AAT1155IKS-1.0-T1 [ANALOGICTECH]

1MHz 2.5A Step-Down DC/DC Converter; 1MHz的2.5A降压型DC / DC转换器
AAT1155IKS-1.0-T1
型号: AAT1155IKS-1.0-T1
厂家: ADVANCED ANALOGIC TECHNOLOGIES    ADVANCED ANALOGIC TECHNOLOGIES
描述:

1MHz 2.5A Step-Down DC/DC Converter
1MHz的2.5A降压型DC / DC转换器

转换器
文件: 总17页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
SwitchReg  
General Description  
Features  
The AAT1155 SwitchReg™ is a member of  
AnalogicTech's Total Power Management IC™  
(TPMIC™) product family. The step-down switch-  
ing converter is ideal for applications where high  
efficiency, small size, and low ripple are critical.  
Able to deliver 2.5A with an internal power MOS-  
FET, the current-mode controlled IC provides high  
efficiency. Fully internally compensated, the  
AAT1155 simplifies system design and lowers  
external parts count.  
5.5V Max Supply Input  
Fixed or Adjustable VOUT: 1.0V to 4.2V  
2.5A Output Current  
Up to 95% Efficiency  
Integrated Low On Resistance Power  
Switches  
Internally Compensated Current Mode Control  
1MHz Switching Frequency  
Constant PWM Mode  
Low Output Ripple With Light Load  
Internal Soft Start  
Current Limit Protection  
Over-Temperature Protection  
MSOP-8 Package  
The AAT1155 is available in a Pb-free MSOP-8  
package and is rated over the -40°C to +85°C tem-  
perature range.  
-40°C to +85°C Temperature Range  
Applications  
Cable/DSL Modems  
Computer Peripherals  
High Efficiency Conversion from 5V or 3.3V  
Supply  
Network Cards  
Set-Top Boxes  
Typical Application  
INPUT  
VP  
10µF  
FB  
LX  
LX  
AAT1155  
1.5µH  
ENABLE  
VCC  
100Ω  
0.1µF  
OUTPUT  
120µF  
GND  
1155.2005.11.1.6  
1
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Pin Descriptions  
Pin #  
Symbol  
Function  
1
2
FB  
GND  
EN  
Feedback input pin.  
Signal ground.  
3
Converter enable pin.  
4
VCC  
VP  
Small signal filtered bias supply.  
Input supply for converter power stage.  
Inductor connection pin.  
5, 8  
6, 7  
LX  
Pin Configuration  
MSOP-8  
1
8
VP  
FB  
2
3
4
7
6
5
GND  
EN  
LX  
LX  
VP  
VCC  
2
1155.2005.11.1.6  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Absolute Maximum Ratings1  
TA = 25°C, unless otherwise noted.  
Symbol  
Description  
Value  
Units  
VCC, VP  
VLX  
VCC, VP to GND  
6
V
V
LX to GND  
-0.3 to VP+0.3  
-0.3 to VCC+0.3  
-0.3 to VCC+0.3  
-40 to 150  
300  
VFB  
FB to GND  
V
VEN  
EN to GND  
V
TJ  
Operating Junction Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec)  
ESD Rating2 - HBM  
°C  
°C  
V
TLEAD  
VESD  
3000  
Thermal Characteristics3  
Symbol  
Description  
Value  
Units  
ΘJA  
PD  
Maximum Thermal Resistance  
Maximum Power Dissipation  
150  
833  
°C/W  
mW  
Recommended Operating Conditions  
Symbol  
Description  
Rating  
Units  
T
Ambient Temperature Range  
-40 to +85  
°C  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at condi-  
tions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Human body model is a 100pF capacitor discharged through a 1.5kresistor into each pin.  
3. Mounted on a demo board (FR4, in still air).  
1155.2005.11.1.6  
3
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Electrical Characteristics  
VIN = VCC = VP = 5V, TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min Typ Max Units  
VIN  
Input Voltage Range  
2.7  
5.5  
2.5  
V
VOUT  
Output Voltage Tolerance  
VIN = VOUT + 0.2 to 5.5V,  
IOUT = 0.5A  
-2.5  
%
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
0.6  
2.5  
V
V
1.4  
1.2  
V
IN Rising  
VUVLO  
Under-Voltage Lockout  
V
VIN Falling  
VUVLO(HYS)  
IQ  
ISHDN  
ILIM  
RDS(ON)L  
η
VOUT (VOUT*VIN) Load Regulation  
Under-Voltage Lockout Hysteresis  
Quiescent Supply Current  
Shutdown Current  
250  
mV  
No Load, VFB = 0V  
VEN = 0V, VIN = 5.5V  
TA = 25°C  
630 1000 µA  
1.0  
µA  
A
Current Limit  
4.4  
High Side Switch On Resistance TA = 25°C  
60  
92  
mΩ  
%
Efficiency  
IOUT = 1.0A  
ILOAD = 0A to 2.5A  
VIN = 2.7V to 5.5V  
TA = 25°C  
2.3  
0.75  
1
%
VOUT/VOUT  
FOSC  
Line Regulation  
%/V  
MHz  
°C  
Oscillator Frequency  
Over-Temperature Shutdown  
Threshold  
TSD  
140  
THYS  
Over-Temperature Shutdown  
Hysteresis  
15  
°C  
4
1155.2005.11.1.6  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Typical Characteristics  
RDS(ON) vs. Temperature  
Oscillator Frequency Variation  
vs. Input Voltage  
(VOUT = 3.3V)  
90  
80  
70  
60  
50  
40  
0.5  
2.7V  
3.6V  
4.2V  
0.25  
0
5.5V  
5.0V  
-0.25  
-0.5  
-20  
0
20  
40  
60  
80  
100  
120  
3.5  
4
4.5  
5
5.5  
Temperature (°C)  
Input Voltage (V)  
Oscillator Frequency Variation vs. Temperature  
(VIN = 5V)  
RDS(ON) vs. Input Voltage  
(IDS = 1A)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
1
0
-1  
-2  
-3  
-4  
2.5  
3
3.5  
4
4.5  
5
5.5  
-20  
0
20  
40  
60  
80  
100  
Input Voltage (V)  
Temperature (°C)  
Enable Threshold vs. Input Voltage  
Output Voltage Variation vs. Temperature  
(IOUT = 2A; VO = 3.3V)  
1.2  
0.4  
0.2  
0
1.1  
1
EN(H)  
0.9  
0.8  
0.7  
0.6  
-0.2  
-0.4  
-0.6  
-0.8  
EN(L)  
2.5  
3
3.5  
4
4.5  
5
5.5  
-20  
0
20  
40  
60  
80  
100  
Input Voltage (V)  
Temperature (°°C)  
1155.2005.11.1.6  
5
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Typical Characteristics  
AAT1155 Evaluation Board  
Over-Temperature Current vs. Input Voltage  
(VOUT = 3.3V)  
Line Regulation  
(VOUT = 3.3V)  
1
0
3.6  
3.4  
55°C  
3.2  
I
O = 0.3A  
3
-1  
-2  
-3  
-4  
-5  
70°C  
2.8  
2.6  
2.4  
85°C  
2.2  
2
100°C  
IO = 3.0A  
1.8  
1.6  
3.5  
3.75  
4
4.25  
4.5  
4.75  
5
5.25  
5.5  
3.4  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Load Regulation  
(VIN = 5.0V; VOUT = 3.3V)  
Non-Switching Operating  
Current vs. Temperature  
(FB = 0V)  
750  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
-8.0  
-9.0  
700  
650  
600  
550  
500  
450  
2.7V 3.6V 4.2V  
5.0V 5.5V  
-10.0  
0.01  
0.10  
1.00  
10.00  
-20  
0
20  
40  
60  
80  
100  
120  
Load Current (A)  
Temperature (°C)  
Over-Temperature Shutdown  
Current vs. Temperature  
(VOUT = 3.3V; VIN = 5.0V)  
Inrush and Output  
Overshoot Characteristics  
8
6
14  
12  
10  
8
5
4.5  
4
2
4
3.5  
3
0
6
-2  
-4  
-6  
-8  
4
2
2.5  
2
0
-2  
0
0.4  
0.8  
1.2  
1.6  
2
-20 -10  
0
10 20  
30  
40  
50 60  
70  
80  
90 100  
Time (ms)  
Temperature (°C)  
6
1155.2005.11.1.6  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Typical Characteristics  
Tantalum Output Ripple  
(IOUT = 3.0A; VOUT = 3.3V; VIN = 5.0V)  
Loop Crossover Gain and Phase  
16  
12  
8
180  
135  
90  
L = 1.5µHy  
0.04  
0.02  
7
6
5
4
3
2
1
0
-1  
Phase  
0.00  
4
45  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.12  
0
0
200µF gain  
-4  
-45  
-90  
-135  
-180  
300µF gain  
-8  
100µF 6.3 Ceramic  
TDK P/N C3225X5R0J107M  
Vishay GRM43SR60J107ME20L  
-12  
-16  
120µF 6.3V Tantalum  
Vishay P/N 594D127X96R3C2T  
10000  
100000  
0
1
2
3
4
5
Frequency (Hz)  
Time (µµs)  
Output Ripple  
(IOUT = 3.0A; VOUT = 3.3V; VIN = 5.0V)  
Loop Crossover Gain and Phase  
16  
12  
8
180  
135  
90  
4
7
6
5
4
3
2
1
0
-1  
2
0
4
45  
Gain  
-2  
0
0
-4  
-4  
-45  
-90  
-135  
-6  
-8  
-8  
200µF 6.3V Ceramic  
TDK P/N C3325X5R0J107M  
Vishay GRM43SR60J107ME20L  
-10  
-12  
120µF 6.3V Tantalum  
Vishay P/N 594D127X96R3C2T  
-12  
-16  
-180  
0
1
2
3
4
5
10000  
100000  
1000000  
Time (µs)  
Frequency (Hz)  
Tantalum Transient Response  
(IOUT = 0 to 3.0A; VOUT = 3.3V; VIN = 5.0V)  
Output Ripple  
(IOUT = 3.0A; VOUT = 3.3V; VIN = 5.0V)  
4
2
0
7
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
7
6
5
4
3
2
1
0
-1  
6
5
4
3
2
1
0
-1  
-2  
-4  
-6  
-8  
300µF 6.3VCeramic  
TDK P/N C3325X5R0J107M  
Vishay GRM43SR60J107ME20L  
-10  
-12  
120µF 6.3V Tantalum  
Vishay P/N 594D127X96R3C2T  
0
1
2
3
4
5
0
100  
200  
300  
400  
500  
Time (µµs)  
Time (µµs)  
1155.2005.11.1.6  
7
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Typical Characteristics  
Transient Response  
(IOUT = 0 to 3.0A; VOUT = 3.3V; VIN = 5.0V)  
Transient Response  
(IOUT = 0 to 3.0A; VOUT = 3.3V; VIN = 5.0V)  
3.40  
3.30  
7
6
5
4
3
2
1
0
-1  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
7
6
5
4
3
2
1
0
-1  
3.20  
2x 100µF 6.3V Ceramic  
TDK P/N C3325X5R0J107M  
Vishay GRM43SR60J107ME20L  
3x 100µF 6.3V Ceramic  
TDK P/N C3325X5R0J107M  
Vishay GRM43SR60J107ME20L  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Time (µs)  
Time (µµs)  
8
1155.2005.11.1.6  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Functional Block Diagram  
VCC  
VP = 2.5V to 5.5V  
REF  
CMP  
DH  
OP. AMP  
FB  
LOGIC  
LX  
Temp.  
Sensing  
OSC  
EN  
Duty cycle extends to 100% as the input voltage  
approaches the output voltage. Thermal shutdown  
protection disables the device in the event of a  
short-circuit or overload condition.  
Applications Information  
Main Control Loop  
The AAT1155 is a peak current mode step-down  
converter. The inner wide bandwidth loop controls  
the inductor peak current. The inductor current is  
sensed as it flows through the internal P-channel  
MOSFET. A fixed slope compensation signal is  
then added to the sensed current to maintain sta-  
bility for duty cycles greater than 50%. The inner  
loop appears as a voltage-programmed current  
source in parallel with the output capacitor.  
Soft Start/Enable  
Soft start controls the current limit when the input  
voltage or enable is applied. It limits the current  
surge seen at the input and eliminates output volt-  
age overshoot.  
When pulled low, the enable input forces the device  
into a low-power, non-switching state. The total  
input current during shutdown is less than 1µA.  
The voltage error amplifier output programs the cur-  
rent loop for the necessary inductor current to force  
a constant output voltage for all load and line con-  
ditions. The feedback resistive divider is internal,  
dividing the output voltage to the error amplifier ref-  
erence voltage of 1.0V. The error amplifier has a  
limited DC gain. This eliminates the need for exter-  
nal compensation components, while still providing  
sufficient DC loop gain for good load regulation.  
The crossover frequency and phase margin are set  
by the output capacitor value.  
Power and Signal Source  
Separate small signal ground and power supply  
pins isolate the internal control circuitry from  
switching noise. In addition, the low pass filter R1  
and C3 (shown in Figure 1) filters noise associated  
with the power switching.  
1155.2005.11.1.6  
9
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Vin 2.7V-5.5V  
VOUT 1.25V @ 2.5A  
R3  
2.55k  
U1  
AAT1155-1.0  
R1 R2  
100 100k  
FB  
VP  
C4  
100µF  
L1  
1.5µH  
GND LX  
EN LX  
VCC VP  
C1  
C2  
D1  
B340LA 120µF  
10µF  
C3  
0.1µF  
R4  
10.0k  
rtn  
C1 Murata 10µF 6.3V X5R GRM42-6X5R106K6.3  
C2 Vishay 120µF 6.3V 594D127X96R6R3C2T  
C3 0.1µF 0603ZD104M AVX  
C4 Vishay Sprague 100µF 16V 595D107X0016C 100µF 16V  
D1 B340LA Diodes Inc.  
L1 CDRH6D28-1.5µH Sumida  
Options  
C2 MuRata 100uF 6.3V GRM43-2 X5R 107M 100µF 6.3V (two or three in parallel)  
C2 TDK 100µF 6.3V C3325X5R0J107M 100µF 6.3V (two or three in parallel)  
Figure 1: AAT1155 Evaluation Board with Adjustable Output.  
peak ripple current is 1A. Assuming a 5V ±5% input  
voltage and 40% ripple, the output inductance  
required is:  
Current Limit and Over-Temperature  
Protection  
Over-temperature and current limit circuitry pro-  
tects the AAT1155 and the external Schottky diode  
during overload, short-circuit, and excessive ambi-  
ent temperature conditions. The junction over-tem-  
perature threshold is 140°C nominal and has 15°C  
of hysteresis. Typical graphs of the over-tempera-  
ture load current vs. input voltage and ambient  
temperature are shown in the Typical Character-  
istics section of this document.  
VOUT  
IOUT · k · FSW  
VOUT  
VIN(MAX)  
L =  
· 1 -  
3.3V  
2.5A · 0.4 · 1MHz  
3.3V  
5.25V⎠  
=
· 1 -  
= 1.23µH  
The factor "k" is the fraction of the full load (40%)  
selected for the ripple current at the maximum input  
voltage.  
Inductor  
The output inductor is selected to limit the ripple cur-  
rent to 20% to 40% of the full load current at the max-  
imum input voltage. Manufacturer's specifications list  
both the inductor DC current rating, which is a ther-  
mal limitation, and the peak current rating, which is  
determined by the inductor saturation characteristics.  
The inductor should not show any appreciable satu-  
ration under normal load conditions. During overload  
and short-circuit conditions, the inductor can exceed  
its peak current rating without affecting the converter  
performance. Some inductors may have sufficient  
peak and average current ratings yet result in exces-  
sive losses due to a high DCR. The losses associat-  
ed with the DCR and its effect on the total converter  
efficiency must be considered.  
The corresponding inductor RMS current is:  
I2  
12  
2
IRMS  
=
IO  
+
I = 2.5A  
O
I is the peak-to-peak ripple current which is fixed  
by the inductor selection above. For a peak-to-  
peak current of 40% of the full load current, the  
peak current at full load will be 120% of the full  
load. The 1.5µH inductor selected from the Sumida  
CDRH6D38 series has a 11mDCR and a 4.0A  
DC current rating with a height of 4mm. At full load,  
the inductor DC loss is 70mW for a 0.84% loss in  
efficiency.  
For a 2.5A load and the ripple current set to 40% at  
the maximum input voltage, the maximum peak-to-  
10  
1155.2005.11.1.6  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
3A Surface Mount Schottky Diodes  
Schottky Freewheeling Diode  
The Schottky average current is the load current  
multiplied by one minus the duty cycle.  
Diodes Inc.  
ROHM  
B340LA  
RB050L-40  
5820SM  
0.45V @ 3A  
0.45 @ 3A  
0.46V @ 3A  
Micro Semi  
VO  
1-  
V
IN  
Input Capacitor Selection  
The primary function of the input capacitor is to pro-  
vide a low impedance loop for the edges of pulsed  
current drawn by the AAT1155. A low ESR/ESL  
ceramic capacitor is ideal for this function. To mini-  
mize stray inductance, the capacitor should be  
placed as closely as possible to the IC. This also  
keeps the high frequency content of the input cur-  
rent localized, minimizing the radiated and con-  
ducted EMI while facilitating optimum performance  
of the AAT1155. Proper placement of the input  
capacitor C1 is shown in the layout in Figure 2.  
Ceramic X5R or X7R capacitors are ideal. The  
size required will vary depending on the load, out-  
put voltage, and input voltage source impedance  
characteristics. Typical values range from 1µF to  
10µF. The input capacitor RMS current varies with  
the input voltage and the output voltage. It is high-  
est when the input voltage is double the output volt-  
age where it is one half of the load current.  
For VIN at 5V and VOUT at 3.3V, the average diode  
current is:  
VO  
3.3V  
=
IAVG = IO ·  
·
1-  
= 2.5A 1-  
0.85A  
V ⎠  
5.0V⎠  
IN  
With a 125°C maximum junction temperature and a  
120°C/W thermal resistance, the maximum aver-  
age current is:  
T
J(MAX)- T  
125°C - 70°C  
AMB  
IAVG  
=
=
= 1.14A  
θ
J-A · VFWD 120°C/W 0.4V  
·
For overload, short-circuit, and excessive ambient  
temperature conditions, the AAT1155 enters over-  
temperature shutdown mode protecting the  
AAT1155 as well as the output Schottky. In this  
mode, the output current is limited internally until  
the junction temperature reaches the temperature  
limit (see over-temperature characteristics graphs).  
The diode reverse voltage must be rated to with-  
stand the input voltage.  
V
VO  
O
IRMS = IO ·  
· 1-  
V
V
IN  
IN  
Vin 3.5V-5.5V  
Vout 3.3V @2.5A  
U1  
AAT1155-3.3  
R1 R2  
100 100k  
FB VP  
C4  
100µF  
L1  
1.5µH  
GND LX  
EN LX  
VCC VP  
C1  
+
-
C2  
D1  
B340LA 120µF  
10µF  
C3  
0.1µF  
rtn  
C1 Murata 10µF 6.3V X5R GRM42-6X5R106K6.3  
C2 Vishay120µF 6.3V 594D127X96R6R3C2T  
C3 0.1µF 0603ZD104M AVX  
C4 Vishay Sprague 100µF 16V 595D107X0016C 100µF 16V  
D1 B340LA Diodes Inc.  
L1 CDRH6D28-1.5µH Sumida  
Options  
C2 MuRata 100µF 6.  
3V (two or three in parallel)  
3V GRM43-2 X5R 107M 100µF 6.  
C2 TDK 100µF 6.3V C3325X5R0J107M 100µF 6.3V (two or three in parallel)  
Figure 2: 3.3V, 3A Output Efficiency.  
1155.2005.11.1.6  
11  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
A high ESR tantalum capacitor with a value about 10  
times the input ceramic capacitor may also be  
required when using a 10µF or smaller ceramic input  
bypass capacitor. This dampens any input oscilla-  
tions that may occur due to the source inductance  
resonating with the converter input impedance.  
Due to the ESR zero associated with the tantalum  
capacitor, smaller values than those required with  
ceramic capacitors provide more phase margin  
with a greater loop crossover frequency.  
Layout  
Figures 3 and 4 display the suggested PCB layout  
for the AAT1155. The following guidelines should  
be used to help ensure a proper layout.  
Output Capacitor  
With no external compensation components, the out-  
put capacitor has a strong effect on the loop stability.  
Larger output capacitance will reduce the crossover  
frequency with greater phase margin. A 200µF  
ceramic capacitor provides sufficient bulk capacitance  
to stabilize the output during large load transitions and  
has ESR and ESL characteristics necessary for very  
low output ripple. The RMS ripple current is given by:  
1. The connection from the input capacitor to the  
Schottky anode should be as short as possible.  
2. The input capacitor should connect as closely  
as possible to VP (Pins 5 and 8) and GND  
(Pin 2).  
3. C1, L1, and CR1 should be connected as  
closely as possible. The connection from the  
cathode of the Schottky to the LX node  
should be as short as possible.  
4. The feedback trace (Pin 1) should be separate  
from any power trace and connect as closely  
as possible to the load point. Sensing along a  
high-current load trace can degrade DC load  
regulation.  
(VOUT+VFWD)·(V - VOUT  
)
1
IN  
IRMS  
=
·
L·F·V  
2 · 3  
IN  
For a ceramic output capacitor, the dissipation due  
to the RMS current and associated output ripple  
are negligible.  
5. The resistance of the trace from the load  
return to the ground (Pin 2) should be kept to  
a minimum. This will help to minimize any  
error in DC regulation due to differences in  
the potential of the internal reference ground  
and the load return.  
Tantalum capacitors with sufficiently low ESR to  
meet output ripple requirements generally have an  
RMS current rating much greater than that actually  
seen in this application. The maximum tantalum  
output capacitor ESR is:  
6. R1 and C3 are required in order to provide  
a cleaner power source for the AAT1155 con-  
trol circuitry.  
VRIPPLE  
ESR ≤  
I  
where I is the peak-to-peak inductor ripple current.  
Figure 3: Evaluation Board Top Side.  
Figure 4: Evaluation Board Bottom Side.  
12  
1155.2005.11.1.6  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Thermal  
Design Example  
Losses associated with the AAT1155 output switch-  
ing MOSFET are due to switching losses and con-  
duction losses. The conduction losses are associ-  
ated with the RDS(ON) characteristics of the output  
switching device. At the full load condition, assum-  
ing continuous conduction mode (CCM), an accu-  
rate calculation of the RDS(ON) losses can be  
derived from the following equations:  
(see Figures 2 and 5 for reference)  
IOUT  
IRIPPLE  
VOUT  
VIN  
2.5A  
40% of Full Load at Max VIN  
2.5V  
5V 5%  
1MHz  
70°C  
FS  
2
P = IRMS · RDS(ON)  
TMAX  
ON  
RDS(ON) losses  
Inductor Selection  
VOUT  
V
V
OUT  
I 2  
12  
L =  
· 1-  
2
IO  
I
k F  
O · ·  
IRMS  
=
+
·D  
IN  
3.3V  
3.3V  
=
· 1-  
= 1.23µH  
Internal switch RMS current  
2.5A · 0.4 · 1MHz  
5.25V  
D is the duty cycle and VF is the forward voltage  
drop of the Schottky diode.  
Use standard value of 1.5µH  
Sumida inductor Series CDRH6D38.  
VO + VF  
D =  
V +VF  
IN  
V
V
O
O
I =  
1-  
=
·
L F  
V
IN  
I is the peak-to-peak inductor ripple current.  
3.3V  
3.3V  
= 0.82A  
A simplified form of calculating the RDS(ON) and  
switching losses is given by:  
1-  
5.25V  
1.5µH 1MHz  
·
I  
2
2
IPK = IOUT  
+
=
IO  
R
V
DS(ON) o  
·
P =  
+ t F I + I  
SW · ·  
V
·
Q IN  
O
V
IN  
2.5A + 0.41 = 2.91A  
where IQ is the AAT1155 quiescent current.  
Efficiency vs. Load Current  
(VIN = 5.0V; VOUT = 3.3V)  
Once the total losses have been determined, the  
junction temperature can be derived. The thermal  
resistance (ΘJA) for the MSOP-8 package mounted  
on an FR4 printed circuit board in still air is 150°C/W.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
TJ = P QJA + TAMB  
TAMB is the maximum ambient temperature and TJ  
is the resultant maximum junction temperature.  
0.01  
0.1  
1
10  
Output Current (A)  
Figure 5: 5V Input, 3.3V Output.  
1155.2005.11.1.6  
13  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
The 120µF Vishay 594D tantalum capacitor has an  
ESR of 85mand a ripple current rating of 1.48Arms  
in a C case size. Although smaller case sizes are suf-  
ficiently rated for this ripple current, their ESR level  
would result in excessive output ripple.  
AAT1155 Junction Temperature  
IO2 · RDS(ON) · VO  
tSW · F · IO  
P
+ IQ · V =  
=
+
ON  
IN  
V
2
IN  
2.52 · 70m· 3.3V 20ns · 1MHz · 2.5A  
+ 690 A  
µ
The ESR requirement for a tantalum capacitor can  
be estimated by :  
+
5V  
2
0.42 Watts  
VRIPPLE  
100mV  
0.9A  
ESR≤  
=
= 111mΩ  
TJ(MAX) = TAMB + θJA · P =  
I  
70°C + 150°C/W · 0.42W = 133°C  
(
)
(V - V  
·
VOUT+V  
)
1
·
2· 3  
FWD  
IN  
OUT  
IRMS  
=
=
L·F·V  
IN  
1
2· 3  
3.65V 1.7V  
·
·
= 240mArms  
Diode  
1.5µ1MHz·5V  
VO  
IDIODE = IO· 1-  
=
Two or three 1812 X5R 100µF 6.3V ceramic  
capacitors in parallel also provide sufficient phase  
margin. The low ESR and ESL associated with  
ceramic capacitors also reduces output ripple sig-  
nificantly over that seen with tantalum capacitors.  
Temperature rise due to ESR ripple current dissi-  
pation is also reduced.  
V
IN  
3.3V  
2.5A· 1-  
= 0.93A  
5.25V  
V = 0.35V  
FW  
PDIODE = VFW · IDIODE  
=
Input Capacitor  
0.35V ·0.93A = 0.33A  
The input capacitor ripple is:  
Given an ambient thermal resistance of 120°C/W  
from the manufacturer's data sheet, TJ(MAX) of the  
diode is:  
V
V
O
O
IRMS = IO ·  
· 1-  
= 1.82Arms  
V
V
IN  
IN  
T
J(MAX)= TAMB +ΘJA P =  
·
In the examples shown, C1 is a ceramic capacitor  
located as closely to the IC as possible. C1 pro-  
vides the low impedance path for the sharp edges  
associated with the input current. C4 may or may  
not be required, depending upon the impedance  
characteristics looking back into the source. It  
serves to dampen any input oscillations that may  
arise from a source that is highly inductive. For  
most applications, where the source has sufficient  
bulk capacitance and is fed directly to the AAT1155  
through large PCB traces or planes, it is not  
required. When operating the AAT1155 evaluation  
board on the bench, C4 is required due to the  
inductance of the wires running from the laborato-  
ry power supply to the evaluation board.  
70°C +120°C/W 0.33W =  
109°C  
·
Output Capacitor  
The output capacitor value required for sufficient  
loop phase margin depends on the type of capaci-  
tor selected. For a low ESR ceramic capacitor, a  
minimum value of 200µF is required. For a low  
ESR tantalum capacitor, lower values are accept-  
able. While the relatively higher ESR associated  
with the tantalum capacitor will give more phase  
margin and a more dampened transient response,  
the output voltage ripple will be higher.  
14  
1155.2005.11.1.6  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
1 volt. For accurate results (less than 1% error for  
all outputs), select R4 to be 10k. Once R4 has  
been selected, R3 can be calculated. For a 1.25  
volt output with R4 set to 10k, R3 is 2.5k.  
Adjustable Output  
For applications requiring an output other than the  
fixed outputs available, the 1V version can be pro-  
grammed externally. Resistors R3 and R4 of  
Figure 1 force the output to regulate higher than  
R3 = (VO - 1) · R4 = 0.25 · 10k= 2.5kΩ  
Capacitors  
Capacitance  
Voltage  
(V)  
Part Number  
Manufacturer  
(µF)  
Temp Co.  
Case  
C4532X5ROJ107M  
TDK  
100  
100  
47  
6.3  
6.3  
6.3  
6.3  
6.3  
16  
X5R  
X5R  
X5R  
X5R  
1812  
1812  
1812  
1206  
C
GRM43-2 X5R 107M 6.3  
GRM43-2 X5R 476K 6.3  
GRM42-6 X5R 106K 6.3  
594D127X_6R3C2T  
595D107X0016C  
MuRata  
MuRata  
MuRata  
Vishay  
Vishay  
10  
120  
100  
C
Inductors  
Inductance  
I
DCR  
()  
Height  
(mm)  
Part Number  
Manufacturer  
(µH)  
(Amps)  
Type  
CDRH6D38-4763-T055 Sumida  
1.5  
1.5  
1.5  
1.5  
1.5  
4.0  
3.2  
3.0  
3.7  
3.8  
0.014  
0.025  
0.022  
0.022  
0.016  
4.0  
2.8  
3.2  
4.7  
4.7  
Shielded  
Non-Shielded  
Shielded  
N05D B1R5M  
Taiyo Yuden  
NP06DB B1R5M  
LQH55DN1R5M03  
LQH66SN1R5M03  
Taiyo Yuden  
MuRata  
Non-Shielded  
Shielded  
MuRata  
Diodes  
Manufacturer  
Part Number  
VF  
Diodes Inc.  
ROHM  
B340LA  
RB050L-40  
5820SM  
0.45V @ 3A  
0.45 @ 3A  
0.46V @ 3A  
Micro Semi  
1155.2005.11.1.6  
15  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
Ordering Information  
Output Voltage  
Package  
Marking1  
Part Number (Tape and Reel)2  
1.0V (Adj. VOUT 1.0V)  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
KXXYY  
KYXYY  
ILXYY  
IKXYY  
AAT1155IKS-1.0-T1  
AAT1155IKS-1.8-T1  
AAT1155IKS-2.5-T1  
AAT1155IKS-3.3-T1  
1.8V  
2.5V  
3.3V  
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means  
semiconductor products that are in compliance with current RoHS standards, including  
the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more  
information, please visit our website at http://www.analogictech.com/pbfree.  
Package Information  
MSOP-8  
4° 4°  
1.95 BSC  
0.60 0.20  
PIN 1  
0.254 BSC  
0.155 0.075  
3.00 0.10  
10° 5°  
0.075 0.075  
0.65 BSC  
0.30 0.08  
All dimensions in millimeters.  
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
16  
1155.2005.11.1.6  
AAT1155  
1MHz 2.5A Step-Down DC/DC Converter  
© Advanced Analogic Technologies, Inc.  
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights,  
or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice.  
Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech  
warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech’s standard warranty. Testing and other quality con-  
trol techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.  
Advanced Analogic Technologies, Inc.  
830 E. Arques Avenue, Sunnyvale, CA 94085  
Phone (408) 737-4600  
Fax (408) 737-4611  
1155.2005.11.1.6  
17  

相关型号:

AAT1155IKS-1.8-T1

1MHz 2.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1155IKS-2.5-T1

1MHz 2.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1155IKS-3.3-T1

1MHz 2.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1155_06

1MHz 2.5A Step-Down DC/DC Converter
ANALOGICTECH

AAT1156

1MHz 700mA Step-Down DC-DC Converter
ANALOGICTECH

AAT1156IVN-T1

1MHz 700mA Step-Down DC-DC Converter
ANALOGICTECH

AAT1156_07

1MHz 700mA Step-Down DC-DC Converter
ANALOGICTECH

AAT1157

1MHz 1.2A Buck DC/DC Converter
ANALOGICTECH

AAT1157IVN-3.3-T1

Switching Regulator/Controller,
ANALOGICTECH

AAT1157IVN-T1

1MHz 1.2A Buck DC/DC Converter
ANALOGICTECH

AAT1160

12V, 3A Step-Down DC/DC Converter
ANALOGICTECH

AAT1160

Step Up Current Mode PWM Converter with 4+1 Operational Amplifiers
AAT