AAT2552_08 [ANALOGICTECH]

Total Power Solution for Portable Applications; 用于便携式应用的总电源解决方案
AAT2552_08
型号: AAT2552_08
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

Total Power Solution for Portable Applications
用于便携式应用的总电源解决方案

便携式
文件: 总31页 (文件大小:824K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
General Description  
Features  
The AAT2552 is a fully integrated 500mA battery char-  
ger, a 300mA step-down converter, and a 300mA low  
dropout (LDO) linear regulator. The input voltage range  
is 4V to 7.5V for the battery charger and 2.7V to 5.5V  
for the step-down converter and linear regulator, making  
it ideal for applications operating with single-cell lithium-  
ion/polymer batteries.  
• Battery Charger:  
Input Voltage Range: 4V to 7.5V  
Programmable Charging Current up to 500mA  
Highly Integrated Battery Charger  
• Charging Device  
• Reverse Blocking Diode  
• Current Sensing  
• Step-Down Converter:  
The battery charger is a complete constant current/con-  
stant voltage linear charger. It offers an integrated pass  
device, reverse blocking protection, high accuracy cur-  
rent and voltage regulation, charge status, and charge  
termination. The charging current is programmable via  
external resistor from 30mA to 500mA. In addition to  
these standard features, the device offers over-voltage,  
current limit, and thermal protection.  
Input Voltage Range: 2.7V to 5.5V  
Output Voltage Range: 0.6V to VIN  
300mA Output Current  
Up to 96% Efficiency  
45μA Quiescent Current  
1.5MHz Switching Frequency  
120μs Start-Up Time  
• Linear Regulator:  
The step-down converter is a highly integrated converter  
operating at a 1.5MHz switching frequency, minimizing  
the size of external components while keeping switching  
losses low. The output voltage ranges from 0.6V to the  
input voltage.  
300mA Output Current  
Low Dropout: 400mV at 300mA  
Fast Line and Load Transient Response  
High Accuracy: ±1.5%  
85μA Quiescent Current  
• Short-Circuit, Over-Temperature, and Current Limit  
Protection  
• TDFN34-16 Package  
The AAT2552 linear regulator is designed for high speed  
turn-onandturn-offperformance,fasttransientresponse,  
and good power supply ripple rejection. Delivering up to  
300mA of load current, it includes short-circuit protec-  
tion and thermal shutdown.  
• -40°C to +85°C Temperature Range  
Applications  
• Bluetooth™ Headsets  
• Cellular Phones  
The AAT2552 is available in a Pb-free, thermally-  
enhanced TDFN34-16 package and is rated over the  
-40°C to +85°C temperature range.  
• GPS  
• Handheld Instruments  
• MP3 and Portable Music Players  
• PDAs and Handheld Computers  
• Portable Media Players  
Typical Application  
Adapter/USB Input  
Enable  
INB  
ENB  
INA  
ADP  
STAT  
EN_BAT  
ENA  
VOUTB  
L1  
LX  
AAT2552  
RFBB1  
RFBB2  
MODE  
BAT  
BATT+  
BATT-  
FBB  
OUTA  
COUTB  
4.7μF  
VOUTA  
COUTA  
RFBA1  
RFBA2  
COUT  
ISET  
FBA  
GND  
RSET  
Battery  
Pack  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
1
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Pin Descriptions  
Pin #  
Symbol  
Function  
Enable pin for the battery charger. When connected to logic low, the battery charger is disabled and  
consumes less than 1μA of current. When connected to logic high, the charger operates normally (pulled  
down internally).  
1
EN_BAT  
Charge current set point. Connect a resistor from this pin to ground. Refer to typical characteristics  
curves for resistor selection.  
Analog ground.  
Feedback input for the step-down converter. This pin must be connected directly to an external resistor  
divider. Nominal voltage is 0.6V.  
2
3
4
ISET  
AGND  
FBB  
Enable pin for the step-down converter. When connected to logic low, the step-down converter is disabled  
and consumes less than 1μA of current. When connected to logic high, the converter operates normally  
(pulled up internally).  
5
ENB  
Pulled down internally for automatic PWM/LL operation. Connect to logic high for forced PWM. Drive with  
external clock signal to synchronize step-down converter to external clock in PWM mode.  
Enable pin for the linear regulator. When connected to logic low, the regulator is disabled and consumes  
less than 1μA of current. When connected to logic high, the LDO operates normally (pulled up internally).  
Feedback input for the LDO. This pin must be connected directly to an external resistor divider. Nominal  
voltage is 1.24V.  
6
7
8
MODE  
ENA  
FBA  
9
10  
11  
OUTA  
INA  
INB  
Linear regulator output. Connect a 2.2μF capacitor from this pin to ground.  
Linear regulator input voltage. Connect a 1μF or greater capacitor from this pin to ground.  
Input voltage for the step-down converter.  
Output of the step-down converter. Connect the inductor to this pin. Internally, it is connected to the  
drain of both high- and low-side MOSFETs.  
12  
LX  
13  
14  
15  
16  
EP  
PGND  
BAT  
ADP  
Power ground.  
Battery charging and sensing. Connect to positive terminal of Lithium-ion/polymer battery.  
Input from USB port or AC wall adapter.  
Open drain status pin for charger.  
STAT  
Exposed paddle (bottom): connect to ground directly beneath the package.  
Pin Configuration  
TDFN34-16  
(Top View)  
1
2
3
4
5
6
7
8
16  
STAT  
ADP  
BAT  
PGND  
LX  
INB  
INA  
EN_BAT  
ISET  
15  
14  
13  
12  
11  
10  
9
AGND  
FBB  
ENB  
MODE  
ENA  
FBA  
OUTA  
w w w . a n a l o g i c t e c h . c o m  
2
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VINA, VINB  
VADP  
VLX  
Input Voltage to GND  
Adapter Voltage to GND  
LX to GND  
FB to GND  
ENA, ENB, EN_BAT to GND  
BAT, ISET, STAT  
6.0  
-0.3 to 7.5  
V
V
V
V
V
V
°C  
°C  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to 6.0  
-0.3 to VADP + 0.3  
-40 to 150  
VFB  
VEN  
VX  
TJ  
Operating Junction Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec)  
TLEAD  
300  
Thermal Information  
Symbol  
Description  
Value  
Units  
PD  
θJA  
Maximum Power Dissipation  
Thermal Resistance2  
2.0  
50  
W
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions  
specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Mounted on an FR4 board.  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
3
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Electrical Characteristics1  
VINB = 3.6V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min  
Typ Max  
Units  
Step-Down Converter  
VIN  
Input Voltage  
2.7  
7.5  
2.6  
V
V
mV  
%
VINB Rising  
Hysteresis  
IOUTB = 0 to 300mA, VINB = 2.7V to 5.5V  
VUVLO  
UVLO Threshold  
250  
VOUT  
VOUT  
IQ  
ISHDN  
ILIM  
RDS(ON)H  
RDS(ON)L  
ILXLEAK  
Output Voltage Tolerance2  
Output Voltage Range  
Quiescent Current  
-3.0  
0.6  
3.0  
VINB  
90  
1.0  
V
No Load  
VENB = GND  
45  
μA  
μA  
mA  
Ω
Ω
μA  
%
Shutdown Current  
P-Channel Current Limit  
High-Side Switch On Resistance  
Low-Side Switch On Resistance  
LX Leakage Current  
300  
0.3  
0.5  
VINB = 5.5V, VLX = 0 to VINB  
IOUTB = 0mA to 300mA  
VINB = 2.7V to 5.5V  
VINB = 3.6V  
1.0  
ΔVOUT/ΔVOUT Load Regulation  
ΔVLinereg/ΔVIN Line Regulation  
0.4  
0.1  
0.6  
%/V  
V
VFB  
IFB  
FOSC  
TS  
Feedback Threshold Voltage Accuracy  
FB Leakage Current  
Oscillator Frequency  
Startup Time  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
Enable Threshold Low  
Enable Threshold High  
Input Low Current  
0.591  
0.609  
0.2  
VOUTB = 1.0V  
μA  
MHz  
μs  
°C  
°C  
V
1.5  
120  
140  
15  
From Enable to Output Regulation  
TSD  
THYS  
VEN(L)  
VEN(H)  
IEN  
0.6  
1.0  
1.4  
-1.0  
V
μA  
VINB = VENB = 5.5V  
Linear Regulator  
TA = 25°C  
TA = -40°C to +85°C  
-1.5  
-2.5  
1.5  
2.5  
IOUTA = 1mA  
to 300mA  
VOUT  
Output Voltage Tolerance  
%
VOUT  
VFB  
VIN  
VDO  
ΔVOUT  
Output Voltage Range  
Feedback Voltage Accuracy  
Input Voltage  
1.2  
1.22  
VOUT + VDO  
3.3  
1.26  
5.5  
V
V
V
1.24  
400  
3
Dropout Voltage4  
IOUTA = 300mA; VOUT = 3.3V  
VINA = VOUTA + 1 to 5.0V  
650  
mV  
/
Line Regulation  
0.09  
%/V  
VOUT*ΔVIN  
IOUT  
ISC  
IQ  
ISHDN  
Output Current  
VOUTA > 2.0V  
VOUTA < 0.4V  
VINA = 5V; VENA = VIN  
VINA = 5V; VENA = 0V  
1kHz  
300  
mA  
mA  
μA  
Short-Circuit Current  
Quiescent Current  
Shutdown Current  
400  
85  
150  
1.0  
μA  
70  
50  
30  
140  
15  
95  
8
PSRR  
Power Supply Rejection Ratio  
IOUTA =10mA  
10kHz  
1MHz  
dB  
TSD  
THYS  
eN  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
Output Noise  
Output Voltage Temperature Coefcient  
Enable Threshold Low  
°C  
°C  
μVRMS/Hz  
ppm/°C  
eNBW = 100Hz to 100kHz  
TC  
VEN(L)  
VEN(H)  
IEN  
0.6  
1.0  
V
V
μA  
Enable Threshold High  
Enable Input Current  
1.4  
VINA = VENA = 5.5V  
1. The AAT2552 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
2. Output voltage tolerance is independent of feedback resistor network accuracy.  
3. VDO is defined as VIN - VOUT when VOUT is 98% of nominal.  
4. For VOUT <2.3V, VDO = 2.5V - VOUT  
.
w w w . a n a l o g i c t e c h . c o m  
4
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Electrical Characteristics1  
VADP = 5V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Battery Charger Operation  
VADP  
Adapter Voltage Range  
Under-Voltage Lockout (UVLO)  
UVLO Hysteresis  
Operating Current  
Shutdown Current  
4.0  
3
6.5  
4
V
V
mV  
mA  
μA  
μA  
Rising Edge  
VUVLO  
150  
0.5  
0.3  
0.4  
IOP  
ISHUTDOWN  
ILEAKAGE  
Charge Current = 200mA  
VBAT = 4.25V, VEN_BAT = GND  
VBAT = 4V, ADP Pin Open  
1
1
2
Reverse Leakage Current from BAT Pin  
Voltage Regulation  
VBAT_EOC End of Charge Accuracy  
VMIN  
4.158  
2.8  
4.20  
3.0  
-0.1  
4.242  
3.2  
V
V
V
Preconditioning Voltage Threshold  
Battery Recharge Voltage Threshold  
VRCH  
Measured from VBAT_EOC  
ICHARGE = 200mA  
Current Regulation  
ICH  
ΔICH/ICH  
VSET  
Charge Current Programmable Range  
Charge Current Regulation Tolerance  
ISET Pin Voltage  
30  
-10  
500  
10  
mA  
%
V
2
KI_A  
Current Set Factor: ICH/ISET  
800  
Charging Devices  
Ω
RDS(ON)  
Charging Transistor On Resistance  
VADP = 5.5V  
0.5  
0.8  
Logic Control/Protection  
VEN(H)  
VEN(L)  
VSTAT  
ISTAT  
VOVP  
Enable Threshold High  
Enable Threshold Low  
Output Low Voltage  
STAT Pin Current Sink Capability  
Over-Voltage Protection Threshold  
Pre-Charge Current  
1.6  
V
V
V
mA  
V
%
%
0.4  
0.4  
8
STAT Pin Sinks 4mA  
ICH = 100mA  
4.4  
10  
10  
ITK/ICHG  
ITERM/ICHG  
Charge Termination Threshold Current  
1. The AAT2552 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
5
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Typical Characteristics–Battery Charger  
Constant Charging Current vs. Set Resistors  
(VIN = 5.0V)  
Operating Supply Current vs. RSET  
(VIN = 5.0V)  
10000  
1000  
100  
1000  
100  
10  
Constant Current Mode  
Preconditioning Mode  
10  
1
10  
100  
1000  
1
10  
100  
RSET (kΩ)  
RSET (kΩ)  
Operating Current vs. Temperature  
(VIN = 5.0V; RSET = 8.06kΩ)  
Sleep Mode Current vs. Input Voltage  
(RSET = 8.06kΩ)  
540  
520  
500  
480  
460  
440  
800  
700  
600  
500  
400  
300  
200  
100  
0
25°C  
85°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
Temperature (°C)  
Input Voltage (V)  
Battery Charging Current vs. Battery Voltage  
Constant Charging Current vs. Temperature  
(RSET = 8.06kΩ)  
600  
215  
210  
205  
200  
195  
190  
185  
RSET = 3.24K  
500  
400  
RSET = 5.62K  
300  
RSET = 8.06K  
200  
RSET = 16.2K  
RSET = 31.6K  
100  
0
-40  
-15  
10  
35  
60  
85  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
VBAT (V)  
Temperature (°C)  
w w w . a n a l o g i c t e c h . c o m  
6
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Typical Characteristics–Battery Charger  
End of Charge Voltage Regulation  
vs. Temperature  
End of Charge Battery Voltage  
vs. Input Voltage  
(VIN = 5V; RSET = 8.06kΩ)  
4.206  
4.204  
4.202  
4.200  
4.198  
4.196  
4.194  
4.215  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
RSET = 8.06kΩ  
RSET = 31.6kΩ  
-40  
-15  
10  
35  
60  
85  
4.5  
5
5.5  
6
6.5  
Temperature (°C)  
VIN (V)  
Recharging Threshold Voltage vs. Temperature  
(RSET = 8.06kΩ)  
Constant Charging Current vs. Input Voltage  
(VIN = 5.62V)  
4.16  
4.14  
4.12  
4.10  
4.08  
4.06  
4.04  
310  
VIN = 3.3V  
305  
300  
295  
290  
285  
VIN = 4V  
VIN = 3.6V  
-40  
-15  
10  
35  
60  
85  
4
4.5  
5
5.5  
6
6.5  
VIN (V)  
Temperature (°C)  
Preconditioning Charge Current vs. Temperature  
(RSET = 8.06kΩ)  
Preconditioning Voltage Threshold vs. Temperature  
(RSET = 8.06kΩ)  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
20.8  
20.4  
20.0  
19.6  
19.2  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
7
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Typical Characteristics–Battery Charger  
Enable Threshold High vs. Input Voltage  
(RSET = 8.06kΩ)  
Enable Threshold Low vs. Input Voltage  
(RSET = 8.06kΩ)  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1.2  
-40°C  
1.1  
-40°C  
1.0  
0.9  
85°C  
85°C  
0.8  
25°C  
25°C  
0.7  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
V
IN (V)  
VIN (V)  
w w w . a n a l o g i c t e c h . c o m  
8
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Typical Characteristics–Step-Down Converter  
Efficiency vs. Load  
(VOUT = 3.3V; L = 5.6µH)  
DC Regulation  
(VOUT = 3.3V; L = 5.6µH)  
100  
90  
80  
70  
60  
50  
40  
1.0  
0.5  
VIN = 3.6V  
VIN = 5.0V  
VIN = 5.0V  
VIN = 4.2V  
0.0  
VIN = 4.2V  
-0.5  
-1.0  
VIN = 3.6V  
0.1  
1
10  
100  
1000  
1000  
1000  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 1.8V; L = 3.3µH)  
DC Regulation  
(VOUT = 1.2V; L = 1.5μH)  
100  
90  
80  
70  
60  
50  
40  
1.0  
0.5  
VIN = 3.6V  
VIN = 2.7V  
VIN = 3.6V  
VIN = 5.0V  
VIN = 5.0V  
VIN = 4.2V  
0.0  
VIN = 2.7V  
VIN = 4.2V  
-0.5  
-1.0  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Efficiency vs. Load  
(VOUT = 1.2V; L = 1.5µH)  
DC Regulation  
(VOUT = 1.2V; L = 1.5μH)  
100  
90  
80  
70  
60  
50  
40  
1.0  
0.5  
VIN = 3.6V  
VIN = 3.6V  
VIN = 5.0V  
VIN = 2.7V  
0.0  
VIN = 5.0V  
VIN = 2.7V  
VIN = 4.2V  
VIN = 4.2V  
-0.5  
-1.0  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
Output Current (mA)  
Output Current (mA)  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
9
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Typical Characteristics–Step-Down Converter  
Line Regulation  
(VOUT = 1.8V)  
Soft Start  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 150mA)  
4
3
2
1
0
0.2  
VEN  
IOUT = 10mA  
0.1  
0
VOUT  
IOUT = 50mA  
-0.1  
-0.2  
-0.3  
-0.4  
IL  
0.3  
0.2  
0.1  
0.0  
IOUT = 150mA  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Time (100µs/div)  
Output Voltage Accuracy vs. Temperature  
(VIN = 3.6V; VO = 1.8V; IOUT = 150mA)  
No Load Quiescent Current vs. Input Voltage  
2.0  
70  
1.5  
1.0  
85°C  
25°C  
60  
50  
40  
30  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-40°C  
-40  
-15  
10  
35  
60  
85  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Temperature (°C)  
N-Channel RDS(ON) vs. Input Voltage  
P-Channel RDS(ON) vs. Input Voltage  
600  
500  
400  
300  
200  
100  
1000  
900  
800  
700  
600  
500  
400  
300  
85°C  
85°C  
100°C  
120°C  
100°C  
120°C  
25°C  
25°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VIN (V)  
VIN (V)  
w w w . a n a l o g i c t e c h . c o m  
10  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Typical Characteristics–Step-Down Converter  
Load Transient Response  
(10mA to 300mA; VIN = 3.6V; VOUT = 1.8V; COUT = 4.7µF; C = 100pF)  
Line Transient Response  
(VOUT = 1.8V @ 150mA, CFF = 100pF)  
2.0  
1.9  
1.8  
1.7  
1.6  
1.90  
1.85  
1.80  
1.75  
VOUT  
IOUT  
300mA  
10mA  
4.6  
4.1  
3.6  
3.1  
0.2  
0.0  
-0.2  
ILX  
Time (20µs/div)  
Time (25µs/div)  
Output Voltage Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 300mA)  
Output Voltage Ripple  
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA)  
40  
20  
0
1.81  
1.80  
1.79  
-20  
0.4  
0.05  
0.3  
0.2  
0.1  
0.00  
-0.05  
-0.10  
Time (0.2µs/div)  
Time (5µs/div)  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
11  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Typical Characteristics–LDO Regulator  
Quiescent Current vs. Temperature  
(VIN = 5V)  
Dropout Voltage vs. Temperature  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
120  
110  
100  
90  
IL = 300mA  
IL = 200mA  
IL = 100mA  
IL = 50mA  
80  
70  
60  
50  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
LDO Dropout Characteristics  
(EN = GND; ENLDO = VIN)  
Dropout Voltage vs. Output Current  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
3.20  
85°C  
25°C  
3.00  
2.80  
2.60  
2.40  
2.20  
2.00  
IOUT = 0mA  
IOUT = 300mA  
IOUT = 150mA  
IOUT = 100mA  
IOUT = 50mA  
-40°C  
IOUT = 10mA  
2.80  
0
50  
100  
150  
200  
250  
300  
2.70  
2.90  
3.00  
3.10  
3.20  
3.30  
Output Current (mA)  
Input Voltage (V)  
Output Voltage vs. Temperature  
(VIN = 3.6V; VO = 1.8V; IOUT = 150mA)  
Enable Threshold Voltage vs. Input Voltage  
3.301  
3.300  
3.299  
3.298  
3.297  
3.296  
0.96  
0.94  
VEN(H)  
0.92  
0.9  
0.88  
0.86  
VEN(L)  
0.84  
0.82  
-40  
-15  
10  
35  
60  
85  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Temperature (°C)  
w w w . a n a l o g i c t e c h . c o m  
12  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Typical Characteristics–LDO Regulator  
Line Transient Response  
(IOUT = 300mA)  
Load Transient Response  
(1mA to 300mA; VIN = 5.0V; VOUT = 3.3V)  
3.40  
3.6  
3.4  
3.2  
3.35  
VOUT  
VOUT  
3.30  
5.0  
4.5  
VIN  
0.4  
0.2  
0.0  
-0.2  
4.0  
IL  
Time (100µs/div)  
Time (100µs/div)  
Turn-Off Response Time  
(VIN = 4.2V; IOUT = 300mA)  
Turn-On Time From Enable  
(VIN = 4.2V; IOUT = 300mA)  
VEN = 2V/div  
VEN = 2V/div  
VOUT = 1V/div  
VOUT = 1V/div  
Time (50µs/div)  
Time (100µs/div)  
LDO Output Noise  
(COUT = 4.7µF; IOUT = 10mA; RLOAD = 330; 98.33µVrms)  
10000  
1000  
100  
10  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
13  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Functional Block Diagram  
Reverse Blocking  
ADP  
BAT  
Current Compare  
CV/Pre-Charge  
Charge  
Control  
Constant Current  
ISET  
UVLO  
STAT  
FBB  
INB  
Charge Status  
EN_BAT  
Err.  
Amp  
.
DH  
LX  
Voltage  
Reference  
Logic  
DL  
ENB  
Input  
MODE  
PGND  
OUTA  
Over-Temperature  
Protection  
From  
Charger Section  
INA  
Active Feedback  
Control  
Over-Current  
Protection  
Err.+  
FBA  
Amp  
Voltage  
Reference  
Fast Start  
Control  
-
ENA  
AGND  
adapter/USB input voltage range from 4V to 7.5V. The  
adapter/USB charging current level can be programmed  
up to 500mA for rapid charging applications. A status  
monitor output pin is provided to indicate the battery  
charge state by directly driving one external LED. Internal  
device temperature and charging state are fully monitored  
for fault conditions. In the event of an over-voltage or  
over-temperature failure, the device will automatically  
shut down, protecting the charging device, control system,  
and the battery under charge. Other features include an  
integrated reverse blocking diode and sense resistor.  
Functional Description  
The AAT2552 is a high performance power man-agement  
IC comprised of a lithium-ion/polymer battery charger, a  
step-down converter, and a linear regulator. The linear  
regulator is designed for high-speed turn-on and fast  
transient response, and good power supply ripple rejec-  
tion. The step-down converter operates in both fixed and  
variable frequency modes for high efficiency performance.  
The switching frequency is 1.5MHz, minimizing the size of  
the inductor. In light load conditions, the device enters  
power-saving mode; the switching frequency is reduced  
and the converter consumes 45μA of current, making it  
ideal for battery-operated applications.  
Switch-Mode Step-Down Converter  
The step-down converter operates with an input voltage  
of 2.7V to 5.5V. The switching frequency is 1.5MHz,  
minimizing the size of the inductor. Under light load  
conditions, the device enters power-saving mode; the  
switching frequency is reduced, and the converter con-  
Battery Charger  
The battery charger is designed for single-cell lithium-ion/  
polymer batteries using a constant current and constant  
voltage algorithm. The battery charger operates from the  
w w w . a n a l o g i c t e c h . c o m  
14  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
sumes 45μA of current, making it ideal for battery-  
operated applications. The output voltage is program-  
mable from VIN to as low as 0.6V. Power devices are  
sized for 300mA current capability while maintaining  
over 96% efficiency at full load. Light load efficiency is  
maintained at greater than 80% down to 1mA of load  
current. A high-DC gain error amplifier with internal  
compensation controls the output. It provides excellent  
transient response and load/line regulation.  
appropriate mode for the condition of the battery. If the  
input voltage of the step-down converter drops below  
UVLO, the internal circuit will shut down.  
Protection Circuitry  
Over-Voltage Protection  
An over-voltage protection event is defined as a condition  
where the voltage on the BAT pin exceeds the over-volt-  
age protection threshold (VOVP). If this over-voltage condi-  
tion occurs, the charger control circuitry will shut down  
the device. The charger will resume normal charging  
operation after the over-voltage condition is removed.  
The AAT2552 synchronous step-down converter can be  
synchronized to an external clock signal applied to the  
MODE pin.  
Linear Regulator  
Current Limit / Over-Temperature Protection  
The advanced circuit design of the linear regulator has  
been specifically optimized for very fast start-up. This  
proprietary CMOS LDO has also been tailored for supe-  
rior transient response characteristics. These traits are  
particularly important for applications that require fast  
power supply timing.  
For overload conditions, the peak input current is limited  
at the step-down converter. As load impedance decreas-  
es and the output voltage falls closer to zero, more  
power is dissipated internally, which causes the internal  
die temperature to rise. In this case, the thermal protec-  
tion circuit completely disables switching, which protects  
the device from damage.  
The high-speed turn-on capability is enabled through  
implementation of a fast-start control circuit which  
accelerates the power-up behavior of fundamental con-  
trol and feedback circuits within the LDO regulator. The  
LDO regulator output has been specifically optimized to  
function with low-cost, low-ESR ceramic capacitors;  
however, the design will allow for operation over a wide  
range of capacitor types.  
The battery charger has a thermal protection circuit which  
will shut down charging functions when the internal die  
temperature exceeds the preset thermal limit threshold.  
Once the internal die temperature falls below the thermal  
limit, normal charging operation will resume.  
Control Loop  
The regulator comes with complete short-circuit and ther-  
mal protection. The combination of these two internal  
protection circuits gives a comprehensive safety system  
to guard against extreme adverse operating conditions.  
The AAT2552 contains a compact, current mode step-  
downDC/DCcontroller.ThecurrentthroughtheP-channel  
MOSFET (high side) is sensed for current loop control, as  
well as short-circuit and overload protection. A fixed  
slope compensation signal is added to the sensed cur-  
rent to maintain stability for duty cycles greater than  
50%. The peak current mode loop appears as a voltage-  
programmed current source in parallel with the output  
capacitor. The output of the voltage error amplifier pro-  
grams the current mode loop for the necessary peak  
switch current to force a constant output voltage for all  
load and line conditions. Internal loop compensation  
terminates the transconductance voltage error amplifier  
output. The error amplifier reference is fixed at 0.6V.  
The regulator features an enable/disable function. This  
pin (ENA) is active high and is compatible with CMOS  
logic. The LDO regulator will go into the disable shut-  
down mode when the voltage on the ENA pin falls below  
0.6V. If the enable function is not needed in a specific  
application, it may be tied to INA to keep the LDO regu-  
lator in a continuously on state.  
Under-Voltage Lockout  
The AAT2552 has internal circuits for UVLO and power  
on reset features. If the ADP supply voltage drops below  
the UVLO threshold, the battery charger will suspend  
charging and shut down. When power is reapplied to the  
ADP pin or the UVLO condition recovers, the system  
charge control will automatically resume charging in the  
Battery Charging Operation  
Battery charging commences only after checking several  
conditions in order to maintain a safe charging environ-  
ment. The input supply (ADP) must be above the mini-  
mum operating voltage (UVLO) and the enable pin must  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
15  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
be high (internally pulled down). When the battery is  
connected to the BAT pin, the charger checks the condi-  
tion of the battery and determines which charging mode  
to apply. If the battery voltage is below VMIN, the charger  
begins battery pre-conditioning by charging at 10% of  
the programmed constant current; e.g., if the pro-  
grammed current is 150mA, then the pre-conditioning  
current (trickle charge) is 15mA. Pre-conditioning is  
purely a safety precaution for a deeply discharged cell  
and will also reduce the power dissipation in the internal  
series pass MOSFET when the input-output voltage dif-  
ferential is at its highest.  
voltage reaches the voltage regulation point, VBAT. When  
the battery voltage reaches VBAT, the battery charger  
begins constant voltage mode. The regulation voltage is  
factory programmed to a nominal 4.2V (±0.5%) and will  
continue charging until the charging current has reduced  
to 10% of the programmed current.  
After the charge cycle is complete, the pass device turns  
off and the device automatically goes into a power-sav-  
ing sleep mode. During this time, the series pass device  
will block current in both directions, preventing the bat-  
tery from discharging through the IC.  
The battery charger will remain in sleep mode, even if  
the charger source is disconnected, until one of the fol-  
lowing events occurs: the battery terminal voltage drops  
below the VRCH threshold; the charger EN pin is recycled;  
or the charging source is reconnected. In all cases, the  
charger will monitor all parameters and resume charging  
in the most appropriate mode.  
Pre-conditioning continues until the battery voltage  
reaches VMIN (see Figure 1). At this point, the charger  
begins constant-current charging. The current level for  
this mode is programmed using a single resistor from  
the ISET pin to ground. Programmed current can be set  
from a minimum 15mA up to a maximum of 500mA.  
Constant current charging will continue until the battery  
Preconditioning  
Trickle Charge  
Phase  
Constant Current  
Charge Phase  
Constant Voltage  
Charge Phase  
Charge Complete Voltage  
Regulated Current  
I = Max CC  
Constant Current Mode  
Voltage Threshold  
Trickle Charge and  
Termination Threshold  
I = CC / 10  
Figure 1: Current vs. Voltage Profile During Charging Phases.  
w w w . a n a l o g i c t e c h . c o m  
16  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Battery Charging System Operation Flow Chart  
Enable  
Power On Reset  
No  
Yes  
Power Input  
Voltage  
VADP > VUVLO  
Yes  
Fault Conditions  
Monitoring  
OV, OT  
Charge  
Control  
Shut Down  
Yes  
No  
Preconditioning  
Test  
Preconditioning  
(Trickle Charge)  
Yes  
V
MIN > VBAT  
No  
No  
Constant  
Current Charge  
Mode  
Recharge Test  
Current Phase Test  
BAT_EOC > VBAT  
Yes  
Yes  
V
RCH > VBAT  
V
No  
Constant  
Voltage Charge  
Mode  
Voltage Phase Test  
IBAT > ITERM  
Yes  
No  
Charge Completed  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
17  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
stant current levels from 30mA to 500mA may be set by  
selecting the appropriate resistor value from Table 1.  
Application Information  
Soft Start / Enable  
Normal ICHARGE (mA) Set Resistor Value R1 (kΩ)  
The EN_BAT pin is internally pulled down. When pulled  
to a logic high level, the battery charger is enabled.  
When left open or pulled to a logic low level, the battery  
charger is shut down and forced into the sleep state.  
Charging will be halted regardless of the battery voltage  
or charging state. When it is re-enabled, the charge  
control circuit will automatically reset and resume charg-  
ing functions with the appropriate charging mode based  
on the battery charge state and measured cell voltage  
from the BAT pin.  
500  
400  
300  
250  
200  
150  
100  
50  
40  
30  
20  
15  
3.24  
4.12  
5.36  
6.49  
8.06  
10.7  
16.2  
31.6  
38.3  
53.6  
78.7  
105  
Separate ENA and ENB inputs are provided to indepen-  
dently enable and disable the LDO and step-down con-  
verter, respectively. This allows sequencing of the LDO  
and step-down outputs during startup.  
Table 1: RSET Values.  
1000  
100  
10  
The LDO is enabled when the ENA pin is pulled high.  
The control and feedback circuits have been optimized  
for high-speed, monotonic turn-on characteristics.  
The step-down converter is enabled when the ENB pin is  
pulled high. Soft start increases the inductor current  
limit point in discrete steps when the input voltage or  
ENB input is applied. It limits the current surge seen at  
the input and eliminates output voltage overshoot.  
When pulled low, the ENB input forces the AAT2552 into  
a low-power, non-switching state. The step-down con-  
verter input current during shutdown is less than 1μA.  
1
1
10  
100  
1000  
RSET (kΩ)  
Figure 2: Constant Charging Current  
vs. Set Resistor Values.  
Adapter or USB Power Input  
Constant current charge levels up to 500mA may be  
programmed by the user when powered from a sufficient  
input power source. The battery charger will operate  
from the adapter input over a 4.0V to 7.5V range. The  
constant current fast charge current for the adapter  
input is set by the RSET resistor connected between ISET  
and ground. Refer to Table 1 for recommended RSET val-  
ues for a desired constant current charge level.  
Charge Status Output  
The AAT2552 provides battery charge status via a status  
pin. This pin is internally connected to an N-channel  
open drain MOSFET, which can be used to drive an exter-  
nal LED. The status pin can indicate several conditions,  
as shown in Table 2.  
Event Description  
Status  
Programming Charge Current  
No battery charging activity  
Battery charging via adapter or USB port  
Charging completed  
OFF  
ON  
OFF  
The fast charge constant current charge level is user  
programmed with a set resistor placed between the ISET  
pin and ground. The accuracy of the fast charge, as well  
as the preconditioning trickle charge current, is domi-  
nated by the tolerance of the set resistor used. For this  
reason, a 1% tolerance metal film resistor is recom-  
mended for the set resistor function. Fast charge con-  
Table 2: LED Status Indicator.  
The LED should be biased with as little current as neces-  
sary to create reasonable illumination; therefore, a bal-  
w w w . a n a l o g i c t e c h . c o m  
18  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
last resistor should be placed between the LED cathode  
and the STAT pin. LED current consumption will add to  
the overall thermal power budget for the device pack-  
age, hence it is good to keep the LED drive current to a  
minimum. 2mA should be sufficient to drive most low-  
cost green or red LEDs. It is not recommended to exceed  
8mA for driving an individual status LED.  
Figure 3 shows the relationship of maximum power dis-  
sipation and ambient temperature of the AAT2552.  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
The required ballast resistor values can be estimated  
using the following formulas:  
(VADP  
- VF(LED)  
ILED  
)
R6 =  
0
20  
40  
60  
80  
100  
TA (°°C)  
Example:  
Figure 3: Maximum Power Dissipation.  
(5.5V - 2.0V)  
2mA  
R6 =  
= 1.75kΩ  
Next, the power dissipation of the battery charger can be  
calculated by the following equation:  
Note: Red LED forward voltage (VF) is typically 2.0V @  
2mA.  
PD = [(VADP - VBAT) · ICH + (VADP · IOP)]  
Thermal Considerations  
Where:  
The AAT2552 is offered in a TDFN34-16 package which  
can provide up to 2W of power dissipation when it is  
properly bonded to a printed circuit board and has a  
maximum thermal resistance of 50°C/W. Many consider-  
ations should be taken into account when designing the  
printed circuit board layout, as well as the placement of  
the charger IC package in proximity to other heat gen-  
erating devices in a given application design. The ambi-  
ent temperature around the IC will also have an effect  
on the thermal limits of a battery charging application.  
The maximum limits that can be expected for a given  
ambient condition can be estimated by the following dis-  
cussion.  
PD = Total Power Dissipation by the Device  
VADP = ADP/USB Voltage  
VBAT = Battery Voltage as Seen at the BAT Pin  
ICH = Constant Charge Current Programmed for the  
Application  
IOP = Quiescent Current Consumed by the Charger IC  
for Normal Operation [0.5mA]  
By substitution, we can derive the maximum charge cur-  
rent before reaching the thermal limit condition (thermal  
cycling). The maximum charge current is the key factor  
when designing battery charger applications.  
(PD(MAX)  
-
VIN  
VIN - VBAT  
· IOP)  
First, the maximum power dissipation for a given situa-  
tion should be calculated:  
ICH(MAX)  
=
(TJ(MAX) TA)  
θJA  
VIN - VBAT  
-
-
VIN · IOP  
(TJ(MAX) - TA)  
θJA  
PD(MAX)  
=
ICH(MAX)  
=
In general, the worst condition is the greatest voltage  
drop across the IC, when battery voltage is charged up  
to the preconditioning voltage threshold. Figure 4 shows  
the maximum charge current in different ambient tem-  
peratures.  
Where:  
PD(MAX) = Maximum Power Dissipation (W)  
θJA = Package Thermal Resistance (°C/W)  
TJ(MAX) = Maximum Device Junction Temperature (°C)  
[135°C]  
TA  
= Ambient Temperature (°C)  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
19  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Capacitor Selection  
500  
450  
400  
350  
300  
250  
200  
150  
TA = 25°C  
Linear Regulator Input Capacitor (C6)  
An input capacitor greater than 1μF will offer superior  
input line transient response and maximize power sup-  
ply ripple rejection. Ceramic, tantalum, or aluminum  
electrolytic capacitors may be selected for CIN. There is  
no specific capacitor ESR requirement for CIN. However,  
for 300mA LDO regulator output operation, ceramic  
capacitors are recommended for CIN due to their inher-  
ent capability over tantalum capacitors to withstand  
input current surges from low impedance sources such  
as batteries in portable devices.  
TA = 60°C  
TA = 45°C  
TA = 85°C  
100  
50  
0
4.25 4.5 4.75  
5
5.25 5.5 5.75  
6
6.25 6.5 6.75  
7
VIN (V)  
Figure 4: Maximum Charging Current Before  
Thermal Cycling Becomes Active.  
Battery Charger Input Capacitor (C1)  
In general, it is good design practice to place a decou-  
pling capacitor between the ADP pin and GND. An input  
capacitor in the range of 1μF to 22μF is recommended.  
If the source supply is unregulated, it may be necessary  
to increase the capacitance to keep the input voltage  
above the under-voltage lockout threshold during device  
enable and when battery charging is initiated. If the  
adapter input is to be used in a system with an external  
power supply source, such as a typical AC-to-DC wall  
adapter, then a CIN capacitor in the range of 10μF should  
be used. A larger input capacitor in this application will  
minimize switching or power transient effects when the  
power supply is “hot plugged” in.  
There are three types of losses associated with the step-  
down converter: switching losses, conduction losses, and  
quiescent current losses. Conduction losses are associ-  
ated with the RDS(ON) characteristics of the power output  
switching devices. Switching losses are dominated by the  
gate charge of the power output switching devices. At full  
load, assuming continuous conduction mode (CCM), a  
simplified form of the losses is given by:  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN - VO])  
PTOTAL  
=
VIN  
Step-Down Converter Input Capacitor (C6)  
+ (tsw · FS · IO + IQ) · VIN  
Select a 4.7μF to 10μF X7R or X5R ceramic capacitor for  
the input. To estimate the required input capacitor size,  
determine the acceptable input ripple level (VPP) and solve  
for CIN. The calculated value varies with input voltage and  
is a maximum when VIN is double the output voltage.  
IQ is the step-down converter quiescent current. The  
term tsw is used to estimate the full load step-down con-  
verter switching losses.  
For the condition where the step-down converter is in  
dropout at 100% duty cycle, the total device dissipation  
reduces to:  
VO  
VIN  
VO ⎞  
VIN ⎠  
· 1 -  
CIN =  
VPP  
IO  
PTOTAL = IO2 · RDSON(H) + IQ · VIN  
- ESR ·FS  
VO  
VIN  
VO ⎞  
1
Since RDS(ON), quiescent current, and switching losses all  
vary with input voltage, the total losses should be inves-  
tigated over the complete input voltage range.  
· 1 -  
=
for VIN = 2 · VO  
VIN ⎠  
4
1
CIN(MIN)  
=
Given the total losses, the maximum junction tempera-  
ture can be derived from the θJA for the TDFN34-16  
package which is 50°C/W.  
VPP  
IO  
- ESR · 4 · FS  
Always examine the ceramic capacitor DC voltage coeffi-  
cient characteristics when selecting the proper value. For  
example, the capacitance of a 10μF, 6.3V, X5R ceramic  
capacitor with 5.0V DC applied is actually about 6μF.  
TJ(MAX) = PTOTAL · ΘJA + TAMB  
w w w . a n a l o g i c t e c h . c o m  
20  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
The maximum input capacitor RMS current is:  
the converter performance, a high ESR tantalum or alu-  
minum electrolytic capacitor should be placed in parallel  
with the low ESR, ESL bypass ceramic capacitor. This  
dampens the high Q network and stabilizes the system.  
The linear regulator and the step-down convertor share  
the same input capacitor on the evaluation board.  
VO  
VIN  
VO ⎞  
VIN ⎠  
1
2
· 1 -  
=
D · (1 - D) = 0.52 =  
The input capacitor RMS ripple current varies with the  
input and output voltage and will always be less than or  
equal to half of the total DC load current.  
Linear Regulator Output Capacitor (C5)  
For proper load voltage regulation and operational stabil-  
ity, a capacitor is required between OUT and GND. The  
COUT capacitor connection to the LDO regulator ground  
pin should be made as directly as practically possible for  
maximum device performance. Since the regulator has  
been designed to function with very low ESR capacitors,  
ceramic capacitors in the 1.0μF to 10μF range are rec-  
ommended for best performance. Applications utilizing  
the exceptionally low output noise and optimum power  
supply ripple rejection should use 2.2μF or greater for  
VO  
VIN  
VO ⎞  
VIN ⎠  
IRMS = IO ·  
· 1 -  
for VIN = 2 · VO  
IO  
IRMS(MAX)  
=
2
COUT. In low output current applications, where output  
load is less than 10mA, the minimum value for COUT can  
be as low as 0.47μF.  
The term appears in both the input voltage ripple and  
input capacitor RMS current equations and is a maxi-  
mum when VO is twice VIN. This is why the input voltage  
ripple and the input capacitor RMS current ripple are a  
maximum at 50% duty cycle.  
Battery Charger Output Capacitor (C2)  
The battery charger of the AAT2552 only requires a 1μF  
ceramic capacitor on the BAT pin to maintain circuit stabil-  
ity. This value should be increased to 10μF or more if the  
battery connection is made any distance from the charger  
output. If the AAT2552 is to be used in applications where  
the battery can be removed from the charger, such as  
with desktop charging cradles, an output capacitor great-  
er than 10μF may be required to prevent the device from  
cycling on and off when no battery is present.  
The input capacitor provides a low impedance loop for the  
edges of pulsed current drawn by the step-down con-  
verter. Low ESR/ESL X7R and X5R ceramic capacitors are  
ideal for this function. To minimize stray inductance, the  
capacitor should be placed as closely as possible to the IC.  
This keeps the high frequency content of the input current  
localized, minimizing EMI and input voltage ripple.  
The proper placement of the input capacitor (C6) can be  
seen in the evaluation board layout in Figure 7.  
Step-Down Converter Output Capacitor (C3)  
The output capacitor limits the output ripple and pro-  
vides holdup during large load transitions. A 4.7μF to  
10μF X5R or X7R ceramic capacitor typically provides  
sufficient bulk capacitance to stabilize the output during  
large load transitions and has the ESR and ESL charac-  
teristics necessary for low output ripple. For enhanced  
transient response and low temperature operation appli-  
cations, a 10μF (X5R, X7R) ceramic capacitor is recom-  
mended to stabilize extreme pulsed load conditions.  
A laboratory test set-up typically consists of two long  
wires running from the bench power supply to the evalu-  
ation board input voltage pins. The inductance of these  
wires, along with the low-ESR ceramic input capacitor,  
can create a high Q network that may affect converter  
performance. This problem often becomes apparent in  
the form of excessive ringing in the output voltage dur-  
ing load transients. Errors in the loop phase and gain  
measurements can also result.  
The output voltage droop due to a load transient is dom-  
inated by the capacitance of the ceramic output capacitor.  
During a step increase in load current, the ceramic output  
capacitor alone supplies the load current until the loop  
responds. Within two or three switching cycles, the loop  
responds and the inductor current increases to match the  
load current demand. The relationship of the output volt-  
Since the inductance of a short PCB trace feeding the  
input voltage is significantly lower than the power leads  
from the bench power supply, most applications do not  
exhibit this problem.  
In applications where the input power source lead induc-  
tance cannot be reduced to a level that does not affect  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
21  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
age droop during the three switching cycles to the output  
capacitance can be estimated by:  
peak current rating, which is determined by the satura-  
tion characteristics. The inductor should not show any  
appreciable saturation under normal load conditions.  
Some inductors may meet the peak and average current  
ratings yet result in excessive losses due to a high DCR.  
Always consider the losses associated with the DCR and  
its effect on the total converter efficiency when selecting  
an inductor.  
3 · ΔILOAD  
=
COUT  
V
DROOP · FS  
Once the average inductor current increases to the DC  
load level, the output voltage recovers. The above equa-  
tion establishes a limit on the minimum value for the  
output capacitor with respect to load transients.  
The 3.0μH CDRH2D09 series inductor selected from  
Sumida has a 150mΩ DCR and a 470mA DC current rat-  
ing. At full load, the inductor DC loss is 9.375mW which  
gives a 2.08% loss in efficiency for a 250mA, 1.8V out-  
put.  
The internal voltage loop compensation also limits the  
minimum output capacitor value to 4.7μF. This is due to  
its effect on the loop crossover frequency (bandwidth),  
phase margin, and gain margin. Increased output capac-  
itance will reduce the crossover frequency with greater  
phase margin.  
Adjustable Output Voltage  
for the Step-down Converter  
The maximum output capacitor RMS ripple current is  
given by:  
Resistors R2 and R3 of Figure 5 program the output of  
the step down converter and regulate at a voltage high-  
er than 0.6V. To limit the bias current required for the  
external feedback resistor string while maintaining good  
noise immunity, the suggested value for R3 is 59kΩ.  
Decreased resistor values are necessary to maintain  
noise immunity on the FBB pin, resulting in increased  
quiescent current. Table 3 summarizes the resistor val-  
ues for various output voltages.  
1
VOUT · (VIN(MAX) - VOUT  
)
IRMS(MAX)  
=
·
L · FS · VIN(MAX)  
2 · 3  
Dissipation due to the RMS current in the ceramic output  
capacitor ESR is typically minimal, resulting in less than  
a few degrees rise in hot-spot temperature.  
Inductor Selection  
V
V
3.3V  
0.6V  
R2 =  
OUT -1 · R3 =  
- 1 · 59kΩ = 267kΩ  
The step-down converter uses peak current mode con-  
trol with slope compensation to maintain stability for  
duty cycles greater than 50%. The output inductor value  
must be selected so the inductor current down slope  
meets the internal slope compensation requirements.  
The internal slope compensation for the AAT2552 is  
0.45A/μsec. This equates to a slope compensation that  
is 75% of the inductor current down slope for a 1.8V  
output and 3.0μH inductor.  
REF  
With enhanced transient response for extreme pulsed  
load application, an external feed-forward capacitor (C8  
in Figure 5) can be added.  
R3 = 59kΩ  
R2 (kΩ)  
R3 = 221kΩ  
R2 (kΩ)  
VOUT (V)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
75  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
1000  
0.75 VO 0.75 1.8V  
= 0.45  
A
µsec  
m =  
=
L
3.0µH  
0.75 VO  
0.75  
VO  
A
µsec  
A
L =  
=
1.67  
VO  
m
0.45A  
µsec  
For most designs, the step-down converter operates with  
inductor values from 1μH to 4.7μH. Table 6 displays induc-  
tor values for the AAT2552 for various output voltages.  
Manufacturer’s specifications list both the inductor DC  
current rating, which is a thermal limitation, and the  
Table 3: Adjustable Resistor Values For  
Step-Down Converter.  
w w w . a n a l o g i c t e c h . c o m  
22  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Adjustable Output Voltage for the LDO  
Printed Circuit Board  
Layout Considerations  
The output voltage for the LDO can be programmed by  
an external resistor divider network.  
For the best results, it is recommended to physically  
place the battery pack as close as possible to the  
AAT2552 BAT pin. To minimize voltage drops on the PCB,  
keep the high current carrying traces adequately wide.  
Refer to the AAT2552 evaluation board for a good layout  
example (see Figures 6 and 7). The following guidelines  
should be used to help ensure a proper layout.  
As shown below, the selection of R4 and R5 is a straight-  
forward matter. R5 is chosen by considering the tradeoff  
between the feedback network bias current and resistor  
value. Higher resistor values allow stray capacitance to  
become a larger factor in circuit performance whereas  
lower resistor values increase bias current and decrease  
efficiency. To select appropriate resistor values, first  
choose R5 such that the feedback network bias current  
is reasonable. Then, according to the desired VOUT, calcu-  
late R4 according to the equation below. An example  
calculation follows.  
1. The input capacitors (C1, C6) should connect as  
closely as possible to ADP, INA, and INB. It is pos-  
sible to use two input capacitors for INA and INB.  
2. C4 and L1 should be connected as closely as possi-  
ble. The connection of L1 to the LX pin should be as  
short as possible. Do not make the node small by  
using narrow trace. The trace should be kept wide,  
direct, and short.  
VOUT  
VREF  
R4 =  
- 1 · R5  
3. The feedback pin should be separate from any power  
trace and connect as closely as possible to the load  
point. Sensing along a high-current load trace will  
degrade DC load regulation. Feedback resistors  
should be placed as closely as possible to the FBB  
pin to minimize the length of the high impedance  
feedback trace. If possible, they should also be  
placed away from the LX (switching node) and induc-  
tor to improve noise immunity.  
4. The resistance of the trace from PGND should be  
kept to a minimum. This will help to minimize any  
error in DC regulation due to differences in the  
potential of the internal signal ground and the power  
ground.  
An R5 value of 59kΩ is chosen, resulting in a small feed-  
back network bias current of 1.24V/59kΩ ≈ 21μA. The  
desired output voltage is 1.8V. From this information, R4  
is calculated from the equation below. The result is R4 =  
26.64kΩ. Since 26.64kΩ is not a standard 1%-value,  
26.7kΩ is selected. From this example calculation, for  
VOUT = 1.8V, use R5 = 59kΩ and R4 = 26.7kΩ. Example  
output voltages and corresponding resistor values are  
provided in Table 4.  
R4 Standard 1% Values  
VOUT (V)  
(R5 = 59kΩ)  
R4 (kΩ)  
5. A high density, small footprint layout can be achieved  
using an inexpensive, miniature, non-shielded, high  
DCR inductor.  
3.3  
2.8  
2.5  
2.0  
1.8  
1.5  
97.6  
75.0  
60.4  
36.5  
26.7  
12.4  
Table 4: Adjustable Resistor Values for the LDO.  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
23  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
JP1  
EN_BAT  
2
1
3 2 1  
Power Selection  
JP2  
BAT  
ADP  
D1  
RED  
LED  
C6  
10μF  
(at bottom layer)  
C1  
10μF  
1
2
R6  
EN_LDO  
U1  
JP3  
1.5K  
Sync/Mode  
15  
16  
1
10  
11  
7
ADP  
INA  
1
2
STAT  
INB  
ENA  
ENB  
EN_BAT  
MODE  
6
5
EN_BUCK  
VoB  
L1  
14  
2
12  
4
BAT  
LX  
C4  
100pF  
(Optional)  
ISET  
FBB  
VoA  
C2  
10μF  
R2  
3
9
8
AGND  
PGND  
OUTA  
FBA  
R1  
8.06K  
13  
R4  
C3  
4.7μF  
R3  
59k  
C5  
4.7μF  
R5  
59k  
VOUTB (V) R2 (Ω)  
L1  
VOUTA (V)  
R4 (Ω)  
0.6  
13  
R2 short, R3 open  
1.24  
1.5  
1.8  
2.0  
2.5  
2.8  
3.0  
R4 short, R5 open  
12.4K  
9.2K  
59K  
1.5μH (CDRH2D09/HP; DCR 88mΩ; 730mA @ 20°C)  
2.2μH (CDRH2D09/HP; DCR 115mΩ; 600mA @ 20°C)  
3.0μH (CDRH2D09/HP; DCR 150mΩ; 470mA @ 20°C)  
3.9μH (CDRH2D09/HP; DCR 180mΩ; 450mA @ 20°C)  
4.7μH (CDRH2D09/HP; DCR 230mΩ; 410mA @ 20°C)  
5.6μH (CDRH2D09/HP; DCR 260mΩ; 370mA @ 20°C)  
1.2  
1.8  
2.5  
3.0  
3.3  
26.7K  
36.5K  
118K  
187K  
237K  
267K  
60.4K  
75.0K  
97.6K  
Figure 5: AAT2552 Evaluation Board Schematic.  
Figure 6: AAT2552 Evaluation Board  
Top Side Layout.  
Figure 7: AAT2552 Evaluation Board  
Bottom Side Layout.  
w w w . a n a l o g i c t e c h . c o m  
24  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Component  
Part Number  
Description  
Manufacturer  
U1  
C1, C2  
C3, C5  
C6  
C4  
L1  
R6  
R1  
AAT2552IRN  
ECJ-1VB0J106M  
GRM188R60J475KE19  
GRM319R61A106KE19  
GRM1886R1H101JZ01J  
CDRH2D09  
Total Power Solution for Portable Applications  
CER 10F 6.3V X5R 0603  
CER 4.7F 6.3V X5R 0603  
CER 10F 10V X5R 1206  
CER 100pF 50V 5% R2H 0603  
Shielded SMD, 3x3x1mm  
1.5KΩ, 5%, 1/4W 0603  
8.06KΩ, 1%, 1/4W 0603  
118KΩ, 1%, 1/4W 0603  
59KΩ, 1%, 1/4W 0603  
AnalogicTech  
Panansonic  
Murata  
Murata  
Murata  
Sumida  
Vishay  
Vishay  
Vishay  
Vishay  
Chip Resistor  
Chip Resistor  
Chip Resistor  
Chip Resistor  
R2  
R3, R5  
R4  
JP1, JP2, JP3, JP4  
D1  
Chip Resistor  
PRPN401PAEN  
CMD15-21SRC/TR8  
60.4KΩ, 1%, 1/4W 0603  
Conn. Header, 2mm zip  
Red LED 1206  
Vishay  
Sullins Electronics  
Chicago Miniature Lamp  
Table 5: AAT2552 Evaluation Board Component Listing.  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
25  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Step-Down Converter Design Example (to be updated)  
Specifications  
VO = 1.8V @ 250mA, Pulsed Load ΔILOAD = 200mA  
VIN = 2.7V to 4.2V (3.6V nominal)  
FS  
= 1.5MHz  
TAMB = 85°C  
1.8V Output Inductor  
µsec  
A
µsec  
A
(use 3.0μH; see Table 3)  
L1 = 1.67  
VO2 = 1.67  
1.8V = 3µH  
For Sumida inductor CDRH2D09-3R0, 3.0μH, DCR = 150mΩ.  
VO  
L1 FS  
VO  
VIN  
1.8  
V
1.8V  
4.2V  
ΔIL1 =  
1 -  
=
1 -  
= 228mA  
3.0µH 1.5MHz  
ΔIL1  
2
IPKL1 = IO +  
= 250mA + 114mA = 364mA  
2
PL1 = IO DCR = 250mA2 150mΩ = 9.375mW  
1.8V Output Capacitor  
VDROOP = 0.1V  
3 · ΔILOAD  
VDROOP · FS  
3 · 0.2A  
COUT  
=
=
= 4µF (use 4.7µF)  
0.1V · 1.5MHz  
(VO) · (VIN(MAX) - VO)  
L1 · FS · VIN(MAX)  
1
1.8V · (4.2V - 1.8V)  
1
·
= 66mArms  
IRMS  
=
·
=
3.0µH · 1.5MHz · 4.2V  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (66mA)2 = 21.8µW  
Input Capacitor  
Input Ripple VPP = 25mV  
1
1
CIN =  
=
= 1.38µF (use 4.7µF)  
VPP  
IO  
25mV  
0.2A  
- ESR · 4 · FS  
- 5mΩ · 4 · 1.5MHz  
IO  
IRMS  
=
= 0.1Arms  
2
P = esr · IRMS2 = 5mΩ · (0.1A)2 = 0.05mW  
w w w . a n a l o g i c t e c h . c o m  
26  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
AAT2552 Losses  
IO2 · (RDSON(H) · VO + RDSON(L) · [VIN -VO])  
PTOTAL  
=
VIN  
+ (tsw · FS · IO + IQ) · VIN  
0.22 · (0.59Ω · 1.8V + 0.42Ω · [4.2V - 1.8V])  
4.2V  
=
+ (5ns · 1.5MHz · 0.2A + 30µA) · 4.2V = 26.14mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (50°C/W) · 26.14mW = 86.3°C  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
27  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Output Voltage  
VOUTB (V)  
R3 = 59kΩ  
R3 (kΩ)  
R3 = 221kΩ  
R1 (kΩ)  
L1 (μH)  
0.6  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3
R2 short, R3 open  
R2 short, R3 open  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.7  
3.0/3.3  
3.0/3.3  
3.0/3.3  
3.9/4.2  
4.9  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
237  
75  
113  
150  
187  
221  
261  
301  
332  
442  
464  
523  
715  
887  
1000  
3.3  
267  
5.6  
Table 6: Step-Down Converter Component Values.  
Inductance  
Max DC  
Current (mA)  
DCR  
(mΩ)  
Size (mm)  
LxWxH  
Manufacturer  
Part Number  
(μH)  
Type  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
FDK  
CDRH2D09-1R5  
CDRH2D09-2R2  
CDRH2D09-2R5  
CDRH2D09-3R0  
CDRH2D09-3R9  
CDRH2D09-4R7  
CDRH2D09-5R6  
CDRH2D11-1R5  
CDRH2D11-2R2  
CDRH2D11-3R3  
CDRH2D11-4R7  
NR3010T1R5N  
NR3010T2R2M  
NR3010T3R3M  
NR3010T4R7M  
MIPWT3226D-1R5  
MIPWT3226D-2R2  
MIPWT3226D-3R0  
MIPWT3226D-4R2  
1.5  
2.2  
2.5  
3.0  
3.9  
4.7  
5.6  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3.0  
4.2  
730  
600  
530  
470  
450  
410  
370  
900  
780  
600  
500  
1200  
1100  
870  
750  
1200  
1100  
1000  
900  
110  
144  
150  
194  
225  
287  
325  
68  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.2x3.2x1.2  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.0x3.0x1.0  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
3.2x2.6x0.8  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Chip shielded  
Chip shielded  
Chip shielded  
Chip shielded  
98  
123  
170  
80  
95  
140  
190  
90  
100  
120  
140  
FDK  
FDK  
FDK  
Table 7: Suggested Inductors and Suppliers.  
1. For reduced quiescent current, R3 = 221kΩ.  
w w w . a n a l o g i c t e c h . c o m  
28  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Manufacturer  
Part Number  
Value (μF)  
Voltage Rating  
Temp. Co.  
Case Size  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
GRM21BR61A106KE19  
GRM188R60J475KE19  
GRM188R61A225KE34  
GRM188R60J225KE19  
GRM188R61A105KA61  
GRM185R60J105KE26  
10  
10  
6.3  
10  
6.3  
10  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
0805  
0603  
0603  
0603  
0603  
0603  
4.7  
2.2  
2.2  
1.0  
1.0  
6.3  
Table 8: Surface Mount Capacitors.  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
29  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Ordering Information  
Package  
Marking1  
Part Number (Tape and Reel)2  
TDFN34-16  
UVXYY  
AAT2552IRN-CAE-T1  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means semiconductor  
products that are in compliance with current RoHS standards, including the requirement that lead not exceed  
0.1% by weight in homogeneous materials. For more information, please visit our website at  
http://www.analogictech.com/about/quality.aspx.  
Legend  
Voltage  
Code  
Adjustable  
(0.6)  
0.9  
Adjustable  
(1.2)  
A
B
E
1.5  
1.8  
1.9  
2.5  
2.6  
2.7  
2.8  
2.85  
2.9  
3.0  
3.3  
4.2  
G
I
Y
N
O
P
Q
R
S
T
W
C
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
w w w . a n a l o g i c t e c h . c o m  
30  
2552.2008.02.1.2  
PRODUCT DATASHEET  
AAT2552178  
SystemPowerTM  
Total Power Solution for Portable Applications  
Package Information1  
TDFN34-16  
3.000 0.050  
1.600 0.050  
Detail "A"  
Index Area  
0.350 0.100  
Top View  
Bottom View  
C0.3  
(4x)  
Pin 1 Indicator  
(optional)  
0.050 0.050  
0.229 0.051  
Side View  
Detail "A"  
All dimensions in millimeters.  
1. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing  
process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.  
Advanced Analogic Technologies, Inc.  
3230 Scott Boulevard, Santa Clara, CA 95054  
Phone (408) 737-4600  
Fax (408) 737-4611  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual  
property rights are implied. AnalogicTech reserves the right to make changes to their products or specications or to discontinue any product or service without notice. Except as provided in AnalogicTech’s terms and  
conditions of sale, AnalogicTech assumes no liability whatsoever, and AnalogicTech disclaims any express or implied warranty relating to the sale and/or use of AnalogicTech products including liability or warranties  
relating to tness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. In order to minimize risks associated with the customer’s applications, adequate  
design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to  
support this warranty. Specic testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other  
brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.  
w w w . a n a l o g i c t e c h . c o m  
2552.2008.02.1.2  
31  

相关型号:

AAT2554

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554

Total Power Solution for Portable Applications
SKYWORKS

AAT2554IRN-CAP-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554IRN-CAP-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2554IRN-CAQ-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554IRN-CAT-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554IRN-CAT-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2554IRN-CAW-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT2554IRN-CAW-T1

Total Power Solution for Portable Applications
SKYWORKS

AAT2556

Battery Charger and Step-Down Converter for Portable Applications
ANALOGICTECH

AAT2556

Battery Charger and Step-Down Converter for Portable Applications
AAT

AAT2556

Battery Charger and Step-Down Converter for Portable Applications
SKYWORKS