AAT1156 [ANALOGICTECH]

1MHz 700mA Step-Down DC-DC Converter; 1MHz的700毫安降压型DC -DC转换器
AAT1156
型号: AAT1156
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

1MHz 700mA Step-Down DC-DC Converter
1MHz的700毫安降压型DC -DC转换器

转换器
文件: 总14页 (文件大小:425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
SwitchReg  
General Description  
Features  
The AAT1156 SwitchReg™ is a member of  
AnalogicTech™'s Total Power Management IC™  
(TPMIC™) product family. The step-down switching  
converter is ideal for applications where high effi-  
ciency is required over the full range of load condi-  
tions. The 2.7V to 5.5V input voltage range makes  
the AAT1156 ideal for single-cell lithium-ion/polymer  
battery applications. Capable of more than 700mA  
with internal MOSFETs, the current-mode con-  
trolled IC provides high efficiency over a wide oper-  
ating range. Fully integrated compensation simpli-  
fies system design and lowers external parts count.  
VIN Range: 2.7 to 5.5 Volts  
Up to 95% Efficiency  
110mRDS(ON) Internal Switches  
<1µA Shutdown Current  
1MHz Step-Down Switching Frequency  
Fixed or Adjustable VOUT 0.8V  
Integrated Power Switches  
Current Mode Operation  
Internal Compensation  
Stable with Ceramic Capacitors  
Internal Soft Start  
Over-Temperature Protection  
Current Limit Protection  
16-Pin QFN 3x3mm Package  
-40°C to +85°C Temperature Range  
The AAT1156 is available in the 16-pin 3x3mm  
QFN package and is rated over the -40°C to +85°C  
temperature range.  
Applications  
Cellular Phones  
Digital Cameras  
MP3 Players  
Notebook Computers  
PDAs  
Wireless Notebook Adapters  
Typical Application  
AAT1156 Efficiency  
(VOUT = 2.5V; L = 4.7µH; CDRH3D16)  
U1  
AAT1156  
INPUT  
2.5V  
12  
11  
10  
7
4
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VP  
VP  
VP  
EN  
VCC  
LL  
FB  
LX  
R3  
187k  
15  
14  
13  
16  
3
R1  
100  
VIN = 3.0V  
L1  
4.7µH  
LX  
C1  
10µF  
VIN = 4.2V  
VIN = 3.6V  
LX  
9
NC  
R4  
59k  
C3, C4  
2 x 22µF  
6
PGND  
PGND  
C2  
0.1 µF  
8
2
NC  
5
1
SGND PGND  
1
10  
100  
1000  
C1 Murata 10µF 6.3V X5R GRM42-6X5R106K6.3  
C3-C4 MuRata 22µF 6.3V GRM21BR60J226ME39L X5R 0805  
L1 Sumida CDRH3D16-4R7NC  
Output Current (mA)  
1156.2005.11.1.2  
1
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Pin Descriptions  
Pin #  
Symbol  
Function  
1, 2, 3  
PGND  
Main power ground return pin. Connect to the output and input capacitor  
return. (See board layout rules.)  
4
FB  
Feedback input pin. This pin is connected to the converter output. It is  
used to set the output of the converter to regulate to the desired value  
via an internal resistive divider. For an adjustable output, an external  
resistive divider is connected to this pin on the 1V model.  
5
SGND  
Signal ground. Connect the return of all small signal components to this  
pin. (See board layout rules.)  
6
7
LL  
Mode selector switch. When pulled low, the device enters light load mode.  
EN  
Enable input pin. A logic high enables the converter; a logic low forces  
the AAT1156 into shutdown mode, reducing the supply current to less  
than 1µA. The pin should not be left floating.  
8, 16  
9
NC  
Not internally connected.  
VCC  
Bias supply. Supplies power for the internal circuitry. Connect to input  
power via low pass filter with decoupling to SGND.  
10, 11, 12  
13, 14, 15  
EP  
VP  
LX  
Input supply voltage for the converter power stage. Must be closely  
decoupled to PGND.  
Connect inductor to these pins. Switching node internally connected to  
the drain of both high- and low-side MOSFETs.  
Exposed paddle (bottom); connect to PGND directly beneath package.  
Pin Configuration  
QFN33-16  
(Top View)  
1
2
3
4
12  
11  
10  
9
PGND  
PGND  
PGND  
FB  
VP  
VP  
VP  
VCC  
2
1156.2005.11.1.2  
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VCC, V  
VLX  
VCC, VP to GND  
6
V
V
LX to GND  
-0.3 to VP+0.3  
-0.3 to VCC+0.3  
-0.3 to 6  
VFB  
FB to GND  
V
VEN  
TJ  
EN to GND  
V
Operating Junction Temperature Range  
ESD Rating2 - HBM  
-40 to 150  
3000  
°C  
V
VESD  
Thermal Characteristics  
Symbol  
Description  
Value  
Units  
ΘJA  
PD  
Maximum Thermal Resistance (QFN33-16)3  
Maximum Power Dissipation (QFN33-16)4 (TA = 25°C)  
50  
°C/W  
W
2.0  
Recommended Operating Conditions  
Symbol  
Description  
Value  
Units  
T
Ambient Temperature Range  
-40 to 85  
°C  
1. Stresses above those listed in Absolute Maximum Ratings may cause damage to the device. Functional operation at conditions other  
than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Human body model is 100pF capacitor discharged through a 1.5kresistor into each pin.  
3. Mounted on a demo board (FR4, in still air).  
4. Derate 20mW/°C above 25°C.  
1156.2005.11.1.2  
3
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Electrical Characteristics  
VIN = VCC = VP = 5V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = 25°C.  
Symbol  
Description  
Conditions  
Min Typ Max Units  
VIN  
Input Voltage Range  
2.7  
-3  
5.5  
3
V
VOUT  
Output Voltage Tolerance  
VIN = VOUT + 0.2 to 5.5V,  
IOUT = 0 to 700mA  
%
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
0.6  
2.5  
V
V
1.4  
1.2  
V
IN Rising, VEN = VCC  
VUVLO  
Under-Voltage Lockout  
V
VIN Falling, VEN = VCC  
VUVLO(HYS)  
Under-Voltage Lockout Hysteresis  
Input Low Current  
250  
220  
mV  
µA  
µA  
µA  
IIL  
IIH  
IQ  
VIN = VFB = 5.5V  
VIN = VFB = 0V  
1.0  
1.0  
Input High Current  
Quiescent Supply Current  
No Load, LL = 0V; VFB = 0V,  
VIN = 4.2V, TA = 25°C  
VEN = 0V, VIN = 5.5V  
TA = 25°C  
350  
ISHDN  
ILIM  
RDS(ON)H  
RDS(ON)L  
Shutdown Current  
1.0  
µA  
A
Current Limit  
1.2  
High Side Switch On Resistance  
Low Side Switch On Resistance  
TA = 25°C  
110  
100  
±0.9  
±0.1  
150  
150  
mΩ  
mΩ  
%
TA = 25°C  
VOUT(VOUT*VIN) Load Regulation  
VIN = 4.2V, ILOAD = 0 to 700mA  
VIN = 2.7 to 5.5V  
TA = 25°C  
DVOUT/VOUT  
Line Regulation  
%/V  
kHz  
°C  
FOSC  
Oscillator Frequency  
Over-Temperature Shutdown  
Threshold  
750 1000 1350  
140  
TSD  
THYS  
Over-Temperature Shutdown  
Hysteresis  
15  
°C  
4
1156.2005.11.1.2  
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Typical Characteristics  
Output Ripple  
(0.8V; 10mA; VIN = 3.6V)  
Soft Start  
(0.8V; 700mA; VIN = 3.6V)  
20  
10  
1.4  
1.2  
1
2
1.5  
1
3.5  
3
0
2.5  
2
-10  
-20  
-30  
-40  
-50  
-60  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
1.5  
1
-0.5  
-1  
0.5  
0
-1.5  
-2  
-0.2  
-0.5  
Time (2µs/div)  
Time (100µs/div)  
Output Ripple  
(0.8V; 700mA; VIN = 3.6V)  
Line Transient  
(IOUT = 500mA; VO = 0.8V)  
20  
10  
3.5  
3
4.4  
4.2  
4
60  
50  
40  
30  
20  
10  
0
0
2.5  
2
-10  
-20  
-30  
-40  
-50  
-60  
3.8  
3.6  
3.4  
3.2  
3
1.5  
1
0.5  
0
-10  
-20  
2.8  
-0.5  
Time (20µsec/div)  
Time (250ns/div)  
Load Transient Response  
(50mA-680mA; VIN = 3.6V; VOUT = 0.8V)  
No Load Supply Current vs. Input Voltage  
300  
0.83  
0.81  
0.79  
0.77  
0.75  
0.73  
85°C  
-40°C  
3
250  
200  
150  
100  
50  
25°C  
Ø
0.71  
0.69  
0.67  
Ø
0
2.5  
3.5  
4
4.5  
5
5.5  
Time (10µsec/div)  
Input Voltage (V)  
1156.2005.11.1.2  
5
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Typical Characteristics  
DC Regulation  
(VOUT = 0.6V)  
Output Voltage vs. Temperature  
(VIN = 4.2V; VOUT = 0.8V; 400mA VOUT  
)
0.1  
0.0  
3.0  
2.0  
1.0  
VIN = 4.2V  
-0.1  
-0.2  
-0.3  
-0.4  
0.0  
VIN = 3.6V  
-1.0  
VIN = 2.7V  
-2.0  
-3.0  
0.0001  
-40  
-20  
0
20  
40  
60  
80  
100  
0.001  
0.01  
0.1  
1
Output Current (A)  
Temperature (°C)  
Frequency vs. Temperature  
(VIN = 3.6V)  
P-Channel RDSON vs. Input Voltage  
200  
1.2  
1.1  
1
180  
160  
140  
120  
100  
80  
100°C  
120°C  
0.9  
0.8  
0.7  
0.6  
85°C  
25°C  
60  
40  
20  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°°C)  
Input Voltage (V)  
Frequency vs. Input Voltage  
N-Channel RDSON vs. Input Voltage  
200  
180  
160  
140  
120  
100  
80  
1.02  
1.01  
1
100°C  
85°C  
4
120°C  
25°C  
4.5  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
60  
40  
20  
0
2.5  
3
3.5  
5
5.5  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
Input Voltage (V)  
Input Voltage (V)  
6
1156.2005.11.1.2  
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Functional Block Diagram  
VCC  
VP= 2.7V to 5.5V  
1.0V REF  
CMP  
DH  
OP. AMP  
FB  
LOGIC  
LX  
DL  
1MΩ  
OSC  
Temp.  
Sensing  
SGND  
EN  
LL  
PGND  
still providing sufficient DC loop gain for good load  
regulation. The voltage loop crossover frequency  
and phase margin are set by the output capacitor.  
Operation  
Control Loop  
The AAT1156 is a peak current mode step-down  
converter. The inner, wide bandwidth loop controls  
the inductor peak current. The inductor current is  
sensed through the P-channel MOSFET (high  
side) and is also used for short-circuit and overload  
protection. A fixed slope compensation signal is  
added to the sensed current to maintain stability for  
duty cycles greater than 50%. The loop appears  
as a voltage-programmed current source in paral-  
lel with the output capacitor.  
Soft Start/Enable  
Soft start increases the inductor current limit point in  
discrete steps once the input voltage or enable  
input is applied. It limits the current surge seen at  
the input and eliminates output voltage overshoot.  
When pulled low, the enable input forces the  
AAT1156 into a non-switching shutdown state. The  
total input current during shutdown is less than 1µA.  
The voltage error amplifier output programs the  
current loop for the necessary inductor current to  
force a constant output voltage for all load and line  
conditions. The external voltage feedback resistive  
divider divides the output voltage to the error ampli-  
fier reference voltage of 0.6V. The voltage error  
amplifier DC gain is limited. This eliminates the  
need for external compensation components, while  
Power and Signal Source  
Separate small signal ground and power supply  
pins isolate the internal control circuitry from the  
noise associated with the output MOSFET switch-  
ing. The low pass filter R1 and C2 (shown in the  
schematic in Figure 1) filters the input noise asso-  
ciated with the power switching.  
1156.2005.11.1.2  
7
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
U1  
AAT1156  
Enable  
Vin+  
Vout+  
12  
11  
10  
7
4
VP  
FB  
LX  
R3  
15  
14  
13  
16  
3
R1  
100  
200k  
VP  
L1  
4.7µH  
VP  
LX  
R2  
EN  
LX  
100K  
C1  
10µF  
9
VCC  
LL  
N/C  
R4  
59k  
6
C2  
0.1 µF  
PGND  
PGND  
PGND  
R6  
100k  
8
2
C3,C4  
2 x 22µF  
N/C  
SGND  
5
1
C1 Murata 10µF 6.3V X5R GRM42-6X5R106K6.3  
LL  
C3, C4 MuRata 22µF 6.3V GRM21BR60J226ME396 X5R 0805  
L1 Sumida CDRH3D16-4R7NC  
Figure 1: AAT1156 Evaluation Board Schematic—Lithium-Ion to 2.5V Converter.  
Current Limit and Over-Temperature  
Protection  
VOUT  
IO k F  
VOUT  
VIN  
L =  
L =  
1 -  
For overload conditions, the peak input current is lim-  
ited. As load impedance decreases and the output  
voltage falls closer to zero, more power is dissipated  
internally, raising the device temperature. Thermal  
protection completely disables switching when inter-  
nal dissipation becomes excessive, protecting the  
device from damage. The junction over-temperature  
threshold is 140°C with 15°C of hysteresis.  
1.5V  
1.5V  
4.2V  
1 -  
0.7A 0.4 1MHz  
L = 3.44µH  
The factor "k" is the fraction of full load selected for  
the ripple current at the maximum input voltage.  
For ripple current at 40% of the full load current, the  
peak current will be 120% of full load. Selecting a  
standard value of 3.3µH gives 42% ripple current.  
A 3.3µH inductor selected from the Sumida  
CDRH3D16 series has a 63mDCR and a 1.1A  
DC current rating. At full load, the inductor DC loss  
is 31mW which amounts to less than 3% loss in  
efficiency for a 0.7A, 1.5V output.  
Inductor  
The output inductor is selected to limit the ripple cur-  
rent to a predetermined value, typically 20% to 40%  
of the full load current at the maximum input voltage.  
Manufacturer's specifications list both the inductor  
DC current rating, which is a thermal limitation, and  
the peak current rating, which is determined by the  
saturation characteristics. The inductor should not  
show any appreciable saturation under normal load  
conditions. Some inductors may meet the peak and  
average current ratings yet result in excessive losses  
due to a high DCR. Always consider the losses asso-  
ciated with the DCR and its effect on the total con-  
verter efficiency when selecting an inductor.  
Input Capacitor  
The primary function of the input capacitor is to pro-  
vide a low impedance loop for the edges of pulsed  
current drawn by the AAT1156. A low ESR/ESL  
ceramic capacitor is ideal for this function. To mini-  
mize stray inductance, the capacitor should be  
placed as closely as possible to the IC. This keeps  
the high frequency content of the input current local-  
ized, minimizing radiated and conducted EMI while  
facilitating optimum performance of the AAT1156.  
Ceramic X5R or X7R capacitors are ideal for this  
function. The size required will vary depending on  
For a 0.7A, 1.5V output with the ripple set to 40%  
at a maximum input voltage of 4.2V, the maximum  
peak-to-peak ripple current is 280mA. The induc-  
tance value required is 3.44µH.  
8
1156.2005.11.1.2  
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
the load, output voltage, and input voltage source  
For an X7R or X5R ceramic capacitor, the ESR is  
so low that dissipation due to the RMS current of  
the capacitor is not a concern. Tantalum capacitors  
with sufficiently low ESR to meet output voltage rip-  
ple requirements also have an RMS current rating  
well beyond that actually seen in this application.  
impedance characteristics. Values range from 1µF  
to 10µF. The input capacitor RMS current varies  
with the input voltage and output voltage. The equa-  
tion for the RMS current in the input capacitor is:  
VO  
VIN  
VO ⎞  
VIN ⎠  
IRMS = IO ⋅  
1 -  
Layout  
Figures 2 and 3 display the suggested PCB layout  
for the AAT1156. The following guidelines should  
be used to help ensure a proper layout.  
The input capacitor RMS ripple current reaches a  
maximum when VIN is two times the output voltage,  
where it is approximately one half of the load cur-  
rent. Losses associated with the input ceramic  
capacitor are typically minimal and are not an  
issue. Proper placement of the input capacitor is  
shown in the reference design layout in Figure 2.  
1. The input capacitor (C1) should connect as  
closely as possible to VP (Pins 10, 11, and 12)  
and PGND (Pins 1, 2, and 3).  
2. C3, C4, and L1 should be connected as closely  
as possible. The connection from L1 to the LX  
node should be as short as possible.  
3. The feedback trace (Pin 4) should be separate  
from any power trace and connect as closely  
as possible to the load point. Sensing along a  
high-current load trace will degrade DC load  
regulation.  
4. The resistance of the trace from the load return  
to the PGND (Pins 1, 2, and 3) should be kept  
to a minimum. This will help to minimize any  
error in DC regulation due to differences in the  
potential of the internal signal ground and the  
power ground.  
Output Capacitor  
Since there are no external compensation compo-  
nents, the output capacitor has a strong effect on  
loop stability. Larger output capacitance will reduce  
the crossover frequency with greater phase margin.  
For the 1.5V, 0.7A design using the 3.3µH inductor,  
two 22µF capacitors provide a stable output. In  
addition to assisting in stability, the output capacitor  
limits the output ripple and provides holdup during  
large load transitions. The output capacitor RMS  
ripple current is given by:  
5. Low pass filter R1 and C2 provide a cleaner  
bias source for the AAT1156 active circuitry.  
C2 should be placed as closely as possible to  
SGND (Pin 5) and VCC (Pin 9).  
VOUT  
(VIN - VOUT  
VIN  
)
1
IRMS  
=
L
F ⋅  
2
3  
Figure 2: QFN Evaluation Board Top Side.  
Figure 3: QFN Evaluation Board Bottom Side.  
1156.2005.11.1.2  
9
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Thermal Calculations  
There are three types of losses associated with the AAT1156: MOSFET switching losses, conduction losses,  
and quiescent current losses. The conduction losses are due to the RDS(ON) characteristics of the internal P-  
and N-channel MOSFET power devices. At full load, assuming continuous conduction mode (CCM), a simpli-  
fied form of the total losses is given by:  
IO2 ⋅ (RDSON(HS) VO + RDSON(LS) ⋅ (VIN - VO))  
P =  
+ (tsw F IO VIN + IQ) VIN  
VIN  
where IQ is the AAT1156 quiescent current.  
Once the total losses have been determined, the junction temperature can be derived from the θJA for the  
QFN33-16 package.  
TJ = P · ΘJA + TAMB  
Adjustable Output  
Resistors R3 and R4 of Figure 1 force the output to regulate higher than 0.6V. The optimum value for R4 is  
59k. Values higher than this may cause problems with stability, while lower values can degrade light load  
efficiency. For a 2.5V output with R4 set to 59k, R3 is 187k.  
V
2.5V  
0.6V  
O
R3 =  
-1 · R4 =  
- 1 · 59k= 187kΩ  
V
REF  
500  
R4=59kΩ  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Voltage (V)  
Figure 4: R3 vs. VOUT for Adjustable Output Using the AAT1156.  
10  
1156.2005.11.1.2  
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Design Example  
Specifications  
IOUT  
0.7A  
IRIPPLE 40% of Full Load at Max VIN  
VOUT 2.5V  
VIN  
FS  
2.7V to 4.2V (3.6V nominal)  
1MHz  
TAMB 85°C  
Maximum Input Capacitor Ripple:  
V
V
O
O
IRMS = IO ·  
· 1-  
= 0.34Arms, VIN = 2 x VO  
V
V
IN  
IN  
P = esr · IRMS2 = 5m· 0.342 A = 0.6mW  
Inductor Selection:  
VOUT  
IO k F  
VOUT  
VIN  
2.5  
V
2.5V  
4.2V  
L =  
1 -  
=
1 -  
= 4.82µH  
0.7A 0.3 1MHz  
Select Sumida inductor CDRH3D16 or CDRH4D28 4.7µH.  
2.5V  
4.2V  
VO  
L F  
VO  
VIN  
2.5  
V
I =  
1 -  
=
1-  
= 220mA  
4.7µH 1MHz  
I  
2
IPK = IOUT  
+
= 0.7A + 0.11A = 0.81A  
P = IO2 DCR = (0.7A)2 80m= 40mW  
1156.2005.11.1.2  
11  
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Output Capacitor Ripple Current:  
VOUT · (VIN - VOUT  
)
1
2.5V · (4.2V - 2.5V)  
= 62mArms  
4.7µH · 1MHz · 4.2V  
1
·
IRMS  
=
·
=
L·F·V  
2· 3  
2· 3  
IN  
Pesr = esr · IRMS2 = 5m· (62 mA)2 = 19µW  
AAT1156 Dissipation:  
IO2 · (RDSON(HS) · VO + RDSON(LS) · (VIN -VO))  
PTOTAL  
=
+ (tsw · F · IO + IQ) · VIN  
VIN  
(0.7A)2 · (0.17· 2.5V + 0.16· (4.2V - 1.5V))  
=
+ (20nsec · 1MHz · 0.7A + 300µA) · 4.2V = 0.141W  
4.2V  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + 50°C/W · 0.141W = 92°C  
U1  
AAT1156  
AAT1156 Efficiency  
(VOUT = 0.8V; L = 2.2µH; CDRH3D16)  
INPUT  
0.8V  
12  
11  
10  
7
4
VP  
FB  
LX  
R3  
15  
14  
13  
16  
3
100  
90  
80  
70  
60  
50  
40  
30  
20  
R1  
100  
19.6k  
VP  
L1  
2.2µH  
VP  
LX  
C1  
10µF  
VIN = 2.7V  
EN  
LX  
9
VCC  
LL  
N/C  
VIN = 4.2V  
R4  
59k  
C3, C4  
6
PGND  
PGND  
PGND  
2 x 22µF  
VIN = 3.6V  
C2  
0.1 µF  
8
2
N/C  
SGND  
5
1
C1 Murata 10µF 6.3V X5R GRM42-6X5R106K6.3  
C3, C4 MuRata 22µF 6.3V GRM21BR60J226ME39L X5R 0805  
L1 Sumida CDRH3D16-2R2NC  
1
10  
100  
1000  
Output Current (mA)  
Figure 5: 0.8V Solution.  
12  
1156.2005.11.1.2  
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Surface Mount Inductors  
Max DC  
Current  
Size (mm)  
L x W x H  
Manufacturer Part Number  
Value  
DCR  
Type  
TaiyoYuden  
Toko  
NPO5DB4R7M  
4.7µH  
3.5µH  
4.7µH  
2.2µH  
3.3µH  
4.7µH  
4.2µH  
4.1µH  
4.7µH  
4.7µH  
1.4A  
1.34A  
1.32A  
1.2A  
1.1A  
0.9  
0.038  
0.073  
0.072  
0.050  
0.063  
0.080  
0.031  
0.057  
0.041  
0.025  
5.9x6.1x2.8  
5.0x5.0x2.0  
4.7x4.7x3.0  
3.8x3.8x1.8  
3.8x3.8x1.8  
3.8x3.8x1.8  
5.7x5.7x3.0  
5.7x5.7x2.0  
5.0x5.0x4.7  
6.3x6.3x4.7  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Shielded  
Sielded  
A914BYW-3R5M-D52LC  
CDRH4D28-4R7  
CDRH3D16-2R2  
CDRH3D16-3R3  
CDRH3D16-4R7  
CDRH5D28-4R2  
CDRH5D18-4R1  
LQH55DN4R7M03  
LQH66SN4R7M03  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
MuRata  
MuRata  
2.2A  
1.95A  
2.7A  
2.2A  
Non-Shielded  
Shielded  
Surface Mount Capacitors  
Manufacturer  
Part Number  
Value  
Voltage  
Temp. Co.  
Case  
MuRata  
MuRata  
MuRata  
GRM40 X5R 106K 6.3  
GRM42-6 X5R 106K 6.3  
GRM21BR60J226ME39L  
10µF  
10µF  
22µF  
6.3V  
6.3V  
6.3V  
X5R  
X5R  
X5R  
0805  
1206  
0805  
1156.2005.11.1.2  
13  
AAT1156  
1MHz 700mA Step-Down DC-DC Converter  
Ordering Information  
Output Voltage  
Package  
Marking1  
Part Number (Tape and Reel)2  
AAT1156IVN-T1  
0.6V (Adj VOUT 0.8V)  
QFN33-16  
LUXYY  
Package Information  
0.230 0.05  
Pin 1 Identification  
1
5
Pin 1 Dot By Marking  
13  
9
3.000 0.05  
0.500 0.05  
Top View  
Bottom View  
0.203 0.0254  
Side View  
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights,  
or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice.  
Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech  
warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech’s standard warranty. Testing and other quality con-  
trol techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.  
Advanced Analogic Technologies, Inc.  
830 E. Arques Avenue, Sunnyvale, CA 94085  
Phone (408) 737-4600  
Fax (408) 737-4611  
14  
1156.2005.11.1.2  

相关型号:

AAT1156IVN-T1

1MHz 700mA Step-Down DC-DC Converter
ANALOGICTECH

AAT1156_07

1MHz 700mA Step-Down DC-DC Converter
ANALOGICTECH

AAT1157

1MHz 1.2A Buck DC/DC Converter
ANALOGICTECH

AAT1157IVN-3.3-T1

Switching Regulator/Controller,
ANALOGICTECH

AAT1157IVN-T1

1MHz 1.2A Buck DC/DC Converter
ANALOGICTECH

AAT1160

12V, 3A Step-Down DC/DC Converter
ANALOGICTECH

AAT1160

Step Up Current Mode PWM Converter with 4+1 Operational Amplifiers
AAT

AAT1160IRN-0.6-T1

12V, 3A Step-Down DC/DC Converter
ANALOGICTECH

AAT1161

13.2V Input, 3A Step-Down Converter
ANALOGICTECH

AAT1161IWO-0.6-T1

Switching Regulator,
SKYWORKS

AAT1162

12V, 1.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1162

12V, 1.5A Step-Down DC/DC Converter
SKYWORKS