AD1847JST [ADI]

Serial-Port 16-Bit SoundPort Stereo Codec; 串行端口16位SoundPort立体声编解码器
AD1847JST
型号: AD1847JST
厂家: ADI    ADI
描述:

Serial-Port 16-Bit SoundPort Stereo Codec
串行端口16位SoundPort立体声编解码器

解码器 编解码器
文件: 总28页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Serial-Port 16-Bit  
SoundPort Stereo Codec  
a
AD1847  
FEATURES  
I
Single-Chip Integrated ⌺⌬ Digital Audio Stereo Codec  
Supports the Microsoft Window s Sound System *  
Multiple Channels of Stereo Input  
Analog and Digital Signal Mixing  
Program m able Gain and Attenuation  
On-Chip Signal Filters  
Digital Interpolation and Decim ation  
Analog Output Low -Pass  
Sam ple Rates from 5.5 kHz to 48 kHz  
44-Lead PLCC and TQFP Packages  
Operation from +5 V Supplies  
S
A
ASIC  
AD1847  
B
U
S
DSP  
Figure 1. Exam ple System Diagram  
External circuit requirements are limited to a minimal number  
of low cost support components. Anti-imaging DAC output  
filters are incorporated on-chip. Dynamic range exceeds 70 dB  
over the 20 kHz audio band. Sample rates from 5.5 kHz to  
48 kHz are supported from external crystals.  
Serial Digital Interface Com patible w ith ADSP-21xx  
Fixed-Point DSP  
T he Codec includes a stereo pair of ∑∆ analog-to-digital con-  
verters (ADCs) and a stereo pair of ∑∆ digital-to-analog con-  
verters (DACs). Inputs to the ADC can be selected from four  
stereo pairs of analog signals: line 1, line 2, auxiliary (“aux”)  
line # 1, and post-mixed DAC output. A software-controlled  
programmable gain stage allows independent gain for each  
channel going into the ADC. T he ADCs’ output can be digitally  
mixed with the DACs’ input.  
P RO D UCT O VERVIEW  
T he AD1847 SoundPort® Stereo Codec integrates key audio  
data conversion and control functions into a single integrated  
circuit. T he AD1847 is intended to provide a complete, low  
cost, single-chip solution for business, game audio and multi-  
media applications requiring operation from a single +5 V sup-  
ply. It provides a serial interface for implementation on a  
computer motherboard, add-in or PCMCIA card. See Figure 1  
for an example system diagram.  
T he pair of 16-bit outputs from the ADCs is available over a se-  
rial interface that also supports 16-bit digital input to the DACs  
and control/status information. T he AD1847 can accept and  
generate 16-bit twos-complement PCM linear digital data, 8-bit  
unsigned magnitude PCM linear data, and 8-bit µ-law or A-law  
companded digital data.  
*Windows Sound System is a registered trademark of Microsoft Corp.  
SoundPort is a registered trademark of Analog Devices, Inc.  
(Continued on page 7)  
FUNCTIO NAL BLO CK D IAGRAM  
CLOCK  
OUT  
ANALOG DIGITAL  
SUPPLY SUPPLY  
CRYSTALS  
ANALOG  
I/O  
DIGITAL  
I/O  
2
2
RESET  
L
R
L
LINE 1  
INPUT  
OSCILLATORS  
POWER  
DOWN  
LINE 2  
INPUT  
M
U
X
L
∑∆ A/D  
µ/A  
R
L
BUS  
MASTER  
GAIN  
GAIN  
CONVERTER  
LAW  
AUX 1  
INPUT  
S
E
R
I
A
L
R
TIME SLOT  
INPUT  
R
µ/A  
LAW  
∑∆ A/D  
CONVERTER  
TIME SLOT  
OUTPUT  
SERIAL DATA  
OUTPUT  
ATTEN  
GAIN/ATTEN/MUTE  
SERIAL DATA  
INPUT  
P
O
R
T
L
µ/A  
∑∆ D/A  
ATTEN/  
MUTE  
ATTEN  
ATTEN  
2
LAW  
L
CONVERTER  
EXTERNAL  
CONTROL  
LINE  
R
∑∆ D/A  
CONVERTER  
µ/A  
LAW  
ATTEN/  
MUTE  
OUTPUT  
SERIAL BIT  
CLOCK  
R
GAIN/ATTEN  
/MUTE  
L
FRAME  
SYNC  
AUX 2  
INPUT  
GAIN/ATTEN  
/MUTE  
AD1847  
REFERENCE  
2.25V  
R
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
® Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
AD1847–SPECIFICATIONS  
STAND ARD TEST CO ND ITIO NS UNLESS O TH ERWISE NO TED  
T emperature  
Digital Supply (VDD  
Analog Supply (VCC  
Word Rate (FS  
Input Signal  
Analog Output Passband  
25  
°C  
V
V
kHz  
DAC Output Conditions  
0 dB Attenuation  
Full-Scale Digital Inputs  
16-Bit Linear Mode  
No Output Load  
)
)
5.0  
5.0  
48  
1007  
20  
)
Hz  
Hz to 20 kHz  
Mute Off  
FFT Size  
VIH  
VIL  
VOH  
VOL  
4096  
2.4  
0.8  
2.4  
0.4  
ADC Input Conditions  
0 dB Gain  
V
V
V
V
–3.0 dB Relative to Full Scale  
Line Input  
16-Bit Linear Mode  
ANALO G INP UT  
Min  
Typ  
Max  
Units  
Full-Scale Input Voltage (RMS Values Assume Sine Wave Input)  
Line1, Line2, AUX1, AUX2  
1
2.8  
V rms  
V p-p  
2.54  
10  
3.10  
Input Impedance  
Line1, Line2, AUX1, AUX2†  
Input Capacitance†  
kΩ  
pF  
15  
P RO GRAMMABLE GAIN AMP LIFIERAD C  
Min  
Typ  
Max  
Units  
Step Size (All Steps T ested, –30 dB Input)  
PGA Gain Range Span†  
1.10  
21.0  
1.5  
1.90  
24.0  
dB  
dB  
AUXILIARY INP UT ANALO G AMP LIFIERS/ATTENUATO RS  
Min  
Typ  
Max  
Units  
Step Size (+12 dB to –28.5 dB, Referenced to DAC Full Scale)  
(–30 dB to –34.5 dB, Referenced to DAC Full Scale)  
Input Gain/Attenuation Range Span†  
1.3  
1.1  
45.5  
10  
1.5  
1.5  
1.7  
1.9  
47.5  
dB  
dB  
dB  
kΩ  
AUX Input Impedance†  
D IGITAL D ECIMATIO N AND INTERP O LATIO N FILTERS†  
Min  
Max  
Units  
Passband  
0
–0.1  
0.4 ϫ FS  
0.6 ϫ FS  
74  
0.4 ϫ FS  
+0.1  
0.6 ϫ FS  
Hz  
dB  
Hz  
Hz  
dB  
Passband Ripple  
T ransition Band  
Stopband  
Stopband Rejection  
Group Delay  
30/FS  
0
Group Delay Variation Over Passband  
µs  
–2–  
REV. B  
AD1847  
ANALO G-TO -D IGITAL CO NVERTERS  
Min  
Typ  
Max  
Units  
Resolution  
16  
Bits  
dB  
%
Dynamic Range (–60 dB Input, T HD+N Referenced to Full Scale, A-Weighted)  
T HD+N (Referenced to Full Scale)  
70  
0.040  
–68  
dB  
Signal-to-Intermodulation Distortion†  
83  
dB  
ADC Crosstalk†  
Line Inputs (Input L, Ground R, Read R; Input R, Ground L, Read L)  
Line1 to Line2 (Input Line1, Ground and Select Line2, Read Both Channels)  
Line to AUX1  
Line to AUX2  
Line to DAC  
–80  
–80  
–80  
–80  
–80  
±10  
±0.2  
±55  
dB  
dB  
dB  
dB  
dB  
%
Gain Error (Full-Scale Span Relative to VREFI  
)
Interchannel Gain Mismatch (Difference of Gain Errors)  
DC Offset  
dB  
LSB  
D IGITAL-TO -ANALO G CO NVERTERS  
Min  
Typ  
Max  
Units  
Resolution  
16  
Bits  
dB  
%
dB  
dB  
%
dB  
dB  
dB  
dB  
Dynamic Range (–60 dB Input, T HD+N Referenced to Full Scale, A-Weighted)  
T HD+N (Referenced to Full Scale)  
76  
0.025  
–72  
Signal-to-Intermodulation Distortion†  
Gain Error (Full-Scale Span Relative to VREFI  
Interchannel Gain Mismatch (Difference of Gain Errors)  
DAC Crosstalk† (Input L, Zero R, Measure R_OUT ; Input R, Zero L, Measure L_OUT )  
T otal Out-of-Band Energy† (Measured from 0.6 ϫ FS to 100 kHz)  
86  
)
±10  
±0.2  
–80  
–50  
–55  
Audible Out-of-Band Energy (Measured from 0.6 ϫ FS to 22 kHz, T ested at FS = 5.5 kHz)  
D AC ATTENUATO R  
Min  
Typ  
Max  
Units  
Step Size (0 dB to –22.5 dB) (T ested at Steps 0 dB, –19.5)  
Step Size (–24 dB to –94 dB)  
Output Attenuation Range Span†  
1.3  
1.0  
–93  
1.5  
1.5  
1.7  
2.0  
95  
dB  
dB  
dB  
D IGITAL MIX ATTENUATO R  
Min  
Typ  
Max  
Units  
Step Size (0 dB to –22.5 dB) (T ested at Steps 0 dB, –19.5)  
Step Size (–24 dB to –94 dB)  
Output Attenuation Range Span†  
1.3  
1.0  
–93.5  
1.5  
1.5  
1.7  
2.0  
95.5  
dB  
dB  
dB  
ANALO G O UTP UT  
Min  
Typ  
Max  
Units  
Full-Scale Line Output Voltage  
VREFI = 2.35*  
0.707  
2
V rms  
V p-p  
kΩ  
pF  
pF  
V
µA  
V
1.80  
10  
2.20  
600  
Line Output Impedance†  
External Load Impedance  
Output Capacitance†  
External Load Capacitance  
VREF (Clock Running)  
VREF Current Drive  
15  
100  
2.50  
2.00  
100  
2.35  
VREFI  
Mute Attenuation of 0 dB  
Fundamental† (LOUT )  
Mute Click†  
–80  
8
dB  
mV  
(| Muted Output Minus Unmuted  
Midscale DAC Output| )  
*Full-scale line output voltage scales with VREF (e.g., VOUT (typ) – 2.0 V ϫ (VREF/2.35)).  
†Guaranteed, Not T ested.  
REV. B  
–3–  
AD1847  
SYSTEM SP ECIFICATIO NS  
Min  
Typ  
Max  
Units  
System Frequency Response†  
(Line In to Line Out, 20 Hz to 20 kHz)  
Differential Nonlinearity†  
±0.3  
dB  
±1/2  
Bit  
Phase Linearity Deviation†  
1
Degrees  
STATIC D IGITAL SP ECIFICATIO NS  
Min  
Max  
Units  
High Level Input Voltage (VIH  
Digital Inputs  
XT AL1/2I  
)
2.0  
2.4  
V
V
Low Level Input Voltage (VIL)  
0.8  
V
High Level Output Voltage (VOH) IOH = 1 mA  
Low Level Output Voltage (VOL) IOL = 4 mA  
Input Leakage Current (GO/NOGO T ested)  
Output Leakage Current (GO/NOGO T ested)  
2.4  
VDD  
0.4  
+10  
+10  
V
V
µA  
µA  
–10  
–10  
TIMING P ARAMETERS (Guaranteed O ver O perating Tem perature Range)  
Min  
Typ  
Max  
Units  
Serial Frame Sync Period (t1)  
Clock to Frame Sync [SDFS] Propagation Delay (tPD1  
Data Input Setup T ime (tS)  
1/0.5 FS  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
)
20  
15  
15  
Data Input Hold T ime (tH)  
Clock to Output Data Valid (tDV  
Clock to Output T hree-State [High-Z] (tHZ  
Clock to T ime Slot Output [T SO] Propagation Delay (tPD2  
)
25  
20  
20  
)
)
RESET and PWRDOWN Lo Pulse Width (tRPWL  
)
100  
P O WER SUP P LY  
Min  
Max  
Units  
Power Supply Range – Digital & Analog  
Power Supply Current – Operating (10 kLine Out Load)  
Analog Supply Current – Operating (10 kLine Out Load)  
Digital Supply Current – Operating (10 kLine Out Load)  
Analog Power Supply Current – Power Down  
4.75  
5.25  
140  
70  
V
mA  
mA  
mA  
µA  
µA  
mW  
mW  
70  
400  
400  
750  
4
Digital Power Supply Current – Power Down  
Power Dissipation – Operating (Current ϫ Nominal Supply)  
Power Dissipation – Power Down (Current ϫ Nominal Supply)  
Power Supply Rejection (@ 1 kHz)†  
(At Both Analog and Digital Supply Pins, ADCs)  
(At Both Analog and Digital Supply Pins, DACs)  
45  
55  
dB  
dB  
CLO CK SP ECIFICATIO NS†  
Min  
Max  
Units  
Input Clock Frequency  
Recommended Clock Duty Cycle  
27  
±10  
MHz  
%
Initialization/Sample Rate Change T ime  
16.9344 MHz Crystal Selected at Power-Up  
24.576 MHz Crystal Selected at Power-Up  
16.9344 MHz Crystal Selected Subsequently  
24.576 MHz Crystal Selected Subsequently  
171  
171  
6
ms  
ms  
ms  
ms  
6
†Guaranteed, not tested.  
Specifications subject to change without notice.  
–4–  
REV. B  
AD1847  
ABSO LUTE MAXIMUM RATINGS*  
Min Max  
O RD ERING GUID E  
Units  
Tem perature  
P ackage  
P ackage  
Model  
Range  
D escription  
O ption*  
Power Supplies  
Digital (VDD  
Analog (VCC  
Input Current  
(Except Supply Pins)  
Analog Input Voltage (Signal Pins) –0.3 (VA+) + 0.3  
Digital Input Voltage (Signal Pins) –0.3 (VD+) + 0.3  
)
)
–0.3 6.0  
–0.3 6.0  
V
V
AD1847JP  
AD1847JST  
0°C to +70°C  
0°C to +70°C  
44-Lead PLCC  
44-Lead T QFP  
P-44A  
ST -44  
*P = PLCC; ST = T QFP.  
±10.0  
mA  
V
V
Ambient T emperature (Operating)  
Storage T emperature  
0
+70  
°C  
°C  
–65 +150  
*Stresses greater than those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD1847 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
P INO UTS  
44-Lead P LCC  
44-Lead TQFP  
6
5
4
3
2
1
44 43 42 41 40  
TSO  
TSI  
7
8
9
39 V  
DD  
38 GNDD  
37 XCTL1  
36 XCTL0  
35 GNDD  
1
2
3
4
33  
V
TSO  
TSI  
V
PIN 1 IDENTIFIER  
DD  
DD  
32 GNDD  
GNDD 10  
RESET 11  
XCTL1  
XCTL0  
GNDD  
V
31  
30  
29  
DD  
GNDD  
RESET  
AD1847JP  
5
6
Top View  
(Not to Scale)  
12  
13  
34  
33  
PWRDOWN  
V
DD  
V
28  
27  
26  
25  
24  
23  
PWRDOWN  
AD1847JST  
Top View  
(Not to Scale)  
DD  
V
BM  
V
CC  
7
8
BM  
CC  
L_AUX2  
R_AUX2  
L_OUT  
GNDA  
GNDA 14  
32 L_AUX2  
31 R_AUX2  
V
9
REFI  
V
15  
16  
17  
REFI  
V
10  
11  
REF  
30  
29  
V
L_OUT  
N/C  
R_LINE1  
N/C  
REF  
R_LINE1  
18 19  
21 22  
24 25 26  
28  
27  
20  
23  
N/C = NO CONNECT  
N/C = NO CONNECT  
REV. B  
–5–  
AD1847  
P IN D ESCRIP TIO NS  
P ar allel Inter face  
P in Nam e  
P LCC TQFP  
I/O D escription  
SCLK  
1
39  
I/O Serial Clock. SCLK is a bidirectional signal that supplies the clock as an output to the  
serial bus when the Bus Master (BM) pin is driven HI and accepts the clock as an input  
when the BM pin is driven LO. T he serial clock output is fixed at 12.288 MHz when  
XT AL1 is selected, and 11.2896 MHz when XT AL2 is selected. SCLK runs continu-  
ously. An AD1847 should always be configured as the serial bus master unless it is a slave  
in a daisy-chained multiple codec system.  
SDFS  
6
44  
I/O Serial Data Frame Sync. SDFS is a bidirectional signal that supplies the frame synchroni-  
zation signal as an output to the serial bus when the Bus Master (BM) pin is driven HI  
and accepts the frame synchronization signal as an input when the BM pin is driven LO.  
T he SDFS frequency powers up at one half of the AD1847 sample rate (i.e., FRS bit = 0)  
with two samples per frame and can be programmed to match the sample rate (i.e., FRS  
bit = 1) with one sample per frame. An AD1847 should always be configured as the serial  
bus master unless it is a slave in a daisy-chained multiple codec system.  
SDI  
4
42  
43  
5
I
Serial Data Input. SDI is used by peripheral devices such as the host CPU or a DSP to  
supply control and playback data information to the AD1847. All control and playback  
transfers are 16 bits long, MSB first.  
SDO  
5
O
I
Serial Data Output. SDO is used to supply status/index readback and capture data infor-  
mation to peripheral devices such as the host CPU or a DSP. All status/index readback  
and capture data transfers are 16 bits long, MSB first. T hree-state output driver.  
Reset. T he RESET signal is active LO. T he assertion of this signal will initialize the  
on-chip registers to their default values. See the “Control Register Definitions” section for  
a description of the contents of the control registers after RESET is deasserted.  
Powerdown. T he PWRDOWN signal is active LO. T he assertion of this signal will reset  
the on-chip control registers (identically to the RESET signal) and will also place the  
AD1847 in a low power consumption mode. VREF and all analog circuitry are disabled.  
Bus Master. T he assertion (HI) of this signal indicates that the AD1847 is the serial bus  
master. T he AD1847 will then supply the serial clock (SCLK) and the frame sync (SDFS)  
signals for the serial bus. One and only one AD1847 should always be configured as the  
serial bus master. If BM is connected to logic LO, the AD1847 is configured as a bus  
slave, and will accept the SCLK and SDFS signals as inputs. An AD1847 should only be  
configured as a serial bus slave when an AD1847 serial bus master already exists, in  
daisy-chained multiple codec systems.  
RESET  
PWRDOWN  
BM  
11  
12  
33  
6
I
27  
I
T SO  
T SI  
7
8
1
2
O
I
T ime Slot Output. T his signal is asserted HI by the AD1847 coincidentally with the LSB  
of the last time slot used by the AD1847. Used in daisy-chained multiple codec systems.  
T ime Slot Input. T he assertion of this signal indicates that the AD1847 should immedi-  
ately use the next three time slots (T SSEL = 1) or the next six time slots (T SSEL = 0)  
and then activate the T SO pin to enable the next device down the T DM chain. T SI  
should be driven LO when the AD1847 is the bus master or in single codec systems. Used  
in daisy-chained multiple codec systems.  
CLKOUT  
44  
38  
O
Clock Output. T his signal is the buffered version of the crystal clock output and the fre-  
quency is dependent on which crystal is selected. T his pin can be three-stated by driving  
the BM pin LO or by programming the CLKT S bit in the Pin Control Register. See the  
“Control Registers” section for more details. T he CLKOUT frequency is 12.288 MHz  
when XT AL1 is selected and 16.9344 MHz when XT AL2 is selected.  
Analog Signals  
P in Nam e  
P LCC  
TQFP  
I/O  
D escription  
L_LINE1  
R_LINE1  
L_LINE2  
R_LINE2  
L_AUX1  
R_AUX1  
L_AUX2  
R_AUX2  
L_OUT  
23  
17  
22  
18  
26  
27  
32  
31  
30  
28  
17  
11  
16  
12  
20  
21  
26  
25  
24  
22  
I
I
I
I
I
I
I
I
Left Line Input # 1. Line level input for the # 1 left channel.  
Right Line Input # 1. Line level input for the # 1 right channel.  
Left Line Input # 2. Line level input for the # 2 left channel.  
Right Line Input # 2. Line level input for the # 2 right channel.  
Left Auxiliary Input # 1. Line level input for the AUX1 left channel.  
Right Auxiliary Input # 1. Line level input for the AUX1 right channel.  
Left Auxiliary Input # 2. Line level input for the AUX2 left channel.  
Right Auxiliary Input # 2. Line level input for the AUX2 right channel.  
Left Line Output. Line level output for the left channel.  
O
O
R_OUT  
Right Line Output. Line level output for the right channel.  
–6–  
REV. B  
AD1847  
Miscellaneous  
P in Nam e  
P LCC  
TQFP  
I/O  
D escription  
XT AL1I  
XT AL1O  
XT AL2I  
XT AL2O  
XCT L1:O  
40  
41  
42  
43  
34  
35  
36  
37  
I
24.576 MHz Crystal # 1 Input.  
24.576 MHz Crystal # 1 Output.  
16.9344 MHz Crystal # 2 Input.  
16.9344 MHz Crystal # 2 Output.  
O
I
O
O
37 & 36 31 & 30  
External Control. T hese T T L signals reflect the current status of register bits inside the  
AD1847. T hey can be used for signaling or to control external logic.  
VREF  
16  
10  
O
Voltage Reference. Nominal 2.25 volt reference available externally as a voltage datum  
for dc-coupling and level-shifting. VREF should not have any signal dependent load.  
VREFI  
15  
21  
9
I
I
Voltage Reference Internal. Voltage reference filter point for external bypassing only.  
L_FILT  
15  
Left Channel Filter Capacitor. T his pin requires a 1.0 µF capacitor to analog ground  
for proper operation.  
R_FILT  
NC  
19  
29  
13  
23  
I
Right Channel Filter Capacitor. T his pin requires a 1.0 µF capacitor to analog ground  
for proper operation.  
No Connect. Do not connect.  
P ower Supplies  
P in Nam e  
P LCC  
TQFP  
I/O  
D escription  
VCC  
13 & 25  
7 & 19  
I
I
I
I
Analog Supply Voltage (+5 V).  
Analog Ground.  
GNDA  
VDD  
14, 20, 24  
2, 9, 34, 39  
3, 10, 35, 38  
8, 14, 18  
40, 3, 28, 33  
41, 4, 29, 32  
Digital Supply Voltage (+5 V).  
Digital Ground.  
GNDD  
(Continued from page 1)  
Analog Mixing  
AUX1 and AUX2 analog stereo signals can be mixed in the ana-  
log domain with the DAC output. Each channel of each auxil-  
iary analog input can be independently gained/attenuated from  
+12 dB to –34.5 dB in –1.5 dB steps or completely muted. T he  
post-mixed DAC output is available on L_OUT and R_OUT  
externally and as an input to the ADCs.  
T he ∑∆ DACs are preceded by a digital interpolation filter. An  
attenuator provides independent user volume control over each  
DAC channel. Nyquist images are removed from the DACs’  
analog stereo output by on-chip switched-capacitor and  
continuous-time filters. T wo stereo pairs of auxiliary line-level  
inputs can also be mixed in the analog domain with the DAC  
output.  
Even if the AD1847 is not playing back data from its DACs, the  
analog mix function can still be active.  
T he AD1847 serial data interface uses a T ime Division Multi-  
plex (T DM) scheme that is compatible with DSP serial ports  
configured in Multi-Channel Mode with 32 16-bit time slots  
(i.e., SPORT 0 on the ADSP-2101, ADSP-2115, etc.).  
Analog-to-D igital D atapath  
T he ∑∆ ADCs incorporate a proprietary fourth-order modula-  
tor. A single pole of passive filtering is all that is required for  
antialiasing the analog input because of the ADC’s high 64  
times oversampling ratio. T he ADCs include digital decimation  
filters that low-pass filter the input to 0.4 ϫ FS. (“FS’’ is the  
word rate or “sampling frequency.”) ADC input overrange con-  
ditions will cause status bits to be set that can be read.  
AUD IO FUNCTIO NAL D ESCRIP TIO N  
T his section overviews the functionality of the AD1847 and is  
intended as a general introduction to the capabilities of the de-  
vice. As much as possible, detailed reference information has  
been placed in “Control Registers” and other sections. T he user  
is not expected to refer repeatedly to this section.  
D igital-to-Analog D atapath  
T he ∑∆ DACs contain a programmable attenuator and a low-  
pass digital interpolation filter. T he anti-imaging interpolation  
filter oversamples and digitally filters the higher frequency im-  
ages. T he attenuator allows independent control of each DAC  
channel from 0 dB to –94.5 dB in 1.5 dB steps plus full mute.  
T he DACs∑∆ noise shapers also oversample and convert the  
signal to a single-bit stream. T he DAC outputs are then filtered  
in the analog domain by a combination of switched-capacitor  
and continuous-time filters. T hese filters remove the very high  
frequency components of the DAC bitstream output. No exter-  
nal components are required.  
Analog Inputs  
T he AD1847 SoundPort Stereo Codec accepts stereo line-level  
inputs. All inputs should be capacitively coupled (ac-coupled) to  
the AD1847. LINE1, LINE2, and AUX1, and post-mixed DAC  
output analog stereo signals are multiplexed to the internal pro-  
grammable gain amplifier (PGA) stage.  
T he PGA following the input multiplexer allows independent  
selectable gains for each channel from 0 to 22.5 dB in +1.5 dB  
steps. T he Codec can operate either in a global stereo mode or  
in a global mono mode with left-channel inputs appearing at  
both channel outputs.  
REV. B  
–7–  
AD1847  
Changes in DAC output attenuation take effect only on zero  
crossings of the digital signal, thereby eliminating “zipper” noise  
on playback. Each channel has its own independent zero-crossing  
detector and attenuator change control circuitry. A timer guar-  
antees that requested volume changes will occur even in the ab-  
sence of an input signal that changes sign. T he time-out period  
is 8 milliseconds at a 48 kHz sampling rate and 48 milliseconds  
at an 8 kHz sampling rate. (T ime-out [ms] 384/FS [kHz]).  
specified in the Codecs internal registers. Note that when µ-law  
compressed data is expanded to a linear format, it requires 14  
bits. A-law data expanded requires 13 bits.  
8
7
15  
0
COMPRESSED  
INPUT DATA  
MSB  
LSB  
3/2 2/1  
LSB  
15  
15  
0
0
D igital Mixing  
MSB  
EXPANSION  
DAC INPUT  
Stereo digital output from the ADCs can be mixed digitally with  
the input to the DACs. Digital output from the ADCs going out  
of the serial data port is unaffected by the digital mix. Along the  
digital mix datapath, the 16-bit linear output from the ADCs is  
attenuated by an amount specified with control bits. Both chan-  
nels of the monitor data are attenuated by the same amount.  
(Note that internally the AD1847 always works with 16-bit  
PCM linear data, digital mixing included; format conversions  
take place at the input and output.)  
3/2 2/1  
MSB  
LSB  
0 0 0 / 0 0  
Figure 2. A-Law or µ-Law Expansion  
When 8-bit companding is specified, the ADCs’ linear output is  
compressed to the format specified.  
15  
0
Sixty-four steps of –1.5 dB attenuation are supported to  
–94.5 dB. T he digital mix datapath can also be completely  
muted, preventing any mixing of the digital input with the digi-  
tal output. Note that the level of the mixed signal is also a func-  
tion of the input PGA settings, since they affect the ADCs’  
output.  
MSB  
LSB  
ADC OUTPUT  
15  
3/2 2/1  
LSB  
0
0
MSB  
TRUNCATION  
T he attenuated digital mix data is digitally summed with the  
DAC input data prior to the DACs’ datapath attenuators. T he  
digital sum of digital mix data and DAC input data is clipped at  
plus or minus full scale and does not wrap around. Because  
both stereo signals are mixed before the output attenuators, mix  
data is attenuated a second time by the DACs’ datapath  
attenuators.  
15  
8
7
MSB  
COMPRESSION  
LSB  
0 0 0 0 0 0 0 0  
Figure 3. A-Law or µ-Law Com pression  
Note that all format conversions take place at input or output.  
Internally, the AD1847 always uses 16-bit linear PCM represen-  
tations to maintain maximum precision.  
Analog O utputs  
P ower Supplies and Voltage Refer ence  
A stereo line-level output is available at external pins. Other  
output types such as headphone and speaker must be imple-  
mented in external circuitry. T he stereo line-level outputs  
should be capacitively coupled (ac-coupled) to the external cir-  
cuitry. Each channel of this output can be independently  
muted. When muted, the outputs will settle to a dc value near  
T he AD1847 operates from +5 V power supplies. Independent  
analog and digital supplies are recommended for optimal perfor-  
mance though excellent results can be obtained in single-supply  
systems. A voltage reference is included on the Codec and its  
2.25 V buffered output is available on an external pin (VREF).  
T he reference output can be used for biasing op amps used in  
dc coupling. T he internal reference must be externally bypassed  
to analog ground at the VREFI pin, and must not be used to bias  
external circuitry.  
VREF, the midscale reference voltage.  
D igital D ata Types  
T he AD1847 supports four global data types: 16-bit twos-  
complement linear PCM, 8-bit unsigned linear PCM,  
companded µ-law, and 8-bit companded A-law, as specified by  
control register bits. Eight-bit data is always left-justified in 16-  
bit fields; in other words, the MSBs of all data types are always  
aligned; in yet other words, full-scale representations in all four  
formats correspond to equivalent full-scale signals. The eight  
least significant bit positions of 8-bit data in 16-bit fields are ig-  
nored on digital input and zoned on digital output (i.e., truncated).  
Clocks and Sam ple Rates  
T he AD1847 operates from two external crystals, XT AL1 and  
XT AL2. T he two crystal inputs are provided to generate a wide  
range of sample rates. T he oscillators for these crystals are on  
the AD1847, as is a multiplexer for selecting between them.  
T hey can be overdriven with external clocks by the user, if so  
desired. At a minimum, XT AL1 must be provided since it is se-  
lected as the reset default. If XT AL2 is not used, the XT AL2  
input pin should be connected to ground. T he recommended  
crystal frequencies are 16.9344 MHz and 24.576 MHz. From  
them, the following sample rates can be selected: 5.5125, 6.615,  
8, 9.6, 11.025, 16, 18.9, 22.05, 27.42857, 32, 33.075, 37.8,  
44.1, 48 kHz.  
T he 16-bit PCM data format is capable of representing 96 dB of  
dynamic range. Eight-bit PCM can represent 48 dB of dynamic  
range. Companded µ-law and A-law data formats use nonlinear  
coding with less precision for large-amplitude signals. T he loss  
of precision is compensated for by an increase in dynamic range  
to 64 dB and 72 dB, respectively.  
On input, 8-bit companded data is expanded to an internal lin-  
ear representation, according to whether µ-law or A-law was  
–8–  
REV. B  
AD1847  
CO NTRO L REGISTERS  
Contr ol Register Mapping  
Figure 5 shows the mapping of the Control Word, Status Word/  
Index Readback and Data registers to time slots when T SSEL =  
1. Note that the six 16-bit registers “share” three time slots.  
T SSEL = 1 is used when the SDI and SDO pins are indepen-  
dent inputs and output (i.e., “2-wire” system). T his configura-  
tion is inefficient in terms of component interconnect (two  
unidirectional wires for serial data input and output), but effi-  
cient in terms of time slot usage (three slots consumed on each  
of two unidirectional T DM serial buses). When T SSEL = 1, se-  
rial data input to the AD1847 occurs concurrently with serial  
data output from the AD1847 (i.e., Control Word reception on  
the SDI pin occurs simultaneously with Status Word/lndex  
Readback transmission on the SDO pin).  
T he AD1847 has six 16-bit and thirteen 8-bit on-chip user-  
accessible control registers. Control information is sent to the  
AD1847 in the 16-bit Control Word. Status information is sent  
from the AD1847 in the 16-bit Status Word. Playback Data and  
Capture Data each have two 16-bit registers for the right and  
left channels. Additional 8-bit Index Registers are accessed via  
indirect addressing in the AD1847 Control Word. [Index Regis-  
ters are reached with indirect addressing.] T he contents of an  
indirect addressed Index Register may be readback by the host  
CPU or DSP (during the Status Word/Index Readback time  
slot) by setting the Read Request (RREQ) bit in the Control  
Word. Note that each 16-bit register is assigned its own time  
slot, so that the AD1847 always consumes six 16-bit time slots.  
Figure 4 shows the mapping of the Control Word, Status Word/  
Index Readback and Data registers to time slots when TSSEL = 0.  
T SSEL = 0 is used when the SDI and SDO pins are tied to-  
gether (i.e., “1-wire” system). T his configuration is efficient in  
terms of component interconnect (one bidirectional wire for se-  
rial data input and output), but inefficient in terms of time slot  
usage (six slots consumed on single bidirectional T ime Division  
Multiplexed [T DM] serial bus). When T SSEL = 0, serial data  
input to the AD1847 occurs sequentially with serial data output  
from the AD1847 (i.e., Control Word, Left Playback and Right  
Playback data is received on the SDI pin, then the Status Word/  
lndex Readback, Left Capture and Right Capture data is trans-  
mitted on the SDO pin).  
Slot  
Register Nam e (16-Bit)  
0
1
2
0
1
2
Control Word Input  
Left Playback Data Input  
Right Playback Data Input  
Status Word/Index Readback Output  
Left Capture Data Output  
Right Capture Data Output  
Figure 5. Control Register Mapping with TSSEL = 1  
An Index Register readback request to an invalid index address  
(11, 14 and 15) will return the contents of the Status Word. At-  
tempts to write to an invalid index address (11, 14 and 15) will  
have no effect on the AD1847. As mentioned above, the RREQ  
bit of the Control Word is used to request Status Word output  
or Index Register readback output during either time slot 3  
(T SSEL = 0) or time slot 0 (T SSEL = 1). RREQ is set for In-  
dex Register readback output, and reset for Status Word output.  
When Index Register readback is requested, the Index Readback  
bit format is the same as the Control Word bit format. All status  
bits are updated by the AD1847 before a new Control Word is  
received (i.e., at frame boundaries). T hus, if T SSEL = 0 and  
the Control Word written at slot 0 causes some status bits to  
change, the change will show up in the Status Word transmitted  
at slot 3 of the same sample.  
Slot  
Register Nam e (16-Bit)  
0
1
2
3
4
5
Control Word Input  
Left Playback Data Input  
Right Playback Data Input  
Status Word/Index Readback Output  
Left Capture Data Output  
Right Capture Data Output  
Figure 4. Control Register Mapping with TSSEL = 0  
REV. B  
–9–  
AD1847  
Contr ol Wor d (16-Bit)  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
CLOR  
MCE  
RREQ  
res  
IA3  
IA2  
IA1  
IA0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
DAT A7  
DAT A6  
DAT A5  
DAT A4  
DAT A3  
DAT A2  
DAT A1  
DAT A0  
DAT A7:0 Index Register Data. T hese bits are the data for the desired AD1847 Index Register referenced by the Index Address.  
Written by the host CPU or DSP to the AD1847.  
IA3:0  
Index Register Address. T hese bits define the indirect address of the desired AD1847 Index Register. Written by the host  
CPU or DSP to the AD1847.  
RREQ  
Read Request. Setting this bit indicates that the current transfer is a request by the host CPU or DSP for readback of the  
contents of the indirect addressed Index Register. When this bit is set (RREQ = HI), the AD1847 will not transmit its  
Status Word in the following Status Word Index readback slot, but will instead transmit the data in the Index Register  
specified by the Index Address. Although the Index Readback is transmitted in the following Status Word/Index  
Readback time slot, the format of the Control Word is used (i.e., CLOR, MCE, RREQ and the Index Register Address  
in the most significant byte, and the readback Index Register Data in the least significant byte). When this bit is reset  
(RREQ = LO), the AD1847 will transmit its Status Word in the following Status Word Index Readback time slot.  
A read request is serviced in the next available Index Readback time slot. If T SSEL = 0, the Index Register readback  
data is transmitted in slot 3 of the same sample. If T SSEL = 1, Index Register readback data is transmitted in slot 0 of  
the next sample. If T SSEL changes from 0 to 1, Index Register readback will occur twice, in slot 3 of the current sample,  
and slot 0 of the next. If T SSEL changes from 1 to 0, the last read request is lost.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
MCE  
Mode Change Enable. T his bit must be set (MCE = HI) whenever protected control register bits of the AD1847 are  
changed. T he Data Format register, the Miscellaneous Information register, and the ACAL bit of the Interface Configu-  
ration register can NOT be changed unless this bit is set. T he DAC outputs will be muted when MCE is set. T he user  
must mute the AUX1 and AUX2 channels when this bit is set (no audio activity should occur). Written by the host CPU  
or DSP to the AD1847. T his bit is HI after reset.  
CLOR  
Clear Overrange. When this bit is set (CLOR = HI), the overrange bits in the Status Word are updated every sample.  
When this bit is reset (CLOR = LO), the overrange bits in the Status Word will record the largest overrange value. T he  
largest overrange value is sticky until the CLOR bit is set. Written by the host CPU or DSP to the AD1847. Since there  
can be up to 2 samples in the data pipeline, a change to CLOR may take up to 2 samples periods to take effect. T his bit  
is HI after reset.  
Immediately after reset, the contents of this register is: 1100 0000 0000 0000 (C000h).  
Left/Right P layback/Captur e D ata (16-Bit)  
T he data formats for Left Playback, Right Playback, Left Capture and Right Capture are all identical.  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
D AT A15  
D AT A14  
D AT A13  
D AT A12  
D AT A11  
D AT A10  
D AT A9  
D AT A8  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
DAT A7  
DAT A6  
DAT A5  
DAT A4  
DAT A3  
DAT A2  
DAT A1  
DAT A0  
DAT A15:0 Data Bits. T hese registers contain the 16-bit, MSB first data for capture and playback. T he host CPU or DSP reads the  
capture data from the AD1847. T he host CPU or DSP writes the playback data to the AD1847. For 8-bit linear or 8-bit  
companded modes, only DAT A15:8 contain valid data; DAT A7:0 are ignored during capture, and are zeroed during  
playback. Mono mode plays back the same audio sample on both left and right channels. Mono capture only captures  
data from the left audio channel. See “Serial Data Format” T iming Diagram.  
Immediately after reset, the content of these registers is: 0000 0000 0000 0000 (0000h).  
–10–  
REV. B  
AD1847  
Status Wor d (16-Bit)  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
res  
res  
RREQ  
res  
ID 3  
ID 2  
ID 1  
ID 0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
res  
res  
ORR1  
ORR0  
ORL1  
ORL0  
ACI  
IN IT  
INIT  
Initialization. T his bit is an indication to the host that frame syncs will stop and the serial bus will be shut down. INIT is  
set HI on the last valid frame. It is reset LO for all other frames. Read by the host CPU or DSP from the AD1847.  
T he INIT bit is set HI on the last sample before the serial interface is inactivated. T he only condition under which the  
INIT bit is set is when a different sample rate is programmed. If FRS = 0 (32 slots per frame, two samples per frame)  
and the sample rate is changed in the first sample of the 32 slot frame (i.e., during slots 0 through 15), the INIT bit will  
be set on the second sample of that frame (i.e., during slots 16 through 31). If FRS = 0 and the sample rate is changed in  
the second sample of the 32 slot frame, the INIT bit will be set on the second sample of the following frame.  
ACI  
Autocalibrate In-Progress. T his bit indicates that autocalibration is in progress or the Mode Change Enable (MCE) state  
has been recently exited. When exiting the MCE state with the ACAL bit set, the ACI bit will be set HI for 384 sample  
periods. When exiting the MCE state with the ACAL bit reset, the ACAL bit will be set HI for 128 sample periods, indi-  
cating that offset and filter values are being restored. Read by the host CPU or DSP from the AD1847.  
0
1
Autocalibration not in progress  
Autocalibration is in progress  
ACI clear (i.e., reset or LO) should be recognized by first polling for a HI on the sample after the MCE bit is reset, and  
then polling for a LO. Note that it is important not to start polling until one sample after MCE is reset, because if MCE  
is set while ACI is HI, an ACI LO on the following sample will suggest a false clear of ACI.  
ORL1:0  
Overrange Left Detect. T hese bits indicate the overrange on the left input channel. Read by the host CPU or DSP from  
the AD1847.  
0
1
2
3
Greater than –1.0 dB underrange  
Between –1.0 dB and 0 dB underrange  
Between 0 dB and 1.0 dB overrange  
Greater than 1.0 dB overrange  
ORR1:0  
Overrange Right Detect. T hese bits indicate the overrange on the right input channel. Read by the host CPU or DSP  
from the AD1847.  
0
1
2
3
Greater than –1.0 dB underrange  
Between –1.0 dB and 0 dB underrange  
Between 0 dB and 1.0 dB overrange  
Greater than 1.0 dB overrange  
ID3:0  
RREQ  
res  
AD1847 Revision ID. T hese four bits define the revision level of the AD1847. T he first version of the AD1847 is desig-  
nated ID = 0001. Read by the host CPU or DSP from the AD1847.  
T his bit is reset LO for the Status Word, echoing the RREQ state written by the host CPU or DSP in the previous Con-  
trol Word. Read by the host CPU or DSP from the AD1847.  
Reserved for future expansion. All reserved bits read zero (LO).  
Immediately after reset, the contents of this register is: 0000 0001 0000 0000 (0100h).  
REV. B  
–11–  
AD1847  
Index Readback (16-Bit)  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
CLOR  
MCE  
RREQ  
res  
IA3  
IA2  
IA1  
IA0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
DAT A7  
DAT A6  
DAT A5  
DAT A4  
DAT A3  
DAT A2  
DAT A1  
DAT A0  
DAT A7:0 Index Register Data. T hese bits are the readback data from the desired AD1847 Index Register referenced by the Index  
Address from the previous Control Word (with the RREQ bit set). Read by the host CPU or DSP from the AD1847.  
IA3:0  
Index Register Address. T hese bits echo the indirect address (written during the previous Control Word (with the RREQ  
bit set) of the desired AD1847 Index Register to be readback. Read by the host CPU or DSP from the AD1847.  
RREQ  
Read Request. T his bit is set HI for Index Readback, echoing the RREQ state written by the host CPU or DSP in the  
previous Control Word. Read by the host CPU or DSP from the AD1847.  
res  
Reserved for future expansion. All reserved bits read zero (LO).  
MCE  
Mode Change Enable. T his bit echoes the MCE state written by the host CPU or DSP during the previous* Control  
Word (with the RREQ bit set). Read by the host CPU or DSP from the AD1847.  
CLOR  
Clear Overrange. T his bit echoes the CLOR state written by the host CPU or DSP during the previous Control Word  
(with the RREQ bit set). Read by the host CPU or DSP from the AD1847.  
Immediately after reset, the contents of this register is: 1110 0000 0000 0000 (E000h).  
Indir ect Mapped Register s  
Following in Figure 6 is a table defining the mapping of AD1847 8-bit Index Registers to Index Address. T hese registers are accessed  
by writing the appropriate 4-bit Index Address in the Control Word.  
Index  
Register Nam e  
0
1
2
3
4
Left Input Control  
Right Input Control  
Left Aux # 1 Input Control  
Right Aux # l Input Control  
Left Aux # 2 Input Control  
Right Aux # 2 Input Control  
Left DAC Control  
5
6
7
8
Right DAC Control  
Data Format  
9
Interface Configuration  
Pin Control  
Invalid Address  
Miscellaneous Information  
Digital Mix Control  
Invalid Address  
10  
11  
12  
13  
14  
15  
Invalid Address  
Figure 6. Index Register Mapping  
A detailed description of each of the Index Registers is given below.  
–12–  
REV. B  
AD1847  
Left Input Contr ol Register (Index Addr ess 0)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
LIG 0  
0000  
LSS1  
LSS0  
res  
res  
LIG 3  
LIG 2  
LIG 1  
LIG3:0 Left Input Gain Select. T he least significant bit of this 16-level gain select represents +1.5 dB. Maximum gain is  
+22.5 dB.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
LSS1:0 Left Input Source Select. T hese bits select the input source for the left gain stage preceding the left ADC.  
0
1
2
3
Left Line 1 Source Selected  
Left Auxiliary 1 Source Selected  
Left Line 2 Source Selected  
Left Line 1 Post-Mixed Output Loopback Source Selected  
T his register’s initial state after reset is: 0000 0000 (00h).  
Right Input Contr ol Register (Index Addr ess 1)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
0001  
RSS1  
RSS0  
res  
res  
RIG 3  
RIG 2  
RIG 1  
RIG 0  
RIG3:0 Right Input Gain Select. T he least significant bit of this 16-level gain select represents +1.5 dB. Maximum gain is  
+22.5 dB.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
RSS1:0 Right Input Source Select. T hese bits select the input source for the right gain stage preceding the right ADC.  
0
1
2
3
Right Line 1 Source Selected  
Right Auxiliary 1 Source Selected  
Right Line 2 Source Selected  
Right Line 1 Post-Mixed Output Loopback Source Selected  
T his register’s initial state after reset is: 0000 0000 (00h).  
Left Auxiliar y # 1 Input Contr ol Register (Index Addr ess 2)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
0010  
LMX1  
res  
res  
LX1G 4  
LX1G 3  
LX1G 2  
LX1G 1  
LX1G 0  
LX1G4:0 Left Auxiliary Input # 1 Gain Select. T he least significant bit of this 32-level gain/attenuate select represents –1.5 dB.  
LX1G4:0 = 0 produces a +12 dB gain. LX1G4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is  
–34.5 dB. Gains referred to 2.0 V p-p full-scale output level.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
LMX1  
Left Auxiliary # 1 Mute. T his bit, when set HI, will mute the left channel of the Auxiliary # 1 input source. T his bit is set  
HI after reset.  
T his register’s initial state after reset is: 1000 0000 (80h).  
Right Auxiliar y # 1 Input Contr ol Register (Index Addr ess 3)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
0011  
RMX1  
res  
res  
RX1G 4  
RX1G 3  
RX1G 2  
RX1G 1  
RX1G 0  
RX1G4:0 Right Auxiliary Input # 1 Gain Select. T he least significant bit of this 32-level gain/attenuate select represents –1.5 dB.  
RX1G4:0 = 0 produces a +12 dB gain. RX1G4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is  
–34.5 dB. Gains referred to 2.0 V p-p full-scale output level.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
RMX1  
Right Auxiliary # 1 Mute. T his bit, when set to HI, will mute the right channel of the Auxiliary # 1 input source. T his bit is  
set to HI after reset.  
T his register’s initial state after reset is: 1000 0000 (80h).  
REV. B  
–13–  
AD1847  
Left Auxiliar y # 2 Input Contr ol Register (Index Addr ess 4)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
0100  
LMX2  
res  
res  
LX2G 4  
LX2G 3  
LX2G 2  
LX2G 1  
LX2G 0  
LX2G4:0 Left Auxiliary # 2 Gain Select. T he least significant bit of this 32-level gain/attenuate select represents –1.5 dB.  
LX2G4:0 = 0 produces a +12 dB gain. LX2G4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is  
–34.5 dB. Gains referred to 2.0 V p-p full-scale output level.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
LMX2  
Left Auxiliary # 2 Mute. T his bit, when set HI, will mute the left channel of the Auxiliary # 2 input source. T his bit is HI  
after reset.  
T his register’s initial state after reset is: 1000 0000 (80h).  
Right Auxiliar y # 2 Input Contr ol Register (Index Addr ess 5)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
0101  
RMX2  
res  
res  
RX2G 4  
RX2G 3  
RX2G 2  
RX2G 1  
RX2G 0  
RX2G4:0 Right Auxiliary # 2 Gain Select. T he least significant bit of this 32-level gain/attenuate select represents –1.5 dB.  
RX2G4:0 = 0 produces a +12 dB gain. RX2G4:0 = “01000” (8 decimal) produces 0 dB gain. Maximum attenuation is  
–34.5 dB. Gains referred to 2.0 V p-p full-scale output level.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
RMX2  
Right Auxiliary # 2 Mute. T his bit, when set HI, will mute the right channel of the Auxiliary # 2 input source. T his bit is  
HI after reset.  
T his register’s initial state after reset is: 1000 0000 (80h).  
Left D AC Contr ol Register (Index Addr ess 6)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
0110  
LD M  
res  
LD A5  
LD A4  
LD A3  
LD A2  
LD A1  
LD A0  
LDA5:0 Left DAC Attenuate Select. T he least significant bit of this 64-level attenuate select represents –1.5 dB. LDA5:0 = 0 pro-  
duces a 0 dB attenuation. Maximum attenuation is –94.5 dB.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
LDM  
Left DAC Mute. T his bit, when set HI, will mute the left channel output. Auxiliary inputs are muted independently with  
the Left Auxiliary Input Control Registers. T his bit is HI after reset.  
T his register’s initial state after reset is: 1000 0000 (80h).  
Right D AC Contr ol Register (Index Addr ess 7)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
0111  
RDM  
res  
RDA5  
RDA4  
RDA3  
RDA2  
RDA1  
RDA0  
RDA5:0 Right DAC Attenuate Select. T he least significant bit of this 64-level attenuate select represents –1.5 dB. RDA5:0 = 0  
produces a 0 dB attenuation. Maximum attenuation must be at least –94.5 dB.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
RDM  
Right DAC Mute. T his bit, when set HI, will mute the right DAC output. Auxiliary inputs are muted independently with  
the Right Auxiliary Input Control Registers. T his bit is HI after reset.  
T his register’s initial state after reset is: 1000 0000 (80h).  
–14–  
REV. B  
AD1847  
D ata For m at Register (Index Addr ess 8)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1000  
res  
FM T  
C/L  
S/M  
C FS2  
C FS1  
C FS0  
CSL  
The contents of this register can NOT be changed except when the AD1847 is in the Mode Change Enable (MCE) state (i.e., the MCE bit in  
the Control Word is HI). Write attempts to this register when the AD1847 is not in the MCE state will not be successful.  
CSL  
Clock Source Select. T his bit selects the clock source to be used for the audio sample rate.  
0
1
XT AL1 (24.576 MHz)  
XT AL2 (16.9344 MHz)  
CFS2:0 Clock Frequency Divide Select. T hese bits select the audio sample rate frequency. T he audio sample rate depends on  
which clock source is selected and the frequency of the clock source.  
D ivide  
Factor  
XTAL1  
24.576 MH z  
XTAL2  
16.9344 MH z  
CFS2:0  
0
1
2
3
4
5
6
7
3072  
1536  
896  
768  
448  
384  
512  
2560  
8.0 kHz  
16.0 kHz  
5.5125 kHz  
11.025 kHz  
18.9 kHz  
22.05 kHz  
37.8 kHz  
44.1 kHz  
33.075 kHz  
6.615 kHz  
27.42857 kHz  
32.0 kHz  
Not Supported  
Not Supported  
48.0 kHz  
9.6 kHz  
Note that the AD1847s internal oscillators can be overdriven by external clock sources at the crystal inputs. T his is the  
configuration used by serial bus slave codecs in daisy-chained multiple codec systems. If an external clock source is ap-  
plied, it will be divided down by the selected Divide Factor. T he external clock need not be at the recommended crystal  
frequencies.  
S/M  
C/L  
Stereo/Mono Select. T his bit determines how the audio data streams are formatted. Selecting stereo will result with alter-  
nating samples representing left and right audio channels. Mono playback plays the same audio sample on both channels.  
Mono capture only captures data from the left audio channel.  
0
1
Mono  
Stereo  
Companded/Linear Select. T his bit selects between a linear digital representation of the audio signal or a nonlinear, com-  
panded format for all input and output data. T he type of linear PCM or the type of companded format is defined by the  
FMT bits.  
0
1
Linear PCM  
Companded  
FMT  
Format Select. T his bit defines the format for all digital audio input and output based on the state of the C/L bit.  
Linear P CM (C/L = 0)  
Com panded (C/L = 1)  
0
1
8-bit unsigned linear PCM  
16-bit signed linear PCM  
8-bit µ-law companded  
8-bit A-law companded  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
T his register’s initial state after reset is: 0000 0000 (00h).  
REV. B  
–15–  
AD1847  
Inter face Configur ation Register (Index Addr ess 9)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1001  
res  
res  
res  
res  
ACAL  
res  
res  
P EN  
PEN  
Playback Enable. T his bit will enable the playback of data in the format selected. PEN may be set and reset without  
setting the MCE bit.  
0
1
Playback Disabled  
Playback Enabled  
ACAL  
Autocalibrate Enable. T his bit determines whether the AD1847 performs an autocalibrate when exiting from the Mode  
Change Enable (MCE) state. If the ACAL bit is not set, the previous autocalibration values are used when returning from  
the Mode Change Enable (MCE) state and no autocalibration takes place. Autocalibration must be preformed after initial  
power-up for proper operation. T his bit is HI after reset.  
0
1
No autocalibration  
Autocalibration allowed  
NOT E: T he ACAL bit can only be changed when the AD1847 is in the Mode Change Enable (MCE) state.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
T his register’s initial state after reset is: 0000 1000 (08h).  
P in Contr ol Register (Index Addr ess 10)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1010  
XC T L1  
XC T L0  
CLKT S  
res  
res  
res  
res  
res  
CLKT S Clock T hree-State. If the BM bit is HI, and the CLKT S bit is HI, then the CLKOUT pin will be three-stated. If the BM  
bit is HI, and the bit CLKT S is LO, then the CLKOUT pin is not three-stated. If the BM bit is LO, then the CLKOUT  
pin is always three-stated.  
XCT L1:0 External Control. T he state of these independent bits is reflected on the respective XCT L1 and XCT L0 pins of the  
AD1847.  
0
1
T T L logic LO on XCT L1, XCT L0 pins  
T T L logic HI on XCT L1, XCT L0 pins  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
T his register’s initial state after reset is: 0000 0000 (00h).  
Invalid Addr ess (Index Addr ess 11)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1011  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
Writes to this index address are ignored. Index readback of this index address will return the Status Word.  
–16–  
REV. B  
AD1847  
Miscellaneous Infor m ation Register (Index Addr ess 12)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1100  
FRS  
T SSEL  
res  
res  
res  
res  
res  
res  
The Miscellaneous Information Register can only be changed when the AD1847 is in the Mode Change Enable (MCE) state. Changes to this  
register are updated at the next Serial Data Frame Sync (SDFS) boundary. If FRS is LO (i.e., 32 slots per frame), and either TSSEL or FRS  
change in the first sample of a frame, the change is not updated at the second sample of the same frame, but at the first sample of the next frame.  
T SSEL  
T ransmit Slot Select. T his bit determines which T DM time slots the AD1847 should transmit on.  
0
1
T ransmit on time slots 3, 4 and 5. Used when SDI and SDO are tied together (i.e., “1-wire” system).  
T ransmit on slots 0, 1 and 2. Used when SDI and SDO are independent inputs and outputs  
(i.e., “2-wire” system).  
FRS  
res  
Frame Size. T his bit selects the number of time slots per frame.  
0
1
Selects 32 slots per frame (two samples per frame sync or frame sync at half the sample rate).  
Selects 16 slots per frame (one sample per frame sync or frame sync at the sample rate).  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
T his register’s initial state after reset is: 0000 0000 (00h).  
D igital Mix Contr ol Register (Index Addr ess 13)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1101  
DMA5  
DMA4  
DMA3  
DMA2  
DMA1  
DMA0  
res  
D M E  
DME  
Digital Mix Enable. T his bit enables the digital mix of the ADCs’ output with the DACs’ input. When enabled, the data  
from the ADCs is digitally mixed with other data being delivered to the DACs (regardless of whether or not playback  
[PEN] is enabled, i.e., set). If there is a capture overrun, then the last sample captured before overrun will be used for  
the digital mix. If playback is enabled (PEN set) and there is a playback underrun, then a midscale zero will be added to  
the digital mix data.  
0
1
Digital mix disabled (muted)  
Digital mix enabled  
DMA5:0 Digital Mix Attenuation. T hese bits determine the attenuation of the ADC output data mixed with the DAC input data.  
T he least significant bit of this 64-level attenuate select represents –1.5 dB. Maximum attenuation is –94.5 dB.  
res  
Reserved for future expansion. Write zeros (LO) to all reserved bits.  
T his register’s initial state after reset is: 0000 0000 (00h).  
Invalid Addr ess (Index Addr ess 14)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1110  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
Writes to this index address are ignored. Index readback of this index address will return the Status Word.  
Invalid Addr ess (Index Addr ess 15)  
IA3:0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
1111  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
Writes to this index address are ignored. Index readback of this index address will return the Status Word.  
REV. B  
–17–  
AD1847  
Ser ial D ata Inter face  
Note that in this “1-wire” system example, the Digital Signal  
Processor (DSP) and ISA Bus Interface ASIC (ASIC) use the  
same slots to communicate to the AD1847. T his reduces the  
number of total time slots required and eliminates the need for  
the AD1847 to distinguish between DSP data and ASIC data.  
Also, in this example the ASIC and the DSP do not send data to  
the AD1847 at the same time, so separate slots are unnecessary.  
T he AD1847 serial data interface uses a T ime Division Multi-  
plex (T DM) scheme that is compatible with DSP serial ports  
configured in Multi-Channel Mode with either 32 or 16 16-bit  
time slots. An AD1847 is always the serial bus master, transmit-  
ting the serial clock (SCLK) and the serial data frame sync  
(SDFS). T he AD1847 always receives control and playback  
data in time slots 0, 1 and 2. T he AD1847 will transmit status  
or index register readback and capture data in time slots 0, 1  
and 2 if T SSEL = 1, and will transmit status or index register  
readback and capture data in time slots 3, 4 and 5 if T SSEL =  
0. T he following table in Figure 7 shows an example of how the  
time slots might be assigned.  
T he digital data in the serial interface is pipelined up to 2  
samples deep. T his pipelining is required to properly resolve the  
interface between the relatively fast fixed SCLK rate, and the  
relatively slow sample rates (and therefore frame sync rates) at  
which the AD1847 is capable of running. At low sample rates,  
two samples of data can be serviced in a fraction of a sample pe-  
riod. For example, at an 8 kHz sample rate, 32 time slots only  
consume 32 × 16 × (1/12.288 MHz) = 41.67 µs out of a 125 µs  
period. T he two-deep data pipeline thus allows sample overrun  
(capture) and sample underrun (playback) to be avoided.  
In this example design, which uses the ADSP-21xx DSP, each  
frame is divided into 32 time slots of 16-bits each (FRS = 0).  
T wo audio samples are contained in the 32 time slots, with a  
single frame sync (SDFS) at the beginning of the frame. T he  
ADSP-21xx serial port (SPORT 0) supports 32 time slots. T he  
format of the first 16 time slots (sample N) is the same as the  
format of the second 16 time slots (sample N+1). In this ex-  
ample, 24 time slots are used, as indicated below. Note that  
time slots 12 through 15 and 28 through 31 are unused in this  
example, and that Figure 7 presumes that T SSEL = 0 (“1-wire”  
system).  
Figure 8 represents a logical view of the slot utilization between  
devices.  
AD1847  
0, 1, 2, 16, 17, 18  
SDI  
ASIC  
SDO  
3, 4, 5, 19, 20, 21  
0, 1, 2,  
3, 4, 5,  
19, 20, 21  
Slot Num ber Sou r ce  
D estin ation For m at  
AD1847 Control Word  
16, 17, 18  
0, 16  
6, 7, 8,  
22, 23, 24  
9, 10, 11,  
25, 26, 27  
ADSP-21XX  
1, 17  
2, 18  
3, 19  
ASIC  
AD 1847  
Left Playback Data  
Right Playback Data  
AD1847 Status Word/  
Index Readback  
Left Capture Data  
Right Capture Data  
AD1847 Control Word  
Left Playback Data  
Right Playback Data  
AD1847 Status Word/  
Index Readback  
Left Capture Data  
Right Capture Data  
DSP Control  
DR  
DT  
DT  
DR  
NOTE: DSP MUST HAVE TWO SERIAL PORTS  
4, 20  
5, 21  
0, 16  
1, 17  
2, 18  
3, 19  
AD 1847 ASIC  
Figure 8. Tim e Slot Allocation Exam ple  
DSP  
AD 1847  
Note that this is a system specific 1-wire example. For non-DSP  
operation, the DSP is either not present or disabled. If the DSP  
is present, the ASIC configures the DSP through slot 6 (and slot  
22) to three-state its outputs in time slots 0, 1 and 2 (and slots  
16, 17 and 18). T he ASIC can then enable its drivers for time  
slots 0, 1 and 2 (and slots 16, 17 and 18). For DSP operation,  
the ASIC three-states its outputs for time slots 0, 1 and 2 (and  
slots 16, 17 and 18) and enables the DSP drivers for slots 0, 1  
and 2 (and slots 16, 17, and 18).  
4, 20  
5, 21  
6, 22  
7, 23  
AD 1847 DSP  
ASIC  
DSP  
DSP  
Left Processed  
Playback Data  
8, 24  
Right Processed  
Playback Data  
An application note is available from Analog Devices with addi-  
tional information on interfacing to the AD1847 serial port.  
T his application note can be obtained through your local Ana-  
log Devices representative, or downloaded from the DSP Bulle-  
tin Board Service at (617) 461-4258 (8 data bits, no parity, 1  
stop bit, 300/1200/2400/4600 baud).  
9, 25  
DSP Status  
10, 26  
ASIC  
Left Processed  
Capture Data  
11, 27  
Right Processed  
Capture Data  
Figure 7. Tim e Slot Assignm ent Exam ple  
–18–  
REV. B  
AD1847  
Contr ol Wor d  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
CLOR  
MCE  
RREQ  
res  
IA3  
IA2  
IA1  
IA0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
DAT A7  
DAT A6  
DAT A5  
DAT A4  
DAT A3  
DAT A2  
DAT A1  
DAT A0  
Left P layback D ata  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
D AT A15  
D AT A14  
D AT A13  
D AT A12  
D AT A11  
D AT A10  
D AT A9  
D AT A8  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
DAT A7  
DAT A6  
DAT A5  
DAT A4  
DAT A3  
DAT A2  
DAT A1  
DAT A0  
Right P layback D ata  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
D AT A15  
D AT A14  
D AT A13  
D AT A12  
D AT A11  
D AT A10  
D AT A9  
D AT A8  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
DAT A7  
DAT A6  
DAT A5  
DAT A4  
DAT A3  
DAT A2  
DAT A1  
DAT A0  
Status Wor d  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
res  
res  
RREQ  
res  
ID 3  
ID 2  
ID 1  
ID 0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
res  
res  
ORR1  
ORR0  
ORL1  
ORL0  
ACI  
IN IT  
Index Readback  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
CLOR  
MCE  
RREQ  
res  
IA3  
IA2  
IA1  
IA0  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
DAT A7  
DAT A6  
DAT A5  
DAT A4  
DAT A3  
DAT A2  
DAT A1  
DAT A0  
Left Captur e D ata  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
D AT A15  
D AT A14  
D AT A13  
D AT A12  
D AT A11  
D AT A10  
D AT A9  
D AT A8  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
DAT A7  
DAT A6  
DAT A5  
DAT A4  
DAT A3  
DAT A2  
DAT A 1  
DAT A0  
Right Captur e D ata  
D ata 15  
D ata 14  
D ata 13  
D ata 12  
D ata 11  
D ata 10  
D ata 9  
D ata 8  
D AT A15  
D AT A14  
D AT A13  
D AT A12  
D AT A11  
D AT A10  
D AT A9  
D AT A8  
D ata 7  
D ata 6  
D ata 5  
D ata 4  
D ata 3  
D ata 2  
D ata 1  
D ata 0  
DAT A7  
DAT A6  
DAT A5  
DAT A4  
DAT A3  
DAT A2  
DAT A1  
DAT A0  
REV. B  
–19–  
AD1847  
IA3:0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
D ata 7  
LSS1  
RSS1  
LMX1  
RMX1  
LMX2  
RMX2  
LD M  
RDM  
res  
D ata 6  
LSS0  
RSS0  
res  
D ata 5  
res  
D ata 4  
res  
D ata 3  
LIG 3  
RIG 3  
LX1G 3  
RX1G 3  
LX2G 3  
RX2G 3  
LD A3  
RDA3  
C FS2  
ACAL  
res  
D ata 2  
LIG 2  
RIG 2  
LX1G 2  
RX1G 2  
LX2G 2  
RX2G 2  
LD A2  
RDA2  
C FS1  
res  
D ata 1  
LIG 1  
RIG 1  
LX1G 1  
RX1G 1  
LX2G 1  
RX2G 1  
LD A1  
RDA1  
C FS0  
res  
D ata 0  
LIG 0  
RIG 0  
LX1G 0  
RX1G 0  
LX2G 0  
RX2G 0  
LD A0  
RDA0  
CSL  
Index  
0
1
res  
res  
res  
LX1G 4  
RX1G 4  
LX2G 4  
RX2G 4  
LD A4  
RDA4  
S/M  
2
res  
res  
3
res  
res  
4
res  
res  
5
res  
LD A5  
RDA5  
C/L  
6
res  
7
FM T  
res  
8
res  
res  
res  
P EN  
9
XC T L1  
inval  
XC T L0  
inval  
T SSEL  
DMA4  
inval  
inval  
CLKT S  
inval  
res  
res  
res  
res  
res  
10  
11  
12  
13  
14  
15  
inval  
inval  
inval  
inval  
inval  
FRS  
res  
res  
res  
res  
res  
DMA5  
inval  
DMA3  
inval  
inval  
DMA2  
inval  
DMA1  
inval  
DMA0  
inval  
res  
D M E  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
inval  
Figure 9. Register Map Sum m ary  
Contr ol Register Mapping Sum m ar y  
A detailed map of the control register bit assignments is summa-  
rized for reference in Figure 9.  
Figure 10 illustrates the connection between master and slave(s)  
in a daisy-chained, multiple Codec system. Note that the T SI  
pin of the master Codec should be tied to digital ground. T he  
XT AL1I pin of the slaves should be connected to digital  
ground, and XT AL1O pin should be left unconnected, while  
the XT AL2I pin should be connected to the CLKOUT pin of  
the AD1847 master, and the XT AL2O pin generates a driven  
version of the CLKOUT signal applied to the XT AL2I pin.  
D aisy-Chained Multiple Codecs  
Multiple AD1847s can be configured in a daisy-chain system  
with a single master Codec and one or more slave Codecs.  
Codecs in a daisy-chained configuration are synchronized at the  
sample level.  
T he master and slave AD1847s should be powered-up together.  
If this is not possible, the slave(s) should power-up before the  
master Codec, such that the slave(s) are ready when the master  
starts to drive the serial interface, and a serial data frame sync  
(SDFS) can synchronize the master and slave(s).  
INITIALIZATIO N AND P RO CED URES  
Reset and P ower D own  
A total reset of the AD1847 is defined as any event which  
requires both the digital and analog section of the AD1847 to  
return to a known and stable state. T otal reset mode, as well as  
power down, occurs when the PWRDOWN pin of the AD1847  
has been asserted low for minimum power consumption. When  
the PWRDOWN signal is deasserted, the AD1847 must be cali-  
brated by setting the ACAL bit and exiting from the Mode  
Change Enable (MCE) state.  
T he sample rate for the master and slave(s) should be pro-  
grammed together. If this is not possible, the slave(s) should be  
programmed before the master AD1847. A slave AD1847 enters  
a time-out period after a new sample rate has been selected.  
During this time-out period, a slave will ignore any activity on  
the SDFS signal (i.e., frame syncs). T here is no software means  
to determine when a slave has exited from this time-out period  
and is ready to respond to frame syncs. However, as long as the  
AD1847 master is driving the serial interface, a frame sync will  
not occur before the slave Codec(s) are ready.  
T he reset occurs, and only resets the digital section of the  
AD1847, when the RESET pin of the AD1847 has been as-  
serted LO to initialize all registers to known values. See the reg-  
ister definitions for the exact values initialized. T he register reset  
defaults include T SSEL = 0 (1-wire system) and FRS = 0  
(32 slots per frame). If the target application requires a 2-wire  
system design or 16 slots per frame, the AD1847 can be  
bootstrapped into these configurations.  
Note that the time slots for all slave AD1847s must be assigned  
to those slots which immediately follow the time slots consumed  
by the master AD1847 so that the T SO (T ime Slot Output)/T SI  
(T ime Slot Input) signaling operates properly. For example, in a  
2-wire system with one master and one slave, the time slot as-  
signment should be 0, 1, 2 (16, 17, 18) for the master AD1847,  
and 3, 4, 5 (19, 20, 21) for the slave AD1847.  
–20–  
REV. B  
AD1847  
MCE bit set HI, IA3:0 = “1100” to address the Miscellaneous  
Information Index Register, and DAT A7:0 = “1X00 0000” to  
set the FRS bit HI.  
24.576  
MHz  
16.9344  
MHz  
2
2
T he host CPU or DSP must maintain the MCE bit set HI in  
slot 16, which is the Control Word of the second sample of  
the frame, so that the AD1847 does not initiate autocalibration  
prematurely. At the next frame sync, the AD1847 will be  
reconfigured.  
XTAL1I,O XTAL2I,O  
SCLK  
TSI  
SDFS  
AD1847  
(MASTER)  
SDI  
SDO  
TSO  
CLKOUT  
T he AD1847 must be reset after power up. When the RESET  
signal is deasserted, the AD1847 will autocalibrate when the  
MCE bit is reset LO (i.e., when exiting the Mode Change En-  
able state) only if the ACAL bit is set. If the ACAL bit is not  
set, the previous autocalibration values will be used.  
TSI  
XTAL2I  
SCLK  
SDFS  
SDI  
XTAL1O  
XTAL2O  
N/C  
(SLAVE 1)  
XTAL1I  
SDO  
T he AD1847 will not function properly unless an auto-  
calibration is performed after power up.  
TSO  
During power down, the serial port digital output pins and the  
analog output pins take the following states:  
TSI  
XTAL2I  
SCLK  
SDFS  
SDI  
XTAL1O  
XTAL2O  
N/C  
SCLK–LO if BM is HI (i.e., bus master), input pin if BM is  
LO (i.e., bus slave)  
SDFS–LO if BM is HI, input pin if BM is LO  
SDO–three-state  
(SLAVE 2)  
XTAL1I  
SDO  
TSO  
T SO–three-state  
CLKOUT LO if BM HI, three-state if BM is LO  
V
REF–pulled to analog ground  
Figure 10a. One-Wire Daisy-Chained Codec Interconnect  
L_OUT , R_ OUT – pulled to analog ground  
24.576  
MHz  
16.9344  
MHz  
Clock Connections and Clock Rates  
When the AD1847 is configured as a bus slave (BM = LO), the  
XT AL1I pin should be connected to digital ground, and the  
XT AL2I pin should be tied to the CLKOUT of the AD1847  
bus master. T he XT AL1O and the XT AL2O pins should be left  
unconnected. When the AD1847 is configured as a bus master  
(BM = HI), the XT AL1I and the XT AL1O pin should be con-  
nected to a 24.576 MHz crystal, and the XT AL2I and  
XT AL2O pin should be connected to a 16.9344 MHz crystal.  
2
2
XTAL1I, O XTAL2I, O  
SCLK  
TSI  
SDFS  
AD1847  
(MASTER)  
SDI  
SDO  
TSO  
CLKOUT  
When XT AL1 is selected (by resetting the CSL bit LO in the  
Data Format Register) as the clock source, the SCLK pin will  
generated a serial clock at 12.288 MHz (or one half of the crys-  
tal frequency applied at XT AL1), and the CLKOUT pin will  
also generate a clock output at 12.288 MHz when the AD1847  
is in bus master mode (BM = HI). When XT AL2 is selected (by  
setting the CSL bit HI in the Data Format Register) as the clock  
source, the SCLK pin will generate a serial clock at 11.2896 MHz  
(or two thirds of the crystal frequency applied at XT AL2), and  
the CLKOUT pin will generate a clock output at 16.9344 MHz  
when the AD1847 is in bus master mode (BM = H I). The  
CLKOUT pin will be three-stated when the AD1847 is placed  
in bus slave mode (BM = LO).  
TSI  
XTAL2I  
SCLK  
SDFS  
SDI  
XTAL1O  
XTAL2O  
N/C  
(SLAVE 1)  
XTAL1I  
SDO  
TSO  
TSI  
XTAL2I  
SCLK  
SDFS  
SDI  
XTAL1O  
XTAL2O  
N/C  
(SLAVE 2)  
XTAL1I  
SDO  
TSO  
When the selected frame size is 32 slots per frame (by resetting  
the FRS bit LO in the Miscellaneous Information Register), the  
SDFS pin will generate a serial data frame sync at the frequency  
of the selected sample rate divided by two, when the AD1847 is  
in bus master mode (BM = HI). When the selected frame size is  
16 slots per frame (by setting the FRS bit HI in the Miscella-  
neous Information Register), the SDFS pin will generate a serial  
data frame sync at the frequency of the selected sample rate,  
when the AD1847 is in bus master mode (BM = HI).  
Figure 10b. Two-Wire Daisy-Chained Codec Interconnect  
T o bootstrap into T SSEL = 1 (i.e., 2-wire system design), the  
host CPU or DSP must transmit to the AD1847 in slot 0 a  
Control Word with the MCE bit set HI, IA3:0 = “1100” to  
address the Miscellaneous Information Index Register, and  
DAT A7:0 = “X100 000” to set the T SSEL bit HI. T o bootstrap  
into FRS = 1 (i.e., 16 slots per frame), the host CPU or DSP  
must transmit to the AD1847 in slot 0 a Control Word with the  
REV. B  
–21–  
AD1847  
When the AD1847 is in bus slave mode (BM = LO), the T SI  
pin should be connected to the T SO pin of the AD1847 master  
or slave which has been assigned to the preceding time slots.  
T he signal on the T SO pin is essentially the signal received on  
the T SI pin, but delayed by 3 or 6 time slots from T SI (depend-  
ing on the state of T SSEL). T he frequency of the transitions on  
the T SI and T SO lines is equivalent to the frequency on the  
SDFS pin.  
If ACAL is not set, the AD1847 is muted for 128 sample peri-  
ods after resetting the MCE bit, and the ACI bit in the Status  
Word is set HI during this 128 sample periods. Autocalibration  
must be performed after power-up to ensure proper operation of  
the AD1847.  
Exiting from the MCE state always causes ACI to go HI. If the  
ACAL bit is set when MCE state is exited, then the ACI bit will  
be HI for 384 sample periods. If the ACAL bit is reset when  
MCE is exited, then the ACI bit will be HI for 128 sample  
periods.  
When the AD1847 is in bus master mode (BM = HI), the T SI  
pin should be connected to digital ground. T he signal on the  
T SO pin is essentially the same as the signal output on the  
SDFS pin, but delayed by 3 or 6 time slots from SDFS (again,  
depending on the state of T SSEL).  
Changing Sam ple Rates  
T he internal states of the AD1847 are synchronized by the  
selected sample frequency defined in the Data Format Register.  
T he changing of either the clock source or the clock frequency  
divide requires a special sequence for proper AD1847 operation.  
Mode Change Enable State  
T he AD1847 must be in the Mode Change Enable (MCE) state  
before any changes to the ACAL bit of the Interface Configura-  
tion Register, the Data Format Register, or the Miscellaneous  
Information Register are allowed. Note that the MCE bit does  
not have to be reset LO in order for changes to take effect.  
1. Mute the outputs of the AD1847 and enter the Mode Change  
Enable (MCE) state by setting the MCE bit of the AD1847  
Control Word.  
2. During a single atomic or nondivisible write cycle, change the  
Clock Frequency Divide Select (CFS) and/or the Clock  
Source Select (CSL) bits of the Data Format Register to the  
desired values. CFS and CSL can be programmed in the  
same Control Word as MCE.  
D igital Mix  
Digital mix is enabled via the DME bit in the Digital Mix Con-  
trol Register. T he digital mix routes the digital data from the  
ADCs to the DACs. T he mix can be digitally attenuated via bits  
also in the Digital Mix Control Register. T he ADC data is  
summed with the DAC data supplied at the digital bus inter-  
face. When digital mix is enabled and the PEN bit is not set,  
ADC data is summed with zeros to produce the DAC output.  
3. T he INIT bit in the Status Word will be set HI at the last  
sample of the next frame to indicate that the serial port will be  
disabled for a timeout period.  
4. T he AD1847 requires a period of time to resynchronize its  
internal states to the newly selected clock. During this time,  
the AD1847 will be unable to respond at its serial interface  
port (i.e., no frame syncs will be generated). T he time-out  
period is 221 ϫ SCLK 170 ms after power-up, and 5 ms  
for subsequent changes of sample rate.  
If the sum of the digital mix (ADC output and DAC input from  
the serial bus interface) is greater than full scale, the AD1847  
will send a positive or negative full scale value to the DACs,  
whichever is appropriate (clipping).  
Autocalibr ation  
T he AD1847 has the ability to calibrate its ADCs and DACs for  
greater accuracy by minimizing dc offsets. Autocalibration oc-  
curs whenever the AD1847 exits from the Mode Change Enable  
(MCE) state AND the ACAL bit in the Interface Configuration  
Register has been set.  
5. Exit the Mode Change Enable state by resetting the MCE bit.  
Upon exiting the MCE state, an autocalibration of duration  
384 sample periods or an output mute of duration 128 sample  
periods occurs, depending on the state of the ACAL bit.  
6. Poll the ACI bit in the AD1847 Status Word for a HI (indi-  
cating that autocalibration is in progress) then poll the ACI  
bit for a LO (indicating that autocalibration has completed).  
Once the ACI bit has been read back LO, normal operation of  
the Codec can resume.  
T he completion of the autocalibration sequence can be deter-  
mined by polling the Autocalibration In-Progress (ACI) bit in  
the Status Word. T his bit will be HI while the autocalibration is  
in progress and LO once autocalibration has completed. T he  
autocalibration sequence will take at least 384 sample periods.  
T he CSL and CFS bits cannot be changed unless the AD1847  
is in the Mode Change Enable state (i.e., the MCE bit in the  
AD1847 Control Word is set). Attempts to change the contents  
of the Data Format Register without MCE set will result in the  
write cycle not being recognized (the bits will not be updated).  
T he autocalibration procedure is as follows:  
1. Mute both left and right AUX1 and AUX2 inputs via the Left  
Auxiliary Input and Right Auxiliary Input Control Registers.  
2. Place the AD1847 in the Mode Change Enable (MCE) state  
using the MCE bit of the AD1847 Control Word. Set the  
ACAL bit in the Interface Configuration Register.  
T he MCE bit should not be reset until after the INIT bit in the  
AD1847 Status Word is detected HI. After the INIT bit is de-  
tected HI, the serial port is disabled. When the next frame sync  
arrives (after the time-out period), all internal clocks are stable  
and the serial port is ready for normal operation.  
3. Exit from the Mode Change Enable state by resetting the  
MCE bit.  
4. Poll the ACI bit in the AD1847 Status Word for a HI  
(autocalibration in progress), then poll the ACI bit for a LO  
(autocalibration complete).  
5. Unmute the AUX inputs, if used.  
–22–  
REV. B  
AD1847  
D ATA FO RMAT D EFINITIO NS  
8-Bit Com panded For m ats  
T here are four data formats supported by the AD1847: 16-bit  
signed, 8-bit unsigned, 8-bit companded µ-law, and 8-bit com-  
panded A-law. The AD1847 supports these four formats because  
each of them have found wide use in important applications.  
T he 8-bit companded formats (µ-law and A-law) are used in the  
telecommunications industry. Both of these formats are used in  
ISDN communications and workstations; µ-law is the standard  
for the United States and Japan while A-law is used in Europe.  
Companded audio allows either 64 dB or 72 dB of dynamic  
range using only 8-bits per sample. T his is accomplished using a  
nonlinear formula which assigns more digital codes to lower am-  
plitude analog signals at the expense of resolution of higher am-  
plitude signals. T he µ-law format of the AD1847 conforms to  
the Bell System µ = 255 companding law while the A-law format  
conforms to CCIT T “A” law models. Figure 13 shows approxi-  
mately how both the µ-law and A-law companding schemes be-  
have. Refer to the standards mentioned above for an exact  
definition.  
16-Bit Signed For m at  
T he 16-bit signed format (also called 16-bit twos-complement)  
is the standard method of representing 16-bit digital audio. T his  
format yields 96 dB of dynamic range and is common in con-  
sumer compact disk audio players. T his format uses the value  
– 32768 (8000h) to represent minimum analog amplitude while  
32767 (7FFFh) represents maximum analog amplitude. Inter-  
mediate values are a linear interpolation between minimum and  
maximum amplitude values.  
MAX  
MAX  
MIN  
MIN  
00h  
2Ah  
8000h  
0000h  
7FFFh  
FFh  
D5h  
80h µ-law  
AAh A-law  
DIGITAL VALUE  
DIGITAL VALUE  
Figure 11. 16-Bit Signed Form at  
8-Bit Unsigned For m at  
Figure 13. 8-Bit Com panded Form at  
T he 8-bit unsigned format is commonly used in the personal  
computer industry. T his format delivers 48 dB of dynamic  
range. T he value 0 (00h) is used to represent minimum analog  
amplitude while 255 (FFh) is used to represent maximum ana-  
log amplitude. Intermediate values are a linear interpolation be-  
tween minimum and maximum amplitude values. T he least  
significant byte of the 16-bit internal data is truncated to create  
the 8-bit output samples.  
AP P LICATIO NS CIRCUITS  
T he AD1847 Stereo Codec has been designed to require a mini-  
mum of external circuitry. T he recommended circuits are shown  
in Figures 14 through 22. Analog Devices estimates that the to-  
tal cost of all the components shown in these Figures, including  
crystals, to be less than $3 in 10,000 quantities.  
Industry-standard compact disc “line-levels” are 2 Vrms centered  
around analog ground. (For other audio equipment, “line level”  
is much more loosely defined.) T he AD1847 SoundPort is a  
+5 V only powered device. Line level voltage swings for the  
AD1847 are defined to be 1 Vrms for a sine wave ADC input and  
0.707 Vrms for a sine wave DAC output. T hus, 2 Vrms input ana-  
log signals must be attenuated and either centered around the  
reference voltage intermediate between 0 V and +5 V or  
MAX  
ac-coupled. T he VREF pin will be at this intermediate voltage,  
nominally 2.25 V. It has limited drive but can be used as a volt-  
age datum to an op amp input. Note, however, that dc-coupled  
inputs are not recommended, as they provide no performance  
benefits with the AD1847 architecture. Furthermore, dc offset  
differences between multiple dc-coupled inputs create the po-  
tential for “clicks” when changing the input mux selection.  
MIN  
00h  
7Fh  
FFh  
DIGITAL VALUE  
Figure 12. 8-Bit Unsigned Form at  
REV. B  
–23–  
AD1847  
Circuits for 2 Vrms line-level inputs and auxiliaries are shown in  
Figure 14 and Figure 15. Note that these are divide-by-two  
resistive dividers. T he input resistor and 560 pF (1000 pF)  
capacitor provide the single-pole of antialias filtering required  
for the ADCs. If line-level inputs are already at the 1 Vrms levels  
expected by the AD1847, the resistors in parallel with the  
560 pF (1000 pF) capacitors can be omitted. If the application  
does not route the AUX2 inputs to the ADCs, then no antialias  
filtering is required (only the 1 µF ac coupling capacitor).  
Figure 17 shows ac-coupled line outputs. T he resistors are  
used to center the output signals around analog ground. If  
dc-coupling is desired, VREF could be used with op amps as  
mentioned previously.  
1µF  
L_OUT  
47k  
1µF  
R_OUT  
0.33 µF  
5.1k  
L_LINE1  
L_LINE2  
47k  
560pF  
5.1k  
NPO  
Figure 17. Line Output Connections  
0.33 µF  
5.1k  
R_LINE1  
R_LINE2  
A circuit for headphone drive is illustrated in Figure 18. Drive is  
supplied by +5 V operational amps. T he circuit shown ac  
couples the headphones to the line output.  
560pF  
5.1k  
NPO  
18k  
20k  
470µF  
470µF  
L_OUT  
Figure 14. 2 Vrm s Line-Level Input Circuit for Line Inputs  
HEADPHONE  
LEFT  
V
SSM2135  
18k  
REF  
1µF  
3.3k  
L_AUX1  
L_AUX2  
20k  
HEADPHONE  
RIGHT  
R_OUT  
1000pF  
4.3k  
NPO  
1µF  
3.3k  
R_AUX1  
Figure 18. Headphone Drive Connections  
R_AUX2  
1000pF  
4.3k  
Figure 19 illustrates reference bypassing. VREFI should only be  
connected to its bypass capacitors.  
NPO  
V
V
REF  
REFI  
0.1µF  
10µF  
10µF  
Figure 15. 2 Vrms Line-Level Input Circuit for AUX Inputs  
Figure 16 illustrates one example of how an electret condenser  
microphone requiring phantom power could be connected to  
the AD1847. VREF is shown buffered by an op amp; a transistor  
like a 2N4124 will also work well for this purpose. Note that if a  
battery-powered microphone is used, the buffer and R2s are not  
needed. T he values of R1, R2, and C should be chosen in light  
of the mic characteristics and intended gain. T ypical values for  
these might be R1 = 20 k, R2 = 2 k, and C = 220 pF.  
Figure 19. Voltage Reference Bypassing  
Figure 20 illustrates signal-path filtering capacitors, L_FILT  
and R_FILT . T he AD1847 must use 1.0 µF capacitors. T he  
1.0 µF capacitors required by the AD1847 can be of any type.  
LFILT  
RFILT  
C
1.0µF  
1.0µF  
R1  
1µF  
5k  
0.33µF  
L_LINE1  
L_LINE2  
Figure 20. External Filter Capacitor Connections  
1/2 SSM2135  
OR AD820  
R2  
LEFT  
VREF  
ELECTRET  
CONDENSER  
MICROPHONE  
INPUT  
1/2 SSM2135  
OR AD820  
C
R2  
R1  
1µF  
5k  
0.33µF  
RIGHT  
ELECTRET  
CONDENSER  
MICROPHONE  
INPUT  
R_LINE1  
R_LINE2  
1/2 SSM2135  
OR AD820  
VREF  
Figure 16. “Phantom -Powered” Microphone Input Circuit  
–24–  
REV. B  
AD1847  
T he crystals shown in the crystal connection circuitry of Figure  
21 should be fundamental-mode and parallel-tuned. T wo  
sources for the exact crystals specified are Component Market-  
ing Services in Massachusetts, U.S. at 617/762-4339 and  
Cardinal Components in New Jersey, U.S. at 201/746-0333.  
Note that using the exact data sheet frequencies is not required  
and that external clock sources can be used to overdrive the  
AD1847s internal oscillators. (See the description of the CFS2:0  
control bits above.) If using an external clock source, apply it to  
the crystal input pins while leaving the crystal output pins un-  
connected. Attention should be paid to providing low-jitter ex-  
ternal input clocks .  
Analog Devices recommends a split ground plane as shown in  
Figure 23. T he analog plane and the digital plane are connected  
directly under the AD1847. Splitting the ground plane directly  
under the SoundPort Codec is optimal because analog pins will  
be located directly above the analog ground plane and digital  
pins will be located directly above the digital ground plane for  
the best isolation. T he digital and analog grounds should be tied  
together in the vicinity of the AD1847. Other schemes may also  
yield satisfactory results. If the split ground plane recommended  
here is not possible, the AD1847 should be entirely over the  
analog ground plane with the ASIC and DSP over the digital  
plane.  
XTAL1I  
XTAL1O  
XTAL2I  
XTAL2O  
DIGITAL  
GROUND  
PLANE  
ANALOG  
GROUND  
PLANE  
BM  
L_AUX2  
20 64pF  
20 64pF  
20 64pF  
20 64pF  
24.576MHz  
16.9344MHz  
AD1847  
Figure 21. Crystal Connections  
Analog Devices also recommends a pull-down resistor on the  
PWRDOWN signal.  
V
PWRDOWN  
CC  
Good, standard engineering practices should be applied for  
power-supply decoupling. Decoupling capacitors should be  
placed as close as possible to package pins. If a separate analog  
power supply is not available, the circuit shown in Figure 22 is  
recommended when using a single +5 V supply. Ferrite beads  
suffice for the inductors shown. T his circuitry should be as close  
to the supply pins as is practical.  
Figure 23. Recom m ended Ground Plane  
FERRITE  
+5V SUPPLY  
1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
V
V
V
V
DD  
DD  
DD  
DD  
1.6  
FERRITE  
1µF  
0.1µF  
1µF  
0.1µF  
V
V
CC  
CC  
Figure 22. Recom m ended Power Supply Bypassing  
REV. B  
–25–  
AD1847  
FREQ UENCY RESP O NSE P LO TS  
10  
0
10  
0
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–50  
dB  
dB  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
SAMPLE FREQUENCY – F  
SAMPLE FREQUENCY – F  
S
S
Figure 24. AD1847 Analog-to-Digital Frequency Response  
(Full-Scale Line-Level Inputs, 0 dB Gain)  
Figure 26. AD1847 Digital-to-Analog Frequency Response  
(Full-Scale Inputs, 0 dB Attenuation)  
10  
0
10  
0
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
–50  
dB  
–50  
dB  
–60  
–60  
–70  
–70  
–80  
–90  
–80  
–90  
–100  
–100  
–110  
–120  
–110  
–120  
0.40  
0.44  
0.48  
0.52  
0.56  
0.60  
0.64  
0.68 0.70  
0.40  
0.44  
0.48  
0.52  
0.56  
0.60  
0.64  
0.68 0.70  
SAMPLE FREQUENCY – F  
SAMPLE FREQUENCY – FS  
S
Figure 25. AD1847 Analog-to-Digital Frequency Response  
–Transition Band (Full-Scale Line-Level Inputs, 0 dB Gain)  
Figure 27. AD1847 Digital-to-Analog Frequency Response  
–Transition Band (Full-Scale Inputs, 0 dB Attenuation)  
–26–  
REV. B  
AD1847  
tRPWL  
RESET  
PWRDOWN  
SCLK  
SDFS  
Figure 30. Reset and Power Down Tim ing Diagram  
tS  
tPD1  
tH  
TIME  
TIME  
TIME  
SLOT 0  
SLOT 1  
SLOT 2  
BIT 15  
BIT 0  
tHZ  
BIT 0  
BIT 14  
tDV  
SDI  
SCLK  
SDO  
BIT 14  
BIT 15  
SDFS  
SDI/  
Figure 28. Tim e Slot Tim ing Diagram  
LEFT  
RIGHT  
CONTROL  
STATUS  
PLAYBACK  
PLAYBACK  
16-BIT  
STEREO  
LEFT  
CAPTURE  
RIGHT  
PLAYBACK  
SCLK  
SDFS  
SDO  
LEFT  
CONTROL  
STATUS  
SDI/  
PLAYBACK  
16-BIT  
MONO  
LEFT  
CAPTURE  
LEFT  
CAPTURE  
SDO  
t
PD1  
SDI or  
SDO  
15 14 13  
3 2 1 0 15 14 13  
LEFT  
PB  
RIGHT  
PB  
CONTROL  
STATUS  
SDI/  
8-BIT  
STEREO  
LEFT  
0
RIGHT  
0
SDO  
CAP  
CAP  
LAST VALID TIME SLOT  
TSO  
LEFT  
PB  
CONTROL  
STATUS  
SDI/  
8-BIT  
MONO  
t
PD2  
LEFT  
0
LEFT  
0
SDO  
CAP  
CAP  
Figure 29. TSO Tim ing Diagram  
Figure 31. Serial Data Form at, 2-Wire System (TSSEL = 1)  
TIME  
TIME  
TIME  
TIME  
TIME  
TIME  
SLOT 0  
SLOT 1  
SLOT 2  
SLOT 3  
SLOT 4  
SLOT 5  
SCLK  
SDFS  
16-BIT  
STEREO  
SDI/  
SDO  
CONTROL  
CONTROL  
CONTROL  
LEFT  
LEFT  
RIGHT  
STATUS  
STATUS  
STATUS  
LEFT  
LEFT  
RIGHT  
LEFT  
SDI/  
16-BIT  
SDO MONO  
SDI/  
SDO STEREO  
8-BIT  
LEFT  
LEFT  
0
0
RIGHT  
RIGHT  
0
0
8-BIT  
MONO  
SDI/  
SDO  
CONTROL  
STATUS  
LEFT  
LEFT  
LEFT  
CAPTURE  
PLAYBACK  
Figure 32. Serial Data Form at, 1-Wire System (TSSEL = 0)  
REV. B  
–27–  
AD1847  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
IND E X  
P AG E  
PRODUCT OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . 1  
AD1847 SPECIFICAT IONS . . . . . . . . . . . . . . . . . . . . . 2  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
PINOUT S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
PIN DESCRIPT IONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
AUDIO FUNCT IONAL DESCRIPT ION . . . . . . . . . . . 7  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Analog Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Analog-to-Digital Datapath . . . . . . . . . . . . . . . . . . . . . 7  
Digital-to-Analog Datapath . . . . . . . . . . . . . . . . . . . . . 7  
Digital Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Analog Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Digital Data T ypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power Supplies and Voltage Reference . . . . . . . . . . . . . 8  
Clocks and Sample Rates . . . . . . . . . . . . . . . . . . . . . . . 8  
CONT ROL REGIST ERS . . . . . . . . . . . . . . . . . . . . . . . . 9  
Control Register Mapping . . . . . . . . . . . . . . . . . . . . . . 9  
Control Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Left/Right Playback/Capture Data . . . . . . . . . . . . . . . 10  
Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : 11  
Index Readback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Indirect Mapped Registers . . . . . . . . . . . . . . . . . . . . . 12  
Left Input Control Register . . . . . . . . . . . . . . . . . . . . 13  
Right Input Control Register . . . . . . . . . . . . . . . . . . . 13  
Left Auxiliary # 1 Input Control Register . . . . . . . . . . 13  
Right Auxiliary # 1 Input Control Register . . . . . . . . . 13  
Left Auxiliary # 2 Input Control Register . . . . . . . . . . 14  
Right Auxiliary # 2 Input Control Register . . . . . . . . . 14  
Left DAC Control Register . . . . . . . . . . . . . . . . . . . . . 14  
Right DAC Control Register . . . . . . . . . . . . . . . . . . . . 14  
Data Format Register . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Interface Configuration Register . . . . . . . . . . . . . . . . . 16  
Pin Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Invalid Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Miscellaneous Information Register . . . . . . . . . . . . . . 17  
Digital Mix Control Register . . . . . . . . . . . . . . . . . . . 17  
Invalid Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Control Register Mapping Summary . . . . . . . . . . . . . 20  
Daisy-Chained Multiple Codecs . . . . . . . . . . . . . . . . . 20  
INIT IALIZAT ION AND PROCEDURES . . . . . . . . . . 21  
Reset and Power Down . . . . . . . . . . . . . . . . . . . . . . . 21  
Clock Connections and Clock Rates . . . . . . . . . . . . . . 21  
Mode Change Enable State . . . . . . . . . . . . . . . . . . . . 22  
Digital Mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Autocalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Changing Sample Rates . . . . . . . . . . . . . . . . . . . . . . . 22  
DAT A FORMAT DEFINIT IONS . . . . . . . . . . . . . . . . 23  
16-Bit Signed Format . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8-Bit Unsigned Format . . . . . . . . . . . . . . . . . . . . . . . . 23  
8-Bit Companded Formats . . . . . . . . . . . . . . . . . . . . . 23  
APPLICAT IONS CIRCUIT S . . . . . . . . . . . . . . . . . . . . 23  
FREQUENCY RESPONSE PLOT S . . . . . . . . . . . . . . . 26  
T IMING DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . 27  
OUT LINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . 28  
44-Lead P LCC  
(P -44A)  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.21)  
0.042 (1.07)  
0.056 (1.42)  
0.042 (1.07)  
0.025 (0.63)  
0.015 (0.38)  
6
40  
39  
7
0.048 (1.21)  
PIN 1  
0.021 (0.53)  
0.013 (0.33)  
IDENTIFIER  
0.042 (1.07)  
0.63 (16.00)  
0.59 (14.99)  
0.032 (0.81)  
TOP VIEW  
0.026 (0.66)  
0.050  
(1.27)  
BSC  
29  
28  
17  
18  
0.020  
(0.50)  
R
0.040 (1.01)  
0.025 (0.64)  
0.656 (16.66)  
0.650 (16.51)  
SQ  
SQ  
0.110 (2.79)  
0.085 (2.16)  
0.695 (17.65)  
0.685 (17.40)  
44-Ter m inal P lastic Thin Q uad Flatpack (TQ FP )  
(ST-44)  
0.063 (1.60)  
MAX  
0.472 (12.00) SQ  
0.030 (0.75)  
0.018 (0.45)  
33  
23  
34  
22  
SEATING  
PLANE  
0.394  
(10.0)  
SQ  
TOP VIEW  
(PINS DOWN)  
44  
12  
1
11  
0.006 (0.15)  
0.002 (0.05)  
0.018 (0.45)  
0.012 (0.30)  
0.031 (0.80)  
BSC  
0.057 (1.45)  
0.053 (1.35)  
All brand or product names mentioned are trademarks or regis-  
tered trademarks of their respective holders.  
–28–  
REV. B  

相关型号:

AD1848

Parallel-Port 16-Bit SoundPort Stereo Codec
ADI

AD1848K

Parallel-Port 16-Bit SoundPort Stereo Codec
ADI

AD1848KP

Parallel-Port 16-Bit SoundPort Stereo Codec
ADI

AD1848KST

Parallel-Port 16-Bit SoundPort Stereo Codec
ADI

AD1848XP

Soundcard Circuits
ETC

AD1849

Parallel-Port 16-Bit SoundPort Stereo Codec
ADI

AD1849K

Serial-Port 16-Bit SoundPort Stereo Codec
ADI

AD1849KP

Serial-Port 16-Bit SoundPort Stereo Codec
ADI

AD1849KP-REEL

Telecommunication IC
ETC

AD1849KPZ

Serial-Port 16-Bit SoundPort® Stereo Codec
ADI

AD1849KST

A-Law/u-Law/Linear CODEC
ETC

AD1851

16-Bit/18-Bit, 16 X Fs PCM Audio DACs
ADI