AAT1160 [ANALOGICTECH]

12V, 3A Step-Down DC/DC Converter; 12V , 3A降压型DC / DC转换器
AAT1160
型号: AAT1160
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

12V, 3A Step-Down DC/DC Converter
12V , 3A降压型DC / DC转换器

转换器
文件: 总17页 (文件大小:656K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
General Description  
Features  
The AAT1160 is an 800kHz high efficiency step-down  
DC/DC converter. With a wide input voltage range of  
4.0V to 13.2V, the AAT1160 is an ideal choice for dual-  
cell Lithium-ion battery-powered devices and mid-pow-  
er-range regulated 12V-powered industrial applications.  
The internal power switches are capable of delivering up  
to 3A to the load.  
• Input Voltage Range: 4.0V to 13.2V  
• Up to 3A Load Current  
• Fixed or Adjustable Output:  
Output Voltage: 0.6V to VIN  
• Low 150μA No-Load Operating Current  
• Less than 1μA Shutdown Current  
• Up to 96% Efficiency  
• Integrated Power Switches  
• 800kHz Switching Frequency  
The AAT1160 is a highly integrated device, simplifying  
system-level design. Minimum external components are  
required for the converter.  
Synchronizable to External Clock  
Forced PWM or Light Load Mode  
• Soft Start Function  
The AAT1160 optimizes efficiency throughout the entire  
load range. It operates in a combination PWM/Light Load  
mode for improved light-load efficiency. It can also  
operate in a forced Pulse Width Modulation (PWM) mode  
for easy control of the switching noise as well as faster  
transient response. The high switching frequency allows  
the use of small external components. The low current  
shutdown feature disconnects the load from VIN and  
drops shutdown current to less than 1μA.  
• Short-Circuit and Over-Temperature Protection  
• Minimum External Components  
• TDFN34-16 Package  
Temperature Range: -40°C to +85°C  
Applications  
• Distributed Power Systems  
• Industrial Applications  
• Laptop Computers  
• Portable DVD Players  
• Portable Media Players  
• Set-Top Boxes  
The AAT1160 is available in a Pb-free, space-saving,  
thermally-enhanced 16-pin TDFN34 package and is rated  
over an operating temperature range of -40°C to  
+85°C.  
• TFT LCD Monitors and HDTVs  
Typical Application  
Output:  
L
0.94 x Input max  
Input:  
4.0V ~ 13.2V  
IN  
LX  
FB  
2.2 to 3.8μH  
C6  
22μF  
EN  
R4  
10  
R3  
C2  
0.1μF  
432k  
DGND  
AIN  
C3, C4  
2x22μF  
AAT1160  
C8  
1μF  
R6  
59k  
SYNC  
PGND  
AGND  
COMP  
LDO  
R5  
50k  
C7  
150pF  
C9  
1μF  
w w w . a n a l o g i c t e c h . c o m  
1160.2007.11.1.1  
1
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Pin Descriptions  
Pin #  
Symbol Function  
Power switching node. LX is the drain of the internal P-channel switch and N-channel synchronous recti-  
er. Connect the output inductor to the two LX pins and to EP2. A large exposed copper pad under the  
package should be used for EP2.  
1, 2, EP2  
3, 12  
LX  
N/C  
IN  
Not connected.  
Power source input. Connect IN to the input power source. Bypass IN to DGND with a 10μF or greater  
capacitor. Connect both IN pins together as close to the IC as possible. An additional 100nF ceramic ca-  
pacitor should also be connected between the two IN pins and DGND, pin 6  
4, 5  
Exposed Pad 1 Digital Ground, DGND. The exposed thermal pad (EP1) should be connected to board  
ground plane and pins 6 and 13. The ground plane should include a large exposed copper pad under the  
package for thermal dissipation (see package outline).  
Internal analog bias input. AIN supplies internal power to the AAT1160. Connect AIN to the input source  
voltage and bypass to AGND with a 0.1μF or greater capacitor. For additional noise rejection, connect to  
the input power source through a 10Ω or lower value resistor.  
Internal LDO bypass node. The output voltage of the internal LDO is bypassed at LDO. The internal cir-  
cuitry of the AAT1160 is powered from LDO. Do not draw external power from LDO. Bypass LDO to AGND  
with a 1μF or greater capacitor.  
Output voltage feedback input. FB senses the output voltage for regulation control. For xed output  
versions, connect FB to the output voltage. For adjustable versions, drive FB from the output voltage  
through a resistive voltage divider. The FB regulation threshold is 0.6V.  
6, 13, EP1  
DGND  
AIN  
7
8
9
LDO  
FB  
10  
11  
COMP  
AGND  
Control compensation node. Connect a series RC network from COMP to AGND, R = 50k and C = 150pF.  
Analog signal ground. Connect AGND to PGND at a single point as close to the IC as possible.  
Frequency select and synchronization input. Drive SYNC with a 500kHz to 1.6MHz signal to synchronize  
the AAT1160 switching frequency to that signal. The Sync pin is also a mode select input. Drive SYNC  
high or connect to the LDO pin for low-noise forced PWM mode. Drive SYNC low for high-efciency PWM/  
Light Load mode.  
14  
SYNC  
Active high enable input. Drive EN high to turn on the AAT1160; drive it low to turn it off. For automatic  
startup, connect EN to IN through a 4.7kΩ resistor. EN must be biased high, biased low, or driven to a  
logic level by an external source. Do not let the EN pin oat when the device is powered.  
15  
16  
EN  
PGND  
Power ground. Connect AGND to PGND at a single point as close to the IC as possible.  
Pin Configuration  
TDFN34-16  
(Top View)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PGND  
EN  
LX  
LX  
EP2  
EP1  
N/C  
IN  
SYNC  
DGND  
N/C  
IN  
AGND  
DGND  
AIN  
LDO  
COMP  
FB  
w w w . a n a l o g i c t e c h . c o m  
2
1160.2007.11.1.1  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VIN, VAIN  
VLX  
VFB  
VEN  
VSYNC  
TJ  
Input Voltage  
LX to GND Voltage  
FB to GND Voltage  
EN to GND Voltage  
SYNC to GND Voltage  
Operating Junction Temperature Range  
-0.3 to 14  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to 6.5  
V
V
V
V
V
-40 to 150  
°C  
Thermal Information2  
Symbol  
Description  
Maximum Power Dissipation3  
Thermal Resistance  
Value  
Units  
PD  
θJA  
2.7  
37  
W
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions  
specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Mounted on an FR4 board.  
3. Derate 2.7mW/°C above 25°C.  
w w w . a n a l o g i c t e c h . c o m  
1160.2007.11.1.1  
3
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Electrical Characteristics1  
4.0V < VIN < 13.2V. CIN = COUT = 22μF; L = 2.2μH or 3.8μH, TA = -40°C to +85°C, unless otherwise noted. Typical  
values are at TA = 25°C.  
Symbol Description  
Conditions  
Min  
Typ  
Max  
Units  
VIN  
Input Voltage Range  
4.0  
13.2  
4.0  
V
Rising  
VUVLO  
Input Under-Voltage Lockout  
V
Hysteresis  
No Load  
VEN = GND  
0.3  
150  
IQ  
ISHDN  
Supply Current  
Shutdown Current  
300  
1
μA  
μA  
0.94  
VIN  
2.5  
VOUT  
Output Voltage Range  
Output Voltage Accuracy  
Line Regulation  
0.6  
V
%
VOUT  
ΔVLINEREG  
ΔVIN  
IOUT = 0A to 3A  
-2.5  
/
VIN = 4.5V to 13.2V  
0.023 0.100  
0.4  
%/V  
%
ΔVLOADREG  
Load Regulation  
Feedback Reference Voltage (adjustable  
version)  
VIN = 12V, VOUT = 5V, IOUT = 0A to 3A  
No Load, TA = 25°C  
VFB  
0.59  
0.60  
0.61  
0.2  
V
Adjustable Version  
VOUT = 1.2V  
IFBLEAK  
FB Leakage Current  
μA  
Fixed Version  
2
FOSC  
FSYNC  
TS  
PWM Oscillator Frequency  
External Clock Frequency Range  
Start-Up Time  
0.6  
0.5  
0.8  
1
1.6  
MHz  
MHz  
ms  
kHz  
%
CMOS Logic Clock Signal on SYNC Pin  
IOUT = 3A, VOUT = 5V  
2
200  
Foldback Frequency  
DC  
TON  
TSS  
Maximum Duty Cycle  
Minimum Turn-On Time  
Soft-Start Time  
94  
100  
2
ns  
ms  
VIN = 12V  
VIN = 6V  
VIN = 12V  
VIN = 6V  
0.12  
0.15  
0.06  
0.08  
90  
RDS(ON)H  
RDS(ON)L  
P-Channel On Resistance  
N-Channel On Resistance  
Ω
Ω
η
ILIM  
ILXLEAK  
TSD  
THYS  
VILEN  
VIHEN  
VILSYNC  
VIHSYNC  
IEN  
Efciency  
PMOS Current Limit  
LX Leakage Current  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
EN Logic Low Input Threshold  
EN Logic High Input Threshold  
SYNC Logic Low Input Threshold  
SYNC Logic High Input Threshold  
EN Input Current  
VIN = 12V, VOUT = 5V, IOUT = 3A  
%
A
μA  
°C  
°C  
V
V
V
V
μA  
4.0  
1.4  
6.0  
VIN = 13.2V, VLX = 0 to VIN  
1
140  
25  
0.4  
0.4  
1.0  
1.62  
-1.0  
VEN = 0V, VEN = 13.2V  
1. The AAT1160 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
w w w . a n a l o g i c t e c h . c o m  
4
1160.2007.11.1.1  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Typical Characteristics  
Efficiency vs. Load Current  
(VOUT = 5V)  
Load Regulation  
(VOUT = 5V)  
100  
90  
0.5  
0.4  
6V  
0.3  
80  
70  
0.2  
8.4V  
60  
0.1  
13.2V  
50  
0
8.4V  
10V  
40  
30  
20  
10  
0
-0.1  
12V  
-0.2  
10V  
12V  
6V  
-0.3  
-0.4  
13.2V  
-0.5  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
Efficiency vs. Load Current  
(VOUT = 5V; PWM Mode)  
Load Regulation  
(VOUT = 5V; PWM Mode)  
0.5  
0.4  
0.3  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
13.2V  
6V  
0.2 10V 12V  
8.4V  
0.1  
0
8.4V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
12V  
6V  
13.2V  
10V  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
Efficiency vs. Load Current  
(VOUT = 3.3V)  
Load Regulation  
(VOUT = 3.3V)  
0.6  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8.4V  
0.4  
0.2  
12V  
5V  
10V  
0.0  
13.2V  
-0.2  
-0.4  
-0.6  
5V  
13.2V  
10V  
8.4V  
1
10  
100  
1000  
10000  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (mA)  
w w w . a n a l o g i c t e c h . c o m  
1160.2007.11.1.1  
5
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Typical Characteristics  
Efficiency vs. Load Current  
(VOUT = 3.3V; PWM Mode)  
Load Regulation  
(VOUT = 3.3V; PWM Mode)  
0.6  
0.4  
100  
8.4V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5V  
0.2  
5V  
13.2V  
0.0  
13.2V  
12V  
10V  
-0.2  
8.4V  
10V  
12V  
-0.4  
-0.6  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Output Current (A)  
Output Current (mA)  
Line Regulation  
(VOUT = 5V)  
Line Regulation  
(VOUT = 3.3V)  
0.5  
0.3  
0.05  
0.04  
0.03  
0.02  
0.01  
0
3A  
10mA  
100mA  
0.1  
1mA  
1.5A  
100mA  
1mA  
-0.1  
-0.3  
-0.5  
-0.01  
-0.02  
-0.03  
-0.04  
1.5A  
10mA  
3A  
6
7
8
9
10  
11  
12  
5
6
7
8
9
10  
11  
12  
Input Voltage (V)  
Input Voltage (V)  
Switching Current vs. Input Voltage  
(VOUT = 5V)  
Switching Current vs. Temperature  
170  
160  
150  
140  
130  
120  
110  
170  
160  
150  
140  
130  
120  
85°C  
85°C  
25°C  
-40°C  
-40°C  
110  
-40  
-15  
10  
35  
60  
85  
6
7
8
9
10  
11  
12  
Input Voltage (V)  
Temperature (°C)  
w w w . a n a l o g i c t e c h . c o m  
6
1160.2007.11.1.1  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Typical Characteristics  
N-Channel RDS(ON) vs. Temperature  
P-Channel RDS(ON) vs. Temperature  
(VIN = 6V)  
120  
100  
200  
180  
160  
140  
6V  
6V  
80  
120  
60  
100  
80 12V  
40  
12V  
60  
40  
20  
0
20  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Switching Frequency vs. Temperature  
Line Transient  
(VOUT = 5.0V; CFF = 100pF; VIN = 7.6V to 11V;  
IOUT = 3A; CIN = 10µF; COUT = 22µF; L = 3.8µH)  
810  
805  
800  
795  
790  
785  
780  
775  
770  
12  
11  
10  
9
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
6V  
8
12V  
7
6
5
4
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Time (100µs/div)  
Start-Up Time  
(VOUT = 5.0V; CFF = 100pF; RLOAD = 1.67Ω;  
CIN = 10µF; COUT = 22µF; L = 3.8µH)  
Load Transient  
(VOUT = 5.0V; CFF = 100pF; IOUT = 1A to 3A;  
CIN = 10µF; COUT = 22µF; L = 3.8µH)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5.5  
5
9
8
7
6
5
4
3
2
1
VEN  
4.5  
4
VOUT  
ILOAD  
3.5  
3
ILX  
ILOAD  
Time (500µs/div)  
Time (100µs/div)  
w w w . a n a l o g i c t e c h . c o m  
1160.2007.11.1.1  
7
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Typical Characteristics  
Load Transient  
(VOUT = 5.0V; CFF = 100pF; IOUT = 10mA to 3A;  
CIN = 10µF; COUT = 22µF; L = 3.8µH)  
SYNC Mode  
(VOUT = 5.0V; CFF = 100pF; SYNC = 1.4MHz;  
IOUT = 3A; CIN = 10µF; COUT = 22µF; L = 3.8µH)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
8
6
4
2
0
40  
30  
20  
10  
0
ILOAD  
ILX  
Time (100µs/div)  
Time (200ns/div)  
SYNC Mode  
(VOUT = 5.0V; CFF = 100pF; SYNC = 500kHz;  
IOUT = 3A; CIN = 10µF; COUT = 2x22µF; L = 3.8µH)  
VOUT vs. Temperature  
(VOUT = 3.3V; ILOAD = 1.5A)  
1
8
40  
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
30  
20  
10  
0
-0.2  
-0.4  
-0.6  
-0.8  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Time (500ns/div)  
w w w . a n a l o g i c t e c h . c o m  
8
1160.2007.11.1.1  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Functional Block Diagram  
LDO  
AIN  
IN  
Note1  
FB  
Internal  
Power  
LDO  
Current  
Sense Amp  
+
-
+
-
+
Error  
Amp  
Control  
Logic  
Current  
Mode  
-
LX  
Comparator  
Reference  
PGND  
AGND  
EN  
SYNC  
DGND  
COMP  
.
Note1: For fixed output voltage versions, FB is connected to the  
error amplifier through the resistive voltage divider shown.  
Control Loop  
Functional Description  
The AAT1160 regulates the output voltage using con-  
stant frequency current mode control. The AAT1160  
monitors current through the high-side P-channel  
MOSFET and uses that signal to regulate the output volt-  
age. This provides improved transient response and  
eases compensation. Internal slope compensation is  
included to ensure the current “inside loop” stability.  
The AAT1160 is a current-mode step-down DC/DC con-  
verter that operates over a wide 4V to 13.2V input volt-  
age range and is capable of supplying up to 3A to the  
load with the output voltage regulated as low as 0.6V.  
Both the P-channel power switch and N-channel syn-  
chronous rectifier are internal, reducing the number of  
external components required. The output voltage is  
adjusted by an external resistor divider; fixed output  
voltage versions are available upon request. The regula-  
tion system is externally compensated, allowing the  
circuit to be optimized for each application. The AAT1160  
includes cycle-by-cycle current limiting, frequency fold-  
back for improved short-circuit performance, and ther-  
mal overload protection to prevent damage in the event  
of an external fault condition.  
High efficiency is maintained under light load conditions  
by automatically switching to variable frequency Light  
Load control. In this condition, transition losses are  
reduced by operating at a lower frequency at light loads.  
w w w . a n a l o g i c t e c h . c o m  
1160.2007.11.1.1  
9
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Short-Circuit Protection  
Applications Information  
The AAT1160 uses a cycle-by-cycle current limit to pro-  
tect itself and the load from an external fault condition.  
When the inductor current reaches the internally set  
6.0A current limit, the P-channel MOSFET switch turns  
off and the N-channel synchronous rectifier is turned on,  
limiting the inductor and the load current.  
Setting the Output Voltage  
Figure 1 shows the basic application circuit for the  
AAT1160 and output setting resistors. Resistors R3 and  
R6 program the output to regulate at a voltage higher  
than 0.6V. To limit the bias current required for the  
external feedback resistor string while maintaining good  
noise immunity, the minimum suggested value for R6 is  
5.9kΩ. Although a larger value will further reduce quies-  
cent current, it will also increase the impedance of the  
feedback node, making it more sensitive to external  
noise and interference. Table 1 summarizes the resistor  
values for various output voltages with R6 set to either  
5.9kΩ for good noise immunity or 59kΩ for reduced no  
load input current.  
During an overload condition, when the output voltage  
drops below 25% of the regulation voltage (0.15V at  
FB), the AAT1160 switching frequency drops by a factor  
of 4. This gives the inductor current ample time to reset  
during the off time to prevent the inductor current from  
rising uncontrolled in a short-circuit condition.  
Thermal Protection  
The AAT1160 includes thermal protection that disables  
the regulator when the die temperature reaches 140ºC.  
It automatically restarts when the temperature decreas-  
es by 25ºC or more.  
L1  
EP2  
VOUT  
5V, 2A  
VIN 4.5V -13 .2V  
R4  
3.8μH  
LX  
3
4
1
2
LX  
LX  
FB  
EN  
IN  
C3, C4  
2x22μF  
C1  
R3  
10Ω  
5
7
C6  
22μF  
100pF  
43.2kΩ  
C2  
0.1μF  
IN  
9
AAT1160  
R6  
AIN  
10  
11  
C8  
1μF  
COMP  
Frequency Synchronization  
5.9kΩ  
6
13  
16  
AGND  
DGND  
R5  
50kΩ  
The AAT1160 operates at a fixed 800kHz switching fre-  
quency, or it can be synchronized to an external signal.  
Synchronize switching to an external signal between  
500kHz and 1.6MHz by driving SYNC with that signal. In  
this mode, the rising edge of the signal at SYNC turns on  
the P-channel switch. When changing switching frequen-  
cy, the external components CIN, COUT and L must be  
changed according to the component equations. The  
external clock duty cycle is limited to a 30% to 90%  
range.  
14  
8
DGND  
PGND  
SYNC  
LDO  
DGND  
EP1  
C7  
150pF  
C9  
1μF  
Figure 1: Typical Application Circuit.  
The adjustable feedback resistors, combined with an  
external feed forward capacitor (C1 in Figure 1), deliver  
enhanced transient response for extreme pulsed load  
applications. The addition of the feed forward capacitor  
typically requires a larger output capacitor C3/C4 for  
stability. Larger C3/C4 values reduce overshoot and  
undershoot during startup and load changes. However,  
do not exceed 470pF to maintain stable operation.  
PWM or Light Load Mode  
The device can be set to operate in forced Pulse Width  
Modulation (PWM) mode to filter or set the switching  
noise to a desired frequency by connecting the SYNC to  
a high logic level. Alternately, a combination PWM/LL  
(Light Load) mode for improved light load efficiency can  
be set by connecting the SYNC pin to GND or a low logic  
level. When connecting SYNC to an external clock sig-  
nal, the device is always in forced PWM mode.  
The external resistors set the output voltage according  
to the following equation:  
R3⎞  
R6⎠  
V
OUT = 0.6V 1 +  
or  
V
-1 · R6  
OUT  
R3 =  
V
REF  
w w w . a n a l o g i c t e c h . c o m  
10  
1160.2007.11.1.1  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Table 1 shows the resistor selection for different output  
voltage settings.  
mum recommended inductor is 3.8μH. For 3.3V and  
below, use a 2 to 2.2μH inductor. For optimum voltage-  
positioning load transients, choose an inductor with DC  
series resistance in the 15mto 20mrange. For  
higher efficiency at heavy loads (above 1A), or minimal  
load regulation (but some transient overshoot), the  
resistance should be kept below 18m. The DC current  
rating of the inductor should be at least equal to the  
maximum load current plus half the ripple current to  
prevent core saturation (3A + 526mA). Table 2 lists  
some typical surface mount inductors that meet target  
applications for the AAT1160.  
R6 = 5.9kΩ  
R3 (kΩ)  
R6 = 59kΩ  
R3 (kΩ)  
VOUT (V)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
5.0  
1.96  
2.94  
3.92  
4.99  
5.90  
6.81  
7.87  
8.87  
11.8  
12.4  
13.7  
18.7  
26.7  
43.2  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
Manufacturer’s specifications list both the inductor DC  
current rating, which is a thermal limitation, and the  
peak current rating, which is determined by the satura-  
tion characteristics. The inductor should not show any  
appreciable saturation under normal load conditions.  
Some inductors may meet the peak and average current  
ratings yet result in excessive losses due to a high DCR.  
Always consider the losses associated with the DCR and  
its effect on the total converter efficiency when selecting  
an inductor. For example, the 3.7H CDR7D43 series  
inductor selected from Sumida has an 18.9mΩ DCR and  
a 4.3ADC current rating. At full load, the inductor DC  
loss is 170mW which gives only a 1.13% loss in effi-  
ciency for a 3A, 5V output.  
432  
Table 1: Resistor Selection for Different Output  
Voltage Settings. Standard 1% Resistors are  
Substituted for Calculated Values.  
Inductor Selection  
For most designs, the AAT1160 operates with inductors  
of 2μH to 4.7μH. Low inductance values are physically  
smaller, but require faster switching, which results in  
some efficiency loss. The inductor value can be derived  
from the following equation:  
Input Capacitor Selection  
The input capacitor reduces the surge current drawn  
from the input and switching noise from the device. The  
input capacitor impedance at the switching frequency  
shall be less than the input source impedance to prevent  
high frequency switching current passing to the input. A  
low ESR input capacitor sized for maximum RMS current  
must be used. Ceramic capacitors with X5R or X7R  
dielectrics are highly recommended because of their low  
ESR and small temperature coefficients. A 22μF ceramic  
capacitor is sufficient for most applications.  
VOUT · (VIN  
-
VOUT  
)
L1 =  
VIN · ΔIL · FOSC  
Where IL is inductor ripple current. Large value induc-  
tors lower ripple current and small value inductors result  
in high ripple currents. Choose inductor ripple current  
approximately 32% of the maximum load current 3A, or  
IL = 959mA. For output voltages above 3.3V, the mini-  
Max DCR  
(mΩ)  
Rated DC  
Current (A)  
Size WxLxH  
(mm)  
Manufacturer  
Part Number  
L (μH)  
Sumida  
Sumida  
Coilcraft  
CDRH103RNP-2R2N  
CDR7D43MNNP-3R7NC  
MSS1038-382NL  
2.2  
3.7  
3.8  
16.9  
18.9  
13  
5.10  
4.3  
4.25  
10.3x10.5x3.1  
7.6x7.6x4.5  
10.2x7.7x3.8  
Table 2: Typical Surface Mount Inductors.  
w w w . a n a l o g i c t e c h . c o m  
1160.2007.11.1.1  
11  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
To estimate the required input capacitor size, determine  
the acceptable input ripple level (VPP) and solve for C.  
The calculated value varies with input voltage and is a  
maximum when VIN is double the output voltage.  
high frequency content of the input current localized,  
minimizing EMI and input voltage ripple. The proper  
placement of the input capacitor (C6) can be seen in the  
evaluation board layout in Figure 3. Additional noise fil-  
tering for proper operation is accomplished by adding a  
small 0.1μF capacitor on the IN pins (C2).  
VO  
VO ⎞  
VIN ⎠  
· 1 -  
VIN  
CIN =  
A laboratory test set-up typically consists of two long  
wires running from the bench power supply to the evalu-  
ation board input voltage pins. The inductance of these  
wires, along with the low-ESR ceramic input capacitor,  
can create a high Q network that may affect converter  
performance. This problem often becomes apparent in  
the form of excessive ringing in the output voltage dur-  
ing load transients. Errors in the loop phase and gain  
measurements can also result. Since the inductance of a  
short PCB trace feeding the input voltage is significantly  
lower than the power leads from the bench power sup-  
ply, most applications do not exhibit this problem. In  
applications where the input power source lead induc-  
tance cannot be reduced to a level that does not affect  
the converter performance, a high ESR tantalum or alu-  
minum electrolytic should be placed in parallel with the  
low ESR, ESL bypass ceramic. This dampens the high Q  
network and stabilizes the system.  
VPP  
IO  
- ESR ·FOSC  
VO  
VO ⎞  
VIN ⎠  
1
· 1 -  
=
for VIN = 2 · VO  
VIN  
4
1
CIN(MIN)  
=
VPP  
IO  
- ESR · 4 · FOSC  
Always examine the ceramic capacitor DC voltage coef-  
ficient characteristics when selecting the proper value.  
For example, the capacitance of a 10F, 16V, X5R ceram-  
ic capacitor with 12V DC applied is actually about 8.5F.  
The maximum input capacitor RMS current is:  
VO  
VO ⎞  
VIN ⎠  
IRMS = IO ·  
· 1 -  
Output Capacitor Selection  
VIN  
The output capacitor is required to keep the output volt-  
age ripple small and to ensure regulation loop stability.  
The output capacitor must have low impedance at the  
switching frequency. Ceramic capacitors with X5R or X7R  
dielectrics are recommended due to their low ESR and  
high ripple current. The output ripple VOUT is determined  
by:  
The input capacitor RMS ripple current varies with the  
input and output voltage and will always be less than or  
equal to half of the total DC load current:  
VO  
VO ⎞  
VIN ⎠  
1
· 1 -  
=
D · (1 - D) = 0.52 =  
VIN  
2
VOUT · (VIN - VOUT  
)
1
for VIN = 2 · VO  
ΔVOUT  
· ESR +  
VIN · FOSC · L  
8 · FOSC · COUT  
IO  
IRMS(MAX)  
=
2
The output capacitor limits the output ripple and pro-  
vides holdup during large load transitions. A 10F to  
47F X5R or X7R ceramic capacitor typically provides  
sufficient bulk capacitance to stabilize the output during  
large load transitions and has the ESR and ESL charac-  
teristics necessary for low output ripple. The output volt-  
age droop due to a load transient is dominated by the  
capacitance of the ceramic output capacitor. During a  
step increase in load current, the ceramic output capac-  
itor alone supplies the load current until the loop  
responds. Within two or three switching cycles, the loop  
responds and the inductor current increases to match  
VO  
VO  
1 -  
·
VIN  
VIN  
The term  
appears in both the input voltage  
ripple and input capacitor RMS current equations and is  
at maximum when VO is twice VIN. This is why the input  
voltage ripple and the input capacitor RMS current ripple  
are a maximum at 50% duty cycle. The input capacitor  
provides a low impedance loop for the edges of pulsed  
current drawn by the AAT1160. Low ESR/ESL X7R and  
X5R ceramic capacitors are ideal for this function. To  
minimize stray inductance, the capacitor should be  
placed as closely as possible to the IC. This keeps the  
w w w . a n a l o g i c t e c h . c o m  
12  
1160.2007.11.1.1  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
the load current demand. The relationship of the output  
voltage droop during the three switching cycles to the  
output capacitance can be estimated by:  
FOSC is the switching frequency and COUT is based on the  
output capacitor calculation. The CCOMP value can be  
determined from the following equation:  
4
CCOMP (C7) =  
3 · ΔILOAD  
DROOP · FOSC  
COUT  
=
FOSC  
V
2πRCOMP (R5) ·  
10 ⎠  
Layout Guidance  
Once the average inductor current increases to the DC  
load level, the output voltage recovers. The above equa-  
tion establishes a limit on the minimum value for the  
output capacitor with respect to load transients. The  
internal voltage loop compensation also limits the mini-  
mum output capacitor value to 22F. This is due to its  
effect on the loop crossover frequency (bandwidth),  
phase margin, and gain margin. Increased output capac-  
itance will reduce the crossover frequency with greater  
phase margin.  
Figure 2 is the schematic for the evaluation board. When  
laying out the PC board, the following layout guideline  
should be followed to ensure proper operation of the  
AAT1160:  
1. Exposed pad EP1 must be reliably soldered to PGND/  
DGND/AGND. The exposed thermal pad should be  
connected to board ground plane and pins 6, 11, 13,  
and 16. The ground plane should include a large  
exposed copper pad under the package for thermal  
dissipation.  
2. The power traces, including GND traces, the LX  
traces and the VIN trace should be kept short, direct  
and wide to allow large current flow. The L1 connec-  
tion to the LX pins should be as short as possible.  
Use several via pads when routing between layers.  
3. Exposed pad pin EP2 must be reliably soldered to  
the LX pins 1 and 2. The exposed thermal pad  
should be connected to the board LX connection and  
the inductor L1 and also pins 1 and 2. The LX plane  
should include a large exposed copper pad under the  
package for thermal dissipation.  
The maximum output capacitor RMS ripple current is  
given by:  
1
V
OUT · (VIN(MAX) - VOUT  
)
IRMS(MAX)  
=
·
L · FOSC · VIN(MAX)  
2 · 3  
Dissipation due to the RMS current in the ceramic output  
capacitor ESR is typically minimal, resulting in less than  
a few degrees rise in hot-spot temperature.  
Compensation  
4. The input capacitors (C2 and C6) should be con-  
nected as close as possible to IN (Pins 4 and 5) and  
DGND (Pin 6) to get good power filtering.  
5. Keep the switching node LX away from the sensitive  
FB node.  
6. The feedback trace for the FB pin should be separate  
from any power trace and connected as closely as  
possible to the load point. Sensing along a high-  
current load trace will degrade DC load regulation.  
The feedback resistors should be placed as close as  
possible to the FB pin (Pin 9) to minimize the length  
of the high impedance feedback trace.  
7. The output capacitors C3, 4, and 5 and L1 should be  
connected as close as possible and there should not  
be any signal lines under the inductor.  
The AAT1160 step-down converter uses peak current  
mode control with slope compensation scheme to main-  
tain stability with lower value inductors for duty cycles  
greater than 50%. The regulation feedback loop in the  
IC is stabilized by the components connected to the  
COMP pin, as shown in Figure 1.  
To optimize the compensation components, the following  
equations can be used. The compensation resistor RCOMP  
(R5) is calculated using the following equation:  
2πVOUT · COUT  
10GEA · GCOMP · VFB  
·
FOSC  
RCOMP (R5)=  
Where VFB = 0.6V, GCOMP = 40.1734 and GEA = 9.091 ·  
10-5.  
8. The resistance of the trace from the load return to  
the PGND (Pin 16) should be kept to a minimum.  
This will help to minimize any error in DC regulation  
due to differences in the potential of the internal  
signal ground and the power ground.  
w w w . a n a l o g i c t e c h . c o m  
1160.2007.11.1.1  
13  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
JP1  
Enable  
TP1  
GND  
TP14  
GND  
R1  
4.75K  
R2  
4.75K  
TP2  
LX  
DGND  
TP3  
Enable  
AAT1160  
U1  
EP2  
VOUT  
L1  
LX  
TP4  
VIN  
15  
4
1
2
EN  
IN  
LX  
LX  
TP5  
VIN  
VOUT  
3.8μH  
C1  
100pF  
R3  
5
3
9
10  
IN  
FB  
C2  
0.1μF  
432K  
R4  
10  
TP6  
VOUT  
N/C  
AIN  
COMP  
TP7  
VIN  
7
11  
12  
C3  
22μF  
C4  
22μF  
C5  
NP  
R5  
AGND  
N/C  
50K  
6
13  
C6  
R6  
59K  
DGND  
DGND  
14  
8
TB2  
VOUT  
10μF  
SYNC  
LDO  
TB1  
VIN  
C7  
150pF  
16  
PGND  
C8  
1μF  
EP1  
TP8  
GND  
C9  
1μF  
DGND  
TP9  
GND  
TP10  
TP12  
GND  
TP11  
GND  
TP13  
GND  
*
SYNC  
DGND  
*Note: Connect GND, DGND, and AGND at IC  
Inductor -Sumida CDRH103RNP-3R3NC-B  
JP2  
SYNC  
Figure 2: AAT1160 Evaluation Board Schematic.  
Figure 3: AAT1160 Evaluation Board  
Component Side Layout.  
Figure 4: AAT1160 Evaluation Board  
Solder Side Layout.  
w w w . a n a l o g i c t e c h . c o m  
14  
1160.2007.11.1.1  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Design Example  
Specifications  
VOUT  
VIN  
5V @ 3A, Pulsed Load ΔILOAD = 3A  
12V nominal  
FOSC  
TAMB  
800kHz  
85°C in TDFN34-16 Package  
Output Inductor  
VOUT · (VIN VOUT  
L1 =  
-
)
= 3.8µH; see Table 2.  
VIN · ΔIL · FOSC  
ΔIL = 0.32 · ILOAD  
For Coilcraft inductor MSS1038 3.8μH DCR = 13mΩ max.  
VOUT  
VO1  
5
V
5V  
ΔI1 =  
1 -  
=
1 -  
= 959mA  
L1 FOSC  
VIN  
3.8µH 800kHz  
12V  
ΔI1  
2
IPK1 = ILOAD  
+
= 3A + 0.479A = 3.48A  
2
PL1 = ILOAD DCR = 3A2 13mΩ = 117mW  
Output Capacitor  
VDROOP = 0.2V  
3 · ΔILOAD  
VDROOP · FOSC  
3 · 3A  
COUT  
=
=
= 56µF; use two 22µF  
0.2V · 800kHz  
(VOUT) · (VIN(MAX) - VOUT  
)
1
5V · (12V - 5V)  
1
·
= 277mArms  
IRMS(MAX)  
=
·
=
3.8µH · 800kHz · 12V  
L · FOSC · VIN(MAX)  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (277mA)2 = 384µW  
Input Capacitor  
Input Ripple VPP = 50mV  
1
1
CIN =  
=
= 26µF; use 22µF  
VPP  
ILOAD  
50mV  
- ESR · 4 · FOSC  
- 5mΩ · 4 · 800kHz  
3A  
ILOAD  
IRMS(MAX)  
=
= 1.5Arms  
2
P = esr · IRMS2 = 5mΩ · (1.5A)2 = 11.25mW  
w w w . a n a l o g i c t e c h . c o m  
1160.2007.11.1.1  
15  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
AAT1160 Losses  
Total losses can be estimated by calculating the dropout (VIN = VO) losses where the power MOSFET RDS(ON) will be at  
the maximum value. All values assume an 85°C ambient temperature and a 140°C junction temperature with the TDFN  
37°C/W package.  
PLOSS = ILOAD2 · RDS(ON)H = 3A2 · 0.12Ω = 1.08W  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (37°C/W) · 1.08W = 125°C  
The total losses are also investigated at the nominal input voltage (12V). The simplified version of the RDS(ON) losses  
assumes that the N-channel and P-channel RDS(ON) are equal.  
PTOTAL = ILOAD2 · RDS(ON) + [(tsw · FOSC · ILOAD + IQ) · VIN]  
= 3A2 · 100mΩ + [(5ns · 800kHz · 3A + 150µA) · 12V] = 1.0458W  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (37°C/W) · 1.0458W = 124°C  
w w w . a n a l o g i c t e c h . c o m  
16  
1160.2007.11.1.1  
PRODUCT DATASHEET  
AAT1160  
SwitchRegTM  
12V, 3A Step-Down DC/DC Converter  
Ordering Information  
Package  
Marking1  
Part Number (Tape and Reel)2  
AAT1160IRN-0.6-T1  
TDFN34-16  
XAXYY  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means semiconductor  
products that are in compliance with current RoHS standards, including the requirement that lead not  
exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at  
http://www.analogictech.com/pbfree.  
Package Information  
TDFN34-16  
1.600 0.050  
3.000 0.050  
Index Area  
0.25 REF  
0.430 0.050  
1.600 0.050  
Top View  
Bottom View  
0.050 0.050  
0.230 0.050  
Side View  
All dimensions in millimeters.  
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
3. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing  
process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.  
Advanced Analogic Technologies, Inc.  
3230 Scott Boulevard, Santa Clara, CA 95054  
Phone (408) 737-4600  
Fax (408) 737-4611  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual  
property rights are implied. AnalogicTech reserves the right to make changes to their products or specications or to discontinue any product or service without notice. Except as provided in AnalogicTech’s terms and  
conditions of sale, AnalogicTech assumes no liability whatsoever, and AnalogicTech disclaims any express or implied warranty relating to the sale and/or use of AnalogicTech products including liability or warranties  
relating to tness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. In order to minimize risks associated with the customer’s applications, adequate  
design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to  
support this warranty. Specic testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other  
brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.  
w w w . a n a l o g i c t e c h . c o m  
1160.2007.11.1.1  
17  

相关型号:

AAT1160IRN-0.6-T1

12V, 3A Step-Down DC/DC Converter
ANALOGICTECH

AAT1161

13.2V Input, 3A Step-Down Converter
ANALOGICTECH

AAT1161IWO-0.6-T1

Switching Regulator,
SKYWORKS

AAT1162

12V, 1.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1162

12V, 1.5A Step-Down DC/DC Converter
SKYWORKS

AAT1162IRN-0.6-T1

12V, 1.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1162IRN-0.6-T1

12V, 1.5A Step-Down DC/DC Converter
SKYWORKS

AAT1162_08

12V, 1.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1164-Q5-T

TRIPLE-CHANNEL TFT LCD POWER SOLUTION
AAT

AAT1164B-Q5-T

TRIPLE-CHANNEL TFT LCD POWER SOLUTION
AAT

AAT1164C-Q5-T

TRIPLE-CHANNEL TFT LCD POWER SOLUTION
AAT

AAT1168

TRIPLE-CHANNEL TFT LCD POWER SOLUTION WITH OPERATIONAL AMPLIFIERS
AAT