AAT2554IRN-CAW-T1 [SKYWORKS]

Total Power Solution for Portable Applications; 用于便携式应用的总电源解决方案
AAT2554IRN-CAW-T1
型号: AAT2554IRN-CAW-T1
厂家: SKYWORKS SOLUTIONS INC.    SKYWORKS SOLUTIONS INC.
描述:

Total Power Solution for Portable Applications
用于便携式应用的总电源解决方案

便携式
文件: 总31页 (文件大小:2917K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Features  
General Description  
The AAT2554 is a fully integrated 500mA battery char-  
ger, a 250mA step-down converter, and a 300mA low  
dropout (LDO) linear regulator. The input voltage range  
is 4V to 6.5V for the battery charger and 2.7V to 5.5V  
for the step-down converter and linear regulator, making  
it ideal for applications operating with single-cell lithium-  
ion/polymer batteries.  
Battery Charger:  
Input Voltage Range: 4V to 6.5V  
Programmable Charging Current up to 500mA  
Highly Integrated Battery Charger  
Charging Device  
Reverse Blocking Diode  
Step-Down Converter:  
Input Voltage Range: 2.7V to 5.5V  
Output Voltage Range: 0.6V to VIN  
250mA Output Current  
Up to 96% Efficiency  
30μA Quiescent Current  
1.5MHz Switching Frequency  
100μs Start-Up Time  
The battery charger is a complete constant current/con-  
stant voltage linear charger. It offers an integrated pass  
device, reverse blocking protection, high accuracy cur-  
rent and voltage regulation, charge status, and charge  
termination. The charging current is programmable via  
external resistor from 15mA to 500mA. In addition to  
these standard features, the device offers over-voltage,  
current limit, and thermal protection.  
Linear Regulator:  
300mA Output Current  
Low Dropout: 400mV at 300mA  
Fast Line and Load Transient Response  
High Accuracy: ±1.5%  
The step-down converter is a highly integrated converter  
operating at a 1.5MHz switching frequency, minimizing  
the size of external components while keeping switching  
losses low. It has independent input and enable pins. The  
output voltage ranges from 0.6V to the input voltage.  
70μA Quiescent Current  
Short-Circuit, Over-Temperature, and Current Limit  
Protection  
TDFN34-16 Package  
The AAT2554 linear regulator is designed for fast tran-  
sient response and good power supply ripple rejection.  
Designed for 300mA of load current, it includes short-  
circuit protection and thermal shutdown.  
-40°C to +85°C Temperature Range  
Applications  
• Bluetooth™ Headsets  
The AAT2554 is available in a Pb-free, thermally-  
enhanced TDFN34-16 package and is rated over the  
-40°C to +85°C temperature range.  
• Cellular Phones  
• Handheld Instruments  
• MP3 and Portable Music Players  
• PDAs and Handheld Computers  
• Portable Media Players  
Typical Application  
Adapter/USB Input  
VINB  
ADP  
ENB  
VINA  
STAT  
EN_BAT  
Enable  
ENA  
VOUTB  
L= 3.0μH  
AAT2554  
BATT+  
LX  
BAT  
RFB1  
RFB2  
FB  
COUTB  
COUT  
VOUTA  
OUTA  
ISET  
BATT-  
RSET  
COUTA  
GND  
Battery  
Pack  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
1
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Pin Descriptions  
Pin #  
Symbol  
Function  
Feedback input. This pin must be connected directly to an external resistor divider. Nominal volt-  
age is 0.6V.  
1
FB  
2, 10, 12, 14  
GND  
Ground.  
Enable pin for the step-down converter. When connected to logic low, the step-down converter  
is disabled and consumes less than 1μA of current. When connected to logic high, the converter  
resumes normal operation.  
3
ENB  
4
5
VINA  
OUTA  
Linear regulator input voltage. Connect a 1μF or greater capacitor from this pin to ground.  
Linear regulator output. Connect a 2.2μF capacitor from this pin to ground.  
Enable pin for the battery charger. When connected to logic low, the battery charger is disabled  
and consumes less than 1μA of current. When connected to logic high, the charger resumes nor-  
mal operation.  
6
EN_BAT  
Charge current set point. Connect a resistor from this pin to ground. Refer to the Typical Charac-  
teristics curves for resistor selection.  
7
ISET  
8
9
11  
BAT  
STAT  
ADP  
Battery charging and sensing.  
Charge status input. Open drain status output.  
Input for USB/adapter charger.  
Enable pin for the linear regulator. When connected to logic low, the regulator is disabled and  
consumes less than 1μA of current. When connected to logic high, the regulator resumes normal  
operation.  
13  
ENA  
Output of the step-down converter. Connect the inductor to this pin. Internally, it is connected to  
the drain of both high- and low-side MOSFETs.  
15  
LX  
16  
EP  
VINB  
Input voltage for the step-down converter.  
Exposed paddle (bottom); connect to ground directly beneath the package.  
Pin Configuration  
TDFN34-16  
(Top View)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VINB  
LX  
FB  
GND  
ENB  
GND  
ENA  
GND  
ADP  
GND  
STAT  
VINA  
OUTA  
EN_BAT  
ISET  
BAT  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
2
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VINA, VINB  
VADP  
VLX  
Input Voltage to GND  
Adapter Voltage to GND  
LX to GND  
FB to GND  
ENA, ENB, EN_BAT to GND  
BAT, ISET, STAT  
6.0  
-0.3 to 7.5  
V
V
V
V
V
V
°C  
°C  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to 6.0  
-0.3 to VADP + 0.3  
-40 to 150  
VFB  
VEN  
VX  
TJ  
Operating Junction Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec.)  
TLEAD  
300  
Thermal Information  
Symbol  
Description  
Value  
Units  
PD  
JA  
Maximum Power Dissipation  
Thermal Resistance2  
2.0  
50  
W
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions  
specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Mounted on an FR4 board.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
3
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Electrical Characteristics1  
VINB = 3.6V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol Description  
Step-Down Converter  
Conditions  
Min  
Typ  
Max Units  
VIN  
Input Voltage  
2.7  
5.5  
2.7  
V
V
mV  
V
VINB Rising  
Hysteresis  
VINB Falling  
IOUTB = 0 to 250mA, VINB = 2.7V  
to 5.5V  
VUVLO  
UVLO Threshold  
200  
1.8  
-3.0  
0.6  
VOUT  
Output Voltage Tolerance2  
3.0  
VINB  
%
VOUT  
IQ  
ISHDN  
ILIM  
RDS(ON)H  
RDS(ON)L  
ILXLEAK  
VLinereg  
VIN  
VFB  
IFB  
FOSC  
TS  
Output Voltage Range  
Quiescent Current  
Shutdown Current  
P-Channel Current Limit  
High-Side Switch On-Resistance  
Low-Side Switch On-Resistance  
LX Leakage Current  
V
μA  
μA  
mA  
No Load  
ENB = GND  
30  
1.0  
600  
0.59  
0.42  
μA  
VINB = 5.5V, VLX = 0 to VINB  
VINB = 2.7V to 5.5V  
1.0  
/
Line Regulation  
0.2  
0.6  
%/V  
Feedback Threshold Voltage Accuracy  
FB Leakage Current  
Oscillator Frequency  
VINB = 3.6V  
VOUTB = 1.0V  
0.591  
0.609  
0.2  
V
μA  
MHz  
μs  
°C  
°C  
V
1.5  
100  
140  
15  
Startup Time  
From Enable to Output Regulation  
TSD  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
Enable Threshold Low  
Enable Threshold High  
Input Low Current  
THYS  
VEN(L)  
VEN(H)  
IEN  
0.6  
1.0  
1.4  
-1.0  
V
μA  
VINB = VENB = 5.5V  
1. The AAT2554 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
2. Output voltage tolerance is independent of feedback resistor network accuracy.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
4
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Electrical Characteristics1  
VINA = VOUT(NOM) + 1V for VOUT options greater than 1.5V. IOUT = 1mA, COUT = 2.2μF, CIN = 1μF, TA = -40°C to +85°C,  
unless otherwise noted. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min  
Typ Max Units  
Linear Regulator  
TA = 25°C  
TA = -40°C to +85°C  
-1.5  
-2.5  
VOUT  
1.5  
%
IOUTA = 1mA  
to 300mA  
VOUT  
VIN  
Output Voltage Tolerance  
2.5  
Input Voltage  
5.5  
V
2
+ VDO  
VDO  
VOUT  
OUT*VIN  
Dropout Voltage3  
Line Regulation  
IOUTA = 300mA  
400  
600  
mV  
%/V  
/
VINA = VOUTA + 1 to 5.0V  
0.09  
V
IOUTA = 300mA, VINA = VOUTA + 1 to VOUTA  
+ 2, TR/TF = 2μs  
IOUTA = 1mA to 300mA, TR <5μs  
VOUTA > 1.2V  
VOUTA < 0.4V  
VINA = 5V; ENA = VIN  
VINA = 5V; ENA = 0V  
1kHz  
VOUT(Line)  
Dynamic Line Regulation  
2.5  
60  
mV  
VOUT(Load)  
IOUT  
ISC  
IQ  
ISHDN  
Dynamic Load Regulation  
Output Current  
Short-Circuit Current  
Quiescent Current  
Shutdown Current  
mV  
mA  
mA  
μA  
300  
600  
70  
125  
1.0  
μA  
65  
45  
43  
PSRR  
Power Supply Rejection Ratio  
IOUTA =10mA  
10kHz  
1MHz  
dB  
TSD  
THYS  
eN  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
Output Noise  
Output Voltage Temperature Coefcient  
Enable Time Delay  
Enable Threshold Low  
Enable Threshold High  
Enable Input Current  
145  
12  
250  
22  
°C  
°C  
μVRMS  
ppm/°C  
μs  
TC  
TEN_DLY  
VEN(L)  
VEN(H)  
IEN  
15  
0.6  
1.0  
V
V
μA  
1.5  
VENA = 5.5V  
1. The AAT2554 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
2. VDO is defined as VIN - VOUT when VOUT is 98% of nominal.  
3. For VOUT <2.3V, VDO = 2.5V - VOUT  
.
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
5
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Electrical Characteristics1  
VINB = 3.6V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol Description  
Conditions  
Min  
Typ  
Max  
Units  
Battery Charger  
Operation  
VADP  
VUVLO  
Adapter Voltage Range  
Under-Voltage Lockout (UVLO)  
UVLO Hysteresis  
Operating Current  
Shutdown Current  
4.0  
3
6.5  
4
V
V
mV  
mA  
μA  
μA  
Rising Edge  
150  
0.5  
0.3  
0.4  
IOP  
ISHUTDOWN  
ILEAKAGE  
Charge Current = 200mA  
VBAT = 4.25V, EN_BAT = GND  
VBAT = 4V, ADP Pin Open  
1
1
2
Reverse Leakage Current from BAT Pin  
Voltage Regulation  
VBAT_EOC  
VCH/VCH  
VMIN  
End of Charge Accuracy  
4.158  
2.85  
4.20  
0.5  
3.0  
4.242  
3.15  
V
%
V
Output Charge Voltage Tolerance  
Preconditioning Voltage Threshold  
Battery Recharge Voltage Threshold  
VRCH  
Measured from VBAT_EOC  
-0.1  
V
Current Regulation  
ICH  
ICH/ICH  
VSET  
Charge Current Programmable Range  
Charge Current Regulation Tolerance  
ISET Pin Voltage  
15  
500  
1.1  
mA  
%
V
10  
2
800  
KI_A  
Current Set Factor: ICH/ISET  
Charging Devices  
RDS(ON)  
Charging Transistor On Resistance  
VADP = 5.5V  
0.9  
Logic Control/Protection  
VEN(H)  
VEN(L)  
VSTAT  
ISTAT  
VOVP  
Enable Threshold High  
Enable Threshold Low  
Output Low Voltage  
STAT Pin Current Sink Capability  
Over-Voltage Protection Threshold  
Pre-Charge Current  
1.6  
V
V
V
mA  
V
%
%
0.4  
0.4  
8
STAT Pin Sinks 4mA  
ICH = 100mA  
4.4  
10  
10  
ITK/ICHG  
ITERM/ICHG  
Charge Termination Threshold Current  
1. The AAT2554 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
6
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Typical Characteristics – Step-Down Converter  
Efficiency vs. Load  
(VOUT = 1.8V; L = 3.3µH)  
DC Load Regulation  
(VOUT = 1.8V; L = 3.3µH)  
100  
90  
80  
70  
60  
50  
40  
1.0  
0.5  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.6V  
VIN = 3.6V  
VIN = 5.5V  
VIN = 5.5V  
0.0  
VIN = 2.7V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 4.2V  
-0.5  
-1.0  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 1.2V; L = 1.5µH)  
DC Load Regulation  
(VOUT = 1.2V; L = 1.5µH)  
100  
90  
80  
70  
60  
50  
40  
30  
1.0  
0.5  
VIN = 2.7V  
VIN = 5.0V  
VIN = 3.6V  
VIN = 5.5V  
0.0  
VIN = 5.5V  
VIN = 5.0V  
VIN = 4.2V  
VIN = 3.6V  
VIN = 4.2V  
-0.5  
-1.0  
VIN = 2.7V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Soft Start  
(VIN = 3.6V; VOUT = 1.8V;  
IOUT = 250mA; CFF = 100pF)  
Line Regulation  
(VOUT = 1.8V)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
VEN  
IOUT = 0mA  
IOUT = 50mA  
IOUT = 150mA  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
VO  
IOUT = 10mA  
IOUT = 250mA  
IL  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Time (100µs/div)  
Input Voltage (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
7
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Typical Characteristics – Step-Down Converter  
Output Voltage Error vs. Temperature  
(VINB = 3.6V; VOUT = 1.8V; IOUT = 250mA)  
Switching Frequency Variation  
vs. Temperature  
(VIN = 3.6V; VOUT = 1.8V)  
3.0  
2.0  
10.0  
8.0  
6.0  
1.0  
4.0  
2.0  
0.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
-10.0  
-1.0  
-2.0  
-3.0  
-40  
-20  
0
20  
40  
60  
80  
100  
5.5  
6.0  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperature (°°C)  
Frequency Variation vs. Input Voltage  
(VOUT = 1.8V)  
No Load Quiescent Current vs. Input Voltage  
50  
45  
40  
2.0  
1.0  
0.0  
85°C  
35  
-1.0  
-2.0  
-3.0  
-4.0  
30  
25°C  
25  
-40°C  
20  
15  
10  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Input Voltage (V)  
P-Channel RDS(ON) vs. Input Voltage  
N-Channel RDS(ON) vs. Input Voltage  
750  
1000  
900  
800  
700  
600  
500  
400  
300  
700  
650  
600  
550  
500  
450  
400  
350  
300  
120°C 100°C  
85°C  
120°C  
100°C  
85°C  
25°C  
25°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
Input Voltage (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
8
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Typical Characteristics – Step-Down Converter  
Load Transient Response  
(10mA to 250mA; VIN = 3.6V; VOUT = 1.8V;  
COUT = 4.7µF; CFF = 100pF)  
Load Transient Response  
(10mA to 250mA; VIN = 3.6V; VOUT = 1.8V; COUT = 4.7µF)  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
VO  
VO  
IO  
IO  
ILX  
ILX  
Time (25µs/div)  
Time (25µs/div)  
Line Response  
(VOUT = 1.8V @ 250mA; CFF = 100pF)  
Output Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA)  
40  
20  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
VO  
VO  
0
-20  
-40  
-60  
-80  
-100  
-120  
VIN  
IL  
Time (25µs/div)  
Time (2µs/div)  
Output Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 250mA)  
40  
20  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VO  
0
-20  
-40  
-60  
-80  
-100  
-120  
IL  
Time (200ns/div)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
9
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Typical Characteristics – Battery Charger  
Constant Charging Current  
vs. Set Resistor Values  
Charging Current vs. Battery Voltage  
(VADP = 5V)  
600  
500  
400  
300  
200  
100  
0
1000  
100  
10  
RSET = 3.24kΩ  
RSET = 5.36kΩ  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
RSET = 16.2kΩ  
1
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
1
10  
100  
1000  
VBAT (V)  
RSET (kΩ)  
End of Charge Battery Voltage  
vs. Supply Voltage  
End of Charge Voltage Regulation  
vs. Temperature  
(RSET = 8.06kΩ)  
4.206  
4.204  
4.202  
4.200  
4.198  
4.196  
4.194  
4.23  
4.22  
4.21  
4.20  
4.19  
4.18  
4.17  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
4.5  
4.75  
5
5.25  
5.5  
5.75  
6
6.25  
6.5  
-50  
-25  
0
25  
50  
75  
100  
VADP (V)  
Temperature (°C)  
Constant Charging Current vs.  
Supply Voltage  
Constant Charging Current vs. Temperature  
(RSET = 8.06kΩ)  
(RSET = 8.06kΩ)  
210  
208  
205  
203  
200  
198  
195  
193  
190  
220  
210  
200  
190  
180  
VBAT = 3.3V  
VBAT = 4V  
VBAT = 3.6V  
170  
4
-50  
-25  
0
25  
50  
75  
100  
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5  
VADP (V)  
Temperature (°C)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
10  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Typical Characteristics – Battery Charger  
Operating Current vs. Temperature  
(RSET = 8.06kΩ)  
Preconditioning Threshold Voltage  
vs. Temperature  
(RSET = 8.06kΩ)  
550  
500  
450  
400  
350  
300  
3.03  
3.02  
3.01  
3
2.99  
2.98  
2.97  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Preconditioning Charge Current  
vs. Temperature  
Preconditioning Charge Current  
vs. Supply Voltage  
(RSET = 8.06kΩ)  
60  
20.8  
20.6  
20.4  
20.2  
20.0  
19.8  
19.6  
19.4  
19.2  
RSET = 3.24kΩ  
50  
40  
30  
20  
10  
0
RSET = 5.36kΩ  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
RSET = 16.2kΩ  
4
4.2 4.4 4.6 4.8  
5
5.2 5.4 5.6 5.8  
6
6.2 6.4  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
VADP (V)  
Recharging Threshold Voltage  
vs. Temperature  
Sleep Mode Current vs. Supply Voltage  
(RSET = 8.06kΩ)  
(RSET = 8.06kΩ)  
800  
700  
600  
500  
400  
300  
200  
100  
0
4.18  
4.16  
4.14  
4.12  
4.10  
4.08  
4.06  
4.04  
4.02  
85°C  
25°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
4
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5  
Temperature (°C)  
VADP (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
11  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Typical Characteristics – Battery Charger  
VEN(H) vs. Supply Voltage  
(RSET = 8.06kΩ)  
VEN(L) vs. Supply Voltage  
(RSET = 8.06kΩ)  
1.2  
1.1  
1
1.1  
1
-40°C  
-40°C  
0.9  
0.8  
0.7  
0.6  
0.9  
0.8  
0.7  
25°C  
85°C  
25°C  
85°C  
4
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5  
4
4.25 4.5  
4.75  
5
5.25 5.5  
5.75  
6
6.25 6.5  
VADP (V)  
VADP (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
12  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Typical Characteristics – LDO Regulator  
Dropout Voltage vs. Temperature  
LDO Dropout Characteristics  
(EN = GND; ENLDO = VIN)  
540  
480  
420  
360  
300  
240  
180  
120  
60  
3.20  
3.00  
2.80  
2.60  
2.40  
2.20  
2.00  
IL = 300mA  
IOUT = 0mA  
IL = 100mA  
IL = 150mA  
IOUT = 300mA  
IOUT = 150mA  
IOUT = 100mA  
IOUT = 50mA  
IOUT = 10mA  
2.80  
IL = 50mA  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
2.70  
2.90  
3.00  
3.10  
3.20  
3.30  
Temperature (°C)  
Input Voltage (V)  
Dropout Voltage vs. Output Current  
Ground Current vs. Input Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
IOUT = 300mA  
85°C  
IOUT = 150mA  
IOUT = 50mA  
25°C  
IOUT = 0mA  
IOUT = 10mA  
-40°C  
0
0
50  
100  
150  
200  
250  
300  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Output Current (mA)  
Output Voltage vs. Temperature  
Quiescent Current vs. Temperature  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
1.196  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature (°C)  
Temperature (°C)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
13  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Typical Characteristics – LDO Regulator  
LDO Turn-On Time from Enable  
(VIN Present)  
LDO Initial Power-Up Response Time  
(CBYP = 10nF; EN = GND; ENLDO = VIN)  
6
5
4
3
2
1
0
4
3
2
1
0
VENLDO (5V/div)  
VOUT (1V/div)  
Time (5µs/div)  
Time (400µs/div)  
Line Transient Response  
Turn-Off Response Time  
(I = 100mA)  
6
5
4
3
2
1
0
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
VEN (5V/div)  
VIN  
VOUT  
VOUT (1V/div)  
Time (50µs/div)  
Time (100µs/div)  
Load Transient Response  
Load Transient Response 300mA  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
500  
400  
300  
200  
100  
0
3.0  
800  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
700  
600  
500  
400  
300  
200  
100  
0
VOUT  
VOUT  
IOUT  
IOUT  
-100  
-100  
Time (100µs/div)  
Time (10µs/div)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
14  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Typical Characteristics – LDO Regulator  
Over-Current Protection  
(EN = GND; ENLDO = VIN)  
VEN(L) and VEN(H) vs. VIN  
1200  
1000  
800  
600  
400  
200  
0
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
1.075  
1.050  
VEN(H)  
VEN(L)  
-200  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Time (50ms/div)  
Input Voltage (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
15  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Functional Block Diagram  
Reverse Blocking  
BAT  
ADP  
-
-
+
Constant  
Current  
Charge  
Control  
ISET  
VREF  
STAT  
Over-  
Temperature  
Protection  
UVLO  
EN_BAT  
VINB  
DH  
VINA  
LX  
Err.  
Amp.  
Logic  
VREF  
DL  
Over-  
Current  
Protection  
ENB  
FB  
-
+
VREF  
OUTA  
ENA  
GND  
6.5V. The adapter/USB charging current level can be  
programmed up to 500mA for rapid charging applica-  
tions. A status monitor output pin is provided to indicate  
the battery charge state by directly driving one external  
LED. Internal device temperature and charging state are  
fully monitored for fault conditions. In the event of an  
over-voltage or over-temperature failure, the device will  
automatically shut down, protecting the charging device,  
control system, and the battery under charge. Other  
features include an integrated reverse blocking diode  
and sense resistor.  
Functional Description  
The AAT2554 is a high performance power management  
IC comprised of a lithium-ion/polymer battery charger, a  
step-down converter, and a linear regulator. The linear  
regulator is designed for high-speed turn-on and fast  
transient response, and good power supply ripple rejec-  
tion. The step-down converter operates in both fixed and  
variable frequency modes for high efficiency perfor-  
mance. The switching frequency is 1.5MHz, minimizing  
the size of the inductor. In light load conditions, the  
device enters power-saving mode; the switching fre-  
quency is reduced and the converter consumes 30μA of  
current, making it ideal for battery-operated applications.  
Switch-Mode Step-Down Converter  
The step-down converter operates with an input voltage  
of 2.7V to 5.5V. The switching frequency is 1.5MHz,  
minimizing the size of the inductor. Under light load con-  
ditions, the device enters power-saving mode; the  
switching frequency is reduced, and the converter con-  
sumes 30μA of current, making it ideal for battery-  
operated applications. The output voltage is program-  
Battery Charger  
The battery charger is designed for single-cell lithium-  
ion/polymer batteries using a constant current and con-  
stant voltage algorithm. The battery charger operates  
from the adapter/USB input voltage range from 4V to  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
16  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
mable from VIN to as low as 0.6V. Power devices are sized  
for 250mA current capability while maintaining over  
90% efficiency at full load. Light load efficiency is main-  
tained at greater than 80% down to 1mA of load current.  
A high-DC gain error amplifier with internal compensa-  
tion controls the output. It provides excellent transient  
response and load/line regulation.  
Protection Circuitry  
Over-Voltage Protection  
An over-voltage protection event is defined as a condition  
where the voltage on the BAT pin exceeds the over-volt-  
age protection threshold (VOVP). If this over-voltage con-  
dition occurs, the charger control circuitry will shut down  
the device. The charger will resume normal charging  
operation after the over-voltage condition is removed.  
Linear Regulator  
The advanced circuit design of the linear regulator has  
been specifically optimized for very fast start-up. This  
proprietary CMOS LDO has also been tailored for supe-  
rior transient response characteristics. These traits are  
particularly important for applications that require fast  
power supply timing.  
Current Limit, Over-Temperature Protection  
For overload conditions, the peak input current is limited  
at the step-down converter. As load impedance decreas-  
es and the output voltage falls closer to zero, more  
power is dissipated internally, which causes the internal  
die temperature to rise. In this case, the thermal protec-  
tion circuit completely disables switching, which protects  
the device from damage.  
The high-speed turn-on capability is enabled through  
implementation of a fast-start control circuit which accel-  
erates the power-up behavior of fundamental control  
and feedback circuits within the LDO regulator. The LDO  
regulator output has been specifically optimized to func-  
tion with low-cost, low-ESR ceramic capacitors; however,  
the design will allow for operation over a wide range of  
capacitor types.  
The battery charger has a thermal protection circuit which  
will shut down charging functions when the internal die  
temperature exceeds the preset thermal limit threshold.  
Once the internal die temperature falls below the thermal  
limit, normal charging operation will resume.  
The regulator comes with complete short-circuit and  
thermal protection. The combination of these two internal  
protection circuits gives a comprehensive safety system  
to guard against extreme adverse operating conditions.  
Control Loop  
The AAT2554 contains a compact, current mode step-  
downDC/DCcontroller. ThecurrentthroughtheP-channel  
MOSFET (high side) is sensed for current loop control, as  
well as short-circuit and overload protection. A fixed  
slope compensation signal is added to the sensed cur-  
rent to maintain stability for duty cycles greater than  
50%. The peak current mode loop appears as a voltage-  
programmed current source in parallel with the output  
capacitor. The output of the voltage error amplifier pro-  
grams the current mode loop for the necessary peak  
switch current to force a constant output voltage for all  
load and line conditions. Internal loop compensation ter-  
minates the transconductance voltage error amplifier  
output. The error amplifier reference is fixed at 0.6V.  
The regulator features an enable/disable function. This  
pin (ENA) is active high and is compatible with CMOS  
logic. To assure the LDO regulator will switch on, the ENA  
turn-on control level must be greater than 1.5V. The LDO  
regulator will go into the disable shutdown mode when  
the voltage on the ENA pin falls below 0.6V. If the enable  
function is not needed in a specific application, it may be  
tied to VINA to keep the LDO regulator in a continuously  
on state.  
Under-Voltage Lockout  
The AAT2554 has internal circuits for UVLO and power on  
reset features. If the ADP supply voltage drops below the  
UVLO threshold, the battery charger will suspend charg-  
ing and shut down. When power is reapplied to the ADP  
pin or the UVLO condition recovers, the system charge  
control will automatically resume charging in the appro-  
priate mode for the condition of the battery. If the input  
voltage of the step-down converter drops below UVLO,  
the internal circuit will shut down.  
Battery Charging Operation  
Battery charging commences only after checking several  
conditions in order to maintain a safe charging environ-  
ment. The input supply (ADP) must be above the mini-  
mum operating voltage (UVLO) and the enable pin must  
be high (internally pulled down). When the battery is  
connected to the BAT pin, the charger checks the condi-  
tion of the battery and determines which charging mode  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
17  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
to apply. If the battery voltage is below VMIN, the charger  
begins battery pre-conditioning by charging at 10% of  
the programmed constant current; e.g., if the pro-  
grammed current is 150mA, then the pre-conditioning  
current (trickle charge) is 15mA. Pre-conditioning is  
purely a safety precaution for a deeply discharged cell  
and will also reduce the power dissipation in the internal  
series pass MOSFET when the input-output voltage dif-  
ferential is at its highest.  
the battery voltage reaches VBAT, the battery charger  
begins constant voltage mode. The regulation voltage is  
factory programmed to a nominal 4.2V (±0.5%) and will  
continue charging until the charging current has reduced  
to 10% of the programmed current.  
After the charge cycle is complete, the pass device turns  
off and the device automatically goes into a power-sav-  
ing sleep mode. During this time, the series pass device  
will block current in both directions, preventing the bat-  
tery from discharging through the IC.  
Pre-conditioning continues until the battery voltage  
reaches VMIN (see Figure 1). At this point, the charger  
begins constant-current charging. The current level for  
this mode is programmed using a single resistor from  
the ISET pin to ground. Programmed current can be set  
from a minimum 15mA up to a maximum of 500mA.  
Constant current charging will continue until the battery  
voltage reaches the voltage regulation point, VBAT. When  
The battery charger will remain in sleep mode, even if  
the charger source is disconnected, until one of the fol-  
lowing events occurs: the battery terminal voltage drops  
below the VRCH threshold; the charger EN pin is recycled;  
or the charging source is reconnected. In all cases, the  
charger will monitor all parameters and resume charging  
in the most appropriate mode.  
Preconditioning  
Trickle Charge  
Phase  
Constant Current  
Charge Phase  
Constant Voltage  
Charge Phase  
Charge Complete Voltage  
Regulated Current  
I = Max CC  
Constant Current Mode  
Voltage Threshold  
Trickle Charge and  
Termination Threshold  
I = CC / 10  
Figure 1: Current vs. Voltage Profile During Charging Phases.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
18  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Battery Charging System Operation Flow Chart  
Enable  
Yes  
Power On Reset  
No  
Power Input  
Voltage  
VADP > VUVLO  
Yes  
Fault Conditions  
Monitoring  
OV, OT  
Charge  
Control  
Shutdown  
Yes  
No  
Preconditioning  
Test  
Preconditioning  
(Trickle Charge)  
Yes  
V
MIN > VBAT  
No  
No  
Constant  
Current Charge  
Mode  
Recharge Test  
Current Phase Test  
ADP > VBAT  
Yes  
Yes  
V
RCH > VBAT  
V
No  
Constant  
Voltage Charge  
Mode  
Voltage Phase Test  
IBAT > ITERM  
Yes  
No  
Charge Completed  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
19  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
reason, a 1% tolerance metal film resistor is recom-  
mended for the set resistor function. Fast charge con-  
stant current levels from 15mA to 500mA may be set by  
selecting the appropriate resistor value from Table 1.  
Application Information  
Soft Start / Enable  
The EN_BAT pin is internally pulled down. When pulled  
to a logic high level, the battery charger is enabled.  
When left open or pulled to a logic low level, the battery  
charger is shut down and forced into the sleep state.  
Charging will be halted regardless of the battery voltage  
or charging state. When it is re-enabled, the charge con-  
trol circuit will automatically reset and resume charging  
functions with the appropriate charging mode based on  
the battery charge state and measured cell voltage from  
the BAT pin.  
Normal ICHARGE (mA) Set Resistor Value R1 (k)  
500  
400  
300  
250  
200  
150  
100  
50  
40  
30  
20  
15  
3.24  
4.12  
5.36  
6.49  
8.06  
10.7  
16.2  
31.6  
38.3  
53.6  
78.7  
105  
Separate ENA and ENB inputs are provided to indepen-  
dently enable and disable the LDO and step-down con-  
verter, respectively. This allows sequencing of the LDO  
and step-down outputs during startup.  
Table 1: RSET Values.  
The LDO is enabled when the ENA pin is pulled high. The  
control and feedback circuits have been optimized for  
high-speed, monotonic turn-on characteristics.  
1000  
100  
10  
The step-down converter is enabled when the ENB pin is  
pulled high. Soft start increases the inductor current  
limit point in discrete steps when the input voltage or  
ENB input is applied. It limits the current surge seen at  
the input and eliminates output voltage overshoot. When  
pulled low, the ENB input forces the AAT2554 into a low-  
power, non-switching state. The total input current dur-  
ing shutdown is less than 1μA.  
1
1
10  
100  
1000  
RSET (kΩ)  
Adapter or USB Power Input  
Figure 2: Constant Charging Current  
vs. Set Resistor Values.  
Constant current charge levels up to 500mA may be  
programmed by the user when powered from a sufficient  
input power source. The battery charger will operate  
from the adapter input over a 4.0V to 6.5V range. The  
constant current fast charge current for the adapter  
input is set by the RSET resistor connected between ISET  
and ground. Refer to Table 1 for recommended RSET val-  
ues for a desired constant current charge level.  
Charge Status Output  
The AAT2554 provides battery charge status via a status  
pin. This pin is internally connected to an N-channel  
open drain MOSFET, which can be used to drive an exter-  
nal LED. The status pin can indicate several conditions,  
as shown in Table 2.  
Programming Charge Current  
Event Description  
Status  
The fast charge constant current charge level is user  
programmed with a set resistor placed between the ISET  
pin and ground. The accuracy of the fast charge, as well  
as the preconditioning trickle charge current, is domi-  
nated by the tolerance of the set resistor used. For this  
No battery charging activity  
Battery charging via adapter  
Charging completed  
OFF  
ON or USB port  
OFF  
Table 2: LED Status Indicator.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
20  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
The LED should be biased with as little current as neces-  
sary to create reasonable illumination; therefore, a bal-  
last resistor should be placed between the LED cathode  
and the STAT pin. LED current consumption will add to  
the overall thermal power budget for the device pack-  
age, hence it is good to keep the LED drive current to a  
minimum. 2mA should be sufficient to drive most low-  
cost green or red LEDs. It is not recommended to exceed  
8mA for driving an individual status LED.  
Figure 3 shows the relationship of maximum power dis-  
sipation and ambient temperature of the AAT2554.  
3000  
2500  
2000  
1500  
1000  
500  
The required ballast resistor values can be estimated  
using the following formulas:  
0
0
20  
40  
60  
80  
100  
120  
(VADP  
- VF(LED)  
ILED  
)
R1=  
TA (°C)  
Figure 3: Maximum Power Dissipation.  
Example:  
Next, the power dissipation of the battery charger can  
be calculated by the following equation:  
(5.5V - 2.0V)  
2mA  
R1 =  
= 1.75kΩ  
Note: Red LED forward voltage (VF) is typically 2.0V @  
2mA.  
PD = [(VADP - VBAT) · ICH + (VADP · IOP)]  
Where:  
Thermal Considerations  
PD = Total Power Dissipation by the Device  
VADP = ADP/USB Voltage  
VBAT = Battery Voltage as Seen at the BAT Pin  
ICH = Constant Charge Current Programmed for the  
Application  
The AAT2554 is offered in a TDFN34-16 package which  
can provide up to 2W of power dissipation when it is  
properly bonded to a printed circuit board and has a  
maximum thermal resistance of 50°C/W. Many consider-  
ations should be taken into account when designing the  
printed circuit board layout, as well as the placement of  
the charger IC package in proximity to other heat gener-  
ating devices in a given application design. The ambient  
temperature around the IC will also have an effect on the  
thermal limits of a battery charging application. The  
maximum limits that can be expected for a given ambi-  
ent condition can be estimated by the following discus-  
sion.  
IOP = Quiescent Current Consumed by the Charger IC for  
Normal Operation [0.5mA]  
By substitution, we can derive the maximum charge cur-  
rent before reaching the thermal limit condition (thermal  
cycling). The maximum charge current is the key factor  
when designing battery charger applications.  
(PD(MAX)  
-
VIN  
VIN - VBAT  
· IOP)  
ICH(MAX)  
=
First, the maximum power dissipation for a given situa-  
tion should be calculated:  
(TJ(MAX)  
θJA  
VIN - VBAT  
- TA)  
-
VIN · IOP  
(TJ(MAX) - TA)  
θJA  
PD(MAX)  
=
ICH(MAX)  
=
Where:  
In general, the worst condition is the greatest voltage  
drop across the IC, when battery voltage is charged up  
to the preconditioning voltage threshold. Figure 4 shows  
the maximum charge current in different ambient tem-  
peratures.  
PD(MAX) = Maximum Power Dissipation (W)  
JA = Package Thermal Resistance (°C/W)  
TJ(MAX) = Maximum Device Junction Temperature (°C)  
[135°C]  
TA = Ambient Temperature (°C)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
21  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Capacitor Selection  
500  
400  
300  
200  
100  
0
Linear Regulator Input Capacitor (C7)  
TA = 60°C  
An input capacitor greater than 1μF will offer superior  
input line transient response and maximize power supply  
ripple rejection. Ceramic, tantalum, or aluminum elec-  
trolytic capacitors may be selected for CIN. There is no  
specific capacitor ESR requirement for CIN. However, for  
300mA LDO regulator output operation, ceramic capaci-  
tors are recommended for CIN due to their inherent capa-  
bility over tantalum capacitors to withstand input current  
surges from low impedance sources such as batteries in  
portable devices.  
TA = 85°C  
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5 6.75  
VIN (V)  
Figure 4: Maximum Charging Current Before  
Thermal Cycling Becomes Active.  
Battery Charger Input Capacitor (C3)  
In general, it is good design practice to place a decou-  
pling capacitor between the ADP pin and GND. An input  
capacitor in the range of 1μF to 22μF is recommended.  
If the source supply is unregulated, it may be necessary  
to increase the capacitance to keep the input voltage  
above the under-voltage lockout threshold during device  
enable and when battery charging is initiated. If the  
adapter input is to be used in a system with an external  
power supply source, such as a typical AC-to-DC wall  
adapter, then a CIN capacitor in the range of 10μF should  
be used. A larger input capacitor in this application will  
minimize switching or power transient effects when the  
power supply is “hot plugged” in.  
There are three types of losses associated with the step-  
down converter: switching losses, conduction losses, and  
quiescent current losses. Conduction losses are associ-  
ated with the RDS(ON) characteristics of the power output  
switching devices. Switching losses are dominated by the  
gate charge of the power output switching devices. At full  
load, assuming continuous conduction mode (CCM), a  
simplified form of the losses is given by:  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN - VO])  
PTOTAL  
=
VIN  
+ (tsw · FS · IO + IQ) · VIN  
Step-Down Converter Input Capacitor (C1)  
Select a 4.7μF to 10μF X7R or X5R ceramic capacitor for  
the input. To estimate the required input capacitor size,  
determine the acceptable input ripple level (VPP) and  
solve for CIN. The calculated value varies with input volt-  
age and is a maximum when VIN is double the output  
voltage.  
IQ is the step-down converter quiescent current. The  
term tsw is used to estimate the full load step-down con-  
verter switching losses.  
For the condition where the step-down converter is in  
dropout at 100% duty cycle, the total device dissipation  
reduces to:  
VO  
VIN  
VO ⎞  
VIN ⎠  
· 1 -  
PTOTAL = IO2 · RDSON(H) + IQ · VIN  
CIN =  
VPP  
IO  
- ESR ·FS  
Since RDS(ON), quiescent current, and switching losses all  
vary with input voltage, the total losses should be inves-  
tigated over the complete input voltage range.  
VO  
VIN  
VO ⎞  
VIN ⎠  
1
· 1 -  
=
for VIN = 2 · VO  
4
Given the total losses, the maximum junction tempera-  
ture can be derived from the JA for the TDFN34-16 pack-  
age which is 50°C/W.  
1
CIN(MIN)  
=
VPP  
IO  
- ESR · 4 · FS  
TJ(MAX) = PTOTAL · ΘJA + TAMB  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
22  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Always examine the ceramic capacitor DC voltage coef-  
ficient characteristics when selecting the proper value.  
For example, the capacitance of a 10μF, 6.3V, X5R  
ceramic capacitor with 5.0V DC applied is actually about  
6μF.  
Since the inductance of a short PCB trace feeding the  
input voltage is significantly lower than the power leads  
from the bench power supply, most applications do not  
exhibit this problem.  
In applications where the input power source lead induc-  
tance cannot be reduced to a level that does not affect  
the converter performance, a high ESR tantalum or alu-  
minum electrolytic capacitor should be placed in parallel  
with the low ESR, ESL bypass ceramic capacitor. This  
dampens the high Q network and stabilizes the system.  
The maximum input capacitor RMS current is:  
VO  
VIN  
VO ⎞  
VIN ⎠  
IRMS = IO ·  
· 1 -  
The input capacitor RMS ripple current varies with the  
input and output voltage and will always be less than or  
equal to half of the total DC load current.  
Linear Regulator Output Capacitor (C6)  
For proper load voltage regulation and operational sta-  
bility, a capacitor is required between OUT and GND. The  
COUT capacitor connection to the LDO regulator ground  
pin should be made as directly as practically possible for  
maximum device performance. Since the regulator has  
been designed to function with very low ESR capacitors,  
ceramic capacitors in the 1.0μF to 10μF range are rec-  
ommended for best performance. Applications utilizing  
the exceptionally low output noise and optimum power  
supply ripple rejection should use 2.2μF or greater for  
VO  
VIN  
VO ⎞  
VIN ⎠  
1
2
· 1 -  
=
D · (1 - D) = 0.52 =  
for VIN = 2 · VO  
IO  
IRMS(MAX)  
=
2
C
OUT. In low output current applications, where output  
VO  
·
VO  
1 -  
load is less than 10mA, the minimum value for COUT can  
be as low as 0.47μF.  
The term  
appears in both the input voltage  
VIN  
VIN  
ripple and input capacitor RMS current equations and is  
a maximum when VO is twice VIN. This is why the input  
voltage ripple and the input capacitor RMS current ripple  
are a maximum at 50% duty cycle.  
Battery Charger Output Capacitor (C5)  
The AAT2554 only requires a 1μF ceramic capacitor on  
the BAT pin to maintain circuit stability. This value  
should be increased to 10μF or more if the battery con-  
nection is made any distance from the charger output. If  
the AAT2554 is to be used in applications where the bat-  
tery can be removed from the charger, such as with  
desktop charging cradles, an output capacitor greater  
than 10μF may be required to prevent the device from  
cycling on and off when no battery is present.  
The input capacitor provides a low impedance loop for  
the edges of pulsed current drawn by the step-down  
converter. Low ESR/ESL X7R and X5R ceramic capacitors  
are ideal for this function. To minimize stray inductance,  
the capacitor should be placed as closely as possible to  
the IC. This keeps the high frequency content of the  
input current localized, minimizing EMI and input voltage  
ripple.  
Step-Down Converter Output Capacitor (C4)  
The proper placement of the input capacitor (C1) can be  
seen in the evaluation board layout in Figure 6.  
The output capacitor limits the output ripple and pro-  
vides holdup during large load transitions. A 4.7μF to  
10μF X5R or X7R ceramic capacitor typically provides  
sufficient bulk capacitance to stabilize the output during  
large load transitions and has the ESR and ESL charac-  
teristics necessary for low output ripple. For enhanced  
transient response and low temperature operation appli-  
cations, a 10μF (X5R, X7R) ceramic capacitor is recom-  
mended to stabilize extreme pulsed load conditions.  
A laboratory test set-up typically consists of two long  
wires running from the bench power supply to the eval-  
uation board input voltage pins. The inductance of these  
wires, along with the low-ESR ceramic input capacitor,  
can create a high Q network that may affect converter  
performance. This problem often becomes apparent in  
the form of excessive ringing in the output voltage dur-  
ing load transients. Errors in the loop phase and gain  
measurements can also result.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
23  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
The output voltage droop due to a load transient is dom-  
inated by the capacitance of the ceramic output capacitor.  
During a step increase in load current, the ceramic output  
capacitor alone supplies the load current until the loop  
responds. Within two or three switching cycles, the loop  
responds and the inductor current increases to match the  
load current demand. The relationship of the output volt-  
age droop during the three switching cycles to the output  
capacitance can be estimated by:  
For most designs, the step-down converter operates with  
inductor values from 1μH to 4.7μH. Table 3 displays  
inductor values for the AAT2554 for various output volt-  
ages.  
Manufacturer’s specifications list both the inductor DC  
current rating, which is a thermal limitation, and the  
peak current rating, which is determined by the satura-  
tion characteristics. The inductor should not show any  
appreciable saturation under normal load conditions.  
Some inductors may meet the peak and average current  
ratings yet result in excessive losses due to a high DCR.  
Always consider the losses associated with the DCR and  
its effect on the total converter efficiency when selecting  
an inductor.  
3 · ΔILOAD  
=
COUT  
V
DROOP · FS  
Once the average inductor current increases to the DC  
load level, the output voltage recovers. The above equa-  
tion establishes a limit on the minimum value for the  
output capacitor with respect to load transients.  
The 3.0μH CDRH2D09 series inductor selected from  
Sumida has a 150mDCR and a 470mA DC current rat-  
ing. At full load, the inductor DC loss is 9.375mW which  
gives a 2.08% loss in efficiency for a 250mA, 1.8V out-  
put.  
The internal voltage loop compensation also limits the  
minimum output capacitor value to 4.7μF. This is due to  
its effect on the loop crossover frequency (bandwidth),  
phase margin, and gain margin. Increased output capac-  
itance will reduce the crossover frequency with greater  
phase margin.  
Output Voltage (V)  
L1 (μH)  
1.0  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
1.5  
2.2  
2.7  
3.0/3.3  
3.9/4.2  
4.7  
The maximum output capacitor RMS ripple current is  
given by:  
1
V
OUT · (VIN(MAX) - VOUT  
)
IRMS(MAX)  
=
·
L · FS · VIN(MAX)  
2 · 3  
5.6  
Dissipation due to the RMS current in the ceramic output  
capacitor ESR is typically minimal, resulting in less than  
a few degrees rise in hot-spot temperature.  
Table 3: Step-Down Converter Inductor Values.  
Adjustable Output Resistor Selection  
Inductor Selection  
Resistors R2 and R3 of Figure 5 program the output to  
regulate at a voltage higher than 0.6V. To limit the bias  
current required for the external feedback resistor string  
while maintaining good noise immunity, the suggested  
value for R3 is 59k. Decreased resistor values are nec-  
essary to maintain noise immunity on the FB pin, result-  
ing in increased quiescent current. Table 4 summarizes  
the resistor values for various output voltages.  
The step-down converter uses peak current mode con-  
trol with slope compensation to maintain stability for  
duty cycles greater than 50%. The output inductor value  
must be selected so the inductor current down slope  
meets the internal slope compensation requirements.  
The internal slope compensation for the AAT2554 is  
0.45A/μsec. This equates to a slope compensation that  
is 75% of the inductor current down slope for a 1.8V  
output and 3.0μH inductor.  
V
V
3.3V  
0.6V  
R2 =  
OUT -1 · R3 =  
- 1 · 59kΩ = 267kΩ  
REF  
0.75 VO 0.75 1.8V  
= 0.45  
A
µsec  
m =  
=
L
3.0µH  
With enhanced transient response for extreme pulsed  
load application, an external feed-forward capacitor (C8  
in Figure 5) can be added.  
0.75 VO  
0.75  
VO  
A
µsec  
A
L =  
=
1.67  
VO  
m
0.45A  
µsec  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
24  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
VINB  
VINB  
ADP  
C1  
4.7μF  
U1  
VBAT  
ADP  
16  
11  
9
8
1
2
VINB  
BAT  
5
VOUTA  
L1  
R4  
1K  
ADP  
STAT  
VINA  
ENA  
ENB  
OUTA  
LX  
C3  
4.7μF  
VOUTA  
VOUTB  
C8  
15  
1
VOUTB  
D1  
4
FB  
R2  
118K  
ENA  
13  
3
14  
12  
10  
2
R5  
C4  
4.7μF  
GND  
GND  
VINB  
100K  
VINA  
100pF  
C7  
2.2μF  
FB  
JP2  
6
C6  
2.2μF  
C5  
2.2μF  
R3  
59K  
R6  
100K  
JP3  
C8 optional for  
enhanced step-  
down converter  
transient  
3
2
1
EN_BAT GND  
ADP  
7
ISET  
GND  
response  
ENA  
R7  
100K  
JP1  
3
2
1
AAT2554  
R1  
8.06K  
ENB  
ENB  
3
2
1
EN_BAT  
GND  
EN_BAT  
Figure 5: AAT2554 Evaluation Board Schematic.  
example (see Figures 6 and 7). The following guidelines  
should be used to help ensure a proper layout.  
R3 = 59k  
R2 (k)  
R3 = 221k  
R2 (k)  
VOUT (V)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
75  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
1. The input capacitors (C1, C3, C7) should connect as  
closely as possible to ADP (Pin 11), VINA (Pin 4),  
and VINB (Pin 16).  
2. C4 and L1 should be connected as closely as possi-  
ble. The connection of L1 to the LX pin should be as  
short as possible. Do not make the node small by  
using narrow trace. The trace should be kept wide,  
direct, and short.  
3. The feedback pin (Pin 1) should be separate from  
any power trace and connect as closely as possible  
to the load point. Sensing along a high-current load  
trace will degrade DC load regulation. Feedback  
resistors should be placed as closely as possible to  
the FB pin (Pin 1) to minimize the length of the high  
impedance feedback trace. If possible, they should  
also be placed away from the LX (switching node)  
and inductor to improve noise immunity.  
4. The resistance of the trace from the load return GND  
(Pins 2, 10, 12, and 14) should be kept to a mini-  
mum. This will help to minimize any error in DC  
regulation due to differences in the potential of the  
internal signal ground and the power ground.  
5. A high density, small footprint layout can be achieved  
using an inexpensive, miniature, non-shielded, high  
DCR inductor.  
Table 4: Adjustable Resistor Values For  
Step-Down Converter.  
Printed Circuit Board  
Layout Considerations  
For the best results, it is recommended to physically  
place the battery pack as close as possible to the  
AAT2554 BAT pin. To minimize voltage drops on the PCB,  
keep the high current carrying traces adequately wide.  
Refer to the AAT2554 evaluation board for a good layout  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
25  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Figure 6: AAT2554 Evaluation Board  
Top Side Layout.  
Figure 7: AAT2554 Evaluation Board  
Bottom Side Layout.  
Component  
Part Number  
Description  
Manufacturer  
U1  
C1, C3, C4  
C5, C6, C7  
AAT2554IRN-T1  
GRM188R60J475KE19  
GRM188R61A225KE34  
GRM1886R1H101JZ01J  
CDRH2D09-3R0  
Chip Resistor  
Total Power Solution for Portable Applications  
Ceramic 4.7μF 6.3V X5R 0603  
Ceramic 2.2μF 10V X5R 0603  
Ceramic 100pF 50V 5% R2H 0603  
Shielded SMD, 3.0μH, 150m, 3x3x1mm  
1k, 5%, 1/4W; 0603  
Skyworks  
Murata  
Murata  
Murata  
Sumida  
C8  
L1  
R4  
Vishay  
R1  
R2  
Chip Resistor  
Chip Resistor  
8.06k, 1%, 1/4W; 0603  
118k, 1%, 1/4W; 0603  
Vishay  
Vishay  
R3  
Chip Resistor  
59k, 1%, 1/4W; 0603  
Vishay  
R5, R6, R7  
JP1, JP2, JP3  
D1  
Chip Resistor  
PRPN401PAEN  
CMD15-21SRC/TR8  
100k, 5%, 1/8W; 0402  
Connecting Header, 2mm zip  
Red LED; 1206  
Vishay  
Sullins Electronics  
Chicago Miniature Lamp  
Table 5: AAT2554 Evaluation Board Component Listing.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
26  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Step-Down Converter Design Example  
Specifications  
VO =1.8V @ 250mA, Pulsed Load ILOAD = 200mA  
VIN = 2.7V to 4.2V (3.6V nominal)  
FS = 1.5MHz  
TAMB = 85°C  
1.8V Output Inductor  
µsec  
A
µsec  
(use 3.0μH; see Table 3)  
1.8V = 3µH  
A
L1 = 1.67  
VO2 = 1.67  
For Sumida inductor CDRH2D09-3R0, 3.0μH, DCR = 150m.  
VO  
L1 FS  
VO  
VIN  
1.8  
V
1.8V  
4.2V  
ΔIL1 =  
1 -  
=
1 -  
= 228mA  
3.0µH 1.5MHz  
ΔIL1  
2
IPKL1 = IO +  
= 250mA + 114mA = 364mA  
2
PL1 = IO DCR = 250mA2 150mΩ = 9.375mW  
1.8V Output Capacitor  
VDROOP = 0.1V  
3 · ΔILOAD  
VDROOP · FS  
3 · 0.2A  
COUT  
=
=
= 4µF (use 4.7µF)  
0.1V · 1.5MHz  
(VO) · (VIN(MAX) - VO)  
L1 · FS · VIN(MAX)  
1
1.8V · (4.2V - 1.8V)  
1
·
= 66mArms  
IRMS  
=
·
=
3.0µH · 1.5MHz · 4.2V  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (66mA)2 = 21.8µW  
Input Capacitor  
Input Ripple VPP = 25mV  
1
1
CIN =  
=
= 1.38µF (use 4.7µF)  
VPP  
IO  
25mV  
0.2A  
- ESR · 4 · FS  
- 5mΩ · 4 · 1.5MHz  
IO  
IRMS  
=
= 0.1Arms  
2
P = esr · IRMS2 = 5mΩ · (0.1A)2 = 0.05mW  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
27  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
AAT2554 Losses  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN -VO])  
PTOTAL  
=
VIN  
+ (tsw · FS · IO + IQ) · VIN  
0.22 · (0.59Ω · 1.8V + 0.42Ω · [4.2V - 1.8V])  
4.2V  
=
+ (5ns · 1.5MHz · 0.2A + 30µA) · 4.2V = 26.14mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (50°C/W) · 26.14mW = 86.3°C  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
28  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
VOUT (V)  
R2 (k)  
R2 (k)  
L1 (μH)  
0.6  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
0
0
75  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.7  
3.0/3.3  
3.0/3.3  
3.0/3.3  
3.9/4.2  
5.6  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
Table 6: Step-Down Converter Component Values.  
Max DC  
Current (mA)  
Size (mm)  
LxWxH  
Manufacturer  
Part Number  
Inductance (μH)  
DCR (m)  
Type  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
FDK  
CDRH2D09-1R5  
CDRH2D09-2R2  
CDRH2D09-2R5  
CDRH2D09-3R0  
CDRH2D09-3R9  
CDRH2D09-4R7  
CDRH2D09-5R6  
CDRH2D11-1R5  
CDRH2D11-2R2  
CDRH2D11-3R3  
CDRH2D11-4R7  
NR3010T1R5N  
NR3010T2R2M  
NR3010T3R3M  
NR3010T4R7M  
MIPWT3226D-1R5  
MIPWT3226D-2R2  
MIPWT3226D-3R0  
MIPWT3226D-4R2  
1.5  
2.2  
2.5  
3.0  
3.9  
4.7  
5.6  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3.0  
4.2  
730  
600  
530  
470  
450  
410  
370  
900  
780  
600  
500  
1200  
1100  
870  
750  
1200  
1100  
1000  
900  
110  
144  
150  
194  
225  
287  
325  
68  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Chip shielded  
Chip shielded  
Chip shielded  
Chip shielded  
98  
123  
170  
80  
95  
140  
190  
90  
100  
120  
140  
FDK  
FDK  
FDK  
Table 7: Suggested Inductors and Suppliers.  
Manufacturer  
Part Number  
Value (μF)  
Voltage Rating  
Temp. Co.  
Case Size  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
GRM21BR61A106KE19  
GRM188R60J475KE19  
GRM188R61A225KE34  
GRM188R60J225KE19  
GRM188R61A105KA61  
GRM185R60J105KE26  
10  
10  
6.3  
10  
6.3  
10  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
0805  
0603  
0603  
0603  
0603  
0603  
4.7  
2.2  
2.2  
1.0  
1.0  
6.3  
Table 8: Surface Mount Capacitors.  
1. For reduced quiescent current, R3 = 221k.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
29  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Ordering Information  
Package  
Marking1  
Part Number (Tape and Reel)2  
TDFN34-16  
TDFN34-16  
TDFN34-16  
RZXYY  
SAXYY  
TOXYY  
AAT2554IRN-CAP-T1  
AAT2554IRN-CAT-T1  
AAT2554IRN-CAW-T1  
Skyworks Green™ products are compliant with  
all applicable legislation and are halogen-free.  
For additional information, refer to Skyworks  
Definition of Green™, document number  
SQ04-0074.  
Legend  
Voltage  
Code  
Adjustable (0.6V)  
A
B
E
G
I
0.9  
1.2  
1.5  
1.8  
1.9  
2.5  
2.6  
2.7  
2.8  
2.85  
2.9  
3.0  
3.3  
4.2  
Y
N
O
P
Q
R
S
T
W
C
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
30  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2554  
Total Power Solution for Portable Applications  
Package Information1  
TDFN34-16  
1.600 0.050  
R0.15 (REF)  
Pin 1 ID  
3.000 0.050  
Index Area  
0.25 REF  
0.430 0.050  
1.600 0.050  
Top View  
Bottom View  
+ 0.100  
0
0.230 0.050  
-0.000  
Side View  
All dimensions in millimeters.  
1. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing  
process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.  
Copyright © 2012, 2013 Skyworks Solutions, Inc. All Rights Reserved.  
Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a  
service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Sky-  
works may change its documentation, products, services, specications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no  
responsibility whatsoever for conicts, incompatibilities, or other difculties arising from any future changes.  
No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided here-  
under, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.  
THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR  
PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES  
NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, IN-  
CLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM  
THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or en-  
vironmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper  
use or sale.  
Customers are responsible for their products and applications using Skyworks products, which may deviate from published specications as a result of design defects, errors, or operation of products outside of pub-  
lished parameters or design specications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product  
design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specications or parameters.  
Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for  
identication purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
31  
202176B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  

相关型号:

AAT2556

Battery Charger and Step-Down Converter for Portable Applications
ANALOGICTECH

AAT2556

Battery Charger and Step-Down Converter for Portable Applications
AAT

AAT2556

Battery Charger and Step-Down Converter for Portable Applications
SKYWORKS

AAT2556IWP-CA-T1

Battery Charger and Step-Down Converter for Portable Applications
ANALOGICTECH

AAT2556IWP-CA-T1

Battery Charger and Step-Down Converter for Portable Applications
AAT

AAT2556IWP-CA-T1

Battery Charger and Step-Down Converter for Portable Applications
SKYWORKS

AAT2557

500mA Battery Charger and 300mA LDO Regulator for Portable Systems
ANALOGICTECH

AAT2557ITO-CT-T1

500mA Battery Charger and 300mA LDO Regulator for Portable Systems
ANALOGICTECH

AAT2557ITO-CW-T1

Power Management Circuit,
ANALOGICTECH

AAT2557ITO-CW-T1

Analog Circuit,
SKYWORKS

AAT2601

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2601A

Total Power Solution for Portable Applications
SKYWORKS