AAT2552 [ANALOGICTECH]

Total Power Solution for Portable Applications; 用于便携式应用的总电源解决方案
AAT2552
型号: AAT2552
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

Total Power Solution for Portable Applications
用于便携式应用的总电源解决方案

便携式
文件: 总33页 (文件大小:1050K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AAT2552  
Total Power Solution for Portable Applications  
SystemPower  
General Description  
Features  
The AAT2552 is a fully integrated 500mA battery  
charger, a 300mA step-down converter, and a  
300mA low dropout (LDO) linear regulator. The  
input voltage range is 4V to 6.5V for the battery  
charger and 2.7V to 5.5V for the step-down con-  
verter and linear regulator, making it ideal for appli-  
cations operating with single-cell lithium-ion/poly-  
mer batteries.  
Battery Charger:  
— Input Voltage Range: 4V to 6.5V  
— Programmable Charging Current up to  
500mA  
— Highly Integrated Battery Charger  
Charging Device  
Reverse Blocking Diode  
Current Sensing  
Step-Down Converter:  
The battery charger is a complete constant cur-  
rent/constant voltage linear charger. It offers an  
integrated pass device, reverse blocking protec-  
tion, high accuracy current and voltage regulation,  
charge status, and charge termination. The charg-  
ing current is programmable via external resistor  
from 30mA to 500mA. In addition to these stan-  
dard features, the device offers over-voltage, cur-  
rent limit, and thermal protection.  
— Input Voltage Range: 2.7V to 5.5V  
— Output Voltage Range: 0.6V to VIN  
— 300mA Output Current  
— Up to 96% Efficiency  
— 45µA Quiescent Current  
— 1.5MHz Switching Frequency  
— 120µs Start-Up Time  
Linear Regulator:  
— 300mA Output Current  
— Low Dropout: 400mV at 300mA  
— Fast Line and Load Transient Response  
— High Accuracy: 1.5%  
— 85µA Quiescent Current  
Short-Circuit, Over-Temperature, and Current  
Limit Protection  
TDFN34-16 Package  
-40°C to +85°C Temperature Range  
The step-down converter is a highly integrated  
converter operating at a 1.5MHz switching fre-  
quency, minimizing the size of external compo-  
nents while keeping switching losses low. The out-  
put voltage ranges from 0.6V to the input voltage.  
The AAT2552 linear regulator is designed for high  
speed turn-on and turn-off performance, fast tran-  
sient response, and good power supply ripple  
rejection. Delivering up to 300mA of load current,  
it includes short-circuit protection and thermal  
shutdown.  
Applications  
®
The AAT2552 is available in a Pb-free, thermally-  
enhanced TDFN34-16 package and is rated over  
the -40°C to +85°C temperature range.  
Bluetooth Headsets  
Cellular Phones  
GPS  
Handheld Instruments  
MP3 and Portable Music Players  
PDAs and Handheld Computers  
Portable Media Players  
Typical Application  
Adapter/USB Input  
INB  
ADP  
ENB  
INA  
STAT  
Enable  
EN_BAT  
ENA  
VOUTB  
L1  
LX  
AAT2552  
RFBB1  
RFBB2  
MODE  
BATT+  
BATT-  
FBB  
OUTA  
BAT  
COUTB  
4.7μF  
VOUTA  
COUTA  
RFBA1  
RFBA2  
COUT  
ISET  
FBA  
GND  
RSET  
Battery  
Pack  
2552.2007.04.1.0  
1
AAT2552  
Total Power Solution for Portable Applications  
Pin Descriptions  
Pin # Symbol  
Function  
1
EN_BAT  
Enable pin for the battery charger. When connected to logic low, the battery charger is dis-  
abled and consumes less than 1µA of current. When connected to logic high, the charger  
operates normally (pulled down internally).  
2
ISET  
Charge current set point. Connect a resistor from this pin to ground. Refer to typical charac-  
teristics curves for resistor selection.  
3
4
AGND  
FBB  
Analog ground.  
Feedback input for the step-down converter. This pin must be connected directly to an exter-  
nal resistor divider. Nominal voltage is 0.6V.  
5
6
7
8
ENB  
MODE  
ENA  
Enable pin for the step-down converter. When connected to logic low, the step-down convert-  
er is disabled and consumes less than 1µA of current. When connected to logic high, the con-  
verter operates normally (pulled up internally).  
Pulled down internally for automatic PWM/LL operation. Connect to logic high for forced PWM.  
Drive with external clock signal to synchronize step-down converter to external clock in PWM  
mode.  
Enable pin for the linear regulator. When connected to logic low, the regulator is disabled and  
consumes less than 1µA of current. When connected to logic high, the LDO operates normal-  
ly (pulled up internally).  
Feedback input for the LDO. This pin must be connected directly to an external resistor divider.  
Nominal voltage is 1.24V.  
FBA  
9
OUTA  
INA  
INB  
LX  
Linear regulator output. Connect a 2.2µF capacitor from this pin to ground.  
Linear regulator input voltage. Connect a 1µF or greater capacitor from this pin to ground.  
Input voltage for the step-down converter.  
Output of the step-down converter. Connect the inductor to this pin. Internally, it is connected  
to the drain of both high- and low-side MOSFETs.  
10  
11  
12  
13  
14  
15  
16  
EP  
PGND  
BAT  
ADP  
Power ground.  
Battery charging and sensing. Connect to positive terminal of Lithium-ion/polymer battery.  
Input from USB port or AC wall adapter.  
Open drain status pin for charger.  
STAT  
Exposed paddle (bottom): connect to ground directly beneath the package.  
Pin Configuration  
TDFN34-16  
(Top View)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
STAT  
ADP  
BAT  
PGND  
LX  
INB  
INA  
EN_BAT  
ISET  
AGND  
FBB  
ENB  
MODE  
ENA  
FBA  
OUTA  
2
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
1
Absolute Maximum Ratings  
Symbol  
Description  
Value  
Units  
VINA, VINB  
VADP  
VLX  
Input Voltage to GND  
Adapter Voltage to GND  
LX to GND  
FB to GND  
ENA, ENB, EN_BAT to GND  
BAT, ISET, STAT  
6.0  
-0.3 to 7.5  
V
V
V
V
V
V
°C  
°C  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to 6.0  
-0.3 to VADP + 0.3  
-40 to 150  
VFB  
VEN  
VX  
TJ  
Operating Junction Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec)  
TLEAD  
300  
Thermal Information  
Symbol  
Description  
Value  
Units  
PD  
θJA  
Maximum Power Dissipation  
Thermal Resistance  
2.0  
50  
W
°C/W  
2
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at condi-  
tions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Mounted on an FR4 board.  
2552.2007.04.1.0  
3
AAT2552  
Total Power Solution for Portable Applications  
1
Electrical Characteristics  
VINB = 3.6V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min  
Typ  
Max Units  
Step-Down Converter  
VIN  
Input Voltage  
2.7  
5.5  
2.6  
V
V
mV  
VINB Rising  
Hysteresis  
IOUTB = 0 to 300mA,  
VINB = 2.7V to 5.5V  
VUVLO  
UVLO Threshold  
250  
45  
2
VOUT  
Output Voltage Tolerance  
-3.0  
0.6  
3.0  
%
VOUT  
IQ  
ISHDN  
Output Voltage Range  
Quiescent Current  
Shutdown Current  
VINB  
90  
1.0  
V
µA  
µA  
mA  
Ω
Ω
µA  
%
%/V  
V
µA  
MHz  
No Load  
VENB = GND  
ILIM  
P-Channel Current Limit  
300  
RDS(ON)H  
RDS(ON)L  
ILXLEAK  
ΔVOUT/ΔVOUT Load Regulation  
ΔVLinereg/ΔVIN Line Regulation  
High-Side Switch On Resistance  
Low-Side Switch On Resistance  
LX Leakage Current  
0.3  
0.5  
VINB = 5.5V, VLX = 0 to VINB  
IOUTB = 0mA to 300mA  
VINB = 2.7V to 5.5V  
1.0  
0.4  
0.1  
0.6  
VFB  
IFB  
FOSC  
Feedback Threshold Voltage Accuracy VINB = 3.6V  
FB Leakage Current  
Oscillator Frequency  
0.591  
0.609  
0.2  
VOUTB = 1.0V  
1.5  
From Enable to Output  
Regulation  
TS  
Startup Time  
120  
µs  
TSD  
THYS  
VEN(L)  
VEN(H)  
IEN  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
Enable Threshold Low  
Enable Threshold High  
Input Low Current  
140  
15  
°C  
°C  
V
V
µA  
0.6  
1.0  
1.4  
-1.0  
VINB = VENB = 5.5V  
1. The AAT2552 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured  
by design, characterization, and correlation with statistical process controls.  
2. Output voltage tolerance is independent of feedback resistor network accuracy.  
4
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
1
Electrical Characteristics  
VINA = VOUT(NOM) + 1V. IOUT = 1mA, COUT = 2.2µF, TA = -40°C to +85°C, unless otherwise noted. Typical val-  
ues are TA = 25°C.  
Symbol  
Description  
Conditions  
Min Typ Max Units  
Linear Regulator  
I
OUTA = 1mA  
TA = 25°C  
TA = -40°C to +85°C  
-1.5  
-2.5  
1.2  
1.5  
2.5  
3.3  
VOUT  
Output Voltage Tolerance  
%
to 300mA  
VOUT  
VFB  
Output Voltage Range  
Feedback Voltage Accuracy  
V
V
1.22 1.24 1.26  
VOUT  
VDO  
+
VIN  
Input Voltage  
5.5  
650  
0.09  
V
2
3
VDO  
ΔVOUT  
VOUT*ΔVIN  
Dropout Voltage  
IOUTA = 300mA; VOUT = 3.3V  
VINA = VOUTA + 1 to 5.0V  
400  
mV  
%/V  
/
Line Regulation  
IOUT  
ISC  
IQ  
ISHDN  
Output Current  
VOUTA > 2.0V  
VOUTA < 0.4V  
VINA = 5V; VENA = VIN  
VINA = 5V; VENA = 0V  
1kHz  
300  
mA  
mA  
µA  
Short-Circuit Current  
Quiescent Current  
Shutdown Current  
400  
85  
150  
1.0  
µA  
70  
50  
30  
Power Supply Rejection  
Ratio  
PSRR  
IOUTA =10mA  
10kHz  
1MHz  
dB  
Over-Temperature  
Shutdown Threshold  
Over-Temperature  
Shutdown Hysteresis  
TSD  
THYS  
eN  
140  
15  
95  
8
°C  
°C  
µVRMS  
Hz  
/
Output Noise  
eNBW = 100Hz to 100kHz  
Output Voltage  
TC  
ppm/°C  
Temperature Coefficient  
Enable Threshold Low  
Enable Threshold High  
Enable Input Current  
VEN(L)  
VEN(H)  
IEN  
0.6  
1.0  
V
V
µA  
1.4  
VINA = VENA = 5.5V  
1. The AAT2552 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured  
by design, characterization, and correlation with statistical process controls.  
2. VDO is defined as VIN - VOUT when VOUT is 98% of nominal.  
3. For VOUT <2.3V, VDO = 2.5V - VOUT  
.
2552.2007.04.1.0  
5
AAT2552  
Total Power Solution for Portable Applications  
1
Electrical Characteristics  
VADP = 5V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min Typ Max Units  
Battery Charger  
Operation  
VADP  
Adapter Voltage Range  
Under-Voltage Lockout (UVLO)  
UVLO Hysteresis  
Operating Current  
Shutdown Current  
4.0  
3
6.5  
4
V
V
mV  
mA  
µA  
µA  
Rising Edge  
VUVLO  
150  
0.5  
0.3  
0.4  
IOP  
Charge Current = 200mA  
VBAT = 4.25V, VEN_BAT = GND  
1
1
2
ISHUTDOWN  
ILEAKAGE  
Voltage Regulation  
Reverse Leakage Current from BAT Pin VBAT = 4V, ADP Pin Open  
VBAT EOC  
VMIN  
VRCH  
End of Charge Accuracy  
Preconditioning Voltage Threshold  
Battery Recharge Voltage Threshold  
4.158 4.20 4.242  
V
V
V
_
2.8  
3.0  
3.2  
Measured from VBAT EOC  
-0.1  
_
Current Regulation  
ICH  
ΔICH/ICH  
VSET  
Charge Current Programmable Range  
Charge Current Regulation Tolerance ICHARGE = 200mA  
ISET Pin Voltage  
30  
-10  
500  
10  
mA  
%
V
2
KI_A  
Current Set Factor: ICH/ISET  
800  
Charging Devices  
RDS(ON)  
Charging Transistor On Resistance  
VADP = 5.5V  
0.5  
0.8  
Ω
Logic Control/Protection  
VEN(H)  
VEN(L)  
VSTAT  
ISTAT  
VOVP  
Enable Threshold High  
Enable Threshold Low  
Output Low Voltage  
STAT Pin Current Sink Capability  
Over-Voltage Protection Threshold  
Pre-Charge Current  
1.6  
V
V
V
mA  
V
%
%
0.4  
0.4  
8
STAT Pin Sinks 4mA  
ICH = 100mA  
4.4  
10  
10  
ITK/ICHG  
TERM/ICHG  
I
Charge Termination Threshold Current  
1. The AAT2552 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured  
by design, characterization, and correlation with statistical process controls.  
6
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
Typical Characteristics–Battery Charger  
Constant Charging Current vs. Set Resistors  
(VIN = 5.0V)  
Operating Supply Current vs. RSET  
(VIN = 5.0V)  
10000  
1000  
100  
1000  
100  
10  
Constant Current Mode  
Preconditioning Mode  
10  
1
10  
100  
1000  
1
10  
100  
R
SET (kΩ)  
R
SET (kΩ)  
Operating Current vs. Temperature  
(VIN = 5.0V; RSET = 8.06kΩ)  
Sleep Mode Current vs. Input Voltage  
(RSET = 8.06kΩ)  
540  
520  
500  
480  
460  
440  
800  
700  
600  
500  
400  
300  
200  
100  
0
25°C  
85°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
Temperature (°C)  
Input Voltage (V)  
Battery Charging Current vs. Battery Voltage  
Constant Charging Current vs. Temperature  
(RSET = 8.06kΩ)  
600  
210  
208  
205  
203  
200  
198  
195  
193  
190  
RSET = 3.24K  
500  
400  
RSET = 5.62K  
300  
RSET = 8.06K  
200  
RSET = 16.2K  
RSET = 31.6K  
100  
0
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
-50  
-25  
0
25  
50  
75  
100  
VBAT (V)  
Temperature (°C)  
2552.2007.04.1.0  
7
AAT2552  
Total Power Solution for Portable Applications  
Typical Characteristics–Battery Charger  
End of Charge Voltage Regulation  
End of Charge Battery Voltage  
vs. Input Voltage  
vs. Temperature  
(VIN = 5V; RSET = 8.06kΩ)  
4.206  
4.204  
4.202  
4.200  
4.198  
4.196  
4.194  
4.215  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
-40  
-15  
10  
35  
60  
85  
4.5  
5
5.5  
6
6.5  
Temperature (°C)  
VIN (V)  
Recharging Threshold Voltage vs. Temperature  
(RSET = 8.06kΩ)  
Constant Charging Current vs. Input Voltage  
(VIN = 5.62V)  
4.16  
4.14  
4.12  
4.10  
4.08  
4.06  
4.04  
310  
VIN = 3.3V  
305  
300  
295  
290  
285  
VIN = 4V  
VIN = 3.6V  
-40  
-15  
10  
35  
60  
85  
4
4.5  
5
5.5  
6
6.5  
V
IN (V)  
Temperature (°C)  
Preconditioning Charge Current vs. Temperature  
(RSET = 8.06kΩ)  
Preconditioning Voltage Threshold vs. Temperature  
(RSET = 8.06kΩ)  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
20.8  
20.4  
20.0  
19.6  
19.2  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
8
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
Typical Characteristics–Battery Charger  
Enable Threshold High vs. Input Voltage  
Enable Threshold Low vs. Input Voltage  
(RSET = 8.06kΩ)  
(RSET = 8.06kΩ)  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
-40°C  
-40°C  
85°C  
85°C  
25°C  
25°C  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
VIN (V)  
VIN (V)  
2552.2007.04.1.0  
9
AAT2552  
Total Power Solution for Portable Applications  
Typical Characteristics–Step-Down Converter  
Efficiency vs. Load  
(VOUT = 3.3V; L = 5.6µH)  
DC Regulation  
(VOUT = 3.3V; L = 5.6µH)  
100  
90  
80  
70  
60  
50  
40  
1.0  
0.5  
VIN = 3.6V  
VIN = 5.0V  
VIN = 5.0V  
VIN = 4.2V  
0.0  
VIN = 4.2V  
-0.5  
-1.0  
VIN = 3.6V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 1.8V; L = 3.3µH)  
DC Regulation  
(VOUT = 1.8V; L = 3.3µH)  
100  
90  
80  
70  
60  
50  
40  
1.0  
0.5  
VIN = 3.6V  
VIN = 2.7V  
VIN = 3.6V  
VIN = 5.0V  
VIN = 4.2V  
0.0  
VIN = 5.0V  
VIN = 4.2V  
VIN = 2.7V  
-0.5  
-1.0  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 1.2V; L = 1.5µH)  
DC Regulation  
(VOUT = 1.2V; L = 1.5μH)  
100  
90  
80  
70  
60  
50  
40  
1.0  
0.5  
VIN = 3.6V  
VIN = 3.6V  
VIN = 5.0V  
VIN = 2.7V  
0.0  
VIN = 5.0V  
VIN = 2.7V  
VIN = 4.2V  
VIN = 4.2V  
-0.5  
-1.0  
0.1  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
10  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
Typical Characteristics–Step-Down Converter  
Line Regulation  
(VOUT = 1.8V)  
Soft Start  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 150mA)  
4
3
2
1
0
0.2  
0.1  
0
VEN  
IOUT = 10mA  
VOUT  
IOUT = 50mA  
-0.1  
-0.2  
-0.3  
-0.4  
IL  
0.3  
0.2  
0.1  
0.0  
IOUT = 150mA  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Time (100µs/div)  
Output Voltage Accuracy vs. Temperature  
(VIN = 3.6V; VO = 1.8V; IOUT = 150mA)  
No Load Quiescent Current vs. Input Voltage  
2.0  
70  
1.5  
1.0  
85°C  
25°C  
60  
50  
40  
30  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-40°C  
-40  
-15  
10  
35  
60  
85  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Temperature (°C)  
N-Channel RDS(ON) vs. Input Voltage  
P-Channel RDS(ON) vs. Input Voltage  
600  
500  
400  
300  
200  
100  
1000  
900  
800  
700  
600  
500  
400  
300  
85°C  
85°C  
100°C  
120°C  
100°C  
120°C  
25°C  
25°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VIN (V)  
VIN (V)  
2552.2007.04.1.0  
11  
AAT2552  
Total Power Solution for Portable Applications  
Typical Characteristics–Step-Down Converter  
Load Transient Response  
Line Transient Response  
(VOUT = 1.8V @ 150mA, CFF = 100pF)  
(10mA to 300mA; VIN = 3.6V; VOUT = 1.8V; COUT = 4.7µF; C = 100pF)  
2.0  
1.90  
1.85  
1.80  
1.75  
1.9  
VOUT  
1.8  
1.7  
1.6  
IOUT  
300mA  
10mA  
4.6  
4.1  
3.6  
3.1  
0.2  
0.0  
-0.2  
ILX  
Time (20µs/div)  
Time (25µs/div)  
Output Voltage Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 300mA)  
Output Voltage Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA)  
40  
1.81  
20  
0
1.80  
1.79  
-20  
0.4  
0.05  
0.3  
0.2  
0.1  
0.00  
-0.05  
-0.10  
Time (0.2µs/div)  
Time (5µs/div)  
12  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
Typical Characteristics–LDO Regulator  
Quiescent Current vs. Temperature  
(VIN = 5V)  
Dropout Voltage vs. Temperature  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
120  
110  
100  
90  
IL = 300mA  
IL = 200mA  
IL = 100mA  
IL = 50mA  
80  
70  
60  
50  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-15  
10  
35  
60  
85  
Temperature (°°C)  
Temperature (°C)  
Dropout Characteristics  
Dropout Voltage vs. Output Current  
3.8  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
IOUT = 0mA  
85°C  
25°C  
3.6  
3.4  
3.2  
3
IOUT = 50mA  
IOUT = 300mA  
2.8  
2.6  
2.4  
IOUT = 100mA  
-40°C  
0
50  
100  
150  
200  
250  
300  
3
3.2  
3.4  
3.6  
3.8  
4
Output Current (mA)  
Input Voltage (V)  
Output Voltage vs. Temperature  
(VIN = 3.6V; VO = 1.8V; IOUT = 150mA)  
Enable Threshold Voltage vs. Input Voltage  
3.301  
3.300  
3.299  
3.298  
3.297  
3.296  
0.96  
0.94  
VEN(H)  
0.92  
0.9  
0.88  
0.86  
VEN(L)  
0.84  
0.82  
-40  
-15  
10  
35  
60  
85  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Temperature (°C)  
2552.2007.04.1.0  
13  
AAT2552  
Total Power Solution for Portable Applications  
Typical Characteristics–LDO Regulator  
Line Transient Response  
(IOUT = 300mA)  
Load Transient Response  
(1mA to 300mA; VIN = 5.0V; VOUT = 3.3V)  
3.40  
3.35  
3.30  
3.6  
3.4  
3.2  
VOUT  
VOUT  
5.0  
4.5  
4.0  
VIN  
0.4  
0.2  
0.0  
-0.2  
IL  
Time (100µs/div)  
Time (100µs/div)  
Turn-Off Response Time  
(VIN = 4.2V; IOUT = 300mA)  
Turn-On Time From Enable  
(VIN = 4.2V; IOUT = 300mA)  
VEN = 2V/div  
VEN = 2V/div  
VOUT = 1V/div  
VOUT = 1V/div  
Time (50µs/div)  
Time (100µs/div)  
LDO Output Noise  
(COUT = 4.7µF; IOUT = 10mA; RLOAD = 330; 98.33µVrms)  
10000  
1000  
100  
10  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
14  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
Functional Block Diagram  
Reverse Blocking  
ADP  
BAT  
Current Compare  
CV/Pre-Charge  
Charge  
Control  
Constant Current  
ISET  
UVLO  
STAT  
FBB  
INB  
Charge Status  
EN_BAT  
Err.  
DH  
Amp  
.
LX  
Voltage  
Reference  
Logic  
DL  
ENB  
Input  
MODE  
PGND  
OUTA  
Over-Temperature  
Protection  
From  
Charger Section  
INA  
Active Feedback  
Control  
Over-Current  
Protection  
Err.+  
FBA  
Amp  
Voltage  
Reference  
Fast Start  
Control  
-
ENA  
AGND  
Battery Charger  
Functional Description  
The battery charger is designed for single-cell lithi-  
um-ion/polymer batteries using a constant current  
and constant voltage algorithm. The battery charg-  
er operates from the adapter/USB input voltage  
range from 4V to 6.5V. The adapter/USB charging  
current level can be programmed up to 500mA for  
rapid charging applications. A status monitor out-  
put pin is provided to indicate the battery charge  
state by directly driving one external LED. Internal  
device temperature and charging state are fully  
monitored for fault conditions. In the event of an  
over-voltage or over-temperature failure, the  
device will automatically shut down, protecting the  
charging device, control system, and the battery  
under charge. Other features include an integrat-  
ed reverse blocking diode and sense resistor.  
The AAT2552 is a high performance power man-  
agement IC comprised of a lithium-ion/polymer  
battery charger, a step-down converter, and a lin-  
ear regulator. The linear regulator is designed for  
high-speed turn-on and fast transient response,  
and good power supply ripple rejection. The step-  
down converter operates in both fixed and variable  
frequency modes for high efficiency performance.  
The switching frequency is 1.5MHz, minimizing  
the size of the inductor. In light load conditions,  
the device enters power-saving mode; the switch-  
ing frequency is reduced and the converter con-  
sumes 45µA of current, making it ideal for battery-  
operated applications.  
2552.2007.04.1.0  
15  
AAT2552  
Total Power Solution for Portable Applications  
Switch-Mode Step-Down Converter  
Under-Voltage Lockout  
The step-down converter operates with an input  
voltage of 2.7V to 5.5V. The switching frequency is  
1.5MHz, minimizing the size of the inductor. Under  
light load conditions, the device enters power-sav-  
ing mode; the switching frequency is reduced, and  
the converter consumes 45µA of current, making it  
ideal for battery-operated applications. The output  
voltage is programmable from VIN to as low as  
0.6V. Power devices are sized for 300mA current  
capability while maintaining over 96% efficiency at  
full load. Light load efficiency is maintained at  
greater than 80% down to 1mA of load current. A  
high-DC gain error amplifier with internal compen-  
sation controls the output. It provides excellent  
transient response and load/line regulation.  
The AAT2552 has internal circuits for UVLO and  
power on reset features. If the ADP supply voltage  
drops below the UVLO threshold, the battery  
charger will suspend charging and shut down.  
When power is reapplied to the ADP pin or the  
UVLO condition recovers, the system charge con-  
trol will automatically resume charging in the  
appropriate mode for the condition of the battery. If  
the input voltage of the step-down converter drops  
below UVLO, the internal circuit will shut down.  
Protection Circuitry  
Over-Voltage Protection  
An over-voltage protection event is defined as a  
condition where the voltage on the BAT pin  
exceeds the over-voltage protection threshold  
(VOVP). If this over-voltage condition occurs, the  
charger control circuitry will shut down the device.  
The charger will resume normal charging operation  
after the over-voltage condition is removed.  
The AAT2552 synchronous step-down converter  
can be synchronized to an external clock signal  
applied to the MODE pin.  
Linear Regulator  
The advanced circuit design of the linear regulator  
has been specifically optimized for very fast start-  
up. This proprietary CMOS LDO has also been tai-  
lored for superior transient response characteris-  
tics. These traits are particularly important for appli-  
cations that require fast power supply timing.  
Current Limit, Over-Temperature Protection  
For overload conditions, the peak input current is lim-  
ited at the step-down converter. As load impedance  
decreases and the output voltage falls closer to zero,  
more power is dissipated internally, which causes the  
internal die temperature to rise. In this case, the ther-  
mal protection circuit completely disables switching,  
which protects the device from damage.  
The high-speed turn-on capability is enabled  
through implementation of a fast-start control cir-  
cuit which accelerates the power-up behavior of  
fundamental control and feedback circuits within  
the LDO regulator. The LDO regulator output has  
been specifically optimized to function with low-  
cost, low-ESR ceramic capacitors; however, the  
design will allow for operation over a wide range  
of capacitor types.  
The battery charger has a thermal protection circuit  
which will shut down charging functions when the  
internal die temperature exceeds the preset ther-  
mal limit threshold. Once the internal die tempera-  
ture falls below the thermal limit, normal charging  
operation will resume.  
The regulator comes with complete short-circuit  
and thermal protection. The combination of these  
two internal protection circuits gives a comprehen-  
sive safety system to guard against extreme  
adverse operating conditions.  
Control Loop  
The AAT2552 contains a compact, current mode  
step-down DC/DC controller. The current through  
the P-channel MOSFET (high side) is sensed for  
current loop control, as well as short-circuit and  
overload protection. A fixed slope compensation  
signal is added to the sensed current to maintain  
stability for duty cycles greater than 50%. The peak  
current mode loop appears as a voltage-pro-  
grammed current source in parallel with the output  
capacitor. The output of the voltage error amplifier  
programs the current mode loop for the necessary  
The regulator features an enable/disable function.  
This pin (ENA) is active high and is compatible with  
CMOS logic. The LDO regulator will go into the dis-  
able shutdown mode when the voltage on the ENA  
pin falls below 0.6V. If the enable function is not  
needed in a specific application, it may be tied to INA  
to keep the LDO regulator in a continuously on state.  
16  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
peak switch current to force a constant output volt-  
rent level for this mode is programmed using a sin-  
gle resistor from the ISET pin to ground.  
Programmed current can be set from a minimum  
15mA up to a maximum of 500mA. Constant cur-  
rent charging will continue until the battery voltage  
reaches the voltage regulation point, VBAT. When  
the battery voltage reaches VBAT, the battery charg-  
er begins constant voltage mode. The regulation  
voltage is factory programmed to a nominal 4.2V  
( 0.5%) and will continue charging until the charg-  
ing current has reduced to 10% of the programmed  
current.  
age for all load and line conditions. Internal loop  
compensation terminates the transconductance  
voltage error amplifier output. The error amplifier  
reference is fixed at 0.6V.  
Battery Charging Operation  
Battery charging commences only after checking  
several conditions in order to maintain a safe charg-  
ing environment. The input supply (ADP) must be  
above the minimum operating voltage (UVLO) and  
the enable pin must be high (internally pulled down).  
When the battery is connected to the BAT pin, the  
charger checks the condition of the battery and  
determines which charging mode to apply. If the bat-  
tery voltage is below VMIN, the charger begins bat-  
tery pre-conditioning by charging at 10% of the pro-  
grammed constant current; e.g., if the programmed  
current is 150mA, then the pre-conditioning current  
(trickle charge) is 15mA. Pre-conditioning is purely a  
safety precaution for a deeply discharged cell and  
will also reduce the power dissipation in the internal  
series pass MOSFET when the input-output voltage  
differential is at its highest.  
After the charge cycle is complete, the pass device  
turns off and the device automatically goes into a  
power-saving sleep mode. During this time, the  
series pass device will block current in both direc-  
tions, preventing the battery from discharging  
through the IC.  
The battery charger will remain in sleep mode,  
even if the charger source is disconnected, until  
one of the following events occurs: the battery ter-  
minal voltage drops below the VRCH threshold; the  
charger EN pin is recycled; or the charging source  
is reconnected. In all cases, the charger will mon-  
itor all parameters and resume charging in the  
most appropriate mode.  
Pre-conditioning continues until the battery voltage  
reaches VMIN (see Figure 1). At this point, the  
charger begins constant-current charging. The cur-  
Preconditioning  
Trickle Charge  
Constant Current  
Charge Phase  
Constant Voltage  
Charge Phase  
Phase  
Charge Complete Voltage  
I = Max CC  
Regulated Current  
Constant Current Mode  
Voltage Threshold  
Trickle Charge and  
Termination Threshold  
I = CC / 10  
Figure 1: Current vs. Voltage Profile During Charging Phases.  
2552.2007.04.1.0  
17  
AAT2552  
Total Power Solution for Portable Applications  
Battery Charging System Operation Flow Chart  
Enable  
Power On Reset  
No  
Yes  
Power Input  
Voltage  
VADP > VUVLO  
Yes  
Fault Conditions  
Monitoring  
OV, OT  
Charge  
Control  
Shut Down  
Yes  
No  
Preconditioning  
Test  
Preconditioning  
(Trickle Charge)  
Yes  
V
MIN > VBAT  
No  
No  
Constant  
Current Charge  
Mode  
Recharge Test  
Current Phase Test  
BAT_EOC > VBAT  
Yes  
Yes  
V
RCH > VBAT  
V
No  
Constant  
Voltage Charge  
Mode  
Voltage Phase Test  
IBAT > ITERM  
Yes  
No  
Charge Completed  
18  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
the fast charge, as well as the preconditioning trick-  
le charge current, is dominated by the tolerance of  
the set resistor used. For this reason, a 1% toler-  
ance metal film resistor is recommended for the set  
resistor function. Fast charge constant current lev-  
els from 30mA to 500mA may be set by selecting  
the appropriate resistor value from Table 1.  
Application Information  
Soft Start / Enable  
The EN_BAT pin is internally pulled down. When  
pulled to a logic high level, the battery charger is  
enabled. When left open or pulled to a logic low level,  
the battery charger is shut down and forced into the  
sleep state. Charging will be halted regardless of the  
battery voltage or charging state. When it is re-  
enabled, the charge control circuit will automatically  
reset and resume charging functions with the appro-  
priate charging mode based on the battery charge  
state and measured cell voltage from the BAT pin.  
Normal  
Set Resistor  
ICHARGE (mA)  
Value R1 (kΩ)  
500  
400  
300  
250  
200  
150  
100  
50  
40  
30  
20  
15  
3.24  
4.12  
5.36  
6.49  
8.06  
10.7  
16.2  
31.6  
38.3  
53.6  
78.7  
105  
Separate ENA and ENB inputs are provided to  
independently enable and disable the LDO and  
step-down converter, respectively. This allows  
sequencing of the LDO and step-down outputs dur-  
ing startup.  
The LDO is enabled when the ENA pin is pulled  
high. The control and feedback circuits have been  
optimized for high-speed, monotonic turn-on char-  
acteristics.  
The step-down converter is enabled when the ENB  
pin is pulled high. Soft start increases the inductor  
current limit point in discrete steps when the input  
voltage or ENB input is applied. It limits the current  
surge seen at the input and eliminates output voltage  
overshoot. When pulled low, the ENB input forces the  
AAT2552 into a low-power, non-switching state. The  
step-down converter input current during shutdown is  
less than 1µA.  
Table 1: RSET Values.  
1000  
100  
10  
1
Adapter or USB Power Input  
1
10  
100  
1000  
Constant current charge levels up to 500mA may  
be programmed by the user when powered from a  
sufficient input power source. The battery charger  
will operate from the adapter input over a 4.0V to  
6.5V range. The constant current fast charge cur-  
rent for the adapter input is set by the RSET resistor  
connected between ISET and ground. Refer to  
Table 1 for recommended RSET values for a desired  
constant current charge level.  
RSET (kΩ)  
Figure 2: Constant Charging Current  
vs. Set Resistor Values.  
Charge Status Output  
The AAT2552 provides battery charge status via a  
status pin. This pin is internally connected to an N-  
channel open drain MOSFET, which can be used to  
drive an external LED. The status pin can indicate  
several conditions, as shown in Table 2.  
Programming Charge Current  
The fast charge constant current charge level is  
user programmed with a set resistor placed  
between the ISET pin and ground. The accuracy of  
2552.2007.04.1.0  
19  
AAT2552  
Total Power Solution for Portable Applications  
First, the maximum power dissipation for a given  
Event Description  
Status  
OFF  
situation should be calculated:  
No battery charging activity  
Battery charging via adapter  
or USB port  
ON  
(TJ(MAX)  
-
TA)  
PD(MAX)  
=
θJA  
Charging completed  
OFF  
Where:  
PD(MAX) = Maximum Power Dissipation (W)  
θJA = Package Thermal Resistance (°C/W)  
Table 2: LED Status Indicator.  
The LED should be biased with as little current as  
necessary to create reasonable illumination; there-  
fore, a ballast resistor should be placed between  
the LED cathode and the STAT pin. LED current  
consumption will add to the overall thermal power  
budget for the device package, hence it is good to  
keep the LED drive current to a minimum. 2mA  
should be sufficient to drive most low-cost green or  
red LEDs. It is not recommended to exceed 8mA  
for driving an individual status LED.  
TJ(MAX) = Maximum Device Junction Temperature  
(°C) [135°C]  
TA  
= Ambient Temperature (°C)  
Figure 3 shows the relationship of maximum  
power dissipation and ambient temperature of the  
AAT2552.  
The required ballast resistor values can be esti-  
mated using the following formulas:  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
(VADP  
- VF(LED)  
ILED  
)
R6 =  
Example:  
0
20  
40  
60  
80  
100  
TA (°C)  
(5.5V - 2.0V)  
2mA  
R6 =  
= 1.75kΩ  
Figure 3: Maximum Power Dissipation.  
Next, the power dissipation of the battery charger  
can be calculated by the following equation:  
Note: Red LED forward voltage (VF) is typically  
2.0V @ 2mA.  
Thermal Considerations  
PD = [(VADP - VBAT) · ICH + (VADP · IOP)]  
The AAT2552 is offered in a TDFN34-16 package  
which can provide up to 2W of power dissipation  
when it is properly bonded to a printed circuit board  
and has a maximum thermal resistance of 50°C/W.  
Many considerations should be taken into account  
when designing the printed circuit board layout, as  
well as the placement of the charger IC package in  
proximity to other heat generating devices in a given  
application design. The ambient temperature around  
the IC will also have an effect on the thermal limits of  
a battery charging application. The maximum limits  
that can be expected for a given ambient condition  
can be estimated by the following discussion.  
Where:  
PD  
= Total Power Dissipation by the Device  
VADP = ADP/USB Voltage  
VBAT = Battery Voltage as Seen at the BAT Pin  
ICH = Constant Charge Current Programmed for  
the Application  
IOP = Quiescent Current Consumed by the  
Charger IC for Normal Operation [0.5mA]  
20  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
By substitution, we can derive the maximum  
IQ is the step-down converter quiescent current.  
The term tsw is used to estimate the full load step-  
down converter switching losses.  
charge current before reaching the thermal limit  
condition (thermal cycling). The maximum charge  
current is the key factor when designing battery  
charger applications.  
For the condition where the step-down converter is  
in dropout at 100% duty cycle, the total device dis-  
sipation reduces to:  
(PD(MAX)  
-
VIN  
VIN - VBAT  
· IOP)  
ICH(MAX)  
=
PTOTAL = IO2 · RDSON(H) + IQ · VIN  
(TJ(MAX)  
θJA  
VIN - VBAT  
- TA)  
-
VIN · IOP  
Since RDS(ON), quiescent current, and switching  
losses all vary with input voltage, the total losses  
should be investigated over the complete input  
voltage range.  
ICH(MAX)  
=
In general, the worst condition is the greatest volt-  
age drop across the IC, when battery voltage is  
charged up to the preconditioning voltage thresh-  
old. Figure 4 shows the maximum charge current in  
different ambient temperatures.  
Given the total losses, the maximum junction tem-  
perature can be derived from the θJA for the  
TDFN34-16 package which is 50°C/W.  
TJ(MAX) = PTOTAL · ΘJA + TAMB  
500  
450  
TA = 60°C  
400  
350  
TA = 45°C  
300  
250  
Capacitor Selection  
Linear Regulator Input Capacitor (C6)  
TA = 85°C  
200  
An input capacitor greater than 1µF will offer supe-  
rior input line transient response and maximize  
power supply ripple rejection. Ceramic, tantalum,  
or aluminum electrolytic capacitors may be select-  
ed for CIN. There is no specific capacitor ESR  
requirement for CIN. However, for 300mA LDO reg-  
ulator output operation, ceramic capacitors are rec-  
ommended for CIN due to their inherent capability  
over tantalum capacitors to withstand input current  
surges from low impedance sources such as bat-  
teries in portable devices.  
150  
100  
50  
0
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5 6.75  
VIN (V)  
Figure 4: Maximum Charging Current Before  
Thermal Cycling Becomes Active.  
There are three types of losses associated with the  
step-down converter: switching losses, conduction  
losses, and quiescent current losses. Conduction  
losses are associated with the RDS(ON) characteris-  
tics of the power output switching devices.  
Switching losses are dominated by the gate charge  
of the power output switching devices. At full load,  
assuming continuous conduction mode (CCM), a  
simplified form of the losses is given by:  
Battery Charger Input Capacitor (C1)  
In general, it is good design practice to place a  
decoupling capacitor between the ADP pin and  
GND. An input capacitor in the range of 1µF to  
22µF is recommended. If the source supply is  
unregulated, it may be necessary to increase the  
capacitance to keep the input voltage above the  
under-voltage lockout threshold during device  
enable and when battery charging is initiated. If the  
adapter input is to be used in a system with an  
external power supply source, such as a typical  
AC-to-DC wall adapter, then a CIN capacitor in the  
range of 10µF should be used. A larger input  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN - VO])  
PTOTAL  
=
VIN  
+ (tsw · FS · IO + IQ) · VIN  
2552.2007.04.1.0  
21  
AAT2552  
Total Power Solution for Portable Applications  
capacitor in this application will minimize switching  
or power transient effects when the power supply is  
"hot plugged" in.  
IO  
2
IRMS(MAX)  
=
VO  
VIN  
VO  
VIN  
·
1 -  
Step-Down Converter Input Capacitor (C6)  
Select a 4.7µF to 10µF X7R or X5R ceramic capac-  
itor for the input. To estimate the required input  
capacitor size, determine the acceptable input rip-  
ple level (VPP) and solve for CIN. The calculated  
value varies with input voltage and is a maximum  
when VIN is double the output voltage.  
The term  
appears in both the input  
voltage ripple and input capacitor RMS current  
equations and is a maximum when VO is twice VIN.  
This is why the input voltage ripple and the input  
capacitor RMS current ripple are a maximum at  
50% duty cycle.  
The input capacitor provides a low impedance loop  
for the edges of pulsed current drawn by the step-  
down converter. Low ESR/ESL X7R and X5R  
ceramic capacitors are ideal for this function. To  
minimize stray inductance, the capacitor should be  
placed as closely as possible to the IC. This keeps  
the high frequency content of the input current  
localized, minimizing EMI and input voltage ripple.  
VO  
VIN  
VO ⎞  
VIN ⎠  
· 1 -  
CIN =  
VPP  
IO  
- ESR ·FS  
VO  
VIN  
VO ⎞  
VIN ⎠  
1
· 1 -  
=
for VIN = 2 · VO  
4
The proper placement of the input capacitor (C6)  
can be seen in the evaluation board layout in  
Figure 7.  
1
CIN(MIN)  
=
VPP  
IO  
- ESR · 4 · FS  
A laboratory test set-up typically consists of two  
long wires running from the bench power supply to  
the evaluation board input voltage pins. The induc-  
tance of these wires, along with the low-ESR  
ceramic input capacitor, can create a high Q net-  
work that may affect converter performance. This  
problem often becomes apparent in the form of  
excessive ringing in the output voltage during load  
transients. Errors in the loop phase and gain meas-  
urements can also result.  
Always examine the ceramic capacitor DC voltage  
coefficient characteristics when selecting the prop-  
er value. For example, the capacitance of a 10µF,  
6.3V, X5R ceramic capacitor with 5.0V DC applied  
is actually about 6µF.  
The maximum input capacitor RMS current is:  
Since the inductance of a short PCB trace feeding  
the input voltage is significantly lower than the  
power leads from the bench power supply, most  
applications do not exhibit this problem.  
VO  
VIN  
VO ⎞  
VIN ⎠  
IRMS = IO ·  
· 1 -  
The input capacitor RMS ripple current varies with  
the input and output voltage and will always be less  
than or equal to half of the total DC load current.  
In applications where the input power source lead  
inductance cannot be reduced to a level that does  
not affect the converter performance, a high ESR  
tantalum or aluminum electrolytic capacitor should  
be placed in parallel with the low ESR, ESL bypass  
ceramic capacitor. This dampens the high Q net-  
work and stabilizes the system. The linear regula-  
tor and the step-down convertor share the same  
input capacitor on the evaluation board.  
VO  
VIN  
VO ⎞  
VIN ⎠  
1
2
· 1 -  
=
D · (1 - D) = 0.52 =  
for VIN = 2 · VO  
22  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
Linear Regulator Output Capacitor (C5)  
current demand. The relationship of the output volt-  
For proper load voltage regulation and operational  
stability, a capacitor is required between OUT and  
GND. The COUT capacitor connection to the LDO  
regulator ground pin should be made as directly as  
practically possible for maximum device perform-  
ance. Since the regulator has been designed to  
function with very low ESR capacitors, ceramic  
capacitors in the 1.0µF to 10µF range are recom-  
mended for best performance. Applications utilizing  
the exceptionally low output noise and optimum  
power supply ripple rejection should use 2.2µF or  
greater for COUT. In low output current applications,  
where output load is less than 10mA, the minimum  
value for COUT can be as low as 0.47µF.  
age droop during the three switching cycles to the  
output capacitance can be estimated by:  
3 · ΔILOAD  
=
COUT  
V
DROOP · FS  
Once the average inductor current increases to the  
DC load level, the output voltage recovers. The  
above equation establishes a limit on the minimum  
value for the output capacitor with respect to load  
transients.  
The internal voltage loop compensation also limits  
the minimum output capacitor value to 4.7µF. This  
is due to its effect on the loop crossover frequency  
(bandwidth), phase margin, and gain margin.  
Increased output capacitance will reduce the  
crossover frequency with greater phase margin.  
Battery Charger Output Capacitor (C2)  
The battery charger of the AAT2552 only requires a  
1µF ceramic capacitor on the BAT pin to maintain  
circuit stability. This value should be increased to  
10µF or more if the battery connection is made any  
distance from the charger output. If the AAT2552 is  
to be used in applications where the battery can be  
removed from the charger, such as with desktop  
charging cradles, an output capacitor greater than  
10µF may be required to prevent the device from  
cycling on and off when no battery is present.  
The maximum output capacitor RMS ripple current  
is given by:  
1
V
OUT · (VIN(MAX) - VOUT  
)
IRMS(MAX)  
=
·
L · FS · VIN(MAX)  
2 · 3  
Step-Down Converter Output Capacitor (C3)  
The output capacitor limits the output ripple and  
provides holdup during large load transitions. A  
4.7µF to 10µF X5R or X7R ceramic capacitor typi-  
cally provides sufficient bulk capacitance to stabi-  
lize the output during large load transitions and has  
the ESR and ESL characteristics necessary for low  
output ripple. For enhanced transient response and  
low temperature operation applications, a 10µF  
(X5R, X7R) ceramic capacitor is recommended to  
stabilize extreme pulsed load conditions.  
Dissipation due to the RMS current in the ceram-  
ic output capacitor ESR is typically minimal,  
resulting in less than a few degrees rise in hot-  
spot temperature.  
Inductor Selection  
The step-down converter uses peak current mode  
control with slope compensation to maintain stabil-  
ity for duty cycles greater than 50%. The output  
inductor value must be selected so the inductor  
current down slope meets the internal slope com-  
pensation requirements. The internal slope com-  
pensation for the AAT2552 is 0.45A/µsec. This  
equates to a slope compensation that is 75% of the  
inductor current down slope for a 1.8V output and  
3.0µH inductor.  
The output voltage droop due to a load transient is  
dominated by the capacitance of the ceramic out-  
put capacitor. During a step increase in load cur-  
rent, the ceramic output capacitor alone supplies  
the load current until the loop responds. Within two  
or three switching cycles, the loop responds and  
the inductor current increases to match the load  
2552.2007.04.1.0  
23  
AAT2552  
Total Power Solution for Portable Applications  
0.75 VO 0.75 1.8V  
= 0.45  
A
µsec  
R3 = 59kΩ  
R2 (kΩ)  
R3 = 221kΩ  
R2 (kΩ)  
m =  
=
L
3.0µH  
VOUT (V)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
75  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
0.75 VO  
0.75  
VO  
A
µsec  
A
L =  
=
1.67  
VO  
m
0.45A  
µsec  
For most designs, the step-down converter operates  
with inductor values from 1µH to 4.7µH. Table 6 dis-  
plays inductor values for the AAT2552 for various  
output voltages.  
Manufacturer's specifications list both the inductor  
DC current rating, which is a thermal limitation, and  
the peak current rating, which is determined by the  
saturation characteristics. The inductor should not  
show any appreciable saturation under normal load  
conditions. Some inductors may meet the peak and  
average current ratings yet result in excessive loss-  
es due to a high DCR. Always consider the losses  
associated with the DCR and its effect on the total  
converter efficiency when selecting an inductor.  
Table 3: Adjustable Resistor Values For  
Step-Down Converter.  
Adjustable Output Voltage for the LDO  
The output voltage for the LDO can be pro-  
grammed by an external resistor divider network.  
The 3.0µH CDRH2D09 series inductor selected  
from Sumida has a 150mΩ DCR and a 470mA DC  
current rating. At full load, the inductor DC loss is  
9.375mW which gives a 2.08% loss in efficiency for  
a 250mA, 1.8V output.  
As shown below, the selection of R4 and R5 is a  
straightforward matter. R5 is chosen by considering  
the tradeoff between the feedback network bias cur-  
rent and resistor value. Higher resistor values allow  
stray capacitance to become a larger factor in circuit  
performance whereas lower resistor values increase  
bias current and decrease efficiency. To select appro-  
priate resistor values, first choose R5 such that the  
feedback network bias current is reasonable. Then,  
according to the desired VOUT, calculate R4 according  
to the equation below. An example calculation follows.  
Adjustable Output Voltage for the Step-  
down Converter  
Resistors R2 and R3 of Figure 5 program the out-  
put of the step down converter and regulate at a  
voltage higher than 0.6V. To limit the bias current  
required for the external feedback resistor string  
while maintaining good noise immunity, the sug-  
gested value for R3 is 59kΩ. Decreased resistor  
values are necessary to maintain noise immunity  
on the FBB pin, resulting in increased quiescent  
current. Table 3 summarizes the resistor values for  
various output voltages.  
VOUT  
VREF  
R4 =  
- 1 · R5  
An R5 value of 59kΩ is chosen, resulting in a small  
feedback network bias current of 1.24V/59kΩ ≈  
21µA. The desired output voltage is 1.8V. From this  
information, R4 is calculated from the equation below.  
The result is R4 = 26.64kΩ. Since 26.64kΩ is not a  
standard 1%-value, 26.7kΩ is selected. From this  
example calculation, for VOUT = 1.8V, use R5 = 59kΩ  
and R4 = 26.7kΩ. Example output voltages and cor-  
responding resistor values are provided in Table 4.  
V
V
3.3V  
0.6V  
R2 =  
OUT -1 · R3 =  
- 1 · 59kΩ = 267kΩ  
REF  
With enhanced transient response for extreme  
pulsed load application, an external feed-forward  
capacitor (C8 in Figure 5) can be added.  
24  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
1. The input capacitors (C1, C6) should connect as  
closely as possible to ADP, INA, and INB. It is pos-  
R4 Standard 1% Values  
(R5 = 59kΩ)  
sible to use two input capacitors for INA and INB.  
2. C4 and L1 should be connected as closely as  
possible. The connection of L1 to the LX pin  
should be as short as possible. Do not make the  
node small by using narrow trace. The trace  
should be kept wide, direct, and short.  
VOUT (V)  
R4 (kΩ)  
3.3  
2.8  
2.5  
2.0  
1.8  
1.5  
97.6  
75.0  
60.4  
36.5  
26.7  
12.4  
3. The feedback pin should be separate from any  
power trace and connect as closely as possible  
to the load point. Sensing along a high-current  
load trace will degrade DC load regulation.  
Feedback resistors should be placed as closely  
as possible to the FBB pin to minimize the length  
of the high impedance feedback trace. If possi-  
ble, they should also be placed away from the  
LX (switching node) and inductor to improve  
noise immunity.  
4. The resistance of the trace from PGND should  
be kept to a minimum. This will help to minimize  
any error in DC regulation due to differences in  
the potential of the internal signal ground and  
the power ground.  
Table 4: Adjustable Resistor Values for the LDO.  
Printed Circuit Board Layout  
Considerations  
For the best results, it is recommended to physi-  
cally place the battery pack as close as possible to  
the AAT2552 BAT pin. To minimize voltage drops  
on the PCB, keep the high current carrying traces  
adequately wide. Refer to the AAT2552 evaluation  
board for a good layout example (see Figures 6  
and 7). The following guidelines should be used to  
help ensure a proper layout.  
5. A high density, small footprint layout can be  
achieved using an inexpensive, miniature, non-  
shielded, high DCR inductor.  
2552.2007.04.1.0  
25  
AAT2552  
Total Power Solution for Portable Applications  
JP1  
EN_BAT  
2
1
3 2 1  
Power Selection  
JP2  
BAT  
ADP  
D1  
RED  
LED  
C6  
10μF  
(at bottom layer)  
C1  
10μF  
1
2
R6  
EN_LDO  
U1  
JP3  
1.5K  
Sync/Mode  
15  
16  
1
10  
11  
7
ADP  
INA  
1
2
STAT  
INB  
ENA  
ENB  
EN_BAT  
MODE  
6
5
EN_BUCK  
VoB  
L1  
14  
2
12  
4
BAT  
LX  
C4  
100pF  
(Optional)  
ISET  
FBB  
VoA  
C2  
10μF  
R2  
3
9
8
AGND  
PGND  
OUTA  
FBA  
R1  
8.06K  
13  
R4  
C3  
4.7μF  
R3  
59k  
C5  
4.7μF  
R5  
59k  
VOUTB (V) R2 (Ω)  
L1  
VOUTA (V)  
R4 (Ω)  
0.6  
13  
R2 short, R3 open  
1.24  
1.5  
1.8  
2.0  
2.5  
2.8  
3.0  
R4 short, R5 open  
12.4K  
9.2K  
59K  
1.5μH (CDRH2D09/HP; DCR 88mΩ; 730mA @ 20°C)  
2.2μH (CDRH2D09/HP; DCR 115mΩ; 600mA @ 20°C)  
3.0μH (CDRH2D09/HP; DCR 150mΩ; 470mA @ 20°C)  
3.9μH (CDRH2D09/HP; DCR 180mΩ; 450mA @ 20°C)  
4.7μH (CDRH2D09/HP; DCR 230mΩ; 410mA @ 20°C)  
5.6μH (CDRH2D09/HP; DCR 260mΩ; 370mA @ 20°C)  
1.2  
1.8  
2.5  
3.0  
3.3  
26.7K  
118K  
187K  
237K  
267K  
36.5K  
60.4K  
75.0K  
97.6K  
Figure 5: AAT2552 Evaluation Board Schematic.  
Figure 6: AAT2552 Evaluation Board  
Top Side Layout.  
Figure 7: AAT2552 Evaluation Board  
Bottom Side Layout.  
26  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
Component Part Number  
Description  
Manufacturer  
U1  
C1, C2  
C3, C5  
C6  
AAT2552IRN  
ECJ-1VB0J106M  
GRM188R60J475KE19  
GRM319R61A106KE19  
Total Power Solution for Portable Applications AnalogicTech  
CER 10μF 6.3V X5R 0603  
CER 4.7μF 6.3V X5R 0603  
CER 10μF 10V X5R 1206  
Panansonic  
Murata  
Murata  
C4  
GRM1886R1H101JZ01J CER 100pF 50V 5% R2H 0603  
Murata  
L1  
R6  
R1  
R2  
CDRH2D09  
Shielded SMD, 3x3x1mm  
1.5KΩ, 5%, 1/4W 0603  
8.06KΩ, 1%, 1/4W 0603  
118KΩ, 1%, 1/4W 0603  
59KΩ, 1%, 1/4W 0603  
60.4KΩ, 1%, 1/4W 0603  
Conn. Header, 2mm zip  
Sumida  
Vishay  
Vishay  
Vishay  
Vishay  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
PRPN401PAEN  
R3, R5  
R4  
JP1, JP2,  
JP3, JP4  
D1  
Vishay  
Sullins Electronics  
CMD15-21SRC/TR8  
Red LED 1206  
Chicago Miniature Lamp  
Table 5: AAT2552 Evaluation Board Component Listing.  
2552.2007.04.1.0  
27  
AAT2552  
Total Power Solution for Portable Applications  
Step-Down Converter Design Example (to be updated)  
Specifications  
VO  
VIN  
FS  
= 1.8V @ 250mA, Pulsed Load ΔILOAD = 200mA  
= 2.7V to 4.2V (3.6V nominal)  
= 1.5MHz  
TAMB = 85°C  
1.8V Output Inductor  
µsec  
µsec  
1.8V = 3µH  
A
L1 = 1.67  
VO2 = 1.67  
(use 3.0µH; see Table 3)  
A
For Sumida inductor CDRH2D09-3R0, 3.0µH, DCR = 150mΩ.  
VO  
L1 FS  
VO  
VIN  
1.8  
V
1.8V  
4.2V  
ΔIL1 =  
1 -  
=
1 -  
= 228mA  
3.0µH 1.5MHz  
ΔIL1  
2
IPKL1 = IO +  
= 250mA + 114mA = 364mA  
2
PL1 = IO DCR = 250mA2 150mΩ = 9.375mW  
1.8V Output Capacitor  
VDROOP = 0.1V  
3 · ΔILOAD  
VDROOP · FS  
3 · 0.2A  
COUT  
=
=
= 4µF (use 4.7µF)  
0.1V · 1.5MHz  
(VO) · (VIN(MAX) - VO)  
L1 · FS · VIN(MAX)  
1
1.8V · (4.2V - 1.8V)  
1
·
= 66mArms  
IRMS  
=
·
=
3.0µH · 1.5MHz · 4.2V  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (66mA)2 = 21.8µW  
28  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
Input Capacitor  
Input Ripple VPP = 25mV  
1
1
CIN =  
=
= 1.38µF (use 4.7µF)  
VPP  
IO  
25mV  
0.2A  
- ESR · 4 · FS  
- 5mΩ · 4 · 1.5MHz  
IO  
IRMS  
=
= 0.1Arms  
2
P = esr · IRMS2 = 5mΩ · (0.1A)2 = 0.05mW  
AAT2552 Losses  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN -VO])  
PTOTAL  
=
VIN  
+ (tsw · FS · IO + IQ) · VIN  
0.22 · (0.59Ω · 1.8V + 0.42Ω · [4.2V - 1.8V])  
4.2V  
=
+ (5ns · 1.5MHz · 0.2A + 30µA) · 4.2V = 26.14mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (50°C/W) · 26.14mW = 86.3°C  
2552.2007.04.1.0  
29  
AAT2552  
Total Power Solution for Portable Applications  
Output Voltage  
VOUTB (V)  
R3 = 59kΩ  
R3 = 221kΩ  
R1 (kΩ)  
L1 (µH)  
R3 (kΩ)  
0.6  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3
R2 short, R3 open  
R2 short, R3 open  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.7  
3.0/3.3  
3.0/3.3  
3.0/3.3  
3.9/4.2  
4.9  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
237  
267  
75  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
887  
1000  
3.3  
5.6  
Table 6: Step-Down Converter Component Values.  
Inductance  
(µH)  
Max DC  
DCR  
Size (mm)  
LxWxH  
Manufacturer  
Part Number  
Current (mA)  
(mΩ)  
Type  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
FDK  
CDRH2D09-1R5  
CDRH2D09-2R2  
CDRH2D09-2R5  
CDRH2D09-3R0  
CDRH2D09-3R9  
CDRH2D09-4R7  
CDRH2D09-5R6  
CDRH2D11-1R5  
CDRH2D11-2R2  
CDRH2D11-3R3  
CDRH2D11-4R7  
NR3010T1R5N  
NR3010T2R2M  
NR3010T3R3M  
NR3010T4R7M  
MIPWT3226D-1R5  
MIPWT3226D-2R2  
MIPWT3226D-3R0  
MIPWT3226D-4R2  
1.5  
2.2  
2.5  
3.0  
3.9  
4.7  
5.6  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3.0  
4.2  
730  
600  
530  
470  
450  
410  
370  
900  
780  
600  
500  
1200  
1100  
870  
750  
1200  
1100  
1000  
900  
110  
144  
150  
194  
225  
287  
325  
68  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Chip shielded  
Chip shielded  
Chip shielded  
Chip shielded  
98  
123  
170  
80  
95  
140  
190  
90  
100  
120  
140  
FDK  
FDK  
FDK  
Table 7: Suggested Inductors and Suppliers.  
1. For reduced quiescent current, R3 = 221kΩ.  
30  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
Value  
(µF)  
Voltage  
Rating  
Temp.  
Co.  
Case  
Size  
Manufacturer  
Part Number  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
GRM21BR61A106KE19  
GRM188R60J475KE19  
GRM188R61A225KE34  
GRM188R60J225KE19  
GRM188R61A105KA61  
GRM185R60J105KE26  
10  
4.7  
2.2  
2.2  
1.0  
1.0  
10  
6.3  
10  
6.3  
10  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
0805  
0603  
0603  
0603  
0603  
0603  
6.3  
Table 8: Surface Mount Capacitors.  
2552.2007.04.1.0  
31  
AAT2552  
Total Power Solution for Portable Applications  
Ordering Information  
1
2
Package  
Marking  
Part Number (Tape and Reel)  
TDFN34-16  
UVXYY  
AAT2552IRN-CAE-T1  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means  
semiconductor products that are in compliance with current RoHS standards, including  
the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more  
information, please visit our website at http://www.analogictech.com/pbfree.  
Legend  
Voltage  
Code  
Adjustable  
(0.6)  
0.9  
Adjustable  
(1.2)  
1.5  
A
B
E
G
I
1.8  
1.9  
2.5  
2.6  
2.7  
2.8  
2.85  
2.9  
Y
N
O
P
Q
R
S
T
3.0  
3.3  
4.2  
W
C
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
32  
2552.2007.04.1.0  
AAT2552  
Total Power Solution for Portable Applications  
1
Package Information  
TDFN34-16  
3.000 0.050  
1.600 0.050  
Detail "A"  
Index Area  
0.350 0.100  
Top View  
Bottom View  
C0.3  
(4x)  
Pin 1 Indicator  
(optional)  
0.050 0.050  
0.229 0.051  
Side View  
Detail "A"  
All dimensions in millimeters.  
1. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the  
lead terminals due to the manufacturing process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required  
to ensure a proper bottom solder connection.  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work  
rights, or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service with-  
out notice. Except as provided in AnalogicTech’s terms and conditions of sale, AnalogicTech assumes no liability whatsoever, and AnalogicTech disclaims any express or implied war-  
ranty relating to the sale and/or use of AnalogicTech products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent,  
copyright or other intellectual property right. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the  
customer to minimize inherent or procedural hazards. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty.  
Specific testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated.  
All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.  
Advanced Analogic Technologies, Inc.  
830 E. Arques Avenue, Sunnyvale, CA 94085  
Phone (408) 737-4600  
Fax (408) 737-4611  
2552.2007.04.1.0  
33  

相关型号:

AAT2552IRN-CAE-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2552_08

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554

Total Power Solution for Portable Applications
SKYWORKS

AAT2554IRN-CAP-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554IRN-CAP-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2554IRN-CAQ-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554IRN-CAT-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554IRN-CAT-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2554IRN-CAW-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554IRN-CAW-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2556

Battery Charger and Step-Down Converter for Portable Applications
ANALOGICTECH