AAT2556 [ANALOGICTECH]

Battery Charger and Step-Down Converter for Portable Applications; 电池充电器和降压型转换器,用于便携式应用
AAT2556
型号: AAT2556
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

Battery Charger and Step-Down Converter for Portable Applications
电池充电器和降压型转换器,用于便携式应用

转换器 电池 便携式
文件: 总29页 (文件大小:745K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
SystemPower  
General Description  
Features  
The AAT2556 is a member of AnalogicTech's Total  
Power Management IC™ (TPMIC™) product fam-  
ily. It is a fully integrated 500mA battery charger  
plus a 250mA step-down converter. The input volt-  
age range is 4V to 6.5V for the battery charger and  
2.7V to 5.5V for the step-down converter, making it  
ideal for single-cell lithium-ion/polymer battery-  
powered applications.  
Battery Charger:  
— Input Voltage Range: 4V to 6.5V  
— Programmable Charging Current up to  
500mA  
— Highly Integrated Battery Charger  
— Charging Device  
— Reverse Blocking Diode  
Step-Down Converter:  
— Input Voltage Range: 2.7V to 5.5V  
— Output Voltage Range: 0.6V to VIN  
— 250mA Output Current  
— Up to 96% Efficiency  
— 30µA Quiescent Current  
— 1.5MHz Switching Frequency  
— 100µs Start-Up Time  
Short-Circuit, Over-Temperature, and Current  
Limit Protection  
TDFN33-12 Package  
The battery charger is a complete constant current/  
constant voltage linear charger. It offers an inte-  
grated pass device, reverse blocking protection,  
high current accuracy and voltage regulation,  
charge status, and charge termination. The charg-  
ing current is programmable via external resistor  
from 15mA to 500mA. In addition to standard fea-  
tures, the device offers over-voltage, current limit,  
and thermal protection.  
The step-down converter is a highly integrated  
converter operating at 1.5MHz of switching fre-  
quency, minimizing the size of external compo-  
nents while keeping switching losses low. It has  
independent input and enable pins. The output  
voltage ranges from 0.6V to the input voltage. The  
feedback and control deliver excellent load regula-  
tion and transient response with a small output  
inductor and capacitor.  
-40°C to +85°C Temperature Range  
Applications  
Bluetooth™ Headsets  
Cellular Phones  
Handheld Instruments  
MP3 and Portable Music Players  
PDAs and Handheld Computers  
Portable Media Players  
The AAT2556 is available in a Pb-free, thermally-  
enhanced TDFN33-12 package and is rated over  
the -40°C to +85°C temperature range.  
Typical Application  
Adapter / USB Input  
ADP  
VIN  
EN_BUCK  
BAT  
STAT  
BATT +  
Enable  
EN_BAT  
VOUT  
L= 3.3µH  
RFB1  
C
LX  
FB  
BATT -  
ISET  
COUT  
RSET  
RFB2  
GND  
2556.2006.05.1.0  
1
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Pin Descriptions  
Pin #  
Symbol  
Function  
1
FB  
Feedback input. This pin must be connected directly to an external resistor divider.  
Nominal voltage is 0.6V.  
2, 8, 10  
3
GND  
Ground.  
EN_BUCK  
Enable pin for the step-down converter. When connected to logic low, the step-down  
converter is disabled and it consumes less than 1µA of current. When connected to  
logic high, it resumes normal operation.  
4
5
EN_BAT  
ISET  
Enable pin for the battery charger. When internally pulled down, the battery charger is  
disabled and it consumes less than 1µA of current. When connected to logic high, it  
resumes normal operation.  
Charge current set point. Connect a resistor from this pin to ground. Refer to typical  
curves for resistor selection.  
6
7
BAT  
STAT  
ADP  
LX  
Battery charging and sensing.  
Charge status input. Open drain status input.  
9
Input for USB/adapter charger.  
11  
Output of the step-down converter. Connect the inductor to this pin. Internally, it is  
connected to the drain of both high- and low-side MOSFETs.  
Input voltage for the step-down converter.  
12  
VIN  
EP  
Exposed paddle (bottom): connect to ground directly beneath the package.  
Pin Configuration  
TDFN33-12  
(Top View)  
1
2
3
4
5
6
12  
11  
10  
9
FB  
GND  
EN_BUCK  
EN_BAT  
ISET  
VIN  
LX  
GND  
ADP  
GND  
STAT  
8
7
BAT  
2
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VIN  
VADP  
VLX  
VFB  
VEN  
VX  
Input Voltage to GND  
6.0  
V
V
Adapter Voltage to GND  
-0.3 to 7.5  
LX to GND  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to 6.0  
V
FB to GND  
V
EN_BAT and EN_BUCK to GND  
BAT, ISET and STAT to GND  
Operating Junction Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec)  
V
-0.3 to VADP + 0.3  
-40 to 150  
V
TJ  
°C  
°C  
TLEAD  
300  
Thermal Information  
Symbol  
Description  
Value  
Units  
PD  
Maximum Power Dissipation  
Thermal Resistance2  
2.0  
50  
W
θJA  
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions  
other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Mounted on an FR4 board.  
2556.2006.05.1.0  
3
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Electrical Characteristics1  
VIN = 3.6V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min  
Typ  
Max Units  
Step-Down Converter  
VIN  
Input Voltage  
2.7  
5.5  
2.7  
V
V
VIN Rising  
VUVLO  
UVLO Threshold  
Hysteresis  
200  
mV  
V
VIN Falling  
1.8  
IOUT = 0 to 250mA,  
VIN = 2.7V to 5.5V  
-3.0  
3.0  
VIN  
1.0  
%
VOUT  
Output Voltage Tolerance2  
VOUT  
IQ  
Output Voltage Range  
Quiescent Current  
0.6  
V
µA  
µA  
mA  
Ω
No Load  
30  
ISHDN  
Shutdown Current  
EN = GND  
ILIM  
P-Channel Current Limit  
High-Side Switch On Resistance  
Low-Side Switch On Resistance  
LX Leakage Current  
600  
0.59  
0.42  
RDS(ON)H  
RDS(ON)L  
ILXLEAK  
Ω
VIN = 5.5V, VLX = 0 to VIN  
VIN = 2.7V to 5.5V  
VIN = 3.6V  
1.0  
µA  
%/V  
V
ΔVLinereg/ΔVIN Line Regulation  
0.2  
VFB  
Feedback Threshold Voltage Accuracy  
0.597 0.606 0.615  
IFB  
FB Leakage Current  
Oscillator Frequency  
VOUT = 1.0V  
0.2  
1.5  
µA  
MHz  
FOSC  
From Enable to Output  
Regulation  
TS  
Startup Time  
100  
µs  
TSD  
THYS  
VEN(L)  
VEN(H)  
IEN  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
Enable Threshold Low  
140  
°C  
°C  
V
15  
0.6  
1.0  
Enable Threshold High  
1.4  
-1.0  
V
Input Low Current  
VIN = VEN = 5.5V  
µA  
1. The AAT2556 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured  
by design, characterization, and correlation with statistical process controls.  
2. Output voltage tolerance is independent of feedback resistor network accuracy.  
4
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Electrical Characteristics1  
VADP = 5V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min Typ Max Units  
Battery Charger  
Operation  
VADP  
Adapter Voltage Range  
4.0  
3
6.5  
4
V
Under-Voltage Lockout (UVLO)  
UVLO Hysteresis  
Rising Edge  
V
VUVLO  
150  
0.5  
0.3  
0.4  
mV  
mA  
µA  
µA  
IOP  
Operating Current  
Charge Current = 200mA  
VBAT = 4.25V, EN = GND  
1
1
2
ISHUTDOWN  
ILEAKAGE  
Voltage Regulation  
Shutdown Current  
Reverse Leakage Current from BAT Pin VBAT = 4V, ADP Pin Open  
VBAT EOC  
End of Charge Accuracy  
4.158 4.20 4.242  
0.5  
V
%
V
_
ΔVCH/VCH  
VMIN  
Output Charge Voltage Tolerance  
Preconditioning Voltage Threshold  
Battery Recharge Voltage Threshold  
2.85  
3.0  
3.15  
VRCH  
Measured from VBAT EOC  
-0.1  
V
_
Current Regulation  
ICH  
ΔICH/ICH  
VSET  
Charge Current Programmable Range  
15  
500  
mA  
%
Charge Current Regulation Tolerance  
ISET Pin Voltage  
10  
2
V
KI_A  
Current Set Factor: ICH/ISET  
800  
Charging Devices  
RDS(ON)  
Charging Transistor On Resistance  
VADP = 5.5V  
0.9  
1.1  
Ω
Logic Control/Protection  
VEN(H)  
VEN(L)  
Input High Threshold  
1.6  
V
V
Input Low Threshold  
0.4  
0.4  
8
VSTAT  
Output Low Voltage  
STAT Pin Sinks 4mA  
ICH = 100mA  
V
ISTAT  
STAT Pin Current Sink Capability  
Over-Voltage Protection Threshold  
Pre-Charge Current  
mA  
V
VOVP  
4.4  
10  
10  
ITK/ICHG  
TERM/ICHG  
%
%
I
Charge Termination Threshold Current  
1. The AAT2556 output charge voltage is specified over the 0° to 70°C ambient temperature range; operation over the -25°C to +85°C  
temperature range is guaranteed by design.  
2556.2006.05.1.0  
5
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Typical Characteristics – Step-Down Converter  
Efficiency vs. Load  
(VOUT = 1.8V; L = 3.3µH)  
DC Load Regulation  
(VOUT = 1.8V; L = 3.3µH)  
100  
90  
80  
70  
60  
50  
40  
1.0  
0.5  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.6V  
VIN = 3.6V  
VIN = 5.5V  
VIN = 5.5V  
0.0  
VIN = 2.7V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 4.2V  
-0.5  
-1.0  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 1.2V; L = 1.5µH)  
DC Load Regulation  
(VOUT = 1.2V; L = 1.5µH)  
100  
90  
80  
70  
60  
50  
40  
30  
1.0  
0.5  
VIN = 2.7V  
VIN = 5.0V  
VIN = 3.6V  
VIN = 5.5V  
0.0  
VIN = 5.5V  
VIN = 5.0V  
VIN = 4.2V  
VIN = 3.6V  
VIN = 4.2V  
-0.5  
-1.0  
VIN = 2.7V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Soft Start  
(VIN = 3.6V; VOUT = 1.8V;  
OUT = 250mA; CFF = 100pF)  
Line Regulation  
(VOUT = 1.8V)  
I
0.6  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
0.5  
0.4  
VEN  
IOUT = 0mA  
IOUT = 50mA  
0.3  
0.2  
IOUT = 150mA  
0.1  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
VO  
0.0  
-0.1  
-0.2  
-0.3  
IOUT = 10mA  
IOUT = 250mA  
IL  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Time (100µs/div)  
Input Voltage (V)  
6
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Typical Characteristics – Step-Down Converter  
Output Voltage Error vs. Temperature  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 250mA)  
Switching Frequency Variation  
vs. Temperature  
(VIN = 3.6V; VOUT = 1.8V)  
3.0  
2.0  
10.0  
8.0  
6.0  
1.0  
4.0  
2.0  
0.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
-10.0  
-1.0  
-2.0  
-3.0  
-40  
-20  
0
20  
40  
60  
80  
100  
5.5  
6.0  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperature (°C)  
Frequency Variation vs. Input Voltage  
(VOUT = 1.8V)  
No Load Quiescent Current vs. Input Voltage  
50  
45  
40  
2.0  
1.0  
0.0  
85°C  
35  
-1.0  
-2.0  
-3.0  
-4.0  
30  
25°C  
25  
-40°C  
20  
15  
10  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Input Voltage (V)  
P-Channel RDS(ON) vs. Input Voltage  
N-Channel RDS(ON) vs. Input Voltage  
750  
1000  
900  
800  
700  
600  
500  
400  
300  
700  
650  
600  
550  
500  
450  
400  
350  
300  
120°C 100°C  
85°C  
120°C  
100°C  
85°C  
25°C  
25°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
Input Voltage (V)  
2556.2006.05.1.0  
7
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Typical Characteristics – Step-Down Converter  
Load Transient Response  
(10mA to 250mA; VIN = 3.6V; VOUT = 1.8V;  
Load Transient Response  
(10mA to 250mA; VIN = 3.6V; VOUT = 1.8V; COUT = 4.7µF)  
C
OUT = 4.7µF; CFF = 100pF)  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
VO  
VO  
IO  
IO  
ILX  
ILX  
Time (25µs/div)  
Time (25µs/div)  
Line Response  
(VOUT = 1.8V @ 250mA; CFF = 100pF)  
Output Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA)  
40  
20  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
VO  
VO  
0
-20  
-40  
-60  
-80  
-100  
-120  
VIN  
IL  
Time (25µs/div)  
Time (2µs/div)  
Output Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 250mA)  
40  
20  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VO  
0
-20  
-40  
-60  
-80  
-100  
-120  
IL  
Time (200ns/div)  
8
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Typical Characteristics – Battery Charger  
Constant Charging Current  
vs. Set Resistor Values  
Charging Current vs. Battery Voltage  
(VADP = 5V)  
600  
500  
400  
300  
200  
100  
0
1000  
100  
10  
RSET = 3.24kΩ  
RSET = 5.62kΩ  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
RSET = 16.2kΩ  
1
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
1
10  
100  
1000  
VBAT (V)  
RSET (kΩ)  
End of Charge Battery Voltage  
vs. Supply Voltage  
End of Charge Voltage Regulation  
vs. Temperature  
(RSET = 8.06kΩ)  
4.206  
4.204  
4.202  
4.200  
4.198  
4.196  
4.194  
4.23  
4.22  
4.21  
4.20  
4.19  
4.18  
4.17  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
4.5  
4.75  
5
5.25  
5.5  
5.75  
6
6.25  
6.5  
-50  
-25  
0
25  
50  
75  
100  
VADP (V)  
Temperature (°C)  
Constant Charging Current vs.  
Supply Voltage  
Constant Charging Current vs. Temperature  
(RSET = 8.06kΩ)  
(RSET = 8.06kΩ)  
210  
208  
205  
203  
200  
198  
195  
193  
190  
220  
210  
200  
190  
180  
VBAT = 3.3V  
VBAT = 4V  
VBAT = 3.6V  
170  
4
-50  
-25  
0
25  
50  
75  
100  
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5  
VADP  
(V)  
Temperature (°C)  
2556.2006.05.1.0  
9
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Typical Characteristics – Battery Charger  
Operating Current vs. Temperature  
(RSET = 8.06kΩΩ)  
Preconditioning Threshold Voltage  
vs. Temperature  
(RSET = 8.06kΩ)  
550  
500  
450  
400  
350  
300  
3.03  
3.02  
3.01  
3
2.99  
2.98  
2.97  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Preconditioning Charge Current  
vs. Temperature  
Preconditioning Charge Current  
vs. Supply Voltage  
(RSET = 8.06kΩΩ)  
60  
20.8  
20.6  
20.4  
20.2  
20.0  
19.8  
19.6  
19.4  
19.2  
RSET = 3.24kΩ  
50  
40  
30  
20  
10  
0
RSET = 5.62kΩ  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
RSET = 16.2kΩ  
4
4.2 4.4 4.6 4.8  
5
5.2 5.4 5.6 5.8  
6
6.2 6.4  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
VADP (V)  
Recharging Threshold Voltage  
vs. Temperature  
Sleep Mode Current vs. Supply Voltage  
(RSET = 8.06kΩ)  
(RSET = 8.06kΩΩ)  
800  
700  
600  
500  
400  
300  
200  
100  
0
4.18  
4.16  
4.14  
4.12  
4.10  
4.08  
4.06  
4.04  
4.02  
85°C  
25°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
4
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5  
Temperature (°C)  
VADP (V)  
10  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Typical Characteristics – Battery Charger  
VEN(H) vs. Supply Voltage  
(RSET = 8.06kΩΩ)  
VEN(L) vs. Supply Voltage  
(RSET = 8.06kΩ)  
1.2  
1.1  
1
1.1  
1
-40°C  
-40°C  
0.9  
0.8  
0.7  
0.6  
0.9  
0.8  
0.7  
25°C  
85°C  
25°C  
85°C  
4
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5  
4
4.25 4.5  
4.75  
5
5.25 5.5  
5.75  
6
6.25 6.5  
VADP (V)  
VADP (V)  
2556.2006.05.1.0  
11  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Functional Block Diagram  
Reverse Blocking  
BAT  
ADP  
-
+
Constant  
Current  
Charge  
Control  
ISET  
VREF  
Over-  
Temperature  
Protection  
STAT  
UVLO  
T
EN_BA  
VIN  
FB  
DH  
DL  
-
+
LX  
Logic  
VREF  
Input  
EN_BUCK  
GND  
state are fully monitored for fault conditions. In the  
event of an over-voltage or over-temperature fail-  
ure, the device will automatically shut down, pro-  
tecting the charging device, control system, and  
the battery under charge. Other features include  
an integrated reverse blocking diode and sense  
resistor.  
Functional Description  
The AAT2556 is a high performance power system  
comprised of a 500mA lithium-ion/polymer battery  
charger and a 250mA step-down converter.  
The battery charger is designed for single-cell  
lithium-ion/polymer batteries using a constant cur-  
rent and constant voltage algorithm. The battery  
charger operates from the adapter/USB input volt-  
age range from 4V to 6.5V. The adapter/USB  
charging current level can be programmed up to  
500mA for rapid charging applications. A status  
monitor output pin is provided to indicate the bat-  
tery charge state by directly driving one external  
LED. Internal device temperature and charging  
The step-down converter operates with an input volt-  
age of 2.7V to 5.5V. The switching frequency is  
1.5MHz, minimizing the size of the inductor. Under  
light load conditions, the device enters power-saving  
mode; the switching frequency is reduced, and the  
converter consumes 30µA of current, making it ideal  
for battery-operated applications. The output volt-  
age is programmable from VIN to as low as 0.6V.  
12  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Power devices are sized for 250mA current capabil-  
ity while maintaining over 90% efficiency at full load.  
Light load efficiency is maintained at greater than  
80% down to 1mA of load current. A high-DC gain  
error amplifier with internal compensation controls  
the output. It provides excellent transient response  
and load/line regulation.  
mal limit threshold. Once the internal die tempera-  
ture falls below the thermal limit, normal charging  
operation will resume.  
Control Loop  
The AAT2556 contains a compact, current mode  
step-down DC/DC controller. The current through  
the P-channel MOSFET (high side) is sensed for  
current loop control, as well as short-circuit and  
overload protection. A fixed slope compensation  
signal is added to the sensed current to maintain  
stability for duty cycles greater than 50%. The peak  
current mode loop appears as a voltage-pro-  
grammed current source in parallel with the output  
capacitor. The output of the voltage error amplifier  
programs the current mode loop for the necessary  
peak switch current to force a constant output volt-  
age for all load and line conditions. Internal loop  
compensation terminates the transconductance  
voltage error amplifier output. The error amplifier  
reference is fixed at 0.6V.  
Under-Voltage Lockout  
The AAT2556 has internal circuits for UVLO and  
power on reset features. If the ADP supply voltage  
drops below the UVLO threshold, the battery  
charger will suspend charging and shut down.  
When power is reapplied to the ADP pin or the  
UVLO condition recovers, the system charge con-  
trol will automatically resume charging in the  
appropriate mode for the condition of the battery. If  
the input voltage of the step-down converter drops  
below UVLO, the internal circuit will shut down.  
Protection Circuitry  
Over-Voltage Protection  
Battery Charging Operation  
An over-voltage protection event is defined as a  
condition where the voltage on the BAT pin  
exceeds the over-voltage protection threshold  
(VOVP). If this over-voltage condition occurs, the  
charger control circuitry will shut down the device.  
The charger will resume normal charging operation  
after the over-voltage condition is removed.  
Battery charging commences only after checking  
several conditions in order to maintain a safe  
charging environment. The input supply (ADP)  
must be above the minimum operating voltage  
(UVLO) and the enable pin must be high (internal-  
ly pulled down). When the battery is connected to  
the BAT pin, the charger checks the condition of  
the battery and determines which charging mode to  
apply. If the battery voltage is below VMIN, the  
charger begins battery pre-conditioning by charg-  
ing at 10% of the programmed constant current;  
e.g., if the programmed current is 150mA, then the  
pre-conditioning current (trickle charge) is 15mA.  
Pre-conditioning is purely a safety precaution for a  
deeply discharged cell and will also reduce the  
power dissipation in the internal series pass MOS-  
FET when the input-output voltage differential is at  
its highest.  
Current Limit, Over-Temperature Protection  
For overload conditions, the peak input current is  
limited at the step-down converter. As load imped-  
ance decreases and the output voltage falls closer  
to zero, more power is dissipated internally, which  
causes the internal die temperature to rise. In this  
case, the thermal protection circuit completely dis-  
ables switching, which protects the device from  
damage.  
The battery charger has a thermal protection circuit  
which will shut down charging functions when the  
internal die temperature exceeds the preset ther-  
2556.2006.05.1.0  
13  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Preconditioning  
Trickle Charge  
Phase  
Constant Current  
Charge Phase  
Constant Voltage  
Charge Phase  
Charge Complete Voltage  
Regulated Current  
I = Max CC  
Constant Current Mode  
Voltage Threshold  
Trickle Charge and  
I = CC / 10  
Termination Threshold  
Figure 1: Current vs. Voltage Profile During Charging Phases.  
Pre-conditioning continues until the battery voltage  
After the charge cycle is complete, the pass device  
turns off and the device automatically goes into a  
power-saving sleep mode. During this time, the  
series pass device will block current in both direc-  
tions, preventing the battery from discharging  
through the IC.  
reaches VMIN. At this point, the charger begins con-  
stant-current charging. The current level for this  
mode is programmed using a single resistor from  
the ISET pin to ground. Programmed current can  
be set from a minimum 15mA up to a maximum of  
500mA. Constant current charging will continue  
until the battery voltage reaches the voltage regu-  
lation point, VBAT. When the battery voltage reach-  
es VBAT, the battery charger begins constant volt-  
age mode. The regulation voltage is factory pro-  
grammed to a nominal 4.2V (±0.5%) and will con-  
tinue charging until the charging current has  
reduced to 10% of the programmed current.  
The battery charger will remain in sleep mode,  
even if the charger source is disconnected, until  
one of the following events occurs: the battery ter-  
minal voltage drops below the VRCH threshold; the  
charger EN pin is recycled; or the charging source  
is reconnected. In all cases, the charger will mon-  
itor all parameters and resume charging in the  
most appropriate mode.  
14  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Battery Charging System Operation Flow Chart  
Enable  
Yes  
Power On Reset  
No  
Power Input  
Voltage  
VADP > VUVLO  
Yes  
Fault Conditions  
Monitoring  
OV, OT  
Charge  
Control  
Shut Down  
Yes  
No  
Preconditioning  
Test  
VMIN > VBAT  
Preconditioning  
(Trickle Charge)  
Yes  
No  
No  
Constant  
Current Charge  
Mode  
Recharge Test  
VRCH > VBAT  
Current Phase Test  
Yes  
Yes  
V
ADP > VBAT  
No  
Constant  
Voltage Charge  
Mode  
Voltage Phase Test  
IBAT > ITERM  
Yes  
No  
Charge Completed  
2556.2006.05.1.0  
15  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Application Information  
Normal  
Set Resistor  
Ω
ICHARGE (mA)  
Value R2 (k )  
Soft Start / Enable  
500  
400  
300  
250  
200  
150  
100  
50  
3.24  
4.12  
5.62  
6.49  
8.06  
10.7  
16.2  
31.6  
38.3  
53.6  
78.7  
105  
The EN_BAT pin is internally pulled down. When  
pulled to a logic high level, the battery charger is  
enabled. When left open or pulled to a logic low  
level, the battery charger is shut down and forced  
into the sleep state. Charging will be halted regard-  
less of the battery voltage or charging state. When  
it is re-enabled, the charge control circuit will auto-  
matically reset and resume charging functions with  
the appropriate charging mode based on the bat-  
tery charge state and measured cell voltage from  
the BAT pin.  
40  
30  
20  
15  
The step-down converter features a soft start that  
limits the inrush current and eliminates output volt-  
age overshoot during startup. The circuit is  
designed to increase the inductor current limit in  
discrete steps when the input voltage or enable  
input is applied. Typical start up time is 100µs.  
Table 1: RSET Values.  
1000  
100  
10  
Pulling EN_BUCK to logic low forces the converter  
in a low power, non-switching state, and it con-  
sumes less than 1µA of quiescent current.  
Connecting it to logic high enables the converter  
and resumes normal operation.  
1
1
10  
100  
1000  
Adapter or USB Power Input  
RSET (kΩ)  
Constant current charge levels up to 500mA may  
be programmed by the user when powered from a  
sufficient input power source. The battery charger  
will operate from the adapter input over a 4.0V to  
6.5V range. The constant current fast charge cur-  
rent for the adapter input is set by the RSET resistor  
connected between ISET and ground. Refer to  
Table 1 for recommended RSET values for a desired  
constant current charge level.  
Figure 2: Constant Charging Current  
vs. Set Resistor Values.  
Charge Status Output  
The AAT2556 provides battery charge status via a  
status pin. This pin is internally connected to an N-  
channel open drain MOSFET, which can be used to  
drive an external LED. The status pin can indicate  
several conditions, as shown in Table 2.  
Programming Charge Current  
The fast charge constant current charge level is  
user programmed with a set resistor placed  
between the ISET pin and ground. The accuracy of  
the fast charge, as well as the preconditioning trick-  
le charge current, is dominated by the tolerance of  
the set resistor used. For this reason, a 1% toler-  
ance metal film resistor is recommended for the set  
resistor function. Fast charge constant current lev-  
els from 15mA to 500mA may be set by selecting  
the appropriate resistor value from Table 1.  
Event Description  
Status  
No battery charging activity  
Battery charging via adapter  
or USB port  
OFF  
ON  
Charging completed  
OFF  
Table 2: LED Status Indicator.  
16  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
The LED should be biased with as little current as  
necessary to create reasonable illumination; there-  
fore, a ballast resistor should be placed between  
the LED cathode and the STAT pin. LED current  
consumption will add to the overall thermal power  
budget for the device package, hence it is good to  
keep the LED drive current to a minimum. 2mA  
should be sufficient to drive most low-cost green or  
red LEDs. It is not recommended to exceed 8mA  
for driving an individual status LED.  
Where:  
PD(MAX) = Maximum Power Dissipation (W)  
θJA  
= Package Thermal Resistance (°C/W)  
TJ(MAX) = Maximum Device Junction Temperature  
(°C) [135°C]  
TA  
= Ambient Temperature (°C)  
Figure 3 shows the relationship of maximum  
power dissipation and ambient temperature of the  
AAT2556.  
The required ballast resistor values can be esti-  
mated using the following formulas:  
3000  
2500  
2000  
1500  
1000  
500  
(VADP  
- VF(LED)  
ILED  
)
R1=  
Example:  
0
(5.5V - 2.0V)  
2mA  
0
20  
40  
60  
80  
100  
120  
R1 =  
= 1.75kΩ  
TA (°C)  
Note: Red LED forward voltage (VF) is typically  
2.0V @ 2mA.  
Figure 3: Maximum Power Dissipation.  
Next, the power dissipation of the battery charger  
can be calculated by the following equation:  
Thermal Considerations  
The AAT2556 is offered in a TDFN33-12 package  
which can provide up to 2W of power dissipation  
when it is properly bonded to a printed circuit board  
and has a maximum thermal resistance of 50°C/W.  
Many considerations should be taken into account  
when designing the printed circuit board layout, as  
well as the placement of the charger IC package in  
proximity to other heat generating devices in a  
given application design. The ambient temperature  
around the IC will also have an effect on the ther-  
mal limits of a battery charging application. The  
maximum limits that can be expected for a given  
ambient condition can be estimated by the follow-  
ing discussion.  
PD = [(VADP - VBAT) · ICH + (VADP · IOP)]  
Where:  
PD = Total Power Dissipation by the Device  
VADP = ADP/USB Voltage  
VBAT = Battery Voltage as Seen at the BAT Pin  
ICH = Constant Charge Current Programmed for  
the Application  
IOP = Quiescent Current Consumed by the  
Charger IC for Normal Operation [0.5mA]  
First, the maximum power dissipation for a given  
situation should be calculated:  
By substitution, we can derive the maximum  
charge current before reaching the thermal limit  
condition (thermal cycling). The maximum charge  
current is the key factor when designing battery  
charger applications.  
(TJ(MAX) - TA)  
θJA  
PD(MAX)  
=
2556.2006.05.1.0  
17  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
IQ is the step-down converter quiescent current.  
The term tsw is used to estimate the full load step-  
down converter switching losses.  
(PD(MAX)  
-
VIN  
VIN - VBAT  
· IOP)  
ICH(MAX)  
=
(TJ(MAX)  
θJA  
VIN - VBAT  
- TA)  
-
VIN · IOP  
For the condition where the step-down converter is  
in dropout at 100% duty cycle, the total device dis-  
sipation reduces to:  
ICH(MAX)  
=
In general, the worst condition is the greatest volt-  
age drop across the IC, when battery voltage is  
charged up to the preconditioning voltage thresh-  
old. Figure 4 shows the maximum charge current in  
different ambient temperatures.  
PTOTAL = IO2 · RDSON(H) + IQ · VIN  
Since RDS(ON), quiescent current, and switching  
losses all vary with input voltage, the total losses  
should be investigated over the complete input  
voltage range.  
500  
Given the total losses, the maximum junction tem-  
perature can be derived from the θJA for the  
TDFN33-12 package which is 50°C/W.  
400  
TA = 60°C  
300  
TA = 85°C  
200  
TJ(MAX)  
=
PTOTAL  
·
Θ
JA + TAMB  
100  
0
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5 6.75  
VIN (V)  
Capacitor Selection  
Battery Charger Input Capacitor (C1)  
Figure 4: Maximum Charging Current Before  
Thermal Cycling Becomes Active.  
In general, it is good design practice to place a  
decoupling capacitor between the ADP pin and  
GND. An input capacitor in the range of 1µF to  
22µF is recommended. If the source supply is  
unregulated, it may be necessary to increase the  
capacitance to keep the input voltage above the  
under-voltage lockout threshold during device  
enable and when battery charging is initiated. If the  
adapter input is to be used in a system with an  
external power supply source, such as a typical  
AC-to-DC wall adapter, then a CIN capacitor in the  
range of 10µF should be used. A larger input  
capacitor in this application will minimize switching  
or power transient effects when the power supply is  
"hot plugged" in.  
There are three types of losses associated with the  
step-down converter: switching losses, conduction  
losses, and quiescent current losses. Conduction  
losses are associated with the RDS(ON) characteris-  
tics of the power output switching devices.  
Switching losses are dominated by the gate charge  
of the power output switching devices. At full load,  
assuming continuous conduction mode (CCM), a  
simplified form of the losses is given by:  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN - VO])  
PTOTAL  
=
VIN  
Step-Down Converter Input Capacitor (C3)  
Select a 4.7µF to 10µF X7R or X5R ceramic capac-  
itor for the input. To estimate the required input  
capacitor size, determine the acceptable input rip-  
ple level (VPP) and solve for CIN. The calculated  
value varies with input voltage and is a maximum  
when VIN is double the output voltage.  
+ (tsw · FS · IO + IQ) · VIN  
18  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
ceramic capacitors are ideal for this function. To  
minimize stray inductance, the capacitor should be  
placed as closely as possible to the IC. This keeps  
the high frequency content of the input current  
localized, minimizing EMI and input voltage ripple.  
VO  
VIN  
· 1  
VO  
VIN  
-
CIN =  
VPP  
IO  
- ESR  
·
FS  
The proper placement of the input capacitor (C3)  
can be seen in the evaluation board layout in  
Figure 6.  
VO  
VIN  
· 1  
VO  
VIN  
1
4
-
=
for VIN = 2 · VO  
1
A laboratory test set-up typically consists of two  
long wires running from the bench power supply to  
the evaluation board input voltage pins. The induc-  
tance of these wires, along with the low-ESR  
ceramic input capacitor, can create a high Q net-  
work that may affect converter performance. This  
problem often becomes apparent in the form of  
excessive ringing in the output voltage during load  
transients. Errors in the loop phase and gain meas-  
urements can also result.  
CIN(MIN)  
=
VPP  
IO  
- ESR  
·
4
·
FS  
Always examine the ceramic capacitor DC voltage  
coefficient characteristics when selecting the prop-  
er value. For example, the capacitance of a 10µF,  
6.3V, X5R ceramic capacitor with 5.0V DC applied  
is actually about 6µF.  
The maximum input capacitor RMS current is:  
Since the inductance of a short PCB trace feeding  
the input voltage is significantly lower than the  
power leads from the bench power supply, most  
applications do not exhibit this problem.  
VO  
VIN  
· 1  
VO  
VIN  
IRMS = IO  
·
-
In applications where the input power source lead  
inductance cannot be reduced to a level that does  
not affect the converter performance, a high ESR  
tantalum or aluminum electrolytic capacitor should  
be placed in parallel with the low ESR, ESL bypass  
ceramic capacitor. This dampens the high Q net-  
work and stabilizes the system.  
The input capacitor RMS ripple current varies with  
the input and output voltage and will always be less  
than or equal to half of the total DC load current.  
VO  
VIN  
· 1  
VO  
VIN  
1
2
-
=
D
· (1 - D) = 0.52 =  
Battery Charger Output Capacitor (C2)  
The AAT2556 only requires a 1µF ceramic capaci-  
tor on the BAT pin to maintain circuit stability. This  
value should be increased to 10µF or more if the  
battery connection is made any distance from the  
charger output. If the AAT2556 is to be used in  
applications where the battery can be removed  
from the charger, such as with desktop charging  
cradles, an output capacitor greater than 10µF may  
be required to prevent the device from cycling on  
and off when no battery is present.  
for VIN = 2 · VO  
IO  
IRMS(MAX)  
=
2
VO  
·
VIN  
VO  
VIN  
1
-
The term  
appears in both the input  
voltage ripple and input capacitor RMS current  
equations and is a maximum when VO is twice VIN.  
This is why the input voltage ripple and the input  
capacitor RMS current ripple are a maximum at  
50% duty cycle.  
Step-Down Converter Output Capacitor (C4)  
The output capacitor limits the output ripple and  
provides holdup during large load transitions. A  
4.7µF to 10µF X5R or X7R ceramic capacitor typi-  
cally provides sufficient bulk capacitance to stabi-  
lize the output during large load transitions and has  
the ESR and ESL characteristics necessary for low  
output ripple. For enhanced transient response and  
The input capacitor provides a low impedance loop  
for the edges of pulsed current drawn by the step-  
down converter. Low ESR/ESL X7R and X5R  
2556.2006.05.1.0  
19  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
low temperature operation applications, a 10µF  
(X5R, X7R) ceramic capacitor is recommended to  
stabilize extreme pulsed load conditions.  
current down slope meets the internal slope com-  
pensation requirements. The internal slope com-  
pensation for the AAT2556 is 0.45A/µsec. This  
equates to a slope compensation that is 75% of the  
inductor current down slope for a 1.8V output and  
3.0µH inductor.  
The output voltage droop due to a load transient is  
dominated by the capacitance of the ceramic out-  
put capacitor. During a step increase in load cur-  
rent, the ceramic output capacitor alone supplies  
the load current until the loop responds. Within two  
or three switching cycles, the loop responds and  
the inductor current increases to match the load  
current demand. The relationship of the output volt-  
age droop during the three switching cycles to the  
output capacitance can be estimated by:  
0.75 VO 0.75 1.8V  
= 0.45  
A
µsec  
m =  
=
L
3.0µH  
0.75 VO  
0.75  
VO  
A
µsec  
A
L =  
=
1.67  
VO  
m
0.45A  
µsec  
3
·
VDROOP FS  
ΔILOAD  
COUT  
=
For most designs, the step-down converter operates  
with an inductor value of 1µH to 4.7µH. Table 3 dis-  
plays inductor values for the AAT2556 with different  
output voltage options.  
·
Once the average inductor current increases to the  
DC load level, the output voltage recovers. The  
above equation establishes a limit on the minimum  
value for the output capacitor with respect to load  
transients.  
Manufacturer's specifications list both the inductor  
DC current rating, which is a thermal limitation, and  
the peak current rating, which is determined by the  
saturation characteristics. The inductor should not  
show any appreciable saturation under normal load  
conditions. Some inductors may meet the peak and  
average current ratings yet result in excessive loss-  
es due to a high DCR. Always consider the losses  
associated with the DCR and its effect on the total  
converter efficiency when selecting an inductor.  
The internal voltage loop compensation also limits  
the minimum output capacitor value to 4.7µF. This  
is due to its effect on the loop crossover frequency  
(bandwidth), phase margin, and gain margin.  
Increased output capacitance will reduce the  
crossover frequency with greater phase margin.  
The maximum output capacitor RMS ripple current  
is given by:  
The 3.0µH CDRH2D09 series inductor selected  
from Sumida has a 150mΩ DCR and a 470mA DC  
current rating. At full load, the inductor DC loss is  
9.375mW which gives a 2.08% loss in efficiency for  
a 250mA, 1.8V output.  
1
VOUT · (VIN(MAX) - VOUT)  
IRMS(MAX)  
=
·
L · FS · VIN(MAX)  
2 · 3  
Output Voltage (V)  
L1 (µH)  
Dissipation due to the RMS current in the ceram-  
ic output capacitor ESR is typically minimal,  
resulting in less than a few degrees rise in hot-  
spot temperature.  
1.0  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
1.5  
2.2  
2.7  
3.0/3.3  
3.9/4.2  
4.7  
Inductor Selection  
The step-down converter uses peak current mode  
control with slope compensation to maintain stabil-  
ity for duty cycles greater than 50%. The output  
inductor value must be selected so the inductor  
5.6  
Table 3: Inductor Values.  
20  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Adjustable Output Resistor Selection  
Ω
Ω
R4 = 221k  
R4 = 59k  
Resistors R3 and R4 of Figure 5 program the out-  
put to regulate at a voltage higher than 0.6V. To  
limit the bias current required for the external feed-  
back resistor string while maintaining good noise  
immunity, the suggested value for R4 is 59kΩ.  
Decreased resistor values are necessary to main-  
tain noise immunity on the FB pin, resulting in  
increased quiescent current. Table 4 summarizes  
the resistor values for various output voltages.  
Ω
Ω
VOUT (V)  
R3 (k )  
R3 (k )  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
75  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
V
V
3.3V  
0.6V  
- 1 ·  
R3 =  
OUT -1  
·
R4 =  
59kΩ = 267kΩ  
124  
137  
187  
267  
REF  
With enhanced transient response for extreme  
pulsed load application, an external feed-forward  
capacitor (C5 in Figure 5) can be added.  
Table 4: Adjustable Resistor Values For  
Step-Down Converter.  
JP4  
1
2 3  
Buck Input  
C3  
BAT  
ADP  
VIN  
R4  
59k  
R3  
118k  
VOUT  
4.7µF  
L1  
3.3µH  
C4  
C5  
100pF  
U1  
4.7µF  
1
12  
11  
10  
9
FB  
GND  
VIN  
2
3
4
5
6
LX  
GND  
ADP  
EN_BUCK  
EN_BAT  
ISET  
8
GND  
STAT  
C1  
10µF  
7
BAT  
JP1  
0Ω  
C2  
R2  
AAT2556  
D1  
R1  
1K  
2.2µF  
8.06K  
RED LED  
1
2
3
1
2
JP3  
Enable_Bat  
Enable_Buck  
JP2  
Figure 5: AAT2556 Evaluation Board Schematic.  
2556.2006.05.1.0  
21  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
3. The feedback pin (Pin 1) should be separate  
from any power trace and connect as closely as  
possible to the load point. Sensing along a high-  
current load trace will degrade DC load regula-  
tion. Feedback resistors should be placed as  
closely as possible to the FB pin (Pin 1) to mini-  
mize the length of the high impedance feedback  
trace. If possible, they should also be placed  
away from the LX (switching node) and inductor  
to improve noise immunity.  
4. The resistance of the trace from the load return  
to PGND (Pin 10) and GND (Pin 2) should be  
kept to a minimum. This will help to minimize any  
error in DC regulation due to differences in the  
potential of the internal signal ground and the  
power ground.  
Printed Circuit Board Layout  
Considerations  
For the best results, it is recommended to physi-  
cally place the battery pack as close as possible to  
the AAT2556 BAT pin. To minimize voltage drops  
on the PCB, keep the high current carrying traces  
adequately wide. Refer to the AAT2556 evaluation  
board for a good layout example (see Figures 6  
and 7). The following guidelines should be used to  
help ensure a proper layout.  
1. The input capacitors (C1, C3) should connect  
as closely as possible to ADP (Pin 9) and VIN  
(Pin 12).  
2. C4 and L1 should be connected as closely as  
possible. The connection of L1 to the LX pin  
should be as short as possible. Do not make the  
node small by using narrow trace. The trace  
should be kept wide, direct, and short.  
5. A high density, small footprint layout can be  
achieved using an inexpensive, miniature, non-  
shielded, high DCR inductor.  
Figure 6: AAT2556 Evaluation Board  
Top Side Layout.  
Figure 7: AAT2556 Evaluation Board  
Bottom Side Layout.  
22  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Component Part Number  
Description  
Manufacturer  
U1  
AAT2556IWP-T1  
Battery Charger and Step-Down Converter  
for Portable Applications; TDFN33-12 Package  
CER 10µF 10V 20% X5R 0603  
AnalogicTech  
C1  
C2  
ECJ-1VB0J106M  
Panasonic - ECG  
Murata  
GRM185B30J225KE25D CER 2.2µF 6.3V 10% X7R 0603  
GRM188R60J475KE19B CER 4.7µF 6.3V 10% X7R 0603  
GRM1886R1H101JZ01J CER 100pF 50V 5% R2H 0603  
C3, C4  
C5  
Murata  
Murata  
L1  
CDRH2D09-3R0  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Shielded SMD, 3.0µH, 150mΩ, 3x3x1mm  
1KΩ, 5%, 1/4W; 0603  
8.06KΩ, 1%, 1/4W; 0603  
118KΩ, 1%, 1/4W; 0603  
59KΩ, 1%, 1/4W; 0603  
0Ω, 5%, 1/4W; 0603  
Sumida  
R1  
Vishay  
R2  
Vishay  
R3  
Vishay  
R4  
Vishay  
JP1  
Vishay  
JP2, JP3, JP4 PRPN401PAEN  
Connecting Header, 2mm Zip  
Sullins Electronics  
Chicago Miniature Lamp  
D1  
CMD15-21SRC/TR8  
Red LED; 1206  
Table 5: AAT2556 Evaluation Board Component Listing.  
2556.2006.05.1.0  
23  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Step-Down Converter Design Example  
Specifications  
VO  
VIN  
FS  
= 1.8V @ 250mA, Pulsed Load ΔILOAD = 200mA  
= 2.7V to 4.2V (3.6V nominal)  
= 1.5MHz  
TAMB = 85°C  
1.8V Output Inductor  
µsec  
µsec  
1.8V = 3µH  
A
L1 = 1.67  
VO2 = 1.67  
(use 3.0µH; see Table 3)  
A
For Sumida inductor CDRH2D09-3R0, 3.0µH, DCR = 150mΩ.  
VO  
L1 FS  
VO  
VIN  
1.8  
V
1.8V  
4.2V  
ΔIL1 =  
1 -  
=
1 -  
= 228mA  
3.0µH 1.5MHz  
ΔIL1  
2
IPKL1 = IO +  
= 250mA + 114mA = 364mA  
2
PL1 = IO DCR = 250mA2 150mΩ = 9.375mW  
1.8V Output Capacitor  
VDROOP = 0.1V  
3 · ΔILOAD  
VDROOP · FS  
3 · 0.2A  
COUT  
=
=
= 4µF; use 4.7µF  
0.1V · 1.5MHz  
(VO) · (VIN(MAX) - VO)  
L1 · FS · VIN(MAX)  
1
1.8V · (4.2V - 1.8V)  
1
·
= 66mArms  
IRMS  
=
·
=
3.0µH · 1.5MHz · 4.2V  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (66mA)2 = 21.8µW  
24  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Input Capacitor  
Input Ripple VPP = 25mV  
1
1
CIN =  
=
= 1.38µF; use 4.7µF  
VPP  
IO  
25mV  
0.2A  
- ESR  
·
4
·
FS  
- 5mΩ  
·
4
·
1.5MHz  
IO  
IRMS  
=
= 0.1Arms  
2
P = esr  
·
IRMS2 = 5mΩ  
·
(0.1A)2 = 0.05mW  
AAT2556 Losses  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN -VO  
])  
PTOTAL  
=
VIN  
+ (tsw · FS · IO + IQ) · VIN  
0.22 · (0.7  
Ω
·
1.8V + 0.7Ω  
4.2V  
· [4.2V - 1.8V])  
=
+ (5ns · 1.5MHz · 0.2A + 30µA) · 4.2V = 34.5mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (50°C/W) · 34.5mW = 86.7°C  
2556.2006.05.1.0  
25  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
1
Ω
Ω
Output Voltage  
VOUT (V)  
R4 = 59k  
R4 = 221k  
Ω
Ω
R3 (k )  
R3 (k )  
L1 (µH)  
0.62  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
75  
1.5  
1.5  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.7  
3.0/3.3  
3.0/3.3  
3.0/3.3  
3.9/4.2  
5.6  
124  
137  
187  
267  
Table 6: Step-Down Converter Component Values.  
Inductance  
(µH)  
Max DC  
Current (mA)  
DCR  
(mΩ)  
Size (mm)  
LxWxH  
Manufacturer  
Part Number  
Type  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
FDK  
CDRH2D09-1R5  
CDRH2D09-2R2  
CDRH2D09-2R5  
CDRH2D09-3R0  
CDRH2D09-3R9  
CDRH2D09-4R7  
CDRH2D09-5R6  
CDRH2D11-1R5  
CDRH2D11-2R2  
CDRH2D11-3R3  
CDRH2D11-4R7  
NR3010  
1.5  
2.2  
2.5  
3
730  
600  
530  
470  
450  
410  
370  
900  
780  
600  
500  
1200  
1100  
870  
750  
1200  
1100  
1000  
900  
88  
115  
135  
150  
180  
230  
260  
54  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
Shielded  
Shielded  
Shielded  
Shielded  
3.9  
4.7  
5.6  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3
Shielded  
Shielded  
Shielded  
Shielded  
78  
Shielded  
98  
Shielded  
135  
80  
Shielded  
Shielded  
NR3010  
95  
Shielded  
NR3010  
140  
190  
90  
Shielded  
NR3010  
Shielded  
MIPWT3226D-1R5  
MIPWT3226D-2R2  
MIPWT3226D-3R0  
MIPWT3226D-4R2  
Chip shielded  
Chip shielded  
Chip shielded  
Chip shielded  
FDK  
100  
120  
140  
FDK  
FDK  
4.2  
Table 7: Suggested Inductors and Suppliers.  
1. For reduced quiescent current, R4 = 221kΩ.  
2. R4 is opened, R3 is shorted.  
26  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Value  
(µF)  
Voltage  
Rating  
Temp.  
Co.  
Case  
Size  
Manufacturer  
Part Number  
Murata  
Murata  
GRM118R60J475KE19B  
GRM188R60J106ME47D  
4.7  
10  
6.3  
6.3  
X5R  
X5R  
0603  
0603  
Table 8: Surface Mount Capacitors.  
2556.2006.05.1.0  
27  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Ordering Information  
Package  
Marking1  
Part Number (Tape and Reel)2  
AAT2556IWP-CA-T1  
TDFN33-12  
SPXYY  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means  
semiconductor products that are in compliance with current RoHS standards, including  
the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more  
information, please visit our website at http://www.analogictech.com/pbfree.  
Legend  
Voltage  
Code  
Adjustable  
(0.6V)  
0.9  
A
B
E
G
I
1.2  
1.5  
1.8  
1.9  
Y
N
O
P
Q
R
S
T
2.5  
2.6  
2.7  
2.8  
2.85  
2.9  
3.0  
3.3  
W
C
4.2  
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
28  
2556.2006.05.1.0  
AAT2556  
Battery Charger and Step-Down  
Converter for Portable Applications  
Package Information  
TDFN33-12  
Index Area  
(D/2 x E/2)  
Detail "B"  
0.3 0.10 0.16 0.375 0.125  
0.075 0.075  
0.1 REF  
3.00 0.05  
Detail "A"  
1.70 0.05  
Top View  
Bottom View  
Pin 1 Indicator  
(optional)  
7.5° 7.5°  
Detail "B"  
Option A:  
Option B:  
C0.30 (4x) max  
Chamfered corner  
R0.30 (4x) max  
Round corner  
0.05 0.05  
Detail "A"  
Side View  
All dimensions in millimeters  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights,  
or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice.  
Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold sub-  
ject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech  
warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech’s standard warranty. Testing and other quality con-  
trol techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.  
AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other brand and product names appearing in this document are regis-  
tered trademarks or trademarks of their respective holders.  
Advanced Analogic Technologies, Inc.  
830 E. Arques Avenue, Sunnyvale, CA 94085  
Phone (408) 737-4600  
Fax (408) 737-4611  
2556.2006.05.1.0  
29  

相关型号:

AAT2556IWP-CA-T1

Battery Charger and Step-Down Converter for Portable Applications
ANALOGICTECH

AAT2556IWP-CA-T1

Battery Charger and Step-Down Converter for Portable Applications
AAT

AAT2556IWP-CA-T1

Battery Charger and Step-Down Converter for Portable Applications
SKYWORKS

AAT2557

500mA Battery Charger and 300mA LDO Regulator for Portable Systems
ANALOGICTECH

AAT2557ITO-CT-T1

500mA Battery Charger and 300mA LDO Regulator for Portable Systems
ANALOGICTECH

AAT2557ITO-CW-T1

Power Management Circuit,
ANALOGICTECH

AAT2557ITO-CW-T1

Analog Circuit,
SKYWORKS

AAT2601

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2601A

Total Power Solution for Portable Applications
SKYWORKS

AAT2601AIIH-3.3-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2601AIIH-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2601B

Total Power Solution for Portable Applications
SKYWORKS