AAT1161IWO-0.6-T1 [SKYWORKS]

Switching Regulator,;
AAT1161IWO-0.6-T1
型号: AAT1161IWO-0.6-T1
厂家: SKYWORKS SOLUTIONS INC.    SKYWORKS SOLUTIONS INC.
描述:

Switching Regulator,

开关
文件: 总18页 (文件大小:1528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
General Description  
Features  
The AAT1161 is an 800kHz high efficiency step down  
DC-DC converter with wide input voltage range. With  
4.0V to 13.2V input rating, the AAT1161 is the perfect  
choice for 2-cell Li+ battery powered devices and mid  
power range regulated 12V powered applications. The  
internal power switch is capable of delivering up to 3A  
load current.  
 Input Voltage Range: 4.0V to 13.2V  
 Up to 3A Load Current  
 Fixed or Adjustable Output:  
Output Voltage: 0.6V to VIN  
 Less than 1μA Shutdown Current  
 Up to 95% Efficiency  
 Integrated High-Side Power Switch  
 External Schottky Rectifier  
 800kHz Switching Frequency  
 Soft Start Function  
 Short-Circuit and Over-Temperature Protection  
 Minimum External Components  
 Tiny 14-pin 3x3mm TDFN Package  
 Temperature Range: -40°C to +85°C  
The AAT1161 is a highly integrated device in order to  
simplify system level design for the users. It is a non-  
synchronous converter that is used with an external  
Schottky diode rectifier for low-cost applications.  
Minimum external components are required for the con-  
verter. All the control circuits are integrated in the IC.  
The AAT1161 optimizes efficiency throughout the entire  
load range. It operates in a combination PWM/Light Load  
mode for improved light-load efficiency. It can also oper-  
ate in a forced Pulse Width Modulation (PWM) mode for  
easy control of the switching noise as well as faster tran-  
sient response. The high switching frequency allows the  
use of small external components. The low current shut-  
down feature disconnects the load from VIN and drops  
shutdown current to less than 1μA.  
Applications  
 Digital Camcorders  
 Industrial Applications  
 Portable DVD Players  
 Rack Mounted Systems  
 Set Top Boxes  
The AAT1161 is available in a Pb-free, space-saving,  
thermally-enhanced 14-pin TDFN33 package and is rated  
over an operating temperature range of -40°C to +85°C.  
Typical Application  
L1  
VOUT  
VIN 4.5V- 13.2V  
3.8μH  
5V, 3A  
6
8
LX  
EN  
10  
R4  
9
1
C1  
IN  
LX  
FB  
R3  
10Ω  
D1  
11  
C6  
100pF  
C3, 4, 5  
66μF  
C2  
0.1μF  
432kΩ  
IN  
10μF  
AAT1161  
13  
4, 5  
7
AIN  
12  
2
C8  
1μF  
R6  
59kΩ  
PGND  
COMP  
DGND  
N/C  
R5  
51kΩ  
3
AGND  
LDO  
14  
PGND  
EP1  
C7  
C9  
1μF  
150pF  
Skyworks Solutions, Inc.  
Phone [781] 376-3000  
Fax [781] 376-3100  
sales@skyworksinc.com • www.skyworksinc.com  
1
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Pin Descriptions  
Pin #  
Symbol Function  
Output voltage feedback input. FB senses the output voltage for regulation control. For xed output ver-  
sions, connect FB to the output voltage. For adjustable versions, drive FB from the output voltage through  
a resistive voltage divider. The FB regulation threshold is 0.6V.  
1
FB  
Control compensation node. In most congurations external compensation is not required. If external  
compensation is required, connect a series RC network from COMP to AGND. See Compensation section.  
2
3
COMP  
AGND  
DGND  
EN  
Analog signal ground. Used for the Compensation, LDO bypass and feedback divider ground. Connect  
AGND to DGND/PGND at a single point as close to the IC as possible or directly under the package ex-  
posed thermal pad (EP).  
Digital/Power Ground. Used for the input and enable ground. Connect DGND to AGND/PGND at a single  
point as close to the IC as possible or directly under the package exposed thermal pad (EP).  
Active high enable input. Drive EN high to turn on the AAT1161; drive it low to turn it off. For automatic  
startup, connect EN to IN through a 4.7kΩ resistor. EN must be biased high, biased low, or driven to a  
logic level by an external source. Do not let the EN pin oat when the device is powered.  
4, 5  
6
7
N/C  
LX  
No Connect. Leave oating; do not connect anything to this pin.  
Power switching node. LX is the drain of the internal P-channel switch. Connect the external rectier  
from LX to PGND and the external LC output lter from LX to the load.  
8, 9  
Power source input. Connect IN to the input power source. Bypass IN to DGND with a 10μF or greater  
capacitor. Connect both IN pins together as close to the IC as possible. An additional 100nF ceramic  
capacitor should also be connected between the two IN pins and DGND.  
Power Ground. The exposed thermal pad (EP) should be connected to board ground plane and pins 3, 4,  
5 and 12 directly under the package. The ground plane should include a large exposed copper pad under  
the package for thermal dissipation (see package outline).  
Internal analog bias input. AIN supplies internal power to the AAT1161. Connect AIN to the input source  
voltage and bypass to AGND with a 0.1μF or greater capacitor. For additional noise rejection, connect to  
the input power source through a 10Ω or lower value resistor.  
10, 11  
12, EP  
13  
IN  
PGND  
AIN  
Internal LDO bypass node. The output voltage of the internal LDO is bypassed at LDO. The internal cir-  
cuitry of the AAT1161 is powered from LDO. Do not draw external power from LDO. Bypass LDO to AGND  
with a 1μF or greater capacitor.  
14  
LDO  
Pin Configuration  
TDFN33-14  
(Top View)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
FB  
COMP  
AGND  
DGND  
DGND  
EN  
LDO  
AIN  
PGND  
IN  
IN  
LX  
8
N/C  
LX  
Skyworks Solutions, Inc.  
Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
2
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VIN, VAIN  
VLX  
VFB  
VEN  
TJ  
Input Voltage  
LX to GND Voltage  
FB to GND Voltage  
EN to GND Voltage  
-0.3 to 14  
V
V
V
V
°C  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-40 to 150  
Operating Junction Temperature Range  
Thermal Information2  
Symbol  
Description  
Maximum Power Dissipation3  
Thermal Resistance  
Value  
Units  
PD  
JA  
2.0  
50  
W
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions  
specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Mounted on an FR4 board.  
3. Derate 20mW/°C above 25°C.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
3
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Electrical Characteristics  
4.0V < VIN < 13.2V. CIN= 22F, COUT= 66F; L= 2.2H or 3.8H, TA= -40 to +85C unless otherwise noted. Typical val-  
ues are at TA= 25C.  
Symbol Description  
Conditions  
Min  
Typ  
Max  
Units  
VIN  
Input Voltage Range  
4.0  
13.2  
4.0  
V
Rising  
VUVLO  
Input Under-Voltage Lockout  
V
Hysteresis  
No Load  
VEN = GND  
0.3  
150  
IQ  
ISHDN  
Supply Current  
Shutdown Current  
300  
1
A  
A  
0.94  
VIN  
2.5  
VOUT  
Output Voltage Range  
Output Voltage Accuracy  
Line Regulation  
0.6  
V
%
VOUT  
VLINEREG  
VIN  
IOUT = 0A to 3A  
-2.5  
/
VIN = 4.5V to 13.2V  
0.023  
0.4  
%/V  
%
VLOADREG  
Load Regulation  
Feedback Reference Voltage (adjustable  
version)  
VIN = 12V, VOUT = 5V, IOUT = 0A to 3A  
No Load, TA = 25°C  
VFB  
0.59  
0.6  
0.60  
0.61  
0.2  
V
Adjustable Version  
VOUT = 1.2V  
IFBLEAK  
FB Leakage Current  
A  
Fixed Version  
2
0.8  
2
FOSC  
TS  
Oscillator Frequency  
Start-Up Time  
Foldback Frequency  
Maximum Duty Cycle  
Minimum Turn-On Time  
Soft-Start Time  
1
MHz  
ms  
kHz  
%
ns  
ms  
IOUT = 3A, VOUT = 5V  
200  
DC  
TON  
TSS  
94  
100  
2
VIN = 12V  
VIN = 6V  
VIN = 12V, VOUT = 5V, IOUT = 3A  
0.12  
0.15  
90  
RDS(ON)H  
P-Channel On Resistance  
ILIM  
Efciency  
PMOS Current Limit  
%
A
4.0  
6.0  
ILXLEAK  
TSD  
THYS  
VILEN  
VIHEN  
IEN  
LX Leakage Current  
VIN = 13.2V, VLX = 0 to VIN  
1
A  
°C  
°C  
V
V
A  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
EN Logic Low Input Threshold  
EN Logic High Input Threshold  
EN Input Current  
140  
25  
0.4  
1.0  
1.4  
-1.0  
VEN = 0V, VEN = 13.2V  
1. The AAT1161 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
4
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Typical Characteristics  
Efficiency vs. Load Current  
(VOUT = 5V)  
Efficiency vs. Load Current  
(VOUT = 3.3V)  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
VIN = 5V  
IN = 7V  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
VIN = 6V  
IN = 7V  
V
V
VIN = 10V  
VIN = 12V  
VIN = 13.2V  
VIN = 10V  
VIN = 12V  
VIN = 13.2V  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
12  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
12  
Load Current (A)  
Load Current (A)  
Load Regulation  
Load Regulation  
(VOUT = 5V)  
(VOUT = 3.3V)  
1
0.75  
0.5  
1.5  
1.25  
1
VIN = 13.2V  
VIN = 12V  
IN = 10V  
VIN = 7V  
VIN = 6V  
V
0.25  
0
0.75  
0.5  
VIN = 13.2V  
VIN = 12V  
VIN = 10V  
VIN = 7V  
-0.25  
-0.5  
-0.75  
-1  
0.25  
0
-0.25  
-0.5  
V
IN = 6V  
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
Line Regulation  
(VOUT = 5V)  
Line Regulation  
(VOUT = 3.3V)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
3A  
1.5A  
1A  
100mA  
10mA  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
3A  
1.5A  
1A  
100mA  
10mA  
6
7
8
9
10  
11  
5
6
7
8
9
10  
11  
Input Voltage (V)  
Input Voltage (V)  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
5
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Typical Characteristics  
Non Switching Supply Current vs. Input Voltage  
P-Channel RDS(ON) vs. Temperature  
(VIN = 6V)  
200  
180  
160  
180  
85°C  
170  
25°C  
-40°C  
160  
150  
140  
130  
120  
110  
100  
6V  
140  
120  
12V  
100  
80  
60  
40  
20  
0
-40  
-15  
10  
35  
60  
85  
5
6
7
8
9
10  
11  
12  
Input Voltage (V)  
Temperature (°C)  
Switching Frequency vs. Temperature  
VOUT Tolerance vs. Temperature  
(VIN = 6V)  
(VOUT = 3.3V; ILOAD = 3A)  
1
0.8  
0.6  
0.4  
0.2  
0
810  
805  
800  
795  
790  
785  
780  
775  
770  
-0.2  
-0.4  
-0.6  
-0.8  
VIN = 12V  
VIN = 6V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Load Transient  
Line Transient  
(VOUT = 5.0V; CFF = 100pF; VIN = 6V to 11V;  
IOUT = 3A; CIN = 10µF; COUT = 66µF; L = 3.8µH)  
(VOUT = 5.0V; CFF = 100pF; IOUT = 1A to 3A; COUT = 66µF)  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
8
7
6
5
4
3
2
1
0
5.2  
5.1  
20  
18  
16  
14  
12  
10  
8
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
6
4
Time (200ms/div)  
Time (200ms/div)  
Skyworks Solutions, Inc.  
Phone [781] 376-3000  
Fax [781] 376-3100  
sales@skyworksinc.com • www.skyworksinc.com  
6
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Typical Characteristics  
Load Transient  
Start-Up Time  
(VOUT = 5.0V; CFF = 100pF; RLOAD = 1.67Ω;  
CIN = 10µF; COUT = 22µF; L = 3.8µH)  
(VOUT = 5.0V; CFF = 100pF; IOUT = 50mA to 3A; COUT = 66µF)  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
8
7
6
5
4
3
2
1
0
9
7
7
6
5
4
3
2
1
0
-1  
5
3
1
-1  
-3  
-5  
-7  
VENABLE  
VOUT  
ILOAD  
Time (200ms/div)  
Time (1ms/div)  
Skyworks Solutions, Inc.  
Phone [781] 376-3000  
Fax [781] 376-3100  
sales@skyworksinc.com • www.skyworksinc.com  
7
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Functional Block Diagram  
IN  
LDO  
AIN  
Internal  
Power  
LDO  
*
FB  
Current  
Sense Amp  
Err  
DH  
Amp  
Comp  
Voltage  
Reference  
LX  
Control  
Logic  
PGND  
DGND  
Input  
EN  
AGND  
COMP  
*
For fixed output voltage versions, FB is connected to the error amplifier through the resistive voltage divider shown.  
Control Loop  
Functional Description  
The AAT1161 regulates the output voltage using con-  
stant frequency current mode control. The AAT1161  
monitors current through the high-side P-channel  
MOSFET and uses that signal to regulate the output volt-  
age. This provides improved transient response and  
eases compensation. Internal slope compensation is  
included to ensure the current “inside loop” stability.  
High efficiency is maintained under light load conditions  
by automatically switching to variable frequency Light  
Load control. In this condition, transition losses are  
reduced by operating at a lower frequency at light loads.  
The AAT1161 uses an external Schottky rectifier diode to  
minimize cost.  
The AAT1161 is a current-mode step-down DC/DC con-  
verter that operates over a wide 4V to 13.2V input voltage  
range and is capable of supplying up to 3A to the load  
with the output voltage regulated as low as 0.6V. The  
P-channel power switch is internal, reducing the number  
of external components required. An external Schottky  
diode is used for the low side rectifier. The output voltage  
is adjusted by an external resistor divider; fixed output  
voltage versions are available upon request. The regula-  
tion system is externally compensated, allowing the cir-  
cuit to be optimized for each application. The AAT1161  
includes cycle-by-cycle current limiting, frequency fold-  
back for improved short-circuit performance, and thermal  
overload protection to prevent damage in the event of an  
external fault condition.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
8
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Low Dropout Operation  
Applications Information  
The AAT1161 operates with duty cycle up to 100% to  
minimize the dropout voltage, increasing the available  
input voltage range for a given output voltage. As the  
input voltage decreases toward the output voltage, the  
duty cycle increases until it reaches the maximum on-  
time. Further reduction of the supply voltage forces the  
PMOS on 100%; the output voltage is determined by the  
p-channel MOSFET switch and inductor voltage drops.  
Setting the Output Voltage  
Figure 1 shows the basic application circuit for the AAT1161  
and output setting resistors. Resistors R3 and R6 program  
the output to regulate at a voltage higher than 0.6V. To  
limit the bias current required for the external feedback  
resistor string while maintaining good noise immunity, the  
minimum suggested value for R6 is 5.9kΩ. Although a  
larger value will further reduce quiescent current, it will  
also increase the impedance of the feedback node, making  
it more sensitive to external noise and interference. Table  
1 summarizes the resistor values for various output volt-  
ages with R6 set to either 5.9kΩ for good noise immunity  
or 59kΩ for reduced no load input current. The external  
resistors set the output voltage according to the follow-  
ing equation:  
Short-Circuit Protection  
The AAT1161 uses a cycle-by-cycle current limit to pro-  
tect itself and the load from an external fault condition.  
When the inductor current reaches the internally set  
6.0A current limit, the P-channel MOSFET switch turns  
off, limiting the inductor and the load current. During an  
overload condition, when the output voltage drops below  
25% of the regulation voltage (0.15V at FB), the  
AAT1161 switching frequency drops by a factor of 4. This  
gives the inductor current ample time to reset during the  
off time to prevent the inductor current from rising  
uncontrolled in a short-circuit condition.  
R3⎞  
R6⎠  
V
OUT = 0.6V 1 +  
or  
V
-1 · R6  
OUT  
R3 =  
V
REF  
Thermal Protection  
The adjustable feedback resistors, combined with an  
external feed forward capacitor (C1 in Figure 1), deliver  
enhanced transient response for extreme pulsed load  
applications. The addition of the feed forward capacitor  
typically requires a larger output capacitor C3/C4/C5 for  
stability. Larger C3/C4/C5 values reduce overshoot and  
undershoot during startup and load changes. However,  
do not exceed 470pF to maintain stable operation.  
The AAT1161 includes thermal protection that disables  
the regulator when the die temperature reaches 140ºC.  
It automatically restarts when the temperature decreas-  
es by 25ºC or more.  
L1  
VOUT  
VIN 4.5V- 13.2V  
3.8μH  
5V, 3A  
6
8
LX  
EN  
10  
R4  
9
1
C1  
IN  
LX  
FB  
R3  
10Ω  
D1  
11  
C6  
100pF  
C3, 4, 5  
66μF  
C2  
0.1μF  
432kΩ  
IN  
10μF  
AAT1161  
13  
4, 5  
7
AIN  
12  
2
C8  
1μF  
R6  
59kΩ  
PGND  
COMP  
DGND  
N/C  
R5  
51kΩ  
3
AGND  
LDO  
14  
PGND  
EP1  
C7  
150pF  
C9  
1μF  
Figure 1: Typical Application Circuit.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
9
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Table 1 shows the resistor selection for different output  
voltage settings.  
mum recommended inductor is 3.8H. For 3.3V and  
below, use a 2 to 2.2H inductor. For optimum voltage-  
positioning load transients, choose an inductor with DC  
series resistance in the 15mto 20mrange. For  
higher efficiency at heavy loads (above 1A), or minimal  
load regulation (but some transient overshoot), the  
resistance should be kept below 18m. The DC current  
rating of the inductor should be at least equal to the  
maximum load current plus half the ripple current to  
prevent core saturation (3A + 526mA). Table 2 lists  
some typical surface mount inductors that meet target  
applications for the AAT1161.  
R6 = 5.9kΩ  
R3 (kΩ)  
R6 = 59kΩ  
R3 (kΩ)  
VOUT (V)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
5.0  
1.96  
2.94  
3.92  
4.99  
5.90  
6.81  
7.87  
8.87  
11.8  
12.4  
13.7  
18.7  
26.7  
43.2  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
Manufacturer’s specifications list both the inductor DC  
current rating, which is a thermal limitation, and the  
peak current rating, which is determined by the satura-  
tion characteristics. The inductor should not show any  
appreciable saturation under normal load conditions.  
Some inductors may meet the peak and average current  
ratings yet result in excessive losses due to a high DCR.  
Always consider the losses associated with the DCR and  
its effect on the total converter efficiency when selecting  
an inductor. For example, the 3.7μH CDR7D43 series  
inductor selected from Sumida has an 18.9mΩ DCR and  
a 4.3ADC current rating. At full load, the inductor DC  
loss is 170mW which gives only a 1.13% loss in effi-  
ciency for a 3A, 5V output.  
432  
Table 1: Resistor Selection for Different Output  
Voltage Settings. Standard 1% Resistors are  
Substituted for Calculated Values.  
Inductor Selection  
For most designs, the AAT1161 operates with inductors  
of 2H to 4.7H. Low inductance values are physically  
smaller, but require faster switching, which results in  
some efficiency loss. The inductor value can be derived  
from the following equation:  
Input Capacitor Selection  
The input capacitor reduces the surge current drawn  
from the input and switching noise from the device. The  
input capacitor impedance at the switching frequency  
shall be less than the input source impedance to prevent  
high frequency switching current passing to the input. A  
low ESR input capacitor sized for maximum RMS current  
must be used. Ceramic capacitors with X5R or X7R  
dielectrics are highly recommended because of their low  
ESR and small temperature coefficients. A 22F ceramic  
capacitor is sufficient for most applications.  
VOUT · (VIN  
-
VOUT  
)
L1 =  
VIN · ΔIL · FOSC  
Where IL is inductor ripple current. Large value induc-  
tors lower ripple current and small value inductors result  
in high ripple currents. Choose inductor ripple current  
approximately 32% of the maximum load current 3A, or  
IL = 959mA. For output voltages above 3.3V, the mini-  
Max DCR  
(mΩ)  
Rated DC  
Current (A)  
Size WxLxH  
(mm)  
Manufacturer  
Part Number  
L (μH)  
Sumida  
Sumida  
Coilcraft  
CDRH103RNP-2R2N  
CDR7D43MNNP-3R7NC  
MSS1038-382NL  
2.2  
3.7  
3.8  
16.9  
18.9  
13  
5.10  
4.3  
4.25  
10.3x10.5x3.1  
7.6x7.6x4.5  
10.2x7.7x3.8  
Table 2: Typical Surface Mount Inductors.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
10  
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
To estimate the required input capacitor size, determine  
the acceptable input ripple level (VPP) and solve for C.  
The calculated value varies with input voltage and is a  
maximum when VIN is double the output voltage.  
minimizing EMI and input voltage ripple. The proper  
placement of the input capacitor (C6) can be seen in the  
evaluation board layout in Figure 3. Additional noise fil-  
tering for proper operation is accomplished by adding a  
small 0.1F capacitor on the IN pins (C2).  
VO  
VO ⎞  
VIN ⎠  
· 1 -  
A laboratory test set-up typically consists of two long  
wires running from the bench power supply to the eval-  
uation board input voltage pins. The inductance of these  
wires, along with the low-ESR ceramic input capacitor,  
can create a high Q network that may affect converter  
performance. This problem often becomes apparent in  
the form of excessive ringing in the output voltage dur-  
ing load transients. Errors in the loop phase and gain  
measurements can also result. Since the inductance of a  
short PCB trace feeding the input voltage is significantly  
lower than the power leads from the bench power sup-  
ply, most applications do not exhibit this problem. In  
applications where the input power source lead induc-  
tance cannot be reduced to a level that does not affect  
the converter performance, a high ESR tantalum or alu-  
minum electrolytic should be placed in parallel with the  
low ESR, ESL bypass ceramic. This dampens the high Q  
network and stabilizes the system.  
VIN  
CIN =  
VPP  
IO  
- ESR ·FOSC  
VO  
VO ⎞  
VIN ⎠  
1
· 1 -  
=
for VIN = 2 · VO  
VIN  
4
1
CIN(MIN)  
=
VPP  
IO  
- ESR · 4 · FOSC  
Always examine the ceramic capacitor DC voltage coef-  
ficient characteristics when selecting the proper value.  
For example, the capacitance of a 10μF, 16V, X5R ceram-  
ic capacitor with 12V DC applied is actually about  
8.5μF.  
The maximum input capacitor RMS current is:  
VO  
VO ⎞  
VIN ⎠  
IRMS = IO ·  
· 1 -  
Output Capacitor Selection  
VIN  
The output capacitor is required to keep the output volt-  
age ripple small and to ensure regulation loop stability.  
The output capacitor must have low impedance at the  
switching frequency. Ceramic capacitors with X5R or  
X7R dielectrics are recommended due to their low ESR  
and high ripple current. The output ripple VOUT is deter-  
mined by:  
The input capacitor RMS ripple current varies with the  
input and output voltage and will always be less than or  
equal to half of the total DC load current:  
VO  
VO  
1
2
· 1 -  
=
D · (1 - D) = 0.52 =  
VIN  
VIN  
VOUT · (VIN - VOUT  
)
1
for VIN = 2 · VO  
ΔVOUT  
· ESR +  
VIN · FOSC · L  
8 · FOSC · COUT  
IO  
2
IRMS(MAX)  
=
The output capacitor limits the output ripple and pro-  
vides holdup during large load transitions. A 10μF to  
47μF X5R or X7R ceramic capacitor typically provides  
sufficient bulk capacitance to stabilize the output during  
large load transitions and has the ESR and ESL charac-  
teristics necessary for low output ripple. The output volt-  
age droop due to a load transient is dominated by the  
capacitance of the ceramic output capacitor. During a  
step increase in load current, the ceramic output capac-  
itor alone supplies the load current until the loop  
responds. Within two or three switching cycles, the loop  
responds and the inductor current increases to match  
the load current demand. The relationship of the output  
VO  
VO  
1 -  
·
VIN  
VIN  
The term  
appears in both the input voltage rip-  
ple and input capacitor RMS current equations and is at  
maximum when VO is twice VIN. This is why the input  
voltage ripple and the input capacitor RMS current ripple  
are a maximum at 50% duty cycle. The input capacitor  
provides a low impedance loop for the edges of pulsed  
current drawn by the AAT1161. Low ESR/ESL X7R and  
X5R ceramic capacitors are ideal for this function. To  
minimize stray inductance, the capacitor should be  
placed as closely as possible to the IC. This keeps the  
high frequency content of the input current localized,  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
11  
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
voltage droop during the three switching cycles to the  
output capacitance can be estimated by:  
FOSC is the switching frequency and COUT is based on the  
output capacitor calculation. The CCOMP value can be  
determined from the following equation:  
3 · ΔILOAD  
DROOP · FOSC  
4
COUT  
=
CCOMP (C) =  
V
FOSC  
10  
2πRCOMP (R5) ·  
Once the average inductor current increases to the DC  
load level, the output voltage recovers. The above equa-  
tion establishes a limit on the minimum value for the  
output capacitor with respect to load transients. The  
internal voltage loop compensation also limits the mini-  
mum output capacitor value to 22μF. This is due to its  
effect on the loop crossover frequency (bandwidth),  
phase margin, and gain margin. Increased output capac-  
itance will reduce the crossover frequency with greater  
phase margin.  
Schottky Diode Selection  
Power dissipation is the limiting factor when choosing a  
diode. The worst-case average power can be calculated  
as follows:  
VOUT  
PDIODE = 1 -  
IOUT VF  
VIN  
The maximum output capacitor RMS ripple current is  
given by:  
where VF is the voltage drop across the diode at the  
given output current IOUTMAX. The total power dissipation  
of the diode is the combined totaI of forward power dis-  
sipation, reverse power dissipation and switching loss.  
Ensure that the selected diode will be able to dissipate  
the power based on the equation:  
1
V
OUT · (VIN(MAX) - VOUT  
)
IRMS(MAX)  
=
·
L · FOSC · VIN(MAX)  
2 · 3  
Dissipation due to the RMS current in the ceramic output  
capacitor ESR is typically minimal, resulting in less than  
a few degrees rise in hot-spot temperature.  
TJ(MAX) = TAMB + ΘJA · PDIODE  
Where:  
Compensation  
θJA = Package Thermal Resistance (°C/W)  
TJ(MAX) = Maximum Device Junction Temperature (°C)  
TA = Ambient Temperature (°C)  
The AAT1161 step-down converter uses peak current  
mode control with slope compensation scheme to main-  
tain stability with lower value inductors for duty cycles  
greater than 50%. The regulation feedback loop in the  
IC is stabilized by the components connected to the  
COMP pin, as shown in Figure 1.  
For reliable operation over the input voltage range,  
ensure that the reverse-repetitive maximum voltage is  
greater than the maximum input voltage (VRRM>VINMAX).  
The diode’s forward-current specification must meet or  
exceed the maximum output current (IF(AV)>=IOUTMAX).  
See Table 3 for recommended diodes for different IOUT  
conditions.  
To optimize the compensation components, the following  
equations can be used. The compensation resistor RCOMP  
(R5) is calculated using the following equation:  
2πVOUT · COUT  
10GEA · GCOMP · VFB  
·
FOSC  
RCOMP (R5)=  
Where VFB = 0.6V, GCOMP = 40.1734 and GEA = 9.091 ·  
10-5.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
12  
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Part Number  
VF  
IF(AV  
)
VRRM  
θJA  
TJ(MAX)  
Manufacturer Dimensions (mm)  
M1FM3  
D1FH3  
SK32  
0.46V  
0.36V  
0.5V  
0.475A  
0.43  
0.5V  
0.485V  
0.43V  
3A  
3A  
3A  
3A  
3A  
2A  
1A  
30V  
30V  
20V  
20V  
40V  
20V  
30V  
20V  
80°C/W  
65°C/W  
60°C/W  
55°C/W  
46°C/W  
25°C/W  
426°C/W  
426°C/W  
150°C  
125°C  
150°C  
125°C  
150°C  
150°C  
125°C  
125°C  
Shindengen  
Shindengen  
MCC  
Jinan Jingheng  
IR/Microsemi  
Diodes Inc.  
Diodes Inc.  
Diodes Inc.  
2.8x1.8  
4.4x2.5  
7x6  
4.3x3.6  
7x6  
4.3x3.6  
1.7x1.3  
1.7x1.3  
SS5820  
30BQ040/LSM345  
B220/A  
SDM100K30L  
B0520WS  
0.5A  
Table 3: Recommended Schottky Diodes for Different Output Current Requirements.  
4. The input capacitors (C2 and C6) should be con-  
Layout Guidance  
nected as close as possible to IN (Pins 4 and 5) and  
DGND (Pin 6) to get good power filtering.  
5. Keep the switching node LX away from the sensitive  
FB node.  
6. The feedback trace for the FB pin should be separate  
from any power trace and connected as closely as  
possible to the load point. Sensing along a high-  
current load trace will degrade DC load regulation.  
The feedback resistors should be placed as close as  
possible to the FB pin (Pin 9) to minimize the length  
of the high impedance feedback trace.  
Figure 2 is the schematic for the evaluation board. When  
laying out the PC board, the following layout guideline  
should be followed to ensure proper operation of the  
AAT1161:  
1. Exposed pad EP1 must be reliably soldered to PGND/  
DGND/AGND. The exposed thermal pad should be  
connected to board ground plane and pins 6, 11, 13,  
and 16. The ground plane should include a large  
exposed copper pad under the package for thermal  
dissipation.  
7. The output capacitors C3, 4, and 5 and L1 should be  
connected as close as possible and there should not  
be any signal lines under the inductor.  
8. The resistance of the trace from the load return to  
the PGND (Pin 16) should be kept to a minimum.  
This will help to minimize any error in DC regulation  
due to differences in the potential of the internal  
signal ground and the power ground.  
2. The power traces, including GND traces, the LX  
traces and the VIN trace should be kept short, direct  
and wide to allow large current flow. The L1 connec-  
tion to the LX pins should be as short as possible.  
Use several via pads when routing between layers.  
3. Exposed pad pin EP2 must be reliably soldered to the  
LX pins 1 and 2. The exposed thermal pad should be  
connected to the board LX connection and the induc-  
tor L1 and also pins 1 and 2. The LX plane should  
include a large exposed copper pad under the pack-  
age for thermal dissipation.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
13  
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
JP1  
R1  
4.75K  
EN  
R2  
D1  
Schottky  
TP1  
LX  
NP  
DGND  
U1  
VOUT  
AAT1161  
TP2  
L1  
VIN  
6
10  
11  
9
8
1
2
TP3  
EN  
IN  
LX  
LX  
3.3μH  
VOUT  
TB1  
C1  
VIN  
TB2  
IN  
FB  
R3  
10  
R4  
43.2K  
0.1μF  
C2  
COMP  
100pF  
13  
3
7
AIN  
AGND  
N/C  
R5  
51.0K  
4
12  
VOUT  
TB4  
DGND  
PGND  
C3  
22μF  
C4  
22μF  
C5  
22μF  
C6  
150pF  
NP  
VIN  
TB3  
C7  
22μF  
TP4  
5
14  
DGND  
LDO  
EP  
C8  
LDO  
R6  
5.90K  
0.1μF  
C9  
150pF  
C10  
0.1μF  
GND  
TP5  
GND  
TP7  
GND  
GND  
DGND PGND  
PGND  
AGND  
Note: Connect GND, DGND, PGND, and AGND at IC  
C2 - Increase C2 to reduce overshoot  
Figure 2: AAT1161 Evaluation Board Schematic.  
Figure 3: AAT1161 Evaluation Board  
Top Side Layout.  
Figure 4: AAT1161 Evaluation Board  
Bottom Side Layout.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
14  
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Design Example  
Specifications  
VOUT  
VIN  
5V @ 3A, Pulsed Load ILOAD = 3A  
12V nominal  
FOSC  
TAMB  
800kHz  
85°C in TDFN34-16 Package  
Output Inductor  
VOUT · (VIN VOUT  
L1 =  
-
)
= 3.8µH; see Table 2.  
VIN · ΔIL · FOSC  
ΔIL = 0.32 · ILOAD  
For Coilcraft inductor MSS1038 3.8H DCR = 13mmax.  
VOUT  
VO1  
5
V
5V  
ΔI1 =  
1 -  
=
1 -  
= 959mA  
L1 FOSC  
VIN  
3.8µH 800kHz  
12V  
ΔI1  
2
IPK1 = ILOAD  
+
= 3A + 0.479A = 3.48A  
2
PL1 = ILOAD DCR = 3A2 13mΩ = 117mW  
Output Capacitor  
VDROOP = 0.2V  
3 · ΔILOAD  
VDROOP · FOSC  
3 · 3A  
COUT  
=
=
= 56µF; use three 22µF  
0.2V · 800kHz  
(VOUT) · (VIN(MAX) - VOUT  
)
1
5V · (12V - 5V)  
1
·
= 277mArms  
IRMS(MAX)  
=
·
=
3.8µH · 800kHz · 12V  
L · FOSC · VIN(MAX)  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (277mA)2 = 384µW  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
15  
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Input Capacitor  
Input Ripple VPP = 50mV  
1
1
CIN =  
=
= 26µF; use 22µF  
VPP  
ILOAD  
50mV  
- ESR · 4 · FOSC  
- 5mΩ · 4 · 800kHz  
3A  
ILOAD  
IRMS(MAX)  
=
= 1.5Arms  
2
P = esr · IRMS2 = 5mΩ · (1.5A)2 = 11.25mW  
AAT1161 Losses  
Total losses can be estimated by calculating at the nominal input voltage (12V). All values assume an 85°C ambient  
temperature and a 140°C junction temperature with the TDFN 50°C/W package.  
RDS(ON) = 0.18  
tSW = 5ms  
IQ = 300A  
ILOAD2 · (RDS(ON) · VOUT  
)
+ [(tsw · FOSC · ILOAD + IQ) · VIN]  
PLOSS  
=
VIN  
PLOSS = 823mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (50°C/W) · 0.823W = 126°C  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
16  
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Ordering Information  
Package  
Marking1  
Part Number (Tape and Reel)2  
AAT1161IWO-0.6-T1  
TDFN33-14  
1HXYY  
Skyworks Green™ products are compliant with  
all applicable legislation and are halogen-free.  
For additional information, refer to Skyworks  
Definition of Green™, document number  
SQ04-0074.  
Package Information  
TDFN33-143  
Detail "A"  
Index Area  
1.650 0.050  
3.000 0.050  
Top View  
Bottom View  
0.425 0.050  
+ 0.100  
0.000  
- 0.000  
Pin 1 Indicator  
(Optional)  
Side View  
Detail "A"  
All dimensions in millimeters.  
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
3. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing  
process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
17  
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  
DATA SHEET  
AAT1161  
13.2V Input, 3A Step-Down Converter  
Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.  
Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a  
service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Sky-  
works may change its documentation, products, services, specications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no  
responsibility whatsoever for conicts, incompatibilities, or other difculties arising from any future changes.  
No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided here-  
under, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.  
THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR  
PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES  
NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, IN-  
CLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM  
THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or en-  
vironmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper  
use or sale.  
Customers are responsible for their products and applications using Skyworks products, which may deviate from published specications as a result of design defects, errors, or operation of products outside of pub-  
lished parameters or design specications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product  
design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specications or parameters.  
Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for  
identication purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
18  
201997A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 28, 2012  

相关型号:

AAT1162

12V, 1.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1162

12V, 1.5A Step-Down DC/DC Converter
SKYWORKS

AAT1162IRN-0.6-T1

12V, 1.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1162IRN-0.6-T1

12V, 1.5A Step-Down DC/DC Converter
SKYWORKS

AAT1162_08

12V, 1.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1164-Q5-T

TRIPLE-CHANNEL TFT LCD POWER SOLUTION
AAT

AAT1164B-Q5-T

TRIPLE-CHANNEL TFT LCD POWER SOLUTION
AAT

AAT1164C-Q5-T

TRIPLE-CHANNEL TFT LCD POWER SOLUTION
AAT

AAT1168

TRIPLE-CHANNEL TFT LCD POWER SOLUTION WITH OPERATIONAL AMPLIFIERS
AAT

AAT1168-Q5-T

TRIPLE-CHANNEL TFT LCD POWER SOLUTION WITH OPERATIONAL AMPLIFIERS
AAT

AAT1168A

TRIPLE-CHANNEL TFT LCD POWER SOLUTION WITH OPERATIONAL AMPLIFIERS
AAT

AAT1168A-Q5-T

TRIPLE-CHANNEL TFT LCD POWER SOLUTION WITH OPERATIONAL AMPLIFIERS
AAT