE GENERATOR  
tPLH  
60  
40  
TA = 25oC  
VCM (PEAK)  
|VCM|  
20  
0 V  
SWITCH AT A: IF = 5 mA  
VOH  
OUTPUT VO  
VOL  
0
VO (MIN.)  
SWITCH AT B: VF = 0 V  
VO (MAX.)  
0
5
10  
15  
20  
25  
VCC - SUPPLY VOLTAGE - V  
Figure 8. Typical Propogation Delay vs. Supply Voltage  
Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.  
Data subject to change. Copyright © 2006 Avago Technologies Limited. All rights reserved.  
AV01-0193EN - June 13, 2007  

相关型号:

ACPL-4800-060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, DIP-8
AVAGO

ACPL-4800-060E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-300E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-360E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, DIP-8
AVAGO

ACPL-4800-500E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-560E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-5160

2.5 Amp Gate Drive Optocoupler with Integrated (VCE) Desaturation Detection and Fault Status Feedback
AVAGO

ACPL-5161

2.5 Amp Gate Drive Optocoupler with Integrated (VCE) Desaturation Detection and Fault Status Feedback
AVAGO

ACPL-5600L

Hermetically Sealed, 3.3V High Speed, High CMR, Logic Gate Optocouplers
AVAGO

ACPL-5600L-100

LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-5600LOPTION-100

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, HERMETIC SEALED, DIP-8
AVAGO