AAT2556 [SKYWORKS]

Battery Charger and Step-Down Converter for Portable Applications; 电池充电器和降压型转换器,用于便携式应用
AAT2556
型号: AAT2556
厂家: SKYWORKS SOLUTIONS INC.    SKYWORKS SOLUTIONS INC.
描述:

Battery Charger and Step-Down Converter for Portable Applications
电池充电器和降压型转换器,用于便携式应用

转换器 电池 便携式
文件: 总27页 (文件大小:2371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
General Description  
Features  
The AAT2556 is a member of Skyworks' Total Power  
Management IC (TPMIC™) product family. It is a fully  
integrated 500mA battery charger plus a 250mA step-  
down converter. The input voltage range is 4V to 6.5V for  
the battery charger and 2.7V to 5.5V for the step-down  
converter, making it ideal for single-cell lithium-ion/poly-  
mer battery-powered applications.  
Battery Charger:  
Input Voltage Range: 4V to 6.5V  
Programmable Charging Current up to 500mA  
Highly Integrated Battery Charger  
Charging Device  
Reverse Blocking Diode  
Step-Down Converter:  
Input Voltage Range: 2.7V to 5.5V  
Output Voltage Range: 0.6V to VIN  
250mA Output Current  
Up to 96% Efficiency  
30μA Quiescent Current  
1.5MHz Switching Frequency  
The battery charger is a complete constant current/ con-  
stant voltage linear charger. It offers an integrated pass  
device, reverse blocking protection, high current accu-  
racy and voltage regulation, charge status, and charge  
termination. The charging current is programmable via  
external resistor from 15mA to 500mA. In addition to  
standard features, the device offers over-voltage, cur-  
rent limit, and thermal protection.  
100μs Start-Up Time  
Short-Circuit, Over-Temperature, and Current Limit  
Protection  
The step-down converter is a highly integrated converter  
operating at 1.5MHz of switching frequency, minimizing  
the size of external components while keeping switching  
losses low. It has independent input and enable pins.  
The output voltage ranges from 0.6V to the input volt-  
age. The feedback and control deliver excellent load  
regulation and transient response with a small output  
inductor and capacitor.  
TDFN33-12 Package  
-40°C to +85°C Temperature Range  
Applications  
Bluetooth™ Headsets  
Cellular Phones  
Handheld Instruments  
MP3 and Portable Music Players  
PDAs and Handheld Computers  
Portable Media Players  
The AAT2556 is available in a Pb-free, thermally-  
enhanced TDFN33-12 package and is rated over the  
-40°C to +85°C temperature range.  
Typical Application  
Adapter / USB Input  
ADP  
VIN  
EN_BUCK  
BAT  
STAT  
BATT +  
Enable  
EN_BAT  
VOUT  
L= 3.3μH  
RFB1  
C
LX  
FB  
BATT -  
ISET  
COUT  
RSET  
RFB2  
GND  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
1
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Pin Descriptions  
Pin #  
Symbol Function  
1
FB  
GND  
Feedback input. This pin must be connected directly to an external resistor divider. Nominal voltage is 0.6V.  
Ground.  
2, 8, 10  
Enable pin for the step-down converter. When connected to logic low, the step-down converter is disabled  
and it consumes less than 1μA of current. When connected to logic high, it resumes normal operation.  
Enable pin for the battery charger. When internally pulled down, the battery charger is disabled and it con-  
sumes less than 1μA of current. When connected to logic high, it resumes normal operation.  
Charge current set point. Connect a resistor from this pin to ground. Refer to typical curves for resistor  
selection.  
3
4
5
EN_BUCK  
EN_BAT  
ISET  
6
7
9
BAT  
STAT  
ADP  
Battery charging and sensing.  
Charge status input. Open drain status input.  
Input for USB/adapter charger.  
Output of the step-down converter. Connect the inductor to this pin. Internally, it is connected to the drain  
of both high- and low-side MOSFETs.  
11  
LX  
12  
EP  
VIN  
Input voltage for the step-down converter.  
Exposed paddle (bottom): connect to ground directly beneath the package.  
Pin Configuration  
TDFN33-12  
(Top View)  
1
2
3
4
5
6
12  
11  
10  
9
FB  
GND  
EN_BUCK  
EN_BAT  
ISET  
VIN  
LX  
GND  
ADP  
GND  
STAT  
8
7
BAT  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
2
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VIN  
VADP  
VLX  
VFB  
VEN  
VX  
Input Voltage to GND  
Adapter Voltage to GND  
LX to GND  
FB to GND  
EN_BAT and EN_BUCK to GND  
BAT, ISET and STAT to GND  
Operating Junction Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec)  
6.0  
-0.3 to 7.5  
V
V
V
V
V
V
°C  
°C  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to 6.0  
-0.3 to VADP + 0.3  
-40 to 150  
TJ  
TLEAD  
300  
Thermal Information  
Symbol  
Description  
Value  
Units  
PD  
JA  
Maximum Power Dissipation  
Thermal Resistance2  
2.0  
50  
W
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions  
specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Mounted on an FR4 board.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
3
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Electrical Characteristics1  
VIN = 3.6V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol Description  
Step-Down Converter  
Conditions  
Min  
Typ  
Max Units  
VIN  
Input Voltage  
2.7  
5.5  
2.7  
V
V
VIN Rising  
VUVLO  
UVLO Threshold  
Hysteresis  
VIN Falling  
IOUT = 0 to 250mA, VIN = 2.7V to 5.5V  
200  
mV  
V
%
V
μA  
μA  
mA  
1.8  
-3.0  
0.6  
VOUT  
VOUT  
IQ  
ISHDN  
ILIM  
RDS(ON)H  
RDS(ON)L  
ILXLEAK  
Output Voltage Tolerance2  
Output Voltage Range  
Quiescent Current  
3.0  
VIN  
No Load  
EN = GND  
30  
Shutdown Current  
1.0  
P-Channel Current Limit  
High-Side Switch On Resistance  
Low-Side Switch On Resistance  
LX Leakage Current  
600  
0.59  
0.42  
μA  
VIN = 5.5V, VLX = 0 to VIN  
VIN = 2.7V to 5.5V  
1.0  
VLinereg  
VIN  
/
Line Regulation  
0.2  
%/V  
VFB  
IFB  
FOSC  
TS  
Feedback Threshold Voltage Accuracy  
FB Leakage Current  
Oscillator Frequency  
VIN = 3.6V  
VOUT = 1.0V  
0.591 0.600 0.609  
V
μA  
MHz  
μs  
°C  
°C  
V
0.2  
1.5  
100  
140  
15  
0.6  
Startup Time  
From Enable to Output Regulation  
TSD  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
Enable Threshold Low  
Enable Threshold High  
Input Low Current  
THYS  
VEN(L)  
VEN(H)  
IEN  
1.4  
V
μA  
VIN = VEN = 5.5V  
-1.0  
1.0  
1. The AAT2556 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
2. Output voltage tolerance is independent of feedback resistor network accuracy.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
4
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Electrical Characteristics1  
VADP = 5V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Battery Charger  
Operation  
VADP  
VUVLO  
Adapter Voltage Range  
Under-Voltage Lockout (UVLO)  
UVLO Hysteresis  
Operating Current  
Shutdown Current  
4.0  
3
6.5  
4
V
V
mV  
mA  
μA  
μA  
Rising Edge  
150  
0.5  
0.3  
0.4  
IOP  
ISHUTDOWN  
ILEAKAGE  
Charge Current = 200mA  
VBAT = 4.25V, EN = GND  
VBAT = 4V, ADP Pin Open  
1
1
2
Reverse Leakage Current from BAT Pin  
Voltage Regulation  
VBAT_EOC  
VCH/VCH  
VMIN  
End of Charge Accuracy  
4.158  
2.85  
4.20  
0.5  
3.0  
4.242  
3.15  
V
%
V
Output Charge Voltage Tolerance  
Preconditioning Voltage Threshold  
Battery Recharge Voltage Threshold  
VRCH  
Measured from VBAT_EOC  
-0.1  
V
Current Regulation  
ICH  
ICH/ICH  
VSET  
Charge Current Programmable Range  
Charge Current Regulation Tolerance  
ISET Pin Voltage  
15  
500  
1.1  
mA  
%
V
10  
2
800  
KI_A  
Current Set Factor: ICH/ISET  
Charging Devices  
RDS(ON)  
Charging Transistor On Resistance  
VADP = 5.5V  
0.9  
Logic Control/Protection  
VEN(H)  
VEN(L)  
VSTAT  
ISTAT  
VOVP  
Input High Threshold  
Input Low Threshold  
Output Low Voltage  
STAT Pin Current Sink Capability  
Over-Voltage Protection Threshold  
Pre-Charge Current  
1.6  
V
V
V
mA  
V
%
%
0.4  
0.4  
8
STAT Pin Sinks 4mA  
ICH = 100mA  
4.4  
10  
10  
ITK/ICHG  
TERM/ICHG  
I
Charge Termination Threshold Current  
1. The AAT2556 output charge voltage is specified over the 0° to 70°C ambient temperature range; operation over the -25°C to +85°C temperature range is guaranteed by  
design.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
5
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Typical Characteristics – Step-Down Converter  
Efficiency vs. Load  
(VOUT = 1.8V; L = 3.3µH)  
DC Load Regulation  
(VOUT = 1.8V; L = 3.3µH)  
100  
90  
80  
70  
60  
50  
40  
1.0  
0.5  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.6V  
VIN = 3.6V  
VIN = 5.5V  
VIN = 5.5V  
0.0  
VIN = 2.7V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 4.2V  
-0.5  
-1.0  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 1.2V; L = 1.5µH)  
DC Load Regulation  
(VOUT = 1.2V; L = 1.5µH)  
100  
90  
80  
70  
60  
50  
40  
30  
1.0  
0.5  
VIN = 2.7V  
VIN = 5.0V  
VIN = 3.6V  
VIN = 5.5V  
0.0  
VIN = 5.5V  
VIN = 5.0V  
VIN = 4.2V  
VIN = 3.6V  
VIN = 4.2V  
-0.5  
-1.0  
VIN = 2.7V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Soft Start  
(VIN = 3.6V; VOUT = 1.8V;  
IOUT = 250mA; CFF = 100pF)  
Line Regulation  
(VOUT = 1.8V)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
VEN  
IOUT = 0mA  
IOUT = 50mA  
IOUT = 150mA  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
VO  
IOUT = 10mA  
IOUT = 250mA  
IL  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Time (100µs/div)  
Input Voltage (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
6
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Typical Characteristics – Step-Down Converter  
Output Voltage Error vs. Temperature  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 250mA)  
Switching Frequency Variation  
vs. Temperature  
(VIN = 3.6V; VOUT = 1.8V)  
3.0  
2.0  
10.0  
8.0  
6.0  
1.0  
4.0  
2.0  
0.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
-10.0  
-1.0  
-2.0  
-3.0  
-40  
-20  
0
20  
40  
60  
80  
100  
5.5  
6.0  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°°C)  
Temperature (°°C)  
Frequency Variation vs. Input Voltage  
(VOUT = 1.8V)  
No Load Quiescent Current vs. Input Voltage  
50  
45  
40  
2.0  
1.0  
0.0  
85°C  
35  
-1.0  
-2.0  
-3.0  
-4.0  
30  
25°C  
25  
-40°C  
20  
15  
10  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Input Voltage (V)  
P-Channel RDS(ON) vs. Input Voltage  
N-Channel RDS(ON) vs. Input Voltage  
750  
1000  
900  
800  
700  
600  
500  
400  
300  
700  
650  
600  
550  
500  
450  
400  
350  
300  
120°C 100°C  
85°C  
120°C  
100°C  
85°C  
25°C  
25°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
Input Voltage (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
7
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Typical Characteristics – Step-Down Converter  
Load Transient Response  
(10mA to 250mA; VIN = 3.6V; VOUT = 1.8V;  
COUT = 4.7µF; CFF = 100pF)  
Load Transient Response  
(10mA to 250mA; VIN = 3.6V; VOUT = 1.8V; COUT = 4.7µF)  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
VO  
VO  
IO  
IO  
ILX  
ILX  
Time (25µs/div)  
Time (25µs/div)  
Line Response  
(VOUT = 1.8V @ 250mA; CFF = 100pF)  
Output Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA)  
40  
20  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
VO  
VO  
0
-20  
-40  
-60  
-80  
-100  
-120  
VIN  
IL  
Time (25µs/div)  
Time (2µs/div)  
Output Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 250mA)  
40  
20  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VO  
0
-20  
-40  
-60  
-80  
-100  
-120  
IL  
Time (200ns/div)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
8
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Typical Characteristics – Battery Charger  
Constant Charging Current  
vs. Set Resistor Values  
Charging Current vs. Battery Voltage  
(VADP = 5V)  
600  
500  
400  
300  
200  
100  
0
1000  
100  
10  
RSET = 3.24kΩ  
RSET = 5.36kΩ  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
RSET = 16.2kΩ  
1
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
1
10  
100  
1000  
V
BAT (V)  
RSET (kΩ)  
End of Charge Battery Voltage  
vs. Supply Voltage  
End of Charge Voltage Regulation  
vs. Temperature  
(RSET = 8.06kΩ)  
4.206  
4.204  
4.202  
4.200  
4.198  
4.196  
4.194  
4.23  
4.22  
4.21  
4.20  
4.19  
4.18  
4.17  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
4.5  
4.75  
5
5.25  
5.5  
5.75  
6
6.25  
6.5  
-50  
-25  
0
25  
50  
75  
100  
VADP (V)  
Temperature (°C)  
Constant Charging Current vs.  
Supply Voltage  
Constant Charging Current vs. Temperature  
(RSET = 8.06kΩ)  
(RSET = 8.06kΩ)  
210  
208  
205  
203  
200  
198  
195  
193  
190  
220  
210  
200  
190  
180  
VBAT = 3.3V  
VBAT = 4V  
VBAT = 3.6V  
170  
4
-50  
-25  
0
25  
50  
75  
100  
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5  
V
ADP (V)  
Temperature (°C)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
9
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Typical Characteristics – Battery Charger  
Operating Current vs. Temperature  
(RSET = 8.06kΩ)  
Preconditioning Threshold Voltage  
vs. Temperature  
(RSET = 8.06kΩ)  
550  
500  
450  
400  
350  
300  
3.03  
3.02  
3.01  
3
2.99  
2.98  
2.97  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Preconditioning Charge Current  
vs. Temperature  
Preconditioning Charge Current  
vs. Supply Voltage  
(RSET = 8.06kΩ)  
60  
20.8  
20.6  
20.4  
20.2  
20.0  
19.8  
19.6  
19.4  
19.2  
RSET = 3.24kΩ  
50  
40  
30  
20  
10  
0
RSET = 5.36kΩ  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
RSET = 16.2kΩ  
4
4.2 4.4 4.6 4.8  
5
5.2 5.4 5.6 5.8  
6
6.2 6.4  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
VADP (V)  
Recharging Threshold Voltage  
vs. Temperature  
Sleep Mode Current vs. Supply Voltage  
(RSET = 8.06kΩ)  
(RSET = 8.06kΩ)  
800  
700  
600  
500  
400  
300  
200  
100  
0
4.18  
4.16  
4.14  
4.12  
4.10  
4.08  
4.06  
4.04  
4.02  
85°C  
25°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
4
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5  
Temperature (°C)  
V
ADP (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
10  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Typical Characteristics – Battery Charger  
VEN(H) vs. Supply Voltage  
(RSET = 8.06kΩ)  
VEN(L) vs. Supply Voltage  
(RSET = 8.06kΩ)  
1.2  
1.1  
1
1.1  
1
-40°C  
-40°C  
0.9  
0.8  
0.7  
0.6  
0.9  
0.8  
0.7  
25°C  
85°C  
25°C  
85°C  
4
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5  
4
4.25 4.5  
4.75  
5
5.25 5.5  
5.75  
6
6.25 6.5  
V
ADP (V)  
V
ADP (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
11  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Functional Block Diagram  
Reverse Blocking  
BAT  
ADP  
-
+
Constant  
Current  
Charge  
Control  
ISET  
VREF  
Over-  
Temperature  
Protection  
STAT  
UVLO  
EN_BAT  
VIN  
FB  
DH  
DL  
-
+
LX  
Logic  
VREF  
Input  
EN_BUCK  
GND  
250mA current capability while maintaining over 90%  
efficiency at full load. Light load efficiency is maintained  
at greater than 80% down to 1mA of load current. A  
high-DC gain error amplifier with internal compensation  
controls the output. It provides excellent transient  
response and load/line regulation.  
Functional Description  
The AAT2556 is a high performance power system com-  
prised of a 500mA lithium-ion/polymer battery charger  
and a 250mA step-down converter.  
The battery charger is designed for single-cell lithium-ion/  
polymer batteries using a constant current and constant  
voltage algorithm. The battery charger operates from the  
adapter/USB input voltage range from 4V to 6.5V. The  
adapter/USB charging current level can be programmed  
up to 500mA for rapid charging applications. A status  
monitor output pin is provided to indicate the battery  
charge state by directly driving one external LED. Internal  
device temperature and charging state are fully moni-  
tored for fault conditions. In the event of an over-voltage  
or over-temperature failure, the device will automatically  
shut down, protecting the charging device, control sys-  
tem, and the battery under charge. Other features include  
an integrated reverse blocking diode and sense resistor.  
Under-Voltage Lockout  
The AAT2556 has internal circuits for UVLO and power on  
reset features. If the ADP supply voltage drops below the  
UVLO threshold, the battery charger will suspend charg-  
ing and shut down. When power is reapplied to the ADP  
pin or the UVLO condition recovers, the system charge  
control will automatically resume charging in the appro-  
priate mode for the condition of the battery. If the input  
voltage of the step-down converter drops below UVLO,  
the internal circuit will shut down.  
Protection Circuitry  
The step-down converter operates with an input voltage  
of 2.7V to 5.5V. The switching frequency is 1.5MHz,  
minimizing the size of the inductor. Under light load con-  
ditions, the device enters power-saving mode; the  
switching frequency is reduced, and the converter con-  
sumes 30μA of current, making it ideal for battery-oper-  
ated applications. The output voltage is programmable  
from VIN to as low as 0.6V. Power devices are sized for  
Over-Voltage Protection  
An over-voltage protection event is defined as a condition  
where the voltage on the BAT pin exceeds the over-volt-  
age protection threshold (VOVP). If this over-voltage condi-  
tion occurs, the charger control circuitry will shut down  
the device. The charger will resume normal charging  
operation after the over-voltage condition is removed.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
12  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
connected to the BAT pin, the charger checks the condi-  
tion of the battery and determines which charging mode  
to apply. If the battery voltage is below VMIN, the charger  
begins battery pre-conditioning by charging at 10% of  
the programmed constant current; e.g., if the pro-  
grammed current is 150mA, then the pre-conditioning  
current (trickle charge) is 15mA. Pre-conditioning is  
purely a safety precaution for a deeply discharged cell  
and will also reduce the power dissipation in the internal  
series pass MOSFET when the input-output voltage dif-  
ferential is at its highest.  
Current Limit, Over-Temperature Protection  
For overload conditions, the peak input current is limited  
at the step-down converter. As load impedance decreas-  
es and the output voltage falls closer to zero, more  
power is dissipated internally, which causes the internal  
die temperature to rise. In this case, the thermal protec-  
tion circuit completely disables switching, which protects  
the device from damage.  
The battery charger has a thermal protection circuit which  
will shut down charging functions when the internal die  
temperature exceeds the preset thermal limit threshold.  
Once the internal die temperature falls below the thermal  
limit, normal charging operation will resume.  
Pre-conditioning continues until the battery voltage  
reaches VMIN. At this point, the charger begins constant-  
current charging. The current level for this mode is pro-  
grammed using a single resistor from the ISET pin to  
ground. Programmed current can be set from a mini-  
mum 15mA up to a maximum of 500mA. Constant cur-  
rent charging will continue until the battery voltage  
reaches the voltage regulation point, VBAT. When the  
battery voltage reaches VBAT, the battery charger begins  
constant voltage mode. The regulation voltage is factory  
programmed to a nominal 4.2V (±0.5%) and will con-  
tinue charging until the charging current has reduced to  
10% of the programmed current.  
Control Loop  
The AAT2556 contains a compact, current mode step-  
down DC/DC controller. The current through the  
P-channel MOSFET (high side) is sensed for current loop  
control, as well as short-circuit and overload protection.  
A fixed slope compensation signal is added to the sensed  
current to maintain stability for duty cycles greater than  
50%. The peak current mode loop appears as a voltage-  
programmed current source in parallel with the output  
capacitor. The output of the voltage error amplifier pro-  
grams the current mode loop for the necessary peak  
switch current to force a constant output voltage for all  
load and line conditions. Internal loop compensation  
terminates the transconductance voltage error amplifier  
output. The error amplifier reference is fixed at 0.6V.  
After the charge cycle is complete, the pass device turns  
off and the device automatically goes into a power-sav-  
ing sleep mode. During this time, the series pass device  
will block current in both directions, preventing the bat-  
tery from discharging through the IC.  
The battery charger will remain in sleep mode, even if  
the charger source is disconnected, until one of the fol-  
lowing events occurs: the battery terminal voltage drops  
below the VRCH threshold; the charger EN pin is recycled;  
or the charging source is reconnected. In all cases, the  
charger will monitor all parameters and resume charging  
in the most appropriate mode.  
Battery Charging Operation  
Battery charging commences only after checking several  
conditions in order to maintain a safe charging environ-  
ment. The input supply (ADP) must be above the mini-  
mum operating voltage (UVLO) and the enable pin must  
be high (internally pulled down). When the battery is  
Preconditioning  
Trickle Charge  
Constant Current  
Charge Phase  
Constant Voltage  
Charge Phase  
Phase  
Charge Complete Voltage  
I = Max CC  
Regulated Current  
Constant Current Mode  
Voltage Threshold  
Trickle Charge and  
Termination Threshold  
I = CC / 10  
Figure 1: Current vs. Voltage Profile During Charging Phases.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
13  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Battery Charging System Operation Flow Chart  
Enable  
Power On Reset  
No  
Yes  
Power Input  
Voltage  
VADP > VUVLO  
Yes  
Fault Conditions  
Monitoring  
OV, OT  
Charge  
Control  
Shut Down  
Yes  
No  
Preconditioning  
Test  
Preconditioning  
(Trickle Charge)  
Yes  
V
MIN > VBAT  
No  
No  
Constant  
Current Charge  
Mode  
Recharge Test  
Current Phase Test  
ADP > VBAT  
Yes  
Yes  
V
RCH > VBAT  
V
No  
Constant  
Voltage Charge  
Mode  
Voltage Phase Test  
IBAT > ITERM  
Yes  
No  
Charge Completed  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
14  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Application Information  
Normal  
ICHARGE (mA)  
Set Resistor  
Value R2 (k)  
500  
400  
300  
250  
200  
150  
100  
50  
40  
30  
20  
15  
3.24  
4.12  
5.36  
6.49  
8.06  
10.7  
16.2  
31.6  
38.3  
53.6  
78.7  
105  
Soft Start / Enable  
The EN_BAT pin is internally pulled down. When pulled  
to a logic high level, the battery charger is enabled.  
When left open or pulled to a logic low level, the battery  
charger is shut down and forced into the sleep state.  
Charging will be halted regardless of the battery voltage  
or charging state. When it is re-enabled, the charge con-  
trol circuit will automatically reset and resume charging  
functions with the appropriate charging mode based on  
the battery charge state and measured cell voltage from  
the BAT pin.  
Table 1: RSET Values.  
The step-down converter features a soft start that limits  
the inrush current and eliminates output voltage over-  
shoot during startup. The circuit is designed to increase  
the inductor current limit in discrete steps when the  
input voltage or enable input is applied. Typical start up  
time is 100μs.  
1000  
100  
10  
Pulling EN_BUCK to logic low forces the converter in a  
low power, non-switching state, and it consumes less  
than 1μA of quiescent current. Connecting it to logic high  
enables the converter and resumes normal operation.  
1
1
10  
100  
1000  
Adapter or USB Power Input  
RSET (kΩ)  
Constant current charge levels up to 500mA may be  
programmed by the user when powered from a sufficient  
input power source. The battery charger will operate  
from the adapter input over a 4.0V to 6.5V range. The  
constant current fast charge current for the adapter  
input is set by the RSET resistor connected between ISET  
and ground. Refer to Table 1 for recommended RSET val-  
ues for a desired constant current charge level.  
Figure 2: Constant Charging Current  
vs. Set Resistor Values.  
Charge Status Output  
The AAT2556 provides battery charge status via a status  
pin. This pin is internally connected to an N-channel  
open drain MOSFET, which can be used to drive an exter-  
nal LED. The status pin can indicate several conditions,  
as shown in Table 2.  
Programming Charge Current  
The fast charge constant current charge level is user  
programmed with a set resistor placed between the ISET  
pin and ground. The accuracy of the fast charge, as well  
as the preconditioning trickle charge current, is domi-  
nated by the tolerance of the set resistor used. For this  
reason, a 1% tolerance metal film resistor is recom-  
mended for the set resistor function. Fast charge con-  
stant current levels from 15mA to 500mA may be set by  
selecting the appropriate resistor value from Table 1.  
Event Description  
Status  
No battery charging activity  
Battery charging via adapter or USB port  
Charging completed  
OFF  
ON  
OFF  
Table 2: LED Status Indicator.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
15  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
The LED should be biased with as little current as neces-  
Figure 3 shows the relationship of maximum power dis-  
sipation and ambient temperature of the AAT2556.  
sary to create reasonable illumination; therefore, a bal-  
last resistor should be placed between the LED cathode  
and the STAT pin. LED current consumption will add to  
the overall thermal power budget for the device pack-  
age, hence it is good to keep the LED drive current to a  
minimum. 2mA should be sufficient to drive most low-  
cost green or red LEDs. It is not recommended to exceed  
8mA for driving an individual status LED.  
3000  
2500  
2000  
1500  
1000  
500  
The required ballast resistor values can be estimated  
using the following formulas:  
0
0
20  
40  
60  
80  
100  
120  
VADP  
-
VF(LED)  
R1 =  
TA (°C)  
ILED  
Figure 3: Maximum Power Dissipation.  
Example:  
5.5V - 2.0  
V
Next, the power dissipation of the battery charger can  
be calculated by the following equation:  
R1 =  
= 1.75kΩ  
2mA  
Note: Red LED forward voltage (VF) is typically 2.0V @  
2mA.  
PD = [(VADP - VBAT) · ICH + (VADP · IOP)]  
Where:  
Thermal Considerations  
PD  
= Total Power Dissipation by the Device  
= ADP/USB Voltage  
= Battery Voltage as Seen at the BAT Pin  
= -Constant Charge Current Programmed for the  
The AAT2556 is offered in a TDFN33-12 package which  
can provide up to 2W of power dissipation when it is  
properly bonded to a printed circuit board and has a  
maximum thermal resistance of 50°C/W. Many consider-  
ations should be taken into account when designing the  
printed circuit board layout, as well as the placement of  
the charger IC package in proximity to other heat gener-  
ating devices in a given application design. The ambient  
temperature around the IC will also have an effect on the  
thermal limits of a battery charging application. The  
maximum limits that can be expected for a given ambi-  
ent condition can be estimated by the following discus-  
sion.  
VADP  
VBAT  
ICH  
Application  
IOP  
= -Quiescent Current Consumed by the Charger  
IC for Normal Operation [0.5mA]  
By substitution, we can derive the maximum charge cur-  
rent before reaching the thermal limit condition (thermal  
cycling). The maximum charge current is the key factor  
when designing battery charger applications.  
(PD(MAX)  
-
VIN  
VIN - VBAT  
· IOP)  
ICH(MAX)  
=
First, the maximum power dissipation for a given situa-  
tion should be calculated:  
(TJ(MAX)  
θJA  
VIN - VBAT  
- TA)  
-
VIN · IOP  
(TJ(MAX) - TA)  
θJA  
PD(MAX)  
=
ICH(MAX)  
=
Where:  
In general, the worst condition is the greatest voltage  
drop across the IC, when battery voltage is charged up  
to the preconditioning voltage threshold. Figure 4 shows  
the maximum charge current in different ambient tem-  
peratures.  
PD(MAX) = Maximum Power Dissipation (W)  
JA = Package Thermal Resistance (°C/W)  
TJ(MAX) = Maximum Device Junction Temperature (°C)  
[135°C]  
TA = Ambient Temperature (°C)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
16  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Capacitor Selection  
500  
400  
300  
200  
100  
0
Battery Charger Input Capacitor (C1)  
TA = 60°C  
In general, it is good design practice to place a decou-  
pling capacitor between the ADP pin and GND. An input  
capacitor in the range of 1μF to 22μF is recommended.  
If the source supply is unregulated, it may be necessary  
to increase the capacitance to keep the input voltage  
above the under-voltage lockout threshold during device  
enable and when battery charging is initiated. If the  
TA = 85°C  
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5 6.75  
adapter input is to be used in a system with an external  
power supply source, such as a typical AC-to-DC wall  
adapter, then a CIN capacitor in the range of 10μF should  
be used. A larger input capacitor in this application will  
minimize switching or power transient effects when the  
power supply is “hot plugged” in.  
VIN (V)  
Figure 4: Maximum Charging Current Before  
Thermal Cycling Becomes Active.  
There are three types of losses associated with the step-  
down converter: switching losses, conduction losses, and  
quiescent current losses. Conduction losses are associ-  
ated with the RDS(ON) characteristics of the power output  
switching devices. Switching losses are dominated by the  
gate charge of the power output switching devices. At full  
load, assuming continuous conduction mode (CCM), a  
simplified form of the losses is given by:  
Step-Down Converter Input Capacitor (C3)  
Select a 4.7μF to 10μF X7R or X5R ceramic capacitor for  
the input. To estimate the required input capacitor size,  
determine the acceptable input ripple level (VPP) and solve  
for CIN. The calculated value varies with input voltage and  
is a maximum when VIN is double the output voltage.  
VO  
VIN  
VO ⎞  
VIN ⎠  
· 1 -  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN - VO])  
CIN =  
PTOTAL  
=
VPP  
IO  
VIN  
- ESR ·FS  
+ (tsw · FS · IO + IQ) · VIN  
VO  
VIN  
VO ⎞  
1
· 1 -  
=
for VIN = 2 · VO  
IQ is the step-down converter quiescent current. The  
term tsw is used to estimate the full load step-down con-  
verter switching losses.  
VIN ⎠  
4
1
CIN(MIN)  
=
For the condition where the step-down converter is in  
dropout at 100% duty cycle, the total device dissipation  
reduces to:  
VPP  
- ESR · 4 · FS  
IO  
Always examine the ceramic capacitor DC voltage coef-  
ficient characteristics when selecting the proper value.  
For example, the capacitance of a 10μF, 6.3V, X5R  
ceramic capacitor with 5.0V DC applied is actually about  
6μF.  
PTOTAL = IO2 · RDSON(H) + IQ · VIN  
Since RDS(ON), quiescent current, and switching losses all  
vary with input voltage, the total losses should be inves-  
tigated over the complete input voltage range.  
The maximum input capacitor RMS current is:  
Given the total losses, the maximum junction tempera-  
ture can be derived from the JA for the TDFN33-12  
package which is 50°C/W.  
VO  
VIN  
VO ⎞  
VIN ⎠  
1
2
· 1 -  
=
D · (1 - D) = 0.52 =  
TJ(MAX) = PTOTAL · ΘJA + TAMB  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
17  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
The input capacitor RMS ripple current varies with the  
input and output voltage and will always be less than or  
equal to half of the total DC load current.  
be increased to 10μF or more if the battery connection is  
made any distance from the charger output. If the  
AAT2556 is to be used in applications where the battery  
can be removed from the charger, such as with desktop  
charging cradles, an output capacitor greater than 10μF  
may be required to prevent the device from cycling on  
and off when no battery is present.  
VO  
VIN  
VO ⎞  
VIN ⎠  
IRMS = IO ·  
for VIN = 2 · VO  
· 1 -  
Step-Down Converter Output Capacitor (C4)  
IO  
IRMS(MAX)  
=
The output capacitor limits the output ripple and pro-  
vides holdup during large load transitions. A 4.7μF to  
10μF X5R or X7R ceramic capacitor typically provides  
sufficient bulk capacitance to stabilize the output during  
large load transitions and has the ESR and ESL charac-  
teristics necessary for low output ripple. For enhanced  
transient response and low temperature operation appli-  
cations, a 10μF (X5R, X7R) ceramic capacitor is recom-  
mended to stabilize extreme pulsed load conditions.  
2
VO  
VIN  
VO  
VIN  
·
1 -  
The term  
appears in both the input voltage  
ripple and input capacitor RMS current equations and is  
a maximum when VO is twice VIN. This is why the input  
voltage ripple and the input capacitor RMS current ripple  
are a maximum at 50% duty cycle.  
The input capacitor provides a low impedance loop for the  
edges of pulsed current drawn by the step-down con-  
verter. Low ESR/ESL X7R and X5R ceramic capacitors are  
ideal for this function. To minimize stray inductance, the  
capacitor should be placed as closely as possible to the IC.  
This keeps the high frequency content of the input current  
localized, minimizing EMI and input voltage ripple.  
The output voltage droop due to a load transient is dom-  
inated by the capacitance of the ceramic output capacitor.  
During a step increase in load current, the ceramic output  
capacitor alone supplies the load current until the loop  
responds. Within two or three switching cycles, the loop  
responds and the inductor current increases to match the  
load current demand. The relationship of the output volt-  
age droop during the three switching cycles to the output  
capacitance can be estimated by:  
The proper placement of the input capacitor (C3) can be  
seen in the evaluation board layout in Figure 6.  
A laboratory test set-up typically consists of two long  
wires running from the bench power supply to the evalu-  
ation board input voltage pins. The inductance of these  
wires, along with the low-ESR ceramic input capacitor,  
can create a high Q network that may affect converter  
performance. This problem often becomes apparent in  
the form of excessive ringing in the output voltage dur-  
ing load transients. Errors in the loop phase and gain  
measurements can also result.  
3 · ΔILOAD  
=
COUT  
V
DROOP · FS  
Once the average inductor current increases to the DC  
load level, the output voltage recovers. The above equa-  
tion establishes a limit on the minimum value for the  
output capacitor with respect to load transients.  
The internal voltage loop compensation also limits the  
minimum output capacitor value to 4.7μF. This is due to  
its effect on the loop crossover frequency (bandwidth),  
phase margin, and gain margin. Increased output capac-  
itance will reduce the crossover frequency with greater  
phase margin.  
Since the inductance of a short PCB trace feeding the  
input voltage is significantly lower than the power leads  
from the bench power supply, most applications do not  
exhibit this problem.  
In applications where the input power source lead induc-  
tance cannot be reduced to a level that does not affect  
the converter performance, a high ESR tantalum or alu-  
minum electrolytic capacitor should be placed in parallel  
with the low ESR, ESL bypass ceramic capacitor. This  
dampens the high Q network and stabilizes the system.  
The maximum output capacitor RMS ripple current is  
given by:  
1
V
OUT · (VIN(MAX) - VOUT  
)
IRMS(MAX)  
=
·
L · FS · VIN(MAX)  
2 · 3  
Battery Charger Output Capacitor (C2)  
Dissipation due to the RMS current in the ceramic output  
capacitor ESR is typically minimal, resulting in less than  
a few degrees rise in hot-spot temperature.  
The AAT2556 only requires a 1μF ceramic capacitor on  
the BAT pin to maintain circuit stability. This value should  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
18  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Inductor Selection  
Output Voltage (V)  
L1 (μH)  
1.0  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
1.5  
2.2  
2.7  
3.0/3.3  
3.9/4.2  
4.7  
The step-down converter uses peak current mode con-  
trol with slope compensation to maintain stability for  
duty cycles greater than 50%. The output inductor value  
must be selected so the inductor current down slope  
meets the internal slope compensation requirements.  
The internal slope compensation for the AAT2556 is  
0.45A/μsec. This equates to a slope compensation that  
is 75% of the inductor current down slope for a 1.8V  
output and 3.0μH inductor.  
5.6  
Table 3: Inductor Values.  
0.75 VO 0.75 1.8V  
= 0.45  
A
µsec  
Adjustable Output Resistor Selection  
m =  
=
L
3.0µH  
Resistors R3 and R4 of Figure 5 program the output to  
regulate at a voltage higher than 0.6V. To limit the bias  
current required for the external feedback resistor string  
while maintaining good noise immunity, the suggested  
value for R4 is 59k. Decreased resistor values are nec-  
essary to maintain noise immunity on the FB pin, result-  
ing in increased quiescent current. Table 4 summarizes  
the resistor values for various output voltages.  
0.75 VO  
0.75  
VO  
A
µsec  
A
L =  
=
1.67  
VO  
m
0.45A  
µsec  
µsec  
A
= 1.67  
3.0V = 5.0µH  
For most designs, the step-down converter operates  
with an inductor value of 1μH to 4.7μH. Table 3 displays  
inductor values for the AAT2556 with different output  
voltage options.  
V
V
3.3V  
0.6V  
R3 =  
OUT -1 · R4 =  
- 1 · 59kΩ = 267kΩ  
REF  
With enhanced transient response for extreme pulsed  
load application, an external feed-forward capacitor (C5  
in Figure 5) can be added.  
Manufacturer’s specifications list both the inductor DC  
current rating, which is a thermal limitation, and the  
peak current rating, which is determined by the satura-  
tion characteristics. The inductor should not show any  
appreciable saturation under normal load conditions.  
Some inductors may meet the peak and average current  
ratings yet result in excessive losses due to a high DCR.  
Always consider the losses associated with the DCR and  
its effect on the total converter efficiency when selecting  
an inductor.  
R4 = 59k  
R3 (k)  
R4 = 221k  
R3 (k)  
VOUT (V)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
75  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
The 3.0μH CDRH2D09 series inductor selected from  
Sumida has a 150mDCR and a 470mA DC current rat-  
ing. At full load, the inductor DC loss is 9.375mW which  
gives a 2.08% loss in efficiency for a 250mA, 1.8V out-  
put.  
Table 4: Adjustable Resistor Values For  
Step-Down Converter.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
19  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
3. The feedback pin (Pin 1) should be separate from  
Printed Circuit Board  
any power trace and connect as closely as possible  
to the load point. Sensing along a high-current load  
trace will degrade DC load regulation. Feedback  
resistors should be placed as closely as possible to  
the FB pin (Pin 1) to minimize the length of the high  
impedance feedback trace. If possible, they should  
also be placed away from the LX (switching node)  
and inductor to improve noise immunity.  
Layout Considerations  
For the best results, it is recommended to physically  
place the battery pack as close as possible to the  
AAT2556 BAT pin. To minimize voltage drops on the PCB,  
keep the high current carrying traces adequately wide.  
Refer to the AAT2556 evaluation board for a good layout  
example (see Figures 6 and 7). The following guidelines  
should be used to help ensure a proper layout.  
4. The resistance of the trace from the load return to  
PGND (Pin 10) and GND (Pin 2) should be kept to a  
minimum. This will help to minimize any error in DC  
regulation due to differences in the potential of the  
internal signal ground and the power ground.  
5. A high density, small footprint layout can be achieved  
using an inexpensive, miniature, non-shielded, high  
DCR inductor.  
1. The input capacitors (C1, C3) should connect as  
closely as possible to ADP (Pin 9) and VIN (Pin 12).  
2. C4 and L1 should be connected as closely as possi-  
ble. The connection of L1 to the LX pin should be as  
short as possible. Do not make the node small by  
using narrow trace. The trace should be kept wide,  
direct, and short.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
20  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
JP4  
1
2 3  
Buck Input  
BAT  
ADP  
C3  
4.7μF  
L1  
3μH  
VIN  
R4  
R3  
VOUT  
VOUT  
C2  
2.2μF  
59kΩ  
118kΩ  
C5  
100pF  
C4  
4.7μF  
U1 AAT2556  
1
2
3
4
5
6
12  
FB  
GND  
VIN  
LX  
11  
10  
9
_
EN BUCK GND  
_
EN BAT ADP  
8
7
ISET  
BAT  
GND  
C1  
10μF  
STAT  
JP1  
0Ω  
D1  
R2  
8.06kΩ  
R1  
1kΩ  
RED LED  
1
2
3
1 2  
JP3  
Enable_Buck  
JP2  
Enable_Bat  
Figure 5: AAT2556 Evaluation Board Schematic.  
Figure 6: AAT2556 Evaluation Board  
Top Side Layout.  
Figure 7: AAT2556 Evaluation Board  
Bottom Side Layout.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
21  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Component  
Part Number  
Description  
Manufacturer  
Battery Charger and Step-Down Converter for Portable  
Applications; TDFN33-12 Package  
U1  
AAT2556IWP-T1  
Skyworks  
C1  
C2  
C3, C4  
C5  
L1  
R1  
ECJ-1VB0J106M  
GRM185B30J225KE25D  
GRM188R60J475KE19B  
GRM1886R1H101JZ01J  
CDRH2D09-3R0  
Chip Resistor  
Cer 10μF 10V 20% X5R 0603  
Cer 2.2μF 6.3V 10% X7R 0603  
Cer 4.7μF 6.3V 10% X7R 0603  
Cer 100pF 50V 5% R2H 0603  
Shielded SMD, 3.0μH, 150m, 3x3x1mm  
1K, 5%, 1/4W; 0603  
Panasonic - ECG  
Murata  
Murata  
Murata  
Sumida  
Vishay  
R2  
R3  
Chip Resistor  
Chip Resistor  
8.06K, 1%, 1/4W; 0603  
118K, 1%, 1/4W; 0603  
Vishay  
Vishay  
R4  
JP1  
Chip Resistor  
Chip Resistor  
59K, 1%, 1/4W; 0603  
0, 5%, 1/4W; 0603  
Vishay  
Vishay  
JP2, JP3, JP4  
D1  
PRPN401PAEN  
CMD15-21SRC/TR8  
Connecting Header, 2mm Zip  
Red LED; 1206  
Sullins Electronics  
Chicago Miniature Lamp  
Table 5: AAT2556 Evaluation Board Component Listing.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
22  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Step-Down Converter Design Example  
Specifications  
VO = 1.8V @ 250mA, Pulsed Load ILOAD = 200mA  
VIN = 2.7V to 4.2V (3.6V nominal)  
FS = 1.5MHz  
TAMB = 85°C  
1.8V Output Inductor  
µsec  
A
µsec  
(use 3.0μH; see Table 3)  
1.8V = 3µH  
A
L1 = 1.67  
VO2 = 1.67  
For Sumida inductor CDRH2D09-3R0, 3.0μH, DCR = 150m.  
VO  
L1 FS  
VO  
VIN  
1.8  
V
1.8V  
4.2V  
ΔIL1 =  
1 -  
=
1 -  
= 228mA  
3.0µH 1.5MHz  
ΔIL1  
2
IPKL1 = IO +  
= 250mA + 114mA = 364mA  
2
PL1 = IO DCR = 250mA2 150mΩ = 9.375mW  
1.8V Output Capacitor  
VDROOP = 0.1V  
3 · ΔILOAD  
VDROOP · FS  
3 · 0.2A  
COUT  
=
=
= 4µF; use 4.7µF  
0.1V · 1.5MHz  
(VO) · (VIN(MAX) - VO)  
L1 · FS · VIN(MAX)  
1
1.8V · (4.2V - 1.8V)  
1
·
= 66mArms  
IRMS  
=
·
=
3.0µH · 1.5MHz · 4.2V  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (66mA)2 = 21.8µW  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
23  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Input Capacitor  
Input Ripple VPP = 25mV  
1
1
CIN =  
=
= 1.38µF (use 4.7µF)  
VPP  
IO  
25mV  
0.2A  
- ESR · 4 · FS  
- 5mΩ · 4 · 1.5MHz  
IO  
IRMS  
=
= 0.1Arms  
2
P = esr · IRMS2 = 5mΩ · (0.1A)2 = 0.05mW  
AAT2556 Losses  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN -VO])  
PTOTAL  
=
VIN  
+ (tsw · FS · IO + IQ) · VIN  
0.22 · (0.59Ω · 1.8V + 0.42Ω · [4.2V - 1.8V])  
4.2V  
=
+ (5ns · 1.5MHz · 0.2A + 30µA) · 4.2V = 26.14mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (50°C/W) · 26.14mW = 86.3°C  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
24  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Output Voltage  
VOUT (V)  
R4 = 59k  
R3 (k)  
R4 = 221k1  
R3 (k)  
L1 (μH)  
0.62  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
75  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.7  
3.0/3.3  
3.0/3.3  
3.0/3.3  
3.9/4.2  
5.6  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
Table 6: Step-Down Converter Component Values.  
Inductance  
Max DC  
Current (mA)  
DCR  
(m)  
Size (mm)  
LxWxH  
Manufacturer  
Part Number  
(μH)  
Type  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
FDK  
CDRH2D09-1R5  
CDRH2D09-2R2  
CDRH2D09-2R5  
CDRH2D09-3R0  
CDRH2D09-3R9  
CDRH2D09-4R7  
CDRH2D09-5R6  
CDRH2D11-1R5  
CDRH2D11-2R2  
CDRH2D11-3R3  
CDRH2D11-4R7  
NR3010  
1.5  
2.2  
2.5  
3
730  
600  
530  
470  
450  
410  
370  
900  
780  
600  
500  
1200  
1100  
870  
750  
1200  
1100  
1000  
900  
88  
115  
135  
150  
180  
230  
260  
54  
78  
98  
135  
80  
95  
140  
190  
90  
100  
120  
140  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Chip shielded  
Chip shielded  
Chip shielded  
Chip shielded  
3.9  
4.7  
5.6  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3
NR3010  
NR3010  
NR3010  
MIPWT3226D-1R5  
MIPWT3226D-2R2  
MIPWT3226D-3R0  
MIPWT3226D-4R2  
FDK  
FDK  
FDK  
4.2  
Table 7: Suggested Inductors and Suppliers.  
Manufacturer  
Part Number  
Value (μF)  
Voltage Rating  
Temp. Co.  
Case Size  
Murata  
Murata  
GRM118R60J475KE19B  
GRM188R60J106ME47D  
4.7  
10  
6.3  
6.3  
X5R  
X5R  
0603  
0603  
Table 8: Surface Mount Capacitors.  
1. For reduced quiescent current, R4 = 221kW.  
2. R4 is opened, R3 is shorted.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
25  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Ordering Information  
Package  
Marking1  
Part Number (Tape and Reel)2  
AAT2556IWP-CA-T1  
TDFN33-12  
SPXYY  
Skyworks Green™ products are compliant with  
all applicable legislation and are halogen-free.  
For additional information, refer to Skyworks  
Definition of Green™, document number  
SQ04-0074.  
Legend  
Voltage  
Code  
Adjustable  
(0.6V)  
A
0.9  
1.2  
1.5  
1.8  
1.9  
2.5  
2.6  
2.7  
2.8  
2.85  
2.9  
3.0  
3.3  
4.2  
B
E
G
I
Y
N
O
P
Q
R
S
T
W
C
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
26  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  
DATA SHEET  
AAT2556  
Battery Charger and Step-Down Converter for Portable Applications  
Package Information  
TDFN33-121  
Index Area  
Detail "A"  
0.40 0.05  
0.1 REF  
C0.3  
Pin 1 Indicator  
(optional)  
3.00 0.05  
1.70 0.05  
Top View  
Bottom View  
Detail "A"  
0.05 0.05  
Side View  
All dimensions in millimeters  
1. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing  
process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.  
Copyright © 2012, 2013 Skyworks Solutions, Inc. All Rights Reserved.  
Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a  
service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Sky-  
works may change its documentation, products, services, specications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no  
responsibility whatsoever for conicts, incompatibilities, or other difculties arising from any future changes.  
No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided here-  
under, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.  
THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR  
PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES  
NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, IN-  
CLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM  
THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or en-  
vironmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper  
use or sale.  
Customers are responsible for their products and applications using Skyworks products, which may deviate from published specications as a result of design defects, errors, or operation of products outside of pub-  
lished parameters or design specications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product  
design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specications or parameters.  
Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for  
identication purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
27  
202177B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 19, 2013  

相关型号:

AAT2556IWP-CA-T1

Battery Charger and Step-Down Converter for Portable Applications
ANALOGICTECH

AAT2556IWP-CA-T1

Battery Charger and Step-Down Converter for Portable Applications
AAT

AAT2556IWP-CA-T1

Battery Charger and Step-Down Converter for Portable Applications
SKYWORKS

AAT2557

500mA Battery Charger and 300mA LDO Regulator for Portable Systems
ANALOGICTECH

AAT2557ITO-CT-T1

500mA Battery Charger and 300mA LDO Regulator for Portable Systems
ANALOGICTECH

AAT2557ITO-CW-T1

Power Management Circuit,
ANALOGICTECH

AAT2557ITO-CW-T1

Analog Circuit,
SKYWORKS

AAT2601

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2601A

Total Power Solution for Portable Applications
SKYWORKS

AAT2601AIIH-3.3-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2601AIIH-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2601B

Total Power Solution for Portable Applications
SKYWORKS