APT25GN120B2DQ2G [ADPOW]

IGBT; IGBT
APT25GN120B2DQ2G
型号: APT25GN120B2DQ2G
厂家: ADVANCED POWER TECHNOLOGY    ADVANCED POWER TECHNOLOGY
描述:

IGBT
IGBT

晶体 晶体管 功率控制 双极性晶体管
文件: 总9页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1200V  
APT25GN120B2DQ2  
APT25GN120B2DQ2G*  
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.  
Utilizing the latest Non-Punch Through (NPT) Field Stop technology, these IGBT’s  
have a very short, low amplitude tail current and low Eoff. The Trench Gate design  
(B2)  
T-Max®  
results in superior V  
performance. Easy paralleling results from very tight  
CE(on)  
parameter distribution and slightly positive V  
temperature coefficient. Built-in  
CE(on)  
gate resistance ensures ultra-reliable operation. Low gate charge simplifies gate drive  
design and minimizes losses.  
1200V NPT Field Stop  
• Trench Gate: Low VCE(on)  
• Easy Paralleling  
• 10µs Short Circuit Capability  
• Intergrated Gate Resistor: Low EMI, High Reliability  
C
E
G
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS  
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Parameter  
Symbol  
APT25GN120B2DQ2(G)  
UNIT  
VCES  
Collector-Emitter Voltage  
1200  
Volts  
VGE  
IC1  
Gate-Emitter Voltage  
±30  
67  
Continuous Collector Current @ TC = 25°C  
IC2  
Continuous Collector Current @ TC = 110°C  
33  
Amps  
1
Pulsed Collector Current  
@ TC = 150°C  
ICM  
75  
Switching Safe Operating Area @ TJ = 150°C  
75A @ 1200V  
272  
SSOA  
PD  
Total Power Dissipation  
Watts  
°C  
TJ,TSTG  
Operating and Storage Junction Temperature Range  
-55 to 150  
300  
TL  
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol Characteristic / Test Conditions  
MIN  
1200  
5
TYP  
MAX  
Units  
V(BR)CES  
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 150µA)  
VGE(TH)  
5.8  
1.7  
1.9  
6.5  
2.1  
Gate Threshold Voltage (VCE = VGE, IC = 1mA, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 25A, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 25A, Tj = 125°C)  
Volts  
1.4  
VCE(ON)  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)  
200  
TBD  
600  
ICES  
µA  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)  
Gate-Emitter Leakage Current (VGE = ±20V)  
Intergrated Gate Resistor  
IGES  
nA  
RGINT  
8
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.  
APT Website - http://www.advancedpower.com  
APT25GN120B2DQ2(G)  
DYNAMIC CHARACTERISTICS  
Test Conditions  
Capacitance  
Characteristic  
Symbol  
MIN  
TYP  
1800  
105  
85  
MAX  
UNIT  
Cies  
Coes  
Cres  
VGEP  
Qg  
Input Capacitance  
Output Capacitance  
pF  
VGE = 0V, VCE = 25V  
f = 1 MHz  
Reverse Transfer Capacitance  
Gate-to-Emitter Plateau Voltage  
9.5  
V
Gate Charge  
VGE = 15V  
VCE = 600V  
IC = 25A  
3
Total Gate Charge  
155  
10  
Qge  
Qgc  
Gate-Emitter Charge  
nC  
Gate-Collector ("Miller") Charge  
85  
TJ = 150°C, RG = 4.37, VGE  
=
Switching Safe Operating Area  
Short Circuit Safe Operating Area  
SSOA  
A
75  
10  
15V, L = 100µH,VCE = 1200V  
VCC = 960V, VGE = 15V,  
TJ = 125°C, RG = 4.37  
µs  
SCSOA  
td(on)  
Inductive Switching (25°C)  
22  
17  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
Current Fall Time  
tr  
VCC = 800V  
VGE = 15V  
IC = 25A  
ns  
td(off)  
280  
135  
TBD  
1490  
2150  
22  
tf  
RG = 4.37  
4
Eon1  
Eon2  
Turn-on Switching Energy  
TJ = +25°C  
5
µJ  
ns  
Turn-on Switching Energy (Diode)  
6
Eoff  
Turn-off Switching Energy  
td(on)  
Inductive Switching (125°C)  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
tr  
VCC = 800V  
VGE = 15V  
IC = 25A  
17  
td(off)  
tf  
335  
225  
Current Fall Time  
RG = 4.37  
4 4  
Eon1  
Eon2  
Eoff  
TBD  
2390  
3075  
Turn-on Switching Energy  
TJ = +125°C  
55  
Turn-on Switching Energy (Diode)  
µJ  
66  
Turn-off Switching Energy  
THERMAL AND MECHANICAL CHARACTERISTICS  
Symbol  
Characteristic  
UNIT  
MIN  
TYP  
MAX  
.46  
R
Junction to Case (IGBT)  
Junction to Case (DIODE)  
Package Weight  
θJC  
°C/W  
gm  
R
.67  
θJC  
WT  
5.9  
1
2
3
4
Repetitive Rating: Pulse width limited by maximum junction temperature.  
For Combi devices, Ices includes both IGBT and FRED leakages  
See MIL-STD-750 Method 3471.  
Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current  
adding to the IGBT turn-on loss. (See Figure 24.)  
5
Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching  
loss. (See Figures 21, 22.)  
6
7
Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)  
RG is external gate resistance, not including RGint nor gate driver impedance. (MIC4452)  
APT Reserves the right to change, without notice, the specifications and information contained herein.  
TYPICAL PERFORMANCE CURVES  
APT25GN120B2DQ2(G)  
80  
70  
60  
50  
40  
30  
20  
80  
15V  
15V  
70  
12V  
60  
50  
12V  
11V  
10V  
11V  
40  
10V  
30  
9V  
8V  
9V  
8V  
20  
10  
0
10  
0
7V  
7V  
10  
, COLLECTER-TO-EMITTER VOLTAGE (V)  
0
5
15  
0
5
10  
15  
V
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 1, Output Characteristics(T = 25°C)  
FIGURE 2, Output Characteristics (T = 125°C)  
J
J
16  
14  
12  
75  
250µs PULSE  
TEST<0.5 % DUTY  
CYCLE  
I
T
= 25A  
= 25°C  
C
J
60  
45  
30  
V
V
= 240V  
= 600V  
CE  
TJ = 125°C  
CE  
10  
8
V
= 960V  
CE  
TJ = 25°C  
6
TJ = -55°C  
4
15  
0
2
0
0
2
4
6
8
10  
12  
14  
0
20 40 60 80 100 120 140 160 180  
GATE CHARGE (nC)  
V
, GATE-TO-EMITTER VOLTAGE (V)  
GE  
FIGURE 3, Transfer Characteristics  
FIGURE 4, Gate Charge  
4
3.5  
3
3
2.5  
2
T
J = 25°C.  
I
= 50A  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
C
I
= 50A  
C
2.5  
2
I
= 25A  
C
I
= 25A  
C
1.5  
1
I
= 12.5A  
1.5  
C
I
= 12.5A  
C
1.0  
0.5  
0
0.5  
0
V
GE = 15V.  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
8
10  
12  
14  
16  
-50 -25  
0
25  
50  
75 100 125  
V
, GATE-TO-EMITTER VOLTAGE (V)  
T , Junction Temperature (°C)  
GE  
J
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage  
FIGURE 6, On State Voltage vs Junction Temperature  
90  
1.10  
80  
70  
60  
50  
40  
30  
20  
1.05  
1.00  
0.95  
0.90  
10  
0
-50 -25  
0
25  
50  
75  
100 125  
-50 -25  
0
25 50 75 100 125 150  
T , JUNCTION TEMPERATURE (°C)  
T , CASE TEMPERATURE (°C)  
J
C
FIGURE 7, Breakdown Voltage vs. Junction Temperature  
FIGURE 8, DC Collector Current vs Case Temperature  
APT25GN120B2DQ2(G)  
350  
300  
250  
200  
150  
100  
50  
30  
25  
20  
15  
10  
5
VGE =15V,TJ=125°C  
V
= 15V  
GE  
VGE =15V,TJ=25°C  
VCE = 800V  
TJ = 25°C, TJ =125°C  
RG = 4.3Ω  
VCE = 800V  
RG = 4.3Ω  
L = 100 µH  
L = 100 µH  
0
I
0
I
10 15 20 25 30 35 40 45 50 55  
, COLLECTOR TO EMITTER CURRENT (A)  
10  
20  
30  
40  
50  
60  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9, Turn-On Delay Time vs Collector Current  
FIGURE 10, Turn-Off Delay Time vs Collector Current  
45  
300  
R
G = 4.3, L = 100µH, VCE = 800V  
RG = 4.3, L = 100µH, VCE = 800V  
40  
35  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
T
J = 125°C, VGE = 15V  
T
J = 25°C, VGE = 15V  
TJ = 25 or 125°C,VGE = 15V  
0
I
0
I
10 15 20 25 30 35 40 45 50 55  
10 15 20 25 30 35 40  
45 50 55  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11, Current Rise Time vs Collector Current  
FIGURE 12, Current Fall Time vs Collector Current  
7000  
6000  
5000  
4000  
3000  
2000  
7000  
6000  
5000  
4000  
3000  
2000  
V
V
R
=
=
800V  
+15V  
V
V
R
=
=
800V  
+15V  
CE  
GE  
CE  
GE  
= 4.3Ω  
= 4.3Ω  
G
G
TJ = 125°C, VGE = 15V  
TJ = 125°C,VGE =15V  
T
J = 25°C, VGE = 15V  
1000  
0
1000  
0
T
J = 25°C,VGE =15V  
10 15 20 25 30 35 40 45 50 55  
, COLLECTOR TO EMITTER CURRENT (A)  
10 15 20 25 30 35 40 45 50 55  
I , COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
CE  
FIGURE 13, Turn-On Energy Loss vs Collector Current  
FIGURE 14, Turn Off Energy Loss vs Collector Current  
14000  
7000  
V
V
T
=
=
800V  
+15V  
V
V
R
=
=
800V  
+15V  
CE  
GE  
CE  
GE  
E
50A  
off,  
E
50A  
= 125°C  
= 4.3Ω  
on2,  
J
12000  
10000  
8000  
6000  
4000  
6000  
5000  
4000  
3000  
2000  
G
E
50A  
off,  
E
50A  
25A  
on2,  
E
off,  
E
25A  
E
25A  
off,  
on2,  
E
12.5A  
E
E
12.5A  
12.5A  
E
25A  
20  
off,  
off,  
on2,  
2000  
0
1000  
0
E
12.5A  
on2,  
on2,  
40  
0
10  
30  
50  
0
25  
50  
75  
100  
125  
R , GATE RESISTANCE (OHMS)  
T , JUNCTION TEMPERATURE (°C)  
G
J
FIGURE 15, Switching Energy Losses vs. Gate Resistance  
FIGURE 16, Switching Energy Losses vs Junction Temperature  
TYPICAL PERFORMANCE CURVES  
APT25GN120B2DQ2(G)  
80  
70  
60  
50  
40  
30  
20  
4,000  
Cies  
1,000  
500  
Coes  
Cres  
100  
50  
10  
0
10  
0
10  
20  
30  
40  
50  
0
V
200 400 600 800 1000 1200 1400  
, COLLECTOR TO EMITTER VOLTAGE  
V
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)  
CE  
CE  
Figure 17, Capacitance vs Collector-To-Emitter Voltage  
Figure 18,Minimim Switching Safe Operating Area  
0.50  
0.9  
0.40  
0.7  
0.30  
0.5  
Note:  
0.20  
t
1
0.3  
t
2
0.10  
SINGLE PULSE  
t
1
t
/
2
Duty Factor D =  
Peak T = P x Z  
0.1  
+ T  
C
J
DM  
θJC  
0.05  
0
10-5  
10-4  
10-3  
RECTANGULAR PULSE DURATION (SECONDS)  
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration  
10-2  
10-1  
1.0  
RC MODEL  
0.231  
140  
100  
Junction  
temp. (°C)  
0.00403F  
0.132F  
Power  
(watts)  
50  
Fmax = min (fmax, fmax2  
)
0.230  
0.05  
fmax1  
=
=
td(on) + tr + td(off) + tf  
Case temperature. (°C)  
Pdiss - Pcond  
Eon2 + Eoff  
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL  
fmax2  
T
T
=
125°C  
75°C  
J
=
C
D = 50 %  
TJ - TC  
RθJC  
V
R
= 800V  
= 4.3Ω  
Pdiss  
=
CE  
G
10  
5
10 15 20 25  
30 35 40 45  
I , COLLECTOR CURRENT (A)  
C
Figure 20, Operating Frequency vs Collector Current  
APT25GN120B2DQ2(G)  
Gate Voltage  
10%  
td(on)  
APT40DQ120  
T
= 125°C  
J
90%  
VCE  
IC  
VCC  
tr  
Collector Current  
CollectorVoltage  
5%  
10%  
5%  
A
Switching Energy  
D.U.T.  
Figure 22, Turn-on Switching Waveforms and Definitions  
Figure 21, Inductive Switching Test Circuit  
VTEST  
90%  
*DRIVER SAME TYPE AS D.U.T.  
Gate Voltage  
T
= 125°C  
J
A
CollectorVoltage  
td(off)  
VCE  
IC  
90%  
100uH  
VCLAMP  
B
tf  
10%  
0
A
Collector Current  
D.U.T.  
DRIVER*  
Switching Energy  
Figure 24, E  
Test Circuit  
Figure 23, Turn-off Switching Waveforms and Definitions  
ON1  
TYPICAL PERFORMANCE CURVES  
APT25GN120B2DQ2(G)  
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE  
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Symbol  
IF(AV)  
Characteristic / Test Conditions  
APT25GN120B2DQ2(G)  
UNIT  
Maximum Average Forward Current (TC = 112°C, Duty Cycle = 0.5)  
RMS Forward Current (Square wave, 50% duty)  
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)  
40  
63  
IF(RMS)  
Amps  
IFSM  
210  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol  
UNIT  
Characteristic / Test Conditions  
MIN  
TYP  
MAX  
MAX  
IF = 25A  
2.46  
2.98  
1.83  
Volts  
Forward Voltage  
IF = 50A  
VF  
IF = 25A, TJ = 125°C  
DYNAMIC CHARACTERISTICS  
Characteristic  
Symbol  
MIN  
TYP  
26  
UNIT  
Test Conditions  
Reverse Recovery Time  
trr  
trr  
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C  
-
ns  
Reverse Recovery Time  
Reverse Recovery Charge  
-
350  
IF = 40A, diF/dt = -200A/µs  
VR = 800V, TC = 25°C  
Qrr  
IRRM  
trr  
-
-
-
-
-
570  
4
nC  
Amps  
ns  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
-
-
430  
2200  
9
IF = 40A, diF/dt = -200A/µs  
VR = 800V, TC = 125°C  
Qrr  
Reverse Recovery Charge  
nC  
Amps  
ns  
IRRM  
trr  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
-
-
-
210  
3400  
29  
IF = 40A, diF/dt = -1000A/µs  
VR = 800V, TC = 125°C  
Qrr  
Reverse Recovery Charge  
nC  
IRRM  
Maximum Reverse Recovery Current  
Amps  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0
0.9  
0.7  
0.5  
0.3  
Note:  
t
1
t
2
t
1
t
/
2
Duty Factor D =  
0.1  
Peak T = P  
x Z  
+ T  
θJC C  
J
DM  
SINGLE PULSE  
10-3  
0.05  
10-5  
10-4  
10-2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (seconds)  
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION  
RC MODEL  
Junction  
temp(°C)  
0.0442 °C/W  
0.242 °C/W  
0.324 °C/W  
0.00222 J/°C  
0.00586 J/°C  
0.0596 J/°C  
Power  
(watts)  
Case temperature(°C)  
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL  
APT25GN120B2DQ2(G)  
120  
100  
80  
600  
500  
400  
300  
200  
100  
0
T
V
= 125°C  
= 800V  
J
R
80A  
40A  
T
= 175°C  
J
20A  
60  
40  
T
= 25°C  
J
T
= 125°C  
J
20  
0
T
= -55°C  
3
J
0
1
2
4
0
200  
400  
600  
800 1000 1200  
-di /dt, CURRENT RATE OF CHANGE(A/µs)  
Figure 27. Reverse Recovery Time vs. Current Rate of Change  
V , ANODE-TO-CATHODE VOLTAGE (V)  
F
F
Figure 26. Forward Current vs. Forward Voltage  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
35  
T
V
= 125°C  
= 800V  
T
V
= 125°C  
= 800V  
R
J
J
80A  
R
30  
25  
20  
15  
10  
5
80A  
40A  
40A  
20A  
1500  
1000  
500  
0
20A  
0
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
F
F
Figure 28. Reverse Recovery Charge vs. Current Rate of Change  
Figure 29. Reverse Recovery Current vs. Current Rate of Change  
1.2  
80  
Q
rr  
Duty cycle = 0.5  
T
= 175°C  
J
t
70  
60  
50  
40  
30  
20  
10  
0
rr  
1.0  
t
rr  
0.8  
I
RRM  
0.6  
0.4  
Q
rr  
0.2  
0.0  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
Case Temperature (°C)  
Figure 31. Maximum Average Forward Current vs. CaseTemperature  
100  
125  
150  
175  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 30. Dynamic Parameters vs. Junction Temperature  
200  
150  
100  
50  
0
1
10  
100 200  
V , REVERSE VOLTAGE (V)  
R
Figure 32. Junction Capacitance vs. Reverse Voltage  
TYPICAL PERFORMANCE CURVES  
APT25GN120B2DQ2(G)  
V
r
diF/dt Adjust  
+18V  
0V  
APT10035LLL  
D.U.T.  
t
Q
/
30µH  
rr rr  
Waveform  
PEARSON 2878  
CURRENT  
TRANSFORMER  
Figure 33. Diode Test Circuti  
1
2
IF - Forward Conduction Current  
1
4
5
diF/dt - Rate of Diode Current Change Through Zero Crossing.  
IRRM - Maximum Reverse Recovery Current.  
Zero  
3
4
0.25 I  
RRM  
t
- Reverse Recovery Time, measured from zero crossing where diode  
current goes from positive to negative, to the point at which the straight  
3
rr  
2
line through IRRM and 0.25 IRRM passes through zero.  
5
Q
- Area Under the Curve Defined by IRRM and t .  
rr  
rr  
Figure 34, Diode Reverse Recovery Waveform and Definitions  
T-MAX™ (B2) Package Outline  
e1  
SAC: Tin, Silver, Copper  
4.69 (.185)  
5.31 (.209)  
15.49 (.610)  
16.26 (.640)  
1.49 (.059)  
2.49 (.098)  
5.38 (.212)  
6.20 (.244)  
20.80 (.819)  
21.46 (.845)  
2.87 (.113)  
3.12 (.123)  
4.50 (.177) Max.  
1.65 (.065)  
2.13 (.084)  
0.40 (.016)  
0.79 (.031)  
19.81 (.780)  
20.32 (.800)  
1.01 (.040)  
1.40 (.055)  
Gate  
Collector  
(Cathode)  
Emitter  
(Anode)  
2.21 (.087)  
2.59 (.102)  
5.45 (.215) BSC  
2-Plcs.  
Dimensions in Millimeters and (Inches)  
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522  
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.  

相关型号:

APT25GN120BE3

Insulated Gate Bipolar Transistor, 67A I(C), 1200V V(BR)CES, N-Channel, TO-247AD, TO-247, 3 PIN
MICROSEMI

APT25GN120BG

Utilizing the latest Field Stop and Trench Gate technologies
MICROSEMI
ADPOW

APT25GN120S

Utilizing the latest Field Stop and Trench Gate technologies
MICROSEMI
ADPOW

APT25GN120SE3

Insulated Gate Bipolar Transistor, 67A I(C), 1200V V(BR)CES, N-Channel, D3PAK, 3 PIN
MICROSEMI

APT25GN120SG

Utilizing the latest Field Stop and Trench Gate technologies
MICROSEMI
ADPOW

APT25GP120B

POWER MOS 7 IGBT
ADPOW

APT25GP120B2D1

36A, 1200V, N-CHANNEL IGBT, TMAX-3
MICROSEMI

APT25GP120BD1

Volts:1200V VF/Vce(ON):3.6V ID(cont):25Amps|Ultrafast IGBT Family
ETC

APT25GP120BDF1

Insulated Gate Bipolar Transistor, 69A I(C), 1200V V(BR)CES, N-Channel
MICROSEMI