ACPL-38JT-000E [AVAGO]

Automotive Gate Drive Optocoupler with R2Coupler™ Isolation, 2.5 Amp Output Current, Integrated Desaturation (VCE) Detection and Fault Status Feedback; 汽车栅极驱动光电耦合器与R2Couplerâ ?? ¢隔离, 2.5安培输出电流,集成去饱和( VCE)检测和故障状态反馈
ACPL-38JT-000E
型号: ACPL-38JT-000E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Automotive Gate Drive Optocoupler with R2Coupler™ Isolation, 2.5 Amp Output Current, Integrated Desaturation (VCE) Detection and Fault Status Feedback
汽车栅极驱动光电耦合器与R2Couplerâ ?? ¢隔离, 2.5安培输出电流,集成去饱和( VCE)检测和故障状态反馈

栅极 光电 栅极驱动
文件: 总33页 (文件大小:561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-38JT  
2
Automotive Gate Drive Optocoupler with R Coupler™ Isolation,  
2.5 Amp Output Current, Integrated Desaturation (V ) Detection  
CE  
and Fault Status Feedback  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
Avago’s automotive 2.5 Amp Gate Drive Optocoupler with 2.5 A maximum peak output current  
Integrated Desaturation (V ) Detection and Fault Status  
CE  
Drive IGBTs up to I = 150 A, V = 1200 V  
C
CE  
Feedback makes automotive IGBT V fault protection  
compact, affordable, and easy-to-implement while satis-  
CE  
Optically isolated, FAULT status feedback  
fying automotive AEC-Q100 Grade 1 semiconductor re- SO-16 package  
quirement.  
CMOS/TTL compatible  
2
Avago R Coupler isolation products provide the rein-  
500 ns max. switching speeds  
“SoftIGBT turn-off  
forced insulation and reliability needed for critical in auto-  
motive and high temperature industrial applications  
Integrated fail-safe IGBT protection  
Functional Diagram  
– Desat (VCE) detection  
– Under Voltage Lock-Out protection (UVLO) with  
hysteresis  
VLED1+ VLED1–  
7
8
13  
VCC2  
VC  
User configurable: inverting, noninverting, auto-reset,  
UVLO  
11  
10  
auto-shutdown  
D
R
I
V
E
R
Wide operating V range: 15 to 30 Volts  
LED1  
CC  
VOUT  
DESAT  
2
3
VIN+  
VIN–  
-40°C to +125°C operating temperature range  
14  
DESAT  
15 kV/s min. Common Mode Rejection (CMR) at V  
=
CM  
9, 12  
VEE  
1500 V  
SHIELD  
LED2  
4
Qualified to AEC-Q100 Grade 1 Test Guidelines  
VCC1  
Regulatory approvals:  
– UL1577, CSA  
5
6
VE  
RESET  
FAULT  
16  
15  
FAULT  
– IEC/EN/DIN EN 60747-5-5  
1
GND1  
VLED2+  
SHIELD  
Applications  
Figure 1. ACPL-38JT Functional Diagram  
Automotive Isolated IGBT/MOSFET Inverter gate drive  
Automotive DC-DC Converter  
AC and brushless dc motor drives  
Industrial inverters for power supplies and motor  
controls  
Un-interruptible Power Supplies  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
ACPL-38JT is UL Recognized with 5000 Vrms for 1 minute per UL1577.  
Part Number  
RoHS Compliant  
-000E  
Package  
Surface Mount  
Tape & Reel  
Quantity  
X
X
45 per tube  
850 per reel  
ACPL-38JT  
SO-16  
-500E  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
ACPL-38JT-500E to order product of SO-16 Surface Mount RoHS compliant package in Tape and Reel packaging.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Typical Fault Protected IGBT Gate Drive Circuit  
The ACPL-38JT is an easy-to-use, intelligent gate driver which makes IGBT V fault protection compact, affordable, and  
CE  
easy-to-implement. Features such as user configurable inputs, integrated V detection, under voltage lockout (UVLO),  
CE  
“softIGBT turn-off and isolated fault feedback provide maximum design flexibility and circuit protection.  
Boundary  
Isolation  
Boundary  
Isolation  
Boundary  
Isolation  
DC-DC  
Converter  
Battery  
Boundary  
Isolation  
Boundary  
Isolation  
Boundary  
Isolation  
Boundary  
Isolation  
FAULT  
Micro-Controller  
Typical Application Block Diagram of a motor control system.  
2
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND1  
VIN+  
VIN  
VE  
VLED2+  
DESAT  
VCC2  
0.1μF 0.1μF  
CBLANK  
*
0.1μF  
DDESAT  
100 Ω  
+ VF  
μC  
VCC1  
0.1μF  
*
RF  
RESET  
FAULT  
VLED+  
VEE  
+
RG  
+
VCE  
VC  
Q1  
Q2  
VOUT  
VEE  
RPULL-DOWN  
+
*
VLED  
Typical de-saturation protected gate drive circuit, non-inverting.  
Description of Operation during Fault Condition  
Output Control  
1. DESAT terminal monitors the IGBT V voltage through The outputs (V  
and FAULT) of the ACPL-38JT are con-  
CE  
OUT  
D
.
trolled by the combination of V , UVLO and a detected  
IGBT Desat condition. As indicated in the below table, the  
ACPL-38JT can be configured as inverting or non-invert-  
DESAT  
IN  
2. When the voltage on the DESAT terminal exceeds 7  
volts, the IGBT gate voltage (V ) is slowly lowered.  
OUT  
ing using the V  
or V inputs respectively. When an  
IN+  
IN-  
3. FAULT output goes low, notifying the microcontroller  
of the fault condition.  
inverting configuration is desired, V must be held high  
IN+  
and V toggled. When a non-inverting configuration  
IN-  
4. Microcontroller takes appropriate action.  
is desired, V must be held low and V toggled. Once  
IN- IN+  
UVLO is not active (V  
- V > V  
), V  
UVLO  
is allowed  
OUT  
CC2  
E
to go high, and the DESAT (pin 14) detection feature of  
the ACPL-38JT will be the primary source of IGBT protec-  
tion. UVLO is needed to ensure DESAT is functional. Once  
V
> 11.6 V, DESAT will remain functional until V  
UVLO+  
UVLO-  
< 12.4 V. Thus, the DESAT detection and UVLO features of  
the ACPL-38JT work in conjunction to ensure constant  
IGBT protection.  
Desat  
Pin 6  
Condition (FAULT)  
UVLO  
(V - V )  
CC2  
Detected  
on Pin 14  
Output  
V
IN+  
V
V
OUT  
IN-  
E
X
X
Low  
X
X
X
Active  
X
X
X
Yes  
X
X
Low  
X
Low  
Low  
Low  
X
High  
Low  
X
X
X
Low  
High  
Not Active  
No  
High  
High  
3
Product Overview Description  
manufactured on a high voltage BiCMOS/Power DMOS  
process. The forward optical signal path, as indicated by  
LED1, transmits the gate control signal. The return optical  
signal path, as indicated by LED2, transmits the fault  
status feedback signal. Both optical channels are com-  
pletely controlled by the input and output ICs respective-  
ly, making the internal isolation boundary transparent to  
the microcontroller.  
The ACPL-38JT (shown in Figure 1) is a highly integrated  
power control device that incorporates all the necessary  
components for a complete, isolated IGBT gate drive  
circuit with fault protection and feedback into one SO-16  
package. TTL input logic levels allow direct interface with  
a microcontroller, and an optically isolated power output  
stage drives IGBTs with power ratings of up to 150 A and  
1200 V. A high speed internal optical link minimizes the  
propagation delays between the microcontroller and  
the IGBT while allowing the two systems to operate at  
very large common mode voltage differences that are  
common in industrial motor drives and other power  
switching applications. An output IC provides local pro-  
tection for the IGBT to prevent damage during overcur-  
rents, and a second optical link provides a fully isolated  
fault status feedback signal for the microcontroller. A built  
in “watchdog” circuit monitors the power stage supply  
voltage to prevent IGBT caused by insufficient gate drive  
voltages. This integrated IGBT gate driver is designed to  
increase the performance and reliability of a motor drive  
without the cost, size, and complexity of a discrete design.  
Under normal operation, the input gate control signal  
directly controls the IGBT gate through the isolated output  
detector IC. LED2 remains off and a fault latch in the input  
buffer IC is disabled. When an IGBT fault is detected, the  
output detector IC immediately begins a “soft” shutdown  
sequence, reducing the IGBT current to zero in a controlled  
manner to avoid potential IGBT damage from inductive  
over-voltages. Simultaneously, this fault status is transmit-  
ted back to the input buffer IC via LED2, where the fault  
latch disables the gate control input and the active low  
fault output alerts the microcontroller.  
During power-up, the Under Voltage Lockout (UVLO)  
feature prevents the application of insufficient gate  
voltage to the IGBT, by forcing the ACPL-38JT’s output  
Two light emitting diodes and two integrated circuits  
housed in the same SO-16 package provide the input  
control circuitry, the output power stage, and two  
optical channels. The input Buffer IC is designed on a  
bipolar process, while the output Detector IC is designed  
low. Once the output is in the high state, the DESAT (V  
)
CE  
detection feature of the ACPL-38JT provides IGBT pro-  
tection. Thus, UVLO and DESAT work in conjunction to  
provide constant IGBT protection.  
4
Package Pin Out  
1
2
3
4
5
6
7
8
GND1  
VE 16  
VLED2+ 15  
DESAT 14  
VCC2 13  
VEE 12  
VIN+  
VIN  
VCC1  
RESET  
FAULT  
VLED1+  
VLED1  
VC 11  
VOUT 10  
VEE  
9
Pin Descriptions  
Symbol Description  
Symbol Description  
VIN+  
Noninverting gate drive voltage output (VOUT  
control input.  
)
VE  
Common (IGBT emitter) output supply voltage.  
VIN-  
Inverting gate drive voltage output (VOUT  
control input.  
)
VLED2+  
LED 2 anode. This pin must be left unconnected  
for guaranteed data sheet performance.  
(For optical coupling testing only.)  
VCC1  
Positive input supply voltage. (4.5 V to 5.5 V)  
DESAT  
Desaturation voltage input. When the voltage  
on DESAT exceeds an internal reference voltage  
of 7V while the IGBT is on, FAULT output is changed  
from a high impedance state to a logic low state  
within 5 s. See Note 25.  
GND1  
RESET  
Input Ground.  
VCC2  
VC  
Positive output supply voltage.  
FAULT reset input. A logic low input for at least  
0.1 s, asynchronously resets FAULT output high  
and enables VIN. Synchronous control of RESET  
relative to VIN is required. RESET is not affected  
by UVLO. Asserting RESET while VOUT is high does  
Collector of output pull-up triple-darlington  
transistor. It is connected to VCC2 directly or through  
a resistor to limit output turn-on current.  
not affect VOUT  
.
FAULT  
Fault output. FAULT changes from a high impedance VOUT  
state to a logic low output within 5 s of the voltage  
on the DESAT pin exceeding an internal reference  
voltage of 7V. FAULT output remains low until RESET  
is brought low. FAULT output is an open collector  
which allows the FAULT outputs from all HCPL-316Js  
in a circuit to be connected together in a “wired OR”  
forming a single fault bus for interfacing directly to  
the micro-controller.  
Gate drive voltage output.  
VLED1+  
LED 1 anode. This pin must be left unconnected  
for guaranteed data sheet performance.  
(For optical coupling testing only.)  
VEE  
Output supply voltage.  
VLED1-  
LED 1 cathode. This pin must be connected to  
ground.  
5
Package Outline Drawings  
16-Lead Surface Mount  
0.018  
(0.457)  
0.050  
(1.270)  
LAND PATTERN RECOMMENDATION  
16 15 14 13 12 11 10 9  
TYPE NUMBER  
DATE CODE  
A 38JT  
YYWW  
EE  
0.458 (11.63)  
0.295 0.010  
(7.493 0.254)  
0.085 (2.16)  
1
2 3 4 5 6 7 8  
0.406 0.10  
(10.312 0.254)  
EXTENDED  
DATECODE FOR  
LOT TRACKING  
0.025 (0.64)  
0.345 0.010  
(8.763 0.254)  
ALL LEADS  
9°  
TO BE  
COPLANAR  
0.002  
0.138 0.005  
(3.505 0.127)  
0.018  
(0.457)  
08°  
0.008 0.003  
(0.203 0.076)  
STANDOFF  
0.025 MIN.  
0.408 0.010  
(10.363 0.254)  
Package Characteristics  
All specifications and figures are at the nominal (typical) operating conditions of V = 5 V, V - V = 30 V, V - V = 0 V,  
CC1  
CC2 EE  
E
EE  
and T = +25°C.  
A
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Note  
Input-Output Momentary Withstand  
Voltage  
VISO  
5000  
VRMS  
RH < 50%, t = 1 min.  
TA = 25°C  
1, 2, 3  
Resistance (Input-Output)  
Capacitance (Input-Output)  
RI-O  
1014  
1.3  
VI-O = 500 Vdc  
3
CI-O  
pF  
f = 1 MHz  
Output IC-to-Pins 9 & 12  
Thermal Resistance  
O9-12  
30  
°C/W  
TA = 100°C  
Input IC-to-Pin 1 Thermal Resistance  
I1  
60  
°C/W  
TA = 100°C  
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.  
The ACPL-38JT is approved by the following organizations:  
UL  
IEC/EN/DIN EN 60747-5-5  
Approved under UL 1577, component recognition Approved under:  
program up to V = 5000 V  
release.  
expected prior to product  
ISO  
RMS  
IEC 60747-5-5  
EN 60747-5-5  
CSA  
DIN EN 60747-5-5  
Approved under CSA Component Acceptance Notice #5,  
File CA 88324.  
6
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics  
Description  
Symbol  
Characteristic  
Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 300 Vrms  
for rated mains voltage ≤ 450 Vrms  
I - IV  
I - III  
I - II  
for rated mains voltage ≤ 600 Vrms  
Climatic Classification  
55/125/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b[2] VIORM x 1.875 = VPR  
VIORM  
VPR  
1230  
2306  
VPEAK  
VPEAK  
,
100% Production Test with tm = 10sec, Partial discharge < 5 pC  
Input to Output Test Voltage, Method a[2] VIORM x 1.6 = VPR  
Type and Sample Test, tm = 60 sec, Partial discharge < 5 pC  
,
VPR  
1968  
8000  
VPEAK  
VPEAK  
Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec)  
VIOTM  
Safety-limiting values – maximum values allowed in the event of a failure  
TS  
175  
400  
1200  
°C  
mA  
mW  
Case Temperature  
Input Current[3]  
Output Power[3]  
IS, INPUT  
PS, OUTPUT  
Insulation Resistance at TS, VIO = 500 V  
RS  
>109  
Notes:  
1. Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.  
Surface Mount Classification is Class A in accordance with CECCOO802.  
2. Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section, (IEC/EN/  
DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.  
3. Refer to the following figure for dependence of P and I on ambient temperature.  
S
S
1400  
1200  
1000  
PS, OUTPUT  
PS, INPUT  
800  
600  
400  
200  
0
0
25  
50  
75  
100 125 150 175 200  
TS – CASE TEMPERATURE – °C  
Figure 2. Dependence of safety limiting values on temperature.  
7
Insulation and Safety Related Specifications  
Parameter  
Symbol  
Value  
Units  
Conditions  
Minimum External Air Gap (Clearance)  
L(101)  
8.3  
mm  
Measured from input terminals to output terminals,  
shortest distance through air.  
Minimum External Tracking (Creepage)  
L(102)  
8.3  
0.5  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
Through insulation distance conductor to conductor,  
usually the straight line distance thickness between  
the emitter and detector.  
Tracking Resistance  
(Comparative Tracking Index)  
CTI  
>175  
IIIa  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110)  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-55  
-40  
Max.  
150  
125  
150  
2.5  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
Output IC Junction Temperature  
Peak Output Current  
Fault Output Current  
Positive Input Supply Voltage  
Input Pin Voltages  
TS  
TA  
°C  
TJ  
°C  
4
5
|IO(peak)  
IFAULT  
VCC1  
|
A
8
mA  
Volts  
Volts  
-0.5  
-0.5  
5.5  
VIN+, VIN- and  
VRESET  
VCC1  
Total Output Supply Voltage  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Gate Drive Output Voltage  
Collector Voltage  
(VCC2 - VEE  
(VE - VEE  
)
-0.5  
-0.5  
-0.5  
-0.5  
VEE + 5  
VE  
35  
Volts  
Volts  
Volts  
Volts  
Volts  
Volts  
mW  
)
15  
6
4
(VCC2 - VE)  
Vo(peak)  
VC  
35 - (VE - VEE  
VCC2  
)
VCC2  
DESAT Voltage  
VDESAT  
PO  
VE + 10  
600  
Output IC Power Dissipation  
Input IC Power Dissipation  
Solder Reflow Temperature Profile  
PI  
150  
mW  
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC1  
Min.  
4.5  
Max.  
5.5  
30  
Units  
Volts  
Volts  
Volts  
Volts  
Volts  
°C  
Notes  
Input Supply Voltage  
28  
9
Total Output Supply Voltage  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Collector Voltage  
(VCC2 - VEE  
)
15  
(VE - VEE  
)
0
15  
6
(VCC2 - VE)  
15  
30 – (VE - VEE  
VCC2  
)
VC  
TA  
VEE + 6  
-40  
Operating Temperature  
125  
8
Electrical Specifications  
Recommended operating conditions unless otherwise specified: T = -40°C to +125°C, all typical values at T = 25°C,  
A
A
V
= 5 V, and V  
- V = 30 V, V - V = 0 V; all Minimum/Maximum specifications are at Recommended Operating  
CC1  
CC2  
EE  
E
EE  
Conditions.  
Parameter  
Symbol  
Min.  
Typ.*  
Max.  
Units Test Conditions  
Fig.  
Note  
Logic Low Input Voltages  
VIN+L, VIN-L  
VRESETL  
,
0.8  
V
Logic High Input Voltages  
Logic Low Input Currents  
VIN+H, VIN-H  
VRESETH  
,
2.0  
-0.5  
5.0  
-40  
V
IIN+L, IIN-L  
,
-0.4  
12  
mA  
mA  
A  
A
VIN = 0.4 V  
IRESETL  
FAULT Logic Low Output  
Current  
IFAULTL  
IFAULTH  
IOH  
VFAULT = 0.4 V  
VFAULT = VCC1  
29  
30  
FAULT Logic High Output  
Current  
High Level Output Current  
-0.5  
-2.0  
-1.5  
2.3  
VOUT = VCC2 - 4 V  
VOUT = VCC2 - 15 V  
3, 8,  
31  
7
5
Low Level Output Current  
IOL  
0.5  
2.0  
A
VOUT = VEE + 2.5 V  
4, 9,  
32  
7
5
V
OUT = VEE + 15 V  
Low Level Output Current  
High Level Output Voltage  
IOLF  
VOH  
90  
160  
230  
mA  
V
VOUT - VEE = 14 V  
IOUT = -100 mA  
IOUT = -650 A  
IOUT = 0  
5, 33  
6, 8,  
34  
8
VC - 3.5  
VC -2.9  
VC - 2.5  
VC - 2.0  
VC - 1.5  
VC - 1.2  
VC  
9, 10, 11  
V
V
Low Level Output Voltage  
VOL  
0.17  
17  
0.5  
V
IOUT = 100 mA  
7, 9, 35 26  
High Level Input Supply  
Current  
ICC1H  
22  
mA  
VIN+ = VCC1 = 5.5 V, 10, 36  
VIN- = 0 V  
Low Level Input Supply  
Current  
ICCIL  
ICC2  
6
11  
5
mA  
mA  
VIN+ = VIN- = 0 V,  
VCC1 = 5.5 V,  
10, 37  
Output Supply Current  
2.5  
VOUT open  
11, 12,  
38, 39  
11  
Low Level Collector Current  
High Level Collector Current  
ICL  
0.3  
1.0  
1.3  
3.0  
0
mA  
mA  
mA  
mA  
mA  
IOUT = 0  
15, 58  
15, 57  
15, 56  
14, 60  
14, 59  
13, 40  
27  
27  
27  
ICH  
0.3  
IOUT = 0  
1.8  
IOUT = -650 A  
VE Low Level Supply Current  
IEL  
-0.7  
-0.5  
-0.4  
-0.14  
VE High Level Supply Current IEH  
0
25  
Blanking Capacitor Charging ICHG  
Current  
-0.13  
-0.18  
-0.25  
-0.25  
-0.33  
-0.33  
mA  
mA  
VDESAT = 0 - 6 V  
11, 12  
VDESAT = 0 - 6 V,  
TA = 25°C - 125°C  
Blanking Capacitor Discharge IDSCHG  
Current  
10  
50  
mA  
VDESAT = 7 V  
41  
UVLO Threshold  
UVLO Hysteresis  
DESAT Threshold  
VUVLO+  
VUVLO-  
11.6  
0.4  
6.5  
12.3  
11.1  
13.5  
12.4  
V
V
VOUT > 5 V  
VOUT < 5 V  
42  
9, 11, 13  
9, 11, 14  
(VUVLO+  
1.2  
V
42  
VUVLO-  
)
VDESAT  
7.0  
7.5  
V
VCC2 - VE > VUVLO-  
16, 43  
11  
9
Switching Specifications  
Unless otherwise noted, all typical values at T = 25°C, V  
= 5 V, and V - V = 30 V, V - V = 0 V; all Minimum/  
CC2 EE E EE  
A
CC1  
Maximum specifications are at Recommended Operating Conditions.  
Parameter  
Symbol  
Min.  
Typ.*  
Max.  
Units Test Conditions  
Fig.  
Note  
VIN to High Level Output  
Propagation Delay Time  
tPLH  
0.10  
0.30  
0.50  
s  
Rg = 10   
Cg = 10 nF  
f = 10 kHz  
17,18,19,  
20,21,22,  
44, 53, 54  
15  
VIN to Low Level Output  
Propagation Delay Time  
tPHL  
0.10  
0.32  
0.02  
0.5  
s  
Duty Cycle = 50%  
Pulse Width Distortion  
PWD  
-0.30  
0.30  
0.35  
s  
s  
16,17  
17,18  
Propagation Delay Difference (tPHL-tPLH) PDD -0.35  
Between Any 2 Parts  
10% to 90% Rise Time  
90% to 10% Fall Time  
tr  
0.1  
0.1  
0.3  
s  
s  
s  
44  
tf  
44  
DESAT Sense to 90% VOUT  
Delay  
tDESAT(90%)  
0.5  
3.0  
5
Rg = 10   
23, 55  
19  
Cg = 10 nF  
DESAT Sense to 10% VOUT  
Delay  
tDESAT(10%)  
tDESAT(FAULT)  
tDESAT(LOW)  
tRESET(FAULT)  
2.0  
1.8  
0.25  
7
s  
s  
s  
s  
VCC2 - VEE = 30 V  
24, 26, 27  
45, 55  
DESAT Sense to Low Level  
FAULT Signal Delay  
25, 46, 55  
20  
21  
22  
DESAT Sense to DESAT Low  
Propagation Delay  
55  
RESET to High Level FAULT  
Signal Delay  
3
20  
28, 47, 55  
RESET Signal Pulse Width  
UVLO to VOUT High Delay  
UVLO to VOUT Low Delay  
PWRESET  
tUVLO ON  
tUVLO OFF  
0.1  
s  
s  
s  
4.0  
6.0  
30  
VCC2 = 1.0 ms ramp 48  
13  
14  
23  
Output High Level Common |CMH|  
Mode Transient Immunity  
15  
15  
kV/s TA = 25°C,  
VCM = 1500 V,  
CC2 = 30 V  
49, 50, 51,  
52  
V
Output Low Level Common  
Mode Transient Immunity  
|CML|  
30  
kV/s TA = 25°C,  
24  
V
CM = 1500 V,  
VCC2 = 30 V  
10  
Notes:  
1.  
2.  
In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 Vrms for 1 second.  
The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating refer to your equipment level safety specification or IEC/EN/DIN EN 60747-5-5 Insulation  
Characteristics Table.  
3.  
4.  
Device considered a two terminal device: pins 1 - 8 shorted together and pins 9 - 12 shorted together.  
In order to achieve the absolute maximum power dissipation specified, pins 1, 9, and 12 require ground plane connections and may require  
airflow. See the Thermal Model section in the application notes at the end of this data sheet for details on how to estimate junction temperature  
and power dissipation. In most cases the absolute maximum output IC junction temperature is the limiting factor. The actual power dissipation  
achievable will depend on the application environment (PCB Layout, air flow, part placement, etc.). See the Recommended PCB Layout section  
in the application notes for layout considerations. Output IC power dissipation is derated linearly at 10 mW/°C above 90°C. Input IC power  
dissipation does not require de-rating.  
5.  
Maximum pulse width = 10 μs, maximum duty cycle = 0.2%. This value is intended to allow for component tolerances for designs with IO  
peak minimum = 2.0 A. See Applications section for additional details on I peak. De-rate linearly from 3.0 A at +25°C to 2.5 A at +125°C. This  
OH  
compensates for increased I  
This supply is optional. Required only when negative gate drive is implemented.  
Maximum pulse width = 50 s, maximum duty cycle = 0.5%.  
See the Slow IGBT Gate Discharge During Fault Condition section in the applications notes at the end of this data sheet for further details.  
due to changes in V over temperature.  
OPEAK  
OL  
6.  
7.  
8.  
9.  
15 V is the recommended minimum operating positive supply voltage (V  
- V ) to ensure adequate margin in excess of the maximum V  
CC2  
E UVLO+  
threshold of 13.5 V. For High Level Output Voltage testing, V is measured with a dc load current. When driving capacitive loads, V will  
OH  
OH  
approach V as I approaches zero units.  
CC  
OH  
10. Maximum pulse width = 1.0 ms, maximum duty cycle = 20%.  
11. Once V of the ACPL-38JT is allowed to go high (V - V > V ), the DESAT detection feature of the ACPL-38JT will be the primary source of  
UVLO  
OUT  
CC2  
E
IGBT protection. UVLO is needed to ensure DESAT is functional. Once V  
> 11.6 V, DESAT will remain functional until V  
- < 12.4 V. Thus, the  
UVLO+  
UVLO  
DESAT detection and UVLO features of the ACPL-38JT work in conjunction to ensure constant IGBT protection.  
12. See the Blanking Time Control section in the applications notes at the end of this data sheet for further details.  
13. This is the “increasing(i.e. turn-on or “positive goingdirection) of V  
14. This is the “decreasing(i.e. turn-off or “negative goingdirection) of V  
15. This load condition approximates the gate load of a 1200 V/75A IGBT.  
- V .  
CC2  
E
- V .  
E
CC2  
16. Pulse Width Distortion (PWD) is defined as |t  
- t | for any given unit.  
PHL PLH  
17. As measured from V , V to V  
.
IN+ IN-  
OUT  
18. The difference between t  
and t between any two ACPL-38JT parts under the same test conditions.  
PHL  
PLH  
19. Supply Voltage Dependent.  
20. This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes low.  
21. This is the amount of time the DESAT threshold must be exceeded before V begins to go low, and the FAULT output to go low.  
OUT  
22. This is the amount of time from when RESET is asserted low, until FAULT output goes high. The minimum specification of 3 μs is the guaranteed  
minimum FAULT signal pulse width when the ACPL-38JT is configured for Auto-Reset. See the Auto-Reset section in the applications notes at the  
end of this data sheet for further details.  
23. Common mode transient immunity in the high state is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the  
CM  
CM  
output will remain in the high state (i.e., V > 15 V or FAULT > 2 V). A 100 pF and a 3Kpull-up resistor is needed in fault detection mode.  
O
24. Common mode transient immunity in the low state is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the  
CM  
CM  
output will remain in a low state (i.e., V < 1.0 V or FAULT < 0.8 V).  
O
25. Does not include LED2 current during fault or blanking capacitor discharge current.  
26. To clamp the output voltage at V - 3 V , a pull-down resistor between the output and V is recommended to sink a static current of 650 A  
CC  
BE  
EE  
while the output is high. See the Output Pull-Down Resistor section in the application notes at the end of this data sheet if an output pull-down  
resistor is not used.  
27. The recommended output pull-down resistor between V  
and V does not contribute any output current when V  
= V .  
OUT EE  
OUT  
EE  
28. In most applications V will be powered up first (before V ) and powered down last (after V ). This is desirable for maintaining control of the  
CC1  
CC2  
CC2  
IGBT gate. In applications where V  
voltage (minimum 4.5 V) to avoid any momentary instability at the output during V  
is powered up first, it is important to ensure that Vin+ remains low until V  
reaches the proper operating  
CC2  
CC1  
ramp-up or ramp-down.  
CC1  
11  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
7
6
5
4
3
2
1
0
VOUT=VEE + 2.5V  
VOUT=VEE + 15V  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
TA - TEMPERATURE - °C  
TA - TEMPERATURE - °C  
Figure 3. IOH vs. temperature.  
Figure 4. IOL vs. temperature.  
200  
175  
150  
0
Iout = -100mA  
-1  
-2  
-3  
-4  
125  
100  
75  
-40°C  
25°C  
50  
100°C  
25  
0
5
10  
15  
20  
25  
30  
-40 -20  
0
20  
40  
60  
80 100 120 140  
VOUT – OUTPUT VOLTAGE – V  
TA - TEMPERATURE - °C  
Figure 5. IOLF vs. VOUT  
.
Figure 6. VOH vs. Temperature.  
29.0  
28.5  
28.0  
27.5  
27.0  
26.5  
0.25  
0.20  
0.15  
0.10  
0.05  
-40°C  
+25°C  
+125°C  
0.00  
-40  
10  
60  
110  
160  
0
0.2  
0.4  
0.6  
0.8  
TA - TEMPERATURE - °C  
I
OH - OUTPUT HIGH CURRENT - A  
Figure 7. VOL vs. Temperature.  
Figure 8. VOH vs. IOH.  
12  
6
5
4
3
2
1
0
20  
15  
10  
5
-40°C  
+25°C  
+125°C  
Icc1H  
Icc1L  
0
0
0.5  
1
1.5  
2
2.5  
-40 -20  
0
20  
40  
60  
80 100 120 140  
I
OL - OUTPUT LOW CURRENT - A  
TA - TEMPERATURE - °C  
Figure 9. VOL vs. IOL  
.
Figure 10. ICC1 vs. temperature.  
2.60  
2.55  
2.50  
2.45  
2.40  
3.0  
2.9  
2.8  
ICC2H  
ICC2L  
Icc2H  
2.35  
15  
2.7  
-40 -20  
0
20  
40  
60  
80 100 120 140  
20  
25  
30  
VCC2 – OUTPUT SUPPLY VOLTAGE – V  
TA - TEMPERATURE - °C  
Figure 11. ICC2 vs. temperature.  
Figure 12. ICC2 vs. VCC2.  
-0.15  
-0.2  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.35  
-0.40  
-0.45  
IEH  
IEL  
-0.25  
-0.3  
-0.50  
-40 -20  
0
20 40 60 80 100 120 140  
-40 -20  
0
20 40 60 80 100 120 140  
TA - TEMPERATURE - °C  
TEMPERATURE - °C  
Figure 13. ICHG vs. temperature.  
Figure 14. IE vs. temperature.  
13  
4
3
7.5  
7.0  
6.5  
6.0  
2
1
0
-40°C  
+25°C  
+100°C  
0
0.5  
1.0  
1.5  
2.0  
-40 -20  
0
20 40  
60 80 100 120 140  
IOUT (mA)  
TEMPERATURE - °C  
Figure 15. IC vs. IOUT  
.
Figure 16. DESAT threshold vs. temperature.  
0.40  
0.50  
0.40  
0.30  
0.20  
TpLH  
TpHL  
tPHL  
tPLH  
0.35  
0.30  
0.25  
0.20  
-40 -20  
0
20  
40  
60  
80 100 120 140  
15  
20  
25  
30  
VCC – SUPPLY VOLTAGE – V  
TEMPERATURE - °C  
Figure 17. Propagation delay vs. temperature.  
Figure 18. Propagation delay vs. supply voltage.  
0.50  
0.40  
VCC1=4.5V  
VCC1=5.0V  
VCC1=4.5V  
VCC1=5.0V  
VCC1=5.5V  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
VCC1=5.5V  
0.35  
0.30  
0.25  
0.20  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE - °C  
TEMPERATURE - °C  
Figure 19. VIN to high propagation delay vs. temperature.  
Figure 20. VIN to low propagation delay vs. temperature.  
14  
0.40  
0.35  
0.30  
0.25  
0.20  
0.40  
0.35  
0.30  
0.25  
0.20  
tPLH  
tPHL  
tPLH  
tPHL  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
LOAD RESISTANCE –   
LOAD CAPACITANCE – nF  
Figure 21. Propagation delay vs. load capacitance.  
Figure 22. Propagation delay vs. load resistance.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.45  
0.40  
0.35  
0.30  
0.25  
-50  
-50  
0
50  
100  
150  
0
50  
100  
150  
TEMPERATURE - °C  
TEMPERATURE - °C  
Figure 23. DESAT sense to 90% Vout delay vs. temperature.  
Figure 24. DESAT sense to 10% Vout delay vs. temperature.  
0.008  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
VCC2 = 15 V  
VCC2 = 30 V  
0.006  
0.004  
0.002  
0
0
10  
20  
30  
40  
50  
-50  
0
50  
100  
150  
TEMPERATURE - °C  
LOAD CAPACITANCE – nF  
Figure 25. DESAT sense to low level fault signal delay vs. temperature.  
Figure 26. DESAT sense to 10% Vout delay vs. load capacitance.  
15  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
12  
10  
8
Vcc1 = 4.5V  
Vcc1 = 5.0V  
Vcc1 = 5.5V  
VCC2 = 15 V  
VCC2 = 30 V  
6
4
10  
20  
30  
40  
50  
-50  
0
50  
100  
150  
LOAD RESISTANCE – Ω  
TEMPERATURE – °C  
Figure 27. DESAT sense to 10% Vout delay vs. load resistance.  
Figure 28. RESET to high level fault signal delay vs. temperature.  
Test Circuit Diagrams  
0.1μF  
0.1μF  
0.1μF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
GND1  
VIN+  
VIN  
VE  
VLED2+  
DESAT  
VCC2  
GND1  
VIN+  
VIN  
16  
15  
14  
13  
12  
11  
10  
9
VE  
VLED2+  
DESAT  
VCC2  
_
_
+
+
2
3
4
5
6
7
8
4.5V  
4.5V  
10mA  
_
+
_
VCC1  
VCC1  
+
0.4V  
0.4V  
VEE  
VEE  
RESET  
FAULT  
VLED+  
RESET  
FAULT  
VLED+  
VC  
VC  
IFAULT  
IFAULT  
VOUT  
VEE  
VOUT  
VEE  
VLED  
VLED  
Figure 29. IFAULTL test circuit.  
Figure 30. IFAULTH test circuit.  
0.1  
1
2
3
4
5
6
7
8
GND1  
VIN+  
VIN  
VCC1  
VE  
16  
15  
14  
13  
12  
11  
10  
9
1
GND1  
VE 16  
_
+
0.1μF  
30V  
0.1μF  
_
_
VLED2+  
DESAT  
VIN+  
VIN  
VCC1  
VLED2+  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
+
5V  
+
DESAT  
30V  
VCC2  
VEE  
VCC2  
VEE  
+
_
15V  
0.1μF  
RESET  
FAULT  
VLED+  
0.1μF  
RESET  
FAULT  
VLED+  
Pulsed  
IOUT  
30V  
30V  
VC  
VC  
+
_
+
_
15V  
+
_
Pulsed  
IOUT  
VOUT  
VOUT  
0.1μF  
0.1μF  
VLED  
VEE  
VLED  
VEE  
Figure 31. IOH pulsed test circuit.  
Figure 32. IOL pulsed test circuit.  
16  
0.1μF  
0.1μF  
1
2
3
4
5
6
7
8
GND1  
VIN+  
VIN  
VE 16  
VLED2+ 15  
DESAT 14  
VCC2 13  
VEE 12  
1
2
3
4
5
6
7
8
GND1  
VIN+  
VIN  
VE 16  
VLED2+ 15  
DESAT 14  
VCC2 13  
VEE 12  
_
+
0.1μF  
30V  
_
+
0.1μF  
30V  
_
_
+
5V  
+
5V  
VCC1  
VCC1  
0.1μF  
0.1μF  
RESET  
FAULT  
VLED+  
RESET  
FAULT  
VLED+  
IOUT  
14V  
+
_
VOUT  
30V  
30V  
2V  
Pulsed  
VC 11  
VC 11  
+
_
+
_
VOUT 10  
VOUT 10  
0.1μF  
0.1μF  
VEE  
9
VLED  
VEE 9  
VLED  
Figure 33. IOLF test circuit.  
Figure 34. VOH pulsed test circuit.  
0.1μF  
GND1  
VIN+  
VIN  
VCC1  
VE  
16  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
GND1  
VIN+  
VIN  
VCC1  
VE  
16  
_
+
_
+
0.1μF  
30V  
_
VLED2+  
DESAT  
VCC2  
15  
14  
13  
VLED2+ 15  
DESAT 14  
+
5V  
0.1μF  
5.5V  
ICC1  
13  
VCC2  
0.1μF  
VEE 12  
VC 11  
10  
12  
VEE  
RESET  
FAULT  
VLED+  
RESET  
FAULT  
VLED+  
30V  
100mA  
11  
VC  
+
_
VOUT  
10  
9
VOUT  
VEE  
0.1μF  
VOUT  
9
VLED  
VEE  
VLED  
Figure 35. VOL test circuit.  
Figure 36. ICC1H test circuit.  
1
16  
1
GND1  
VE  
16  
15  
14  
13  
12  
11  
10  
9
GND1  
VE  
VLED2+  
DESAT  
_
_
0.1μF  
30V  
_
+
2
3
4
5
6
7
8
VIN+  
VIN  
VCC1  
VLED2+ 15  
+
2
3
4
5
6
7
8
VIN+  
VIN  
VCC1  
+
14  
13  
12  
11  
10  
9
DESAT  
5.5V  
5V  
0.1μF  
0.1μF  
VCC2  
VEE  
VCC2  
VEE  
VC  
ICC1  
0.1μF  
RESET  
FAULT  
VLED+  
RESET  
FAULT  
30V  
VC  
+
_
VOUT  
VLED+  
VLED  
VOUT  
VEE  
0.1μF  
VLED  
VEE  
Figure 37. ICC1L test circuit.  
Figure 38. ICC2H test circuit.  
17  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
16  
VE  
16  
15  
14  
GND1  
VIN+  
GND1  
VIN+  
VE  
VLED2+  
DESAT  
_
30V  
_
0.1μF  
30V  
_
0.1μF  
0.1μF  
+
VLED2+ 15  
+
+
ICHG  
VIN  
DESAT  
VIN  
0.1μF  
14  
5V  
VCC1  
VCC2  
VEE  
13  
12  
VCC1  
VCC2 13  
ICC2  
VEE  
0.1μF  
0.1μF  
RESET  
FAULT  
VLED+  
VLED  
12  
RESET  
FAULT  
VLED+  
VLED  
30V  
30V  
VC  
VC 11  
11  
+
_
+
_
VOUT  
VEE  
10  
9
VOUT 10  
0.1μF  
9
VEE  
Figure 39. ICC2L test circuit.  
Figure 40. ICHG pulsed test circuit.  
GND1  
VIN+  
VE  
VLED2+  
DESAT  
1
2
3
4
5
6
7
8
1
16  
15  
14  
13  
12  
11  
10  
9
GND1  
VE 16  
7V  
30V  
_
_
_
0.1μF  
+
2
3
4
5
6
7
8
VIN+  
VLED2+  
15  
14  
13  
12  
11  
10  
9
+
+
ICHG  
IDSCHG  
VIN  
VIN  
DESAT  
5V  
0.1μF  
VCC1  
VCC2  
VEE  
VCC1  
VCC2  
VEE  
RESET  
FAULT  
VLED+  
VLED  
0.1μF  
RESET  
FAULT  
VLED+  
VLED  
30V  
Sweep  
0.1μF  
VC  
VOUT  
VEE  
0.1μF  
VC  
VOUT  
VEE  
+
_
+
_
VOUT  
Figure 41. IDSCHG test circuit.  
Figure 42. UVLO threshold test circuit.  
1
1
GND1  
VE 16  
16  
15  
14  
13  
12  
GND1  
VE  
7V  
30V  
_
15V  
_
_
0.1μF  
0.1μF  
VIN  
2
3
4
5
6
7
8
VIN+  
VLED2+  
15  
2
3
4
5
6
7
8
VIN+  
VLED2+  
DESAT  
+
+
+
VIN  
VIN  
DESAT 14  
_
SWEEP  
5V  
+
VCC1  
VCC2  
VCC1  
VCC2  
VEE  
13  
0.1μF  
VEE  
0.1μF  
0.1μF  
RESET  
FAULT  
VLED+  
VLED  
12  
RESET  
FAULT  
VLED+  
VLED  
VOUT  
30V  
15V  
0.1μF  
VC  
VOUT  
VEE  
0.1μF  
11  
10  
9
10mA  
VC 11  
+
_
+
_
10Ω  
3 k  
VOUT  
10  
9
10nF  
0.1μF  
VEE  
Figure 43. DESAT threshold test circuit.  
Figure 44. tPLH, tPHL, tr, tf test circuit.  
18  
1
2
1
2
GND1  
VIN+  
VE  
GND1  
VIN+  
VE  
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
30V  
_
0.1μF  
0.1μF  
30V  
_
0.1μF  
0.1μF  
VLED2+  
VLED2+  
VIN  
V
IN  
+
+
3 VIN  
VCC1  
DESAT  
VCC2  
VEE  
3 VIN  
VCC1  
DESAT  
VCC2  
VEE  
5V  
5V  
_
_
3 k  
4
4
0.1μF  
0.1μF  
VOUT  
VOUT  
5 RESET  
5 RESET  
0.1μ
F  
0.1μF  
30V  
30V  
VC  
VOUT  
VEE  
VC  
VOUT  
VEE  
6
6
FAULT  
FAULT  
+
+
VFAULT  
3 k  
10Ω  
10Ω  
10nF  
_
VLED+  
VLED+  
7
7
10nF  
8 VLED  
8 VLED  
Figure 45. tDESAT(10%) test circuit.  
Figure 46. tDESAT(FAULT) test circuit.  
1 GND1  
VIN+  
VE  
1
16  
16  
GND1  
VE  
+
5V  
0.1μF  
+
5V  
_
0.1μF  
30V  
+
0.1μF  
0.1μF  
_
VLED2+  
2
2 VIN+  
VLED2+  
15  
14  
13  
12  
11  
10  
9
15  
STROBE 8V  
VOUT  
_
3 VIN  
DESAT  
VCC2  
VEE  
3
VIN  
4 VCC1  
5
DESAT 14  
3 k  
3 k  
VCC1  
4
5
6
7
8
VCC2  
VEE  
13  
12  
11  
10  
9
VIN HIGH TO LOW  
VFAULT  
VOUT  
RESET  
FAULT  
VLED+  
VLED  
0.1μF  
RESET  
30V  
0.1μF  
VC  
VOUT  
VEE  
6
VC  
VOUT  
VEE  
FAULT  
+
10Ω  
10Ω  
10nF  
_
7 VLED+  
10nF  
8
VLED  
Figure 47. tRESET(FAULT) test circuit.  
Figure 48. UVLO delay test circuit.  
1
1
16  
VE  
GND1  
VE 16  
GND1  
5V  
5V  
2 VIN+  
VLED2+  
2
3
4
5
6
7
8
15  
VIN+  
VLED2+ 15  
25V  
VOUT  
10Ω  
25V  
3
4
5
6
VIN  
DESAT 14  
14  
13  
12  
VIN  
DESAT  
VCC2  
VEE  
VCC1  
VCC2  
VCC1  
13  
3 kΩ  
3 kΩ  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
VEE  
RESET  
FAULT  
12  
RESET  
FAULT  
VLED+  
VLED  
VC  
VOUT  
VEE  
SCOPE  
0.1μF  
SCOPE  
0.1μF  
11  
10  
9
VC 11  
10Ω  
7 VLED+  
8 VLED  
VOUT 10  
10nF  
10nF  
9
VEE  
750Ω  
_
9V  
+
Figure 49. CMR test circuit, LED2 off.  
Figure 50. CMR test circuit, LED2 on.  
19  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
GND1  
VIN+  
VE 16  
16  
15  
14  
GND1  
VIN+  
VE  
VLED2+  
DESAT  
5V  
5V  
VLED2+  
15  
25V  
0.1μF  
25V  
VIN  
DESAT 14  
VIN  
VCC1  
VCC2  
13  
VCC1  
VCC2 13  
0.1μF  
3 kΩ  
3 kΩ  
100pF  
0.1μF  
0.1μF  
VEE  
VEE  
RESET  
FAULT  
VLED+  
VLED  
12  
12  
RESET  
FAULT  
VLED+  
VLED  
SCOPE  
10Ω  
VC  
VOUT  
VEE  
11  
10  
9
11  
VC  
100pF  
VOUT 10  
SCOPE  
10nF  
10Ω  
10nF  
9
VEE  
VCM  
VCM  
Figure 51. CMR test circuit, LED1 off.  
Figure 52. CMR test circuit, LED1 on.  
VIN-  
VIN-  
0 V  
2.5 V  
2.5 V  
VIN+  
2.5 V  
2.5 V  
VIN+  
5.0 V  
tr  
tf  
tr  
tf  
90%  
90%  
50%  
10%  
50%  
10%  
VOUT  
VOUT  
tPLH  
tPHL  
tPLH  
tPHL  
Figure 53. VOUT propagation delay waveforms, noninverting configuration.  
Figure 54. VOUT propagation delay waveforms, inverting configuration.  
tDESAT (FAULT)  
tDESAT (10%)  
tDESAT (LOW)  
7 V  
VDESAT  
50%  
tDESAT (90%)  
VOUT  
90%  
10%  
FAULT  
RESET  
50% (2.5 V)  
tRESET (FAULT)  
50%  
Figure 55. Desat, VOUT, fault, reset delay waveforms.  
20  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
GND1  
VIN+  
VE 16  
GND1  
VIN+  
VE  
VLED2+  
DESAT  
16  
15  
14  
13  
12  
11  
10  
9
_
30V  
_
30V  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
_
_
+
+
VLED2+ 15  
+
+
5V  
5V  
0.1μF  
VIN  
DESAT  
VIN  
14  
13  
12  
11  
10  
9
0.1μF  
VCC1  
VCC2  
VEE  
VCC1  
VCC2  
VEE  
0.1μF  
0.1μF  
RESET  
FAULT  
VLED+  
VLED  
RESET  
FAULT  
VLED+  
VLED  
IC  
IC  
30V  
30V  
VC  
VOUT  
VEE  
VC  
VOUT  
VEE  
+
_
+
_
650μF  
Figure 56. ICH test circuit.  
Figure 57. ICH test circuit.  
IE  
1
2
3
4
5
6
7
8
1
GND1  
VIN+  
VE  
VLED2+  
DESAT  
16  
15  
16  
15  
14  
13  
12  
11  
10  
9
GND1  
VE  
_
+
30V  
30V  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
_
_
2
3
4
5
6
7
8
VIN+  
VLED2+  
+
+
5V  
VIN  
0.1μF  
VIN  
DESAT 14  
VCC2 13  
VCC1  
VCC2  
VEE  
VCC1  
VEE  
0.1μF  
0.1μF  
RESET  
FAULT  
VLED+  
VLED  
RESET  
FAULT  
VLED+  
VLED  
12  
IC  
30V  
30V  
VC  
VOUT  
VEE  
VC  
11  
+
_
+
_
VOUT  
10  
VEE  
9
Figure 58. ICL test circuit.  
Figure 59. IEH test circuit.  
IE  
1
2
3
4
5
6
7
8
GND1  
VE  
VLED2+  
DESAT  
16  
15  
14  
13  
12  
11  
10  
9
_
30V  
0.1μF  
0.1μF  
_
+
VIN+  
+
5V  
VIN  
0.1μF  
VCC1  
VCC2  
VEE  
0.1μF  
RESET  
FAULT  
VLED+  
VLED  
30V  
VC  
VOUT  
VEE  
+
_
Figure 60. IEL test circuit.  
21  
Typical Application/Operation  
Introduction to Fault Detection and Protection  
The alternative protection scheme of measuring IGBT  
current to prevent desaturation is effective if the short  
circuit capability of the power device is known, but this  
method will fail if the gate drive voltage decreases enough  
to only partially turn on the IGBT. By directly measuring  
the collector voltage, the ACPL-38JT limits the power  
dissipation in the IGBT even with insufficient gate drive  
voltage. Another more subtle advantage of the desatu-  
ration detection method is that power dissipation in the  
IGBT is monitored, while the current sense method relies  
on a preset current threshold to predict the safe limit of  
operation. Therefore, an overly- conservative overcurrent  
threshold is not needed to protect the IGBT.  
The power stage of a typical three phase inverter is sus-  
ceptible to several types of failures, most of which are  
potentially destructive to the power IGBTs. These failure  
modes can be grouped into four basic categories: phase  
and/or rail supply short circuits due to user misconnect or  
bad wiring, control signal failures due to noise or compu-  
tational errors, overload conditions induced by the load,  
and component failures in the gate drive circuitry. Under  
any of these fault conditions, the current through the  
IGBTs can increase rapidly, causing excessive power dis-  
sipation and heating. The IGBTs become damaged when  
the current load approaches the saturation current of the  
device, and the collector to emitter voltage rises above the  
saturation voltage level. The drastically increased power  
dissipation very quickly overheats the power device and  
destroys it. To prevent damage to the drive, fault protec-  
tion must be implemented to reduce or turn--off the over-  
currents during a fault condition.  
Recommended Application Circuit  
The ACPL-38JT has both inverting and non-inverting gate  
control inputs, an active low reset input, and an open  
collector fault output suitable for wired ‘ORapplications.  
A circuit providing fast local fault detection and shutdown  
is an ideal solution, but the number of required compo-  
nents, board space consumed, cost, and complexity have  
until now limited its use to high performance drives. The  
features which this circuit must have are high speed, low  
cost, low resolution, low power dissipation, and small size.  
The recommended application circuit shown in Figure 61  
illustrates a typical gate drive implementation using the  
ACPL-38JT.  
The four supply bypass capacitors (0.1 F) provide the  
large transient currents necessary during a switching  
transition. Because of the transient nature of the charging  
currents, a low current (5 mA) power supply suffices.  
The desat diode and 100pF capacitor are the necessary  
external components for the fault detection circuitry. The  
gate resistor (10 ) serves to limit gate charge current and  
indirectly control the IGBT collector voltage rise and fall  
times. The open collector fault output has a passive 3.3 k  
pull-up resistor and a 330 pF filtering capacitor.  
Applications Information  
The ACPL-38JT satisfies these criteria by combining a high  
speed, high output current driver, high voltage optical  
isolation between the input and output, local IGBT de-  
saturation detection and shut down, and an optically  
isolated fault status feedback signal into a single 16-pin  
surface mount package.  
The fault detection method, which is adopted in the  
ACPL-38JT, is to monitor the saturation (collector) voltage  
of the IGBT and to trigger a local fault shutdown sequence  
A clamping diode between V  
positive going voltage noises affecting the FAULT status.  
and RESET will prevent  
CC1  
A 47 kpulldown resistor on V  
predictable high level output voltage (V ). In this appli-  
cation, the IGBT gate driver will shut down when a fault is  
detected and will not resume switching until the micro-  
controller applies a reset signal.  
provides a more  
OUT  
if the collector voltage exceeds  
a predetermined  
OH  
threshold. A small gate discharge device slowly reduces  
the high short circuit IGBT current to prevent damaging  
voltage spikes. Before the dissipated energy can reach de-  
structive levels, the IGBT is shut off. During the off state  
of the IGBT, the fault detect circuitry is simply disabled to  
prevent false ‘faultsignals.  
22  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND1  
VE  
100pF  
0.1μF  
0.1μF  
VIN+  
VIN-  
VLED2+  
DESAT  
DDESAT  
0.1μF  
100Ω  
+
+ V  
F
5V  
μC  
V
VCC2  
VEE  
CC1  
VCC2 =18V  
RESET  
FAULT  
VLED+  
VLED-  
0.1μF  
+
VCE  
+
Q1  
Q2  
RG  
3.3kΩ  
VC  
VOUT  
VEE  
3-Phase  
Output  
330pF  
47kΩ  
+
+
VCE  
= -5V  
VEE  
Figure 61. Recommended application circuit.  
Description of Operation/Timing  
Fault Condition  
Figure 62 illustrates input and output waveforms under When the voltage on the DESAT pin exceeds 7 V while  
the conditions of normal operation, a desat fault condition, the IGBT is on, V is slowly brought low in order to  
OUT  
and normal reset behavior.  
“softly” turn-off the IGBT and prevent large di/dt induced  
voltages. Also activated is an internal feedback channel  
which brings the FAULT output low for the purpose of  
notifying the micro-controller of the fault condition. See  
Figure 62.  
Normal Operation  
During normal operation, V  
of the ACPL-38JT is con-  
OUT  
trolled by either V  
or V , with the IGBT collector-to-  
IN+  
IN-  
emitter voltage being monitored through D  
FAULT output is high and the RESET input should be held  
high. See Figure 62.  
. The  
DESAT  
Reset  
The FAULT output remains low until RESET is brought  
low. See Figure 62. While asserting the RESET pin (LOW),  
the input pins must be asserted for an output low state  
(V  
is LOW or V is HIGH). This may be accomplished  
IN+  
IN-  
either by software control (i.e. of the microcontroller) or  
hardware control (see Figures 71 and 72).  
NORMAL  
OPERATION  
FAULT  
CONDITION  
RESET  
VIN-  
0 V  
5 V  
NON-INVERTING  
CONFIGURED  
INPUTS  
VIN+  
VIN-  
5 V  
5 V  
INVERTING  
CONFIGURED  
INPUTS  
VIN+  
7 V  
VDESAT  
VOUT  
FAULT  
RESET  
Figure 62. Timing diagram.  
23  
Slow IGBT Gate Discharge During Fault Condition  
is applied. Once V  
UVLO threshold), the UVLO clamp is released to allow the  
device output to turn on in response to input signals. As  
exceeds V  
(the positive-going  
UVLO+  
When a desaturation fault is detected, a weak pull-down  
device in the ACPL-38JT output drive stage will turn on  
to ‘softly’ turn off the IGBT. This device slowly discharges  
the IGBT gate to prevent fast changes in drain current that  
could cause damaging voltage spikes due to lead and  
wire inductance. During the slow turn off, the large output  
pull-down device remains off until the output voltage falls  
CC2  
V
CC2  
is increased from 0 V (at some level below V  
),  
UVLO+  
first the DESAT protection circuitry becomes active.  
As V is further increased (above V ), the UVLO  
CC2  
UVLO+  
clamp is released. Before the time the UVLO clamp is  
released, the DESAT protection is already active. Therefore,  
the UVLO and DESAT FAULT DETECTION features work  
together to provide seamless protection regardless of  
below V + 2 Volts, at which time the large pull down  
EE  
device clamps the IGBT gate to V  
.
EE  
DESAT Fault Detection Blanking Time  
supply voltage (V ).  
CC2  
The DESAT fault detection circuitry must remain disabled  
for a short time period following the turn-on of the IGBT  
to allow the collector voltage to fall below the DESAT  
theshold. This time period, called the DESAT blanking  
time, is controlled by the internal DESAT charge current,  
the DESAT voltage threshold, and the external DESAT  
capacitor.The nominal blanking time is calculated in terms  
Behavioral Circuit Schematic  
The functional behavior of the ACPL-38JT is represented  
by the logic diagram in Figure 63 which fully describes the  
interaction and sequence of internal and external signals  
in the ACPL-38JT.  
Input IC  
of external capacitance (C  
), FAULT threshold voltage  
BLANK  
(V  
), and DESAT charge current (ICHG) as t  
=
DESAT  
BLANK  
In the normal switching mode, no output fault has been  
detected, and the low state of the fault latch allows the  
input signals to control the signal LED. The fault output is  
in the open-collector state, and the state of the Reset pin  
does not affect the control of the IGBT gate. When a fault  
is detected, the FAULT output and signal input are both  
latched. The fault output changes to an active low state,  
and the signal LED is forced off (output LOW). The latched  
condition will persist until the Reset pin is pulled low.  
C
x V  
/ I  
. The nominal blanking time with the  
BLANK  
DESAT CHG  
recommended 100 pF capacitor is 100 pF * 7 V / 250 A =  
2.8 sec. The capacitance value can be scaled slightly to  
adjust the blanking time, though a value smaller than 100  
pF is not recommended.  
This nominal blanking time also represents the longest  
time it will take for the ACPL-38JT to respond to a DESAT  
fault condition. If the IGBT is turned on while the collector  
and emitter are shorted to the supply rails (switching into  
a short), the soft shut-down sequence will begin after ap-  
proximately 3 sec. If the IGBT collector and emitter are  
shorted to the supply rails after the IGBT is already on, the  
response time will be much quicker due to the parasitic  
parallel capacitance of the DESAT diode. The recommend-  
ed 100 pF capacitor should provide adequate blanking as  
well as fault response times for most applications.  
Output IC  
Three internal signals control the state of the driver  
output: the state of the signal LED, as well as the UVLO and  
Fault signals. If no fault on the IGBT collector is detected,  
and the supply voltage is above the UVLO threshold, the  
LED signal will control the driver output state. The driver  
stage logic includes an interlock to ensure that the pull-up  
and pull-down devices in the output stage are never on at  
the same time. If an undervoltage condition is detected,  
the output will be actively pulled low by the 50x DMOS  
device, regardless of the LED state. If an IGBT desaturation  
fault is detected while the signal LED is on, the Fault signal  
will latch in the high state. The triple darlington AND the  
50x DMOS device are disabled, and a smaller 1x DMOS  
pull-down device is activated to slowly discharge the  
IGBT gate. When the output drops below two volts, the  
50x DMOS device again turns on, clamping the IGBT gate  
firmly to Vee. The Fault signal remains latched in the high  
state until the signal LED turns off.  
Under Voltage Lockout  
The ACPL-38JT Under Voltage Lockout (UVLO) feature is  
designed to prevent the application of insufficient gate  
voltage to the IGBT by forcing the ACPL-38JT output low  
during power-up. IGBTs typically require gate voltages of  
15V to achieve their ratedV  
voltage. At gate voltages  
CE(ON)  
below 13V typically, their on-voltage increases dramatical-  
ly, especially at higher currents. At very low gate voltages  
(below 10V), the IGBT may operate in the linear region and  
quickly overheat. The UVLO function causes the output to  
be clamped whenever insufficient operating supply (V  
)
CC2  
24  
250 μA  
VE (16)  
DESAT (14)  
+
VIN+ (2)  
VIN– (3)  
LED  
7 V  
VCC1 (4)  
GND (1)  
VCC2 (13)  
VC (11)  
+
UVLO  
DELAY  
Q
12 V  
FAULT (6)  
VOUT (10)  
VEE (9,12)  
R
S
50 x  
RESET (5)  
FAULT  
1 x  
Figure 63. Behavioral circuit schematic  
16  
1
2
3
4
5
6
7
8
GND1  
VIN+  
VE  
16  
1
2
3
4
5
6
7
8
GND1  
VE  
VLED2+  
DESAT  
100pF  
100pF  
15  
VLED2+  
15  
14  
13  
12  
11  
10  
9
VIN+  
DDESAT  
100Ω  
VIN  
DESAT 14  
VCC2 13  
VIN  
MJD44H11 or  
VCC1  
VCC1  
VCC2  
VEE  
D44VH10  
Rg  
VEE  
4.5Ω  
RESET  
FAULT  
VLED+  
VLED  
12  
RESET  
FAULT  
VLED+  
VLED  
VC  
VOUT  
VEE  
11  
10  
9
VC  
VOUT  
VEE  
10Ω  
2.5Ω  
10nF  
MJD45H11 or  
D45VH10  
15V  
-5V  
Figure 64. Output pull-down resistor.  
Figure 65. DESAT pin protection.  
1
2
3
4
5
6
7
8
GND1  
VIN+  
VE  
16  
15  
14  
VLED2+  
DESAT  
0.1μF  
VIN  
5V  
μC  
VCC1  
VCC2 13  
3.3kΩ  
VEE  
RESET  
FAULT  
VLED+  
VLED  
12  
VC  
11  
330pF  
VOUT 10  
9
VEE  
Figure 66. FAULT Pin CMR protection.  
25  
Other Recommended Components  
Driving with Standard CMOS/TTL for High CMR  
The application circuit in Figure 61 includes an output pull- Capacitive coupling from the isolated high voltage  
down resistor, a DESAT pin protection resistor, a FAULT pin  
capacitor (330 pF), and a FAULT pin pull-up resistor.  
circuitry to the input referred circuitry is the primary CMR  
limitation. This coupling must be accounted for to achieve  
high CMR performance. The input pins V and V must  
IN+  
IN-  
Output Pull-Down Resistor  
have active drive signals to prevent unwanted switching  
of the output under extreme common mode transient  
conditions. Input drive circuits that use pull-up or pull-  
down resistors, such as open collector configurations,  
should be avoided. Standard CMOS or TTL drive circuits  
are recommended.  
During the output high transition, the output voltage  
rapidly rises to within 3 diode drops of V . If the output  
CC2  
current then drops to zero due to a capacitive load, the  
output voltage will slowly rise from roughly V -3(V  
)
CC2  
BE  
to V  
within a period of several microseconds. To limit  
CC2  
the output voltage to V -3(V ), a pull-down resistor  
CC2  
BE  
User-Configuration of the ACPL-38JT Input Side  
between the output and V is recommended to sink a  
EE  
static current of several 650 A while the output is high. The V , V , FAULT and RESET input pins make a wide  
IN+ IN-  
Pull-down resistor values are dependent on the amount variety of gate control and fault configurations possible,  
of positive supply and can be adjusted according to the  
formula, R = [V -3 * (V )] / 650 A.  
depending on the motor drive requirements. The  
ACPL-38JT has both inverting and nonninverting gate  
control inputs, an open collector fault output suitable for  
wired ‘ORapplications and an active low reset input.  
pull-down  
CC2  
BE  
DESAT Pin Protection  
The freewheeling of flyback diodes connected across the  
IGBTs can have large instantaneous forward voltage tran-  
sients which greatly exceed the nominal forward voltage  
of the diode. This may result in a large negative voltage  
spike on the DESAT pin which will draw substantial current  
out of the IC if protection is not used. To limit this current  
to levels that will not damage the IC, a 100 ohm resistor  
should be inserted in series with the DESAT diode. The  
added resistance will not alter the DESAT threshold or the  
DESAT blanking time.  
Driving Input of ACPL-38JT in Non-Inverting/  
Inverting Mode  
The Gate Drive Voltage Output of the ACPL-38JT can be  
configured as inverting or non-inverting using the V  
IN–  
and V  
inputs. As shown in Figure 67, when a non-in-  
IN+  
verting configuration is desired, V is held low by con-  
IN–  
necting it to GND1 and V is toggled. As shown in Figure  
IN+  
68, when an inverting configuration is desired, V is held  
IN+  
high by connecting it to V  
and V is toggled.  
CC1  
IN–  
Pull-up Resistor on FAULT Pin  
Local Shutdown, Local Reset  
The FAULT pin is an open-collector output and therefore  
requires a pull-up resistor to provide a high-level signal.  
As shown in Figure 69, the fault output of each ACPL-38JT  
gate driver is polled separately, and the individual reset  
lines are asserted low independently to reset the motor  
controller after a fault condition.  
Capacitor on FAULT Pin for High CMR  
Rapid common mode transients can affect the fault pin  
voltage while the fault output is in the high state. A 330 pF  
capacitor (Fig. 66) should be connected between the fault  
pin and ground to achieve adequate CMOS noise margins  
at the specified CMR value of 15 kV/s. The added capaci-  
tance does not increase the fault output delay when a de-  
saturation condition is detected.  
Global-Shutdown, Global Reset  
As shown in Figure 70, when configured for inverting  
operation, the ACPL-38JT can be configured to shutdown  
automatically in the event of a fault condition by tying the  
FAULT output to V . For high reliability drives, the open  
IN+  
collector FAULT outputs of each ACPL-38JT can be wire  
‘OR’ed together on a common fault bus, forming a single  
fault bus for interfacing directly to the micro-controller.  
Protection on RESET Pin for High CMR  
Large voltage spike on RESET due to excessive switching  
noise coupling could trigger false FAULT output signal. In  
such cases connecting a 330pF filtering capacitor between  
RESET and GROUND or a clamping diode between RESET  
When any of the six gate drivers detects a fault, the fault  
output signal will disable all six ACPL-38JT gate drivers  
simultaneously and thereby provide protection against  
further catastrophic failures.  
to V  
will eliminate the false FAULT signal.  
CC1  
26  
GND1  
VIN+  
VE  
VLED2+  
DESAT  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND1  
VIN+  
VE 16  
VLED2+ 15  
DESAT 14  
VIN  
VIN  
μC  
VCC1  
VCC2  
VEE  
μC  
13  
12  
11  
10  
9
VCC1  
VCC2  
VEE  
RESET  
FAULT  
VLED+  
VLED  
RESET  
FAULT  
VLED+  
VLED  
VC  
VOUT  
VEE  
VC  
VOUT  
VEE  
Figure 67. Typical input configuration, noninverting.  
Figure 68. Typical Input Configuration, Inverting.  
GND1  
VIN+  
VE  
VLED2+  
DESAT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIN  
μC  
VCC1  
VCC2  
VEE  
RESET  
FAULT  
VLED+  
VLED  
VC  
VOUT  
VEE  
Figure 69. Local shutdown, local reset configuration.  
Auto-Reset  
Resetting Following a Fault Condition  
As shown in Figure 71, when the inverting V input is  
To resume normal switching operation following a fault  
IN-  
connected to ground (non-inverting configuration), the condition (FAULT output low), the RESET pin must first be  
ACPL-38JT can be configured to reset automatically by asserted low in order to release the internal fault latch and  
connecting RESET to V . In this case, the gate control reset the FAULT output (high). Prior to asserting the RESET  
IN+  
signal is applied to the non-inverting input as well as the  
pin low, the input (V ) switching signals must be config-  
IN  
reset input to reset the fault latch every switching cycle. ured for an output (V ) low state. This can be handled  
OL  
During normal operation of the IGBT, asserting the reset  
directly by the microcontroller or by hardwiring to syn-  
input low has no effect. Following a fault condition, the chronize the RESET signal with the appropriate input  
gate driver remains in the latched fault state until the gate signal. Figure 72a shows how to connect the RESET to the  
control signal changes to the ‘gate low’ state and resets  
V
signal for safe automatic reset in the non-inverting  
IN+  
the fault latch. If the gate control signal is a continuous input configuration. Figure 72b shows how to configure  
PWM signal, the fault latch will always be reset by the the V /RESET signals so that a RESET signal from the  
IN+  
next time the input signal goes high. This configuration microcontroller causes the input to be in the “output-  
protects the IGBT on a cycle-by-cycle basis and automati- off” state. Similarly, Figures 72c and 72d show automatic  
cally resets before the nextoncycle. The fault outputs can RESET and microcontroller RESET safe configurations for  
be wire ‘OR’ed together to alert the microcontroller, but the inverting input configuration.  
this signal would not be used for control purposes in this  
(Auto-Reset) configuration. When the ACPL-38JT is con-  
figured for Auto-Reset, the guaranteed minimum FAULT  
signal pulse width is 3 s.  
27  
1
2
3
4
5
6
7
8
GND1  
VIN+  
VE  
16  
1
2
3
4
5
6
7
8
GND1  
VIN+  
VE  
VLED2+  
DESAT  
16  
15  
14  
13  
12  
11  
VLED2+ 15  
DESAT 14  
VCC2 13  
VIN  
VIN  
C  
C  
VCC1  
VCC2  
VEE  
VCC1  
VEE  
RESET  
FAULT  
VLED+  
VLED  
RESET  
FAULT  
VLED+  
VLED  
12  
VC  
VC  
11  
VOUT 10  
VOUT 10  
9
9
VEE  
VEE  
CONNECT TO CONNECT TO  
OTHER  
RESETS  
OTHER  
FAULTS  
Figure 70. Global-shutdown, global reset configuration.  
Figure 71. Auto-reset configuration.  
GND1  
VIN+  
VE  
VLED2+  
DESAT  
1
2
3
4
5
6
7
8
GND1  
VE  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIN+  
VIN+  
VLED2+  
DESAT  
VIN  
VIN  
VCC  
VCC  
VIN+  
RESET  
/
C  
VCC1  
VCC2  
VEE  
C  
VCC1  
VCC2  
VEE  
RESET  
FAULT  
RESET  
FAULT  
VLED+  
VLED  
RESET  
FAULT  
VLED+  
VLED  
FAULT  
VC  
VOUT  
VEE  
VC  
VOUT  
VEE  
Figure 72a. Safe hardware reset for non-inverting input configuration  
(automatically resets for every VIN+ input).  
Figure 72b. Safe hardware reset for non-inverting input configuration.  
VCC  
VCC  
GND1  
VIN+  
VE  
VLED2+  
DESAT  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
GND1  
VIN+  
VE  
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
VLED2+  
VIN  
RESET  
FAULT  
VIN  
VIN  
VIN  
DESAT 14  
VCC2 13  
C  
C  
VCC1  
VCC2  
VEE  
VCC1  
RESET  
FAULT  
VEE  
RESET  
FAULT  
VLED+  
VLED  
RESET  
FAULT  
VLED+  
VLED  
12  
VC  
VOUT  
VEE  
VC  
11  
VOUT 10  
9
VEE  
Figure 72c. Safe hardware reset for inverting input configuration.  
Figure 72d. Safe hardware reset for inverting input configuration  
(automatically resets for every VIN- input).  
28  
16  
15  
14  
13  
12  
11  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
GND1  
VIN+  
VE  
VLED2+  
DESAT  
VE  
VLED2+  
DESAT  
100pF  
100pF  
VIN  
MJD44H11 or  
VCC1  
VCC2  
VEE  
VCC2  
VEE  
D44VH10  
RC8Ω  
4.5Ω  
RESET  
FAULT  
VLED+  
VLED  
VC  
VC  
VOUT  
VEE  
10Ω  
10Ω  
2.5Ω  
VOUT 10  
10nF  
10nF  
MJD45H11 or  
D45VH10  
9
VEE  
15V  
15V  
-5V  
-5V  
Figure 73. Use of RC to further limit ION,PEAK  
.
Figure 74. Current buffer for increased drive current  
Higher Output Current Using an External Current Buffer: DESAT Diode and DESAT Threshold  
To increase the IGBT gate drive current, a non-inverting The DESAT diode’s function is to conduct forward current,  
current buffer (such as the npn/pnp buffer shown in Figure  
74) may be used. Inverting types are not compatible with emitter voltage, V  
allowing sensing of the IGBT’s saturated collector-to-  
, (when the IGBT is “on”) and to  
CESAT  
the de-saturation fault protection circuitry and should be block high voltages (when the IGBT is “off”). During the  
avoided. To preserve the slow IGBT turn-off feature during short period of time when the IGBT is switching, there is  
a fault condition, a 10 nF capacitor should be connected commonly a very high dV /dt voltage ramp rate across  
CE  
from the buffer input to V and a 10 W resistor inserted the IGBT’s collector-to-emitter. This results in I  
(=  
EE  
CHARGE  
between the output and the common npn/pnp base. The  
MJD44H11/MJD45H11 pair is appropriate for currents up  
C
x dV /dt) charging current which will charge  
D-DESAT CE  
the blanking capacitor, C  
. In order to minimize this  
BLANK  
to 8A maximum. The D44VH10/ D45VH10 pair is appropri- charging current and avoid false DESAT triggering, it  
ate for currents up to 15 A maximum.  
is best to use fast response diodes. Listed in the below  
table are fast-recovery diodes that are suitable for use as  
a DESAT diode (D  
). In the recommended application  
DESAT  
circuit shown in Figure 61, the voltage on pin 14 (DESAT)  
is V = V + V , (where V is the forward ON voltage  
DESAT  
F
CE  
F
of D  
and V is the IGBT collector-to-emitter voltage).  
DESAT  
CE  
The value of V which triggers DESAT to signal a FAULT  
CE  
condition, is nominally 7V – V . If desired, this DESAT  
F
threshold voltage can be decreased by using multiple  
DESAT diodes in series. If n is the number of DESAT diodes  
then the nominal threshold value becomes V  
=
CE,FAULT(TH)  
7 V – n x V . In the case of using two diodes instead of one,  
F
diodes with half of the total required maximum reverse-  
voltage rating may be chosen.  
Max. Reverse Voltage Rating  
Part Number  
MUR1100E  
MURS160T3G  
UF4007  
Manufacturers  
t (ns)  
V
(Volts)  
Package Type  
rr  
RRM  
ON Semiconductor  
ON Semiconductor  
Vishay General Semi.  
Vishay General Semi.  
75  
75  
75  
75  
1000  
600  
59-04 (axial leaded)  
Case 403A (surface mount)  
DO-204AL (axial leaded)  
SOD57 (axial leaded)  
1000  
1000  
BYV26E  
29  
Power Considerations  
Operating Within the Maximum Allowable Power Ratings (Adjusting Step 2: Calculate total power dissipation in the ACPL-38JT:  
Value of R ):  
G
The ACPL-38JT total power dissipation (P ) is equal to the  
T
When choosing the value of R , it is important to confirm  
sum of the input-side power (P ) and output-side power  
G
I
that the power dissipation of the ACPL-38JT is within the (P ):  
O
maximum allowable power rating.  
P = P + P  
T
I
O
P = I  
* V  
I
CC1  
CC1  
The steps for doing this are:  
P
= I  
= P  
+ P  
O
O(BIAS) O(SWTICH)  
1. Calculate the minimum desired R ;  
G
* (V –V ) + E * f  
SWITCH SWITCH  
CC2  
CC2 EE  
2. Calculate total power dissipation in the part referring  
where,  
PO (BIAS) = steady-state power dissipation in the ACPL-38JT  
to Figure 76. (Average switching energy supplied to  
ACPL-38JT per cycle vs. R plot);  
G
3. Compare the input and output power dissipation due to biasing the device.  
calculated in step #2 to the maximum recommended  
PO (SWITCH) = transient power dissipation in the ACPL-38JT  
due to charging and discharging power device gate.  
dissipation for the ACPL-38JT. (If the maximum rec-  
ommended level has been exceeded, it may be nec-  
essary to raise the value of R to lower the switching  
power and repeat step #2.)  
ESWITCH = Average Energy dissipated in ACPL-38JT due to  
switching of the power device over one switching cycle  
(J/cycle).  
G
Asanexample,thetotalinputandoutputpowerdissipation  
can be calculated given the following conditions:  
fSWITCH = average carrier signal frequency.  
I  
~ 2.0 A  
ON, MAX  
V  
V = -5 V  
= 18 V  
CC2  
MAX. ION, IOFF vs. GATE RESISTANCE (VCC2 / VEE2 = 25 V / 5 V)  
4
EE  
f  
= 10 kHz  
CARRIER  
3
2
1
Step 1: Calculate R minimum from I peak specification:  
G
OL  
To find the peak charging l assume that the gate is  
initially charged the steady-state value of V . Therefore  
OL  
IOFF (MAX.)  
EE  
apply the following relationship:  
0
-1  
-2  
-3  
ION (MAX.)  
[V @650 A – (V +V )]  
OH  
OL EE  
R
G
=
=
=
I
OL, PEAK  
[V – 1 – (V + V )]  
CC2  
OL  
EE  
0
20 40 60 80 100 120 140 160 180 200  
I
Rg (Ω)  
OL, PEAK  
Figure 75. Typical peak ION and IOFF currents vs. Rg (for ACPL-38JT output  
driving an IGBT rated at 600 V/100 A).  
18 V – 1 V – (1.5 V + (-5 V))  
2.0 A  
=
10.25   
For RG = 10.5, the value read from Figure 76 is ESWITCH  
=
10.5 (for a 1% resistor)  
6.05 J. Assume a worst-case average ICC1 = 16.5 mA  
(which is given by the average of ICC1H and ICC1L). Similarly  
the average ICC2 = 5.5 mA.  
(Note from Figure 75 that the real value of I may vary  
from the value calculated from the simple model shown.)  
OL  
P
P
= 16.5 mA * 5.5 V = 90.8 mW  
= P + P  
I
O
O(BIAS)  
O(SWITCH)  
= 5.5 mA * (18 V – (–5 V)) + 6.051 J * 10 kHz  
= 126.5 mW + 60.51 mW  
= 187.01 mW  
30  
Step 3: Compare the calculated power dissipation with the absolute As long as the maximum power specification is not  
maximum values for the ACPL-38JT:  
exceeded, the only other limitation to the amount of  
power one can dissipate is the absolute maximum junction  
temperature specification of 140°C. The junction tempera-  
tures can be calculated with the following equations:  
For the example,  
P = 90.8 mW < 150 mW (abs. max.) OK  
I
P
= 187.01 mW < 600 mW (abs. max.) OK  
O
T = P (+ ) + T  
ji  
i
i1  
1A  
A
T
= P (  
+   
) + T  
Therefore, the power dissipation absolute maximum  
rating has not been exceeded for the example.  
jo  
o
o9,12  
9,12A A  
where P = power into input IC and P = power into output  
i
o
IC.  
Please refer to the following Thermal Model section for an  
explanation on how to calculate the maximum junction  
temperature of the ACPL-38JT for a given PC board layout  
configuration.  
Since and θ  
are dependent on PCB layout  
9,12A  
1A  
and airflow, their exact number may not be available.  
Therefore, a more accurate method of calculating the  
junction temperature is with the following equations:  
SWITCHING ENERGY vs. GATE RESISTANCE  
(VCC2 / VEE2 = 25 V / 5 V)  
T = P + T  
ji  
9
i i1  
P1  
8
7
6
T
= P   
+ T  
jo  
o o9,12 P9,12  
These equations, however, require that the pin 1 and pins  
9, 12 temperatures be measured with a thermal couple on  
the pin at the ACPL-38JT package edge.  
5
Ess (Qg = 650 nC)  
4
P = 90.8 mW, P = 314 mW, T = 125°C, and assuming the  
thermal model shown in Figure 77 below.  
i
o
A
3
2
T
T
= (90.8 mW)(60°C/W + 50°C/W) + 125°C = 135°C  
= (187.01 mW)(30°C/W + 50°C/W) + 125°C = 140°C  
1
0
ji  
jo  
0
50  
100  
150  
200  
Rg (Ω)  
If we, however, assume a worst case PCB layout and no  
air flow where the estimated q1A and q9,12A are 100°C/W.  
Then the junction temperatures become  
Figure 76. Switching energy plot for calculating average Pswitch  
(for ACPL-38JT output driving an IGBT rated at 600 V/100 A).  
T
T
= (90.8 mW)(60°C/W + 100°C/W) + 125°C = 140°C  
= (187.01 mW)(30°C/W + 100°C/W) + 125°C = 149°C  
ji  
Thermal Model  
jo  
The ACPL-38JT is designed to dissipate the majority of the  
heat through pins 1 for the input IC and pins 9 and 12 for  
the output IC. (There are two V pins on the output side,  
both of which are within the absolute maximum specifi-  
cation of 150°C.  
EE  
pins 9 and 12, for this purpose.) Heat flow through other  
pins or through the package directly into ambient are  
considered negligible and not modeled here.  
If the calculated junction temperatures for the thermal  
model in Figure 77 is higher than 150°C, the pin tempera-  
ture for pins 9 and 12 should be measured (at the package  
edge) under worst case operating environment for a more  
accurate estimate of the junction temperatures.  
In order to achieve the power dissipation specified in the  
absolute maximum specification, it is imperative that  
pins 1, 9, and 12 have ground planes connected to them.  
From the earlier power dissipation calculation example:  
Tji = junction temperature of input side IC  
Tjo = junction temperature of output side IC  
TP1 = pin 1 temperature at package edge  
TP9,12 = pin 9 and 12 temperature at package edge  
Tji  
Tjo  
I1 = 60°C/W  
l9, 12 = 30°C/W  
I1 = input side IC to pin 1 thermal resistance  
I9,12 = output side IC to pin 9 and 12 thermal resistance  
1A = pin 1 to ambient thermal resistance  
TP9, 12  
9, 12A = 50°C/W*  
TP1  
9,12A = pin 9 and 12 to ambient thermal resistance  
1A = 50°C/W*  
* The and   
values shown here are for PCB layouts shown in Figure 77  
9,12A  
1A  
with reasonable air flow. This value may increase or decrease by a factor of  
2 depending on PCB layout and/or airflow.  
TA  
Figure 77. Thermal Model for ACPL-38JT  
31  
Printed Circuit Board Layout Considerations  
Adequate spacing should always be maintained between Bypass Capacitors should be placed in between these  
the high voltage isolated circuitry and any input refer- pins: V  
enced circuitry. Care must be taken to provide the same  
to V , V to V , V  
to GND1 and V  
to V .  
CC2  
E
E
EE CC1  
CC2 EE  
Ground plane connections are necessary for PIN1 (GND1)  
minimum spacing between two adjacent high-side  
isolated regions of the printed circuit board. Insufficient  
spacing will reduce the effective isolation and increase  
parasitic coupling that will degrade CMR performance.  
and PIN 9 (V ) in order to achieve maximum power as the  
EE  
ACPL-38JT is designed to dissipate the majority of heat  
generated through these pins. Actual power dissipation  
will depend on the application environment (PCB layout,  
The placement and routing of supply bypass capacitors airflow, part placement, etc. (See Figure 77B and 77C).  
requires special attention. During switching transients, V should have direct connection (Kelvin connection) to  
E
the majority of the gate charge is supplied by the bypass  
IGBT Emitter to avoid switching noise on the ground line  
capacitors. Maintaining short bypass capacitor trace affecting accurate DESAT voltage sensing. See Figure77C.  
lengths will ensure low supply ripple and clean switching  
waveforms. See Figure 77A.  
Bypass Cap  
C1, C2, C4  
Ground Plane for GND1  
(Pin 1)  
Bypass Cap  
C13  
ACPL-36JV/38JT  
Top Gate  
Driver (U1)  
Board Isolation  
Figure 77a. Bypass Capacitors  
Ground Plane for VEE (Pin 9)  
Figure 77b. Ground Plane  
Kelvin Connection between VEE and IGBT Emitter  
IGBT  
Emitter  
Figure 77c. Kelvin Connection between VEE and IGBT Emitter  
32  
System Considerations  
Propagation Delay Difference (PDD)  
ILED1  
The ACPL-38JT includes a Propagation Delay Difference  
(PDD) specification intended to help designers minimize  
“dead time” in their power inverter designs. Dead time  
is the time period during which both the high and low  
side power transistors (Q1 and Q2 in Figure 62) are off.  
Any overlap in Q1 and Q2 conduction will result in large  
currents flowing through the power devices between  
the high and low voltage motor rails, a potentially cata-  
strophic condition that must be prevented.  
VOUT1  
Q1 ON  
Q1 OFF  
Q2 ON  
Q2 OFF  
VOUT2  
ILED2  
tPHL MAX  
To minimize dead time in a given design, the turn-on of  
the ACPL-38JT driving Q2 should be delayed (relative to  
the turn-off of the ACPL-38JT driving Q1) so that under  
worst-case conditions, transistor Q1 has just turned off  
when transistor Q2 turns on, as shown in Figure 80. The  
amount of delay necessary to achieve this condition is  
equal to the maximum value of the propagation delay  
tPLH MIN  
PDD* MAX = (tPHL - tPLH) MAX = tPHL MAX - tPLH MIN  
*PDD = Propagation Delay Difference  
Note: for PDD calculations the propagation delays  
Are taken at the same temperature and test conditions.  
Figure 78. Minimum LED Skew for Zero Dead Time.  
difference specification, P  
, which is specified to be  
DDMAX  
400 ns over the operating temperature range of -40°C to  
125°C.  
ILED1  
Delaying the ACPL-38JT turn-on signals by the maximum  
propagation delay difference ensures that the minimum  
dead time is zero, but it does not tell a designer what the  
maximum dead time will be. The maximum dead time is  
equivalent to the difference between the maximum and  
minimum propagation delay difference specifications  
as shown in Figure 79. The maximum dead time for the  
ACPL-38JT is 800 ns (= 400 ns - (-400 ns)) over an operating  
temperature range of -40°C to 125°C.  
VOUT1  
Q1 ON  
Q1 OFF  
Q2 ON  
Q2 OFF  
VOUT2  
ILED2  
tPLH MIN  
tPHL MAX  
tPLH MIN  
Note that the propagation delays used to calculate PDD  
and dead time are taken at equal temperatures and test  
conditions since the components under consideration are  
typically mounted in close proximity to each other and are  
switching identical IGBTs.  
tPLH MAX  
(tPHL - tPLH MAX  
)
PDD* MAX  
MAXIMUM DEAD TIME  
(DUE TO OPTOCOUPLER)  
= (tPHL MAX - tPHL MIN) + (tPLH MAX - tPLH MIN  
= (tPHL MAX - tPLH MIN) + (tPHL MIN - tPLH MAX  
= PDD* MAX - PDD* MIN  
)
)
*PDD = Propagation Delay Difference  
Note: For Dead Time and PDD calculations all propagation  
delays are taken at the same temperature and test conditions.  
Figure 79. Waveforms for Dead Time Calculation.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, the A logo and R2Coupler™ are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.  
AV02-2546EN - February 17, 2012  

相关型号:

ACPL-4800

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-000E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, DIP-8
AVAGO

ACPL-4800-060E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-300E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-360E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, DIP-8
AVAGO

ACPL-4800-500E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-4800-560E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-5160

2.5 Amp Gate Drive Optocoupler with Integrated (VCE) Desaturation Detection and Fault Status Feedback
AVAGO

ACPL-5161

2.5 Amp Gate Drive Optocoupler with Integrated (VCE) Desaturation Detection and Fault Status Feedback
AVAGO

ACPL-5600L

Hermetically Sealed, 3.3V High Speed, High CMR, Logic Gate Optocouplers
AVAGO