APT25GP120BDF1 [MICROSEMI]

Insulated Gate Bipolar Transistor, 69A I(C), 1200V V(BR)CES, N-Channel;
APT25GP120BDF1
型号: APT25GP120BDF1
厂家: Microsemi    Microsemi
描述:

Insulated Gate Bipolar Transistor, 69A I(C), 1200V V(BR)CES, N-Channel

局域网 栅 瞄准线 功率控制 晶体管
文件: 总9页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APT25GP120BDF1  
1200V  
®
POWER MOS 7 IGBT  
AnewgenerationofhighvoltagepowerIGBTs. Usingpunch-throughtechnology  
and a proprietary metal gate, this IGBT has been optimized for very fast  
switching, making it ideal for high frequency, high voltage switch-mode power  
supplies and tail current sensitive applications. In many cases, the POWER  
MOS 7® IGBT provides a lower cost alternative to a Power MOSFET.  
TO-247  
G
C
E
• Low Conduction Loss  
• Low Gate Charge  
• 100 kHz operation @ 800V, 11A  
• 50 kHz operation @ 800V, 19A  
• RBSOA Rated  
C
E
• Ultrafast Tail Current shutoff  
G
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Parameter  
UNIT  
Symbol  
VCES  
VGE  
APT25GP120BDF1  
Collector-Emitter Voltage  
Gate-Emitter Voltage  
1200  
±20  
±30  
Volts  
VGEM  
IC1  
Gate-Emitter Voltage Transient  
69  
33  
90  
Continuous Collector Current @ TC = 25°C  
Amps  
IC2  
Continuous Collector Current @ TC = 110°C  
1
ICM  
Pulsed Collector Current  
@ TC = 150°C  
RBSOA  
PD  
Reverse Bias Safe Operating Area @ TJ = 150°C  
90A @ 960V  
417  
Watts  
°C  
Total Power Dissipation  
TJ,TSTG  
TL  
-55 to 150  
300  
Operating and Storage Junction Temperature Range  
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol Characteristic / Test Conditions  
MIN  
1200  
3
TYP  
MAX  
UNIT  
BVCES  
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 500µA)  
VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 1mA, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 25A, Tj = 25°C)  
4.5  
3.3  
3.0  
6
Volts  
3.9  
VCE(ON)  
Collector-Emitter On Voltage (VGE = 15V, IC = 25A, Tj = 125°C)  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)  
500  
3000  
±100  
µA  
nA  
ICES  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)  
Gate-Emitter Leakage Current (VGE = ±20V)  
IGES  
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.  
APT Website - http://www.advancedpower.com  
APT25GP120BDF1  
DYNAMIC CHARACTERISTICS  
Symbol Characteristic  
Test Conditions  
MIN  
TYP  
2090  
200  
40  
MAX  
UNIT  
Input Capacitance  
Cies  
Coes  
Cres  
VGEP  
Qg  
Capacitance  
VGE = 0V, VCE = 25V  
f = 1 MHz  
Output Capacitance  
pF  
V
Reverse Transfer Capacitance  
Gate-to-Emitter Plateau Voltage  
7.5  
110  
15  
Gate Charge  
3
VGE = 15V  
Total Gate Charge  
VCE = 600V  
Qge  
Qgc  
nC  
Gate-Emitter Charge  
IC = 25A  
Gate-Collector ("Miller") Charge  
50  
RBSOA Reverse Bias Safe Operating Area  
TJ = 150°C, RG = 5Ω, VGE  
=
90  
A
15V, L = 100µH,VCE = 960V  
td(on)  
12  
14  
Turn-on Delay Time  
Inductive Switching (25°C)  
VCLAMP(Peak) = 600V  
tr  
Current Rise Time  
ns  
VGE = 15V  
td(off)  
tf  
70  
Turn-off Delay Time  
Current Fall Time  
IC = 25A  
39  
RG = 5Ω  
4
Eon1  
Eon2  
Eoff  
td(on)  
tr  
Turn-on Switching Energy  
Turn-on Switching Energy (Diode) 5  
500  
1090  
440  
12  
TJ = +25°C  
µJ  
ns  
6
Turn-off Switching Energy  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
Inductive Switching (125°C)  
VCLAMP(Peak) = 600V  
14  
VGE = 15V  
td(off)  
tf  
110  
90  
IC = 25A  
RG = 5Ω  
Current Fall Time  
4
Turn-on Switching Energy  
Eon1  
Eon2  
Eoff  
500  
1575  
1185  
TJ = +125°C  
Turn-on Switching Energy (Diode) 5  
µJ  
6
Turn-off Switching Energy  
THERMAL AND MECHANICAL CHARACTERISTICS  
Symbol Characteristic  
MIN  
TYP  
MAX  
.30  
UNIT  
°C/W  
gm  
RΘJC  
RΘJC  
WT  
Junction to Case (IGBT)  
Junction to Case (DIODE)  
Package Weight  
1.18  
5.90  
1
2
3
4
Repetitive Rating: Pulse width limited by maximum junction temperature.  
For Combi devices, Ices includes both IGBT and FRED leakages  
See MIL-STD-750 Method 3471.  
Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current  
adding to the IGBT turn-on loss. (See Figure 24.)  
5
6
Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching  
loss. (See Figures 21, 22.)  
Eoff is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.)  
APTReservestherighttochange,withoutnotice,thespecificationsandinformationcontainedherein.  
TYPICAL PERFORMANCE CURVES  
APT25GP120BDF1  
60  
60  
50  
40  
30  
20  
10  
0
V
= 10V.  
V
= 15V.  
GE  
GE  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
50  
40  
30  
20  
T =25°C  
C
T =125°C  
C
T =125°C  
C
T =25°C  
10  
0
C
0
1
2
3
4
5
0
1
2
3
4
5
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 1, Output Characteristics(V = 15V)  
FIGURE 2, Output Characteristics (V = 10V)  
GE  
GE  
100  
16  
14  
12  
10  
8
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
I
T
= 25A  
= 25°C  
C
V
= 240V  
J
CE  
80  
60  
V
= 600V  
CE  
T
= -55°C  
J
V
= 960V  
CE  
T
= 125°C  
J
40  
20  
0
6
T
= 25°C  
J
4
2
0
0
1
2
3
4
5
6
7
8
9
10  
0
20  
40  
GATE CHARGE (nC)  
FIGURE 4, Gate Charge  
60  
80  
100  
120  
V
, GATE-TO-EMITTER VOLTAGE (V)  
GE  
FIGURE 3, Transfer Characteristics  
5
4.5  
4
5
4.5  
4
I
50A  
C=  
I
50A  
C=  
I
25A  
3.5  
3
3.5  
3
C=  
I
25A  
C=  
I
12.5A  
C=  
2.5  
2
2.5  
2
I
12.5A  
C=  
1.5  
1
1.5  
1
T
= 25°C.  
V
= 15V.  
J
GE  
0.5  
0
0.5  
0
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
6
8
10  
12  
14  
16  
-25  
0
25  
50  
75  
100  
125  
V
, GATE-TO-EMITTER VOLTAGE (V)  
T , JUNCTION TRMPERATURE (°C)  
FIGURE 6, On State Voltage vs Junction Temperature  
GE  
J
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage  
1.2  
100  
90  
80  
70  
1.15  
1.10  
1.05  
1.0  
60  
50  
40  
30  
20  
10  
0
0.95  
0.90  
0.85  
0.8  
-50 -25  
0
25  
50  
75  
100 125  
-50 -25  
0
25  
50  
75 100 125 150  
T , JUNCTION TEMPERATURE (°C)  
T , CASE TEMPERATURE (°C)  
J
C
FIGURE 7, Breakdown Voltage vs. Junction Temperature  
FIGURE 8, DC Collector Current vs Case Temperature  
APT25GP120BDF1  
25  
20  
15  
10  
5
140  
VCE=600V  
G = 5Ω  
L = 100 µH  
R
VGE =15V,TJ=125°C  
120  
100  
80  
V
= 10V  
GE  
V
= 15V  
GE  
VGE =15V,TJ=25°C  
VGE =10V,TJ=125°C  
VGE =10V,TJ=25°C  
60  
40  
V
CE = 600V  
TJ = 25°C, TJ =125°C  
RG = 5Ω  
L = 100 µH  
20  
0
I
0
I
10 15  
20 25 30 35 40 45 50  
10 15 20 25 30 35 40 45 50  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9, Turn-On Delay Time vs Collector Current  
FIGURE 10, Turn-Off Delay Time vs Collector Current  
120  
100  
RG = 5, L = 100µH, VCE = 600V  
RG = 5, L = 100µH, VCE = 600V  
100  
80  
80  
60  
40  
20  
TJ = 25° or 125°C,VGE = 10V  
T
J = 125°C, VGE = 10V or 15V  
60  
40  
T
J = 25°C, VGE = 10V or 15V  
20  
TJ = 25° or 125°C,VGE =15V  
0
I
0
I
10 15  
20  
25  
30  
35  
40  
45  
50  
10  
CE  
20  
30  
40  
50  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 11, Current Rise Time vs Collector Current  
FIGURE 12, Current Fall Time vs Collector Current  
3500  
3000  
2500  
2000  
1500  
1000  
3000  
2500  
2000  
1500  
1000  
V
V
R
=
=
= 5 Ω  
600V  
+15V  
V
V
=
=
600V  
+15V  
CE  
GE  
CE  
GE  
R
= 5 Ω  
G
T
G
J = 25°C,VGE =10V  
T
J = 125°C, VGE = 10V or 15V  
T
J = 125°C,VGE =10V  
T
J = 125°C,VGE =15V  
T
J = 25°C,VGE =15V  
500  
0
500  
0
T
J = 25°C, VGE = 10V or 15V  
10 15  
20  
25 30  
35  
40 45 50  
10 15  
20  
25  
30  
35  
40  
45 50  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 13, Turn-On Energy Loss vs Collector Current  
FIGURE 14, Turn Off Energy Loss vs Collector Current  
4500  
3500  
V
V
=
=
600V  
+15V  
V
V
=
=
600V  
+15V  
CE  
GE  
CE  
GE  
E
50A  
E
50A  
on2,  
on2,  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
R
= 5 Ω  
R
= 5 Ω  
G
G
3000  
2500  
2000  
1500  
1000  
500  
E
50A  
off,  
E
E
25A  
on2,  
E
25A  
on2,  
E
50A  
off,  
25A  
off,  
E
25A  
off,  
E
12.5A  
on2,  
E
12.5A  
on2,  
E
12.5A  
off,  
E
12.5A  
off,  
0
0
0
10  
20  
30  
40  
50  
0
25  
50  
75  
100  
125  
R , GATE RESISTANCE (OHMS)  
T , JUNCTION TEMPERATURE (°C)  
G
J
FIGURE 15, Switching Energy Losses vs. Gate Resistance  
FIGURE 16, Switching Energy Losses vs Junction Temperature  
TYPICAL PERFORMANCE CURVES  
APT25GP120BDF1  
100  
90  
80  
70  
60  
50  
40  
10,000  
5,000  
C
ies  
1,000  
500  
C
oes  
100  
C
res  
20  
0
10  
0
10  
20  
30  
40  
50  
0
V
200  
400  
600  
800  
1000  
V
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)  
, COLLECTOR TO EMITTER VOLTAGE  
CE  
CE  
Figure 17, Capacitance vs Collector-To-Emitter Voltage  
Figure 18, Minimim Switching Safe Operating Area  
0.35  
0.30  
0.9  
0.25  
0.7  
0.20  
Note:  
0.5  
0.15  
t
1
0.3  
0.10  
0.05  
0
t
2
t
1
Duty Factor D =  
/
t
2
Peak T = P  
x Z + T  
θJC C  
0.1  
J
DM  
0.05  
SINGLEPULSE  
10-3  
10-5  
10-4  
10-2  
10-1  
1.0  
RECTANGULARPULSEDURATION(SECONDS)  
FIGURE1,MAXIMUMEFFECTIVETRANSIENTTHERMALIMPEDANCE,JUNCTION-TO-CASEvsPULSEDURATION  
182  
100  
RC MODEL  
Junction  
temp (°C)  
Fmax = min(fmax1,fmax 2  
)
50  
0.128  
0.173  
0.00833F  
0.171F  
0.05  
Power  
(watts)  
fmax1  
=
td(on) + tr + td(off ) + tf  
P
P  
diss  
cond  
fmax 2  
=
T
T
= 125°C  
= 75°C  
J
Eon2 + Eoff  
C
Case temperature(°C)  
D = 50 %  
V
T TC  
RθJC  
J
= 800V  
CE  
P
=
diss  
R
= 5 Ω  
G
10  
FIGURE19B, TRANSIENT THERMALIMPEDANCE MODEL  
5
10 15 20 25 30 35 40 45 50  
I , COLLECTOR CURRENT (A)  
C
Figure 20, Operating Frequency vs Collector  
Current  
APT25GP120BDF1  
Gate Voltage  
APT15DF120  
10%  
TJ = 125 C  
td(on)  
VCE  
IC  
VCC  
tr  
90%  
10%  
Collector Current  
Collector Voltage  
A
5 %  
5%  
D.U.T.  
Switching Energy  
Figure 21, Inductive Switching Test Circuit  
Figure 22, Turn-on Switching Waveforms and Definitions  
90%  
VTEST  
Gate Voltage  
*DRIVER SAME TYPE AS D.U.T.  
TJ = 125  
C
A
td(off)  
tf  
Collector Voltage  
VCE  
IC  
100uH  
90%  
0
VCLAMP  
B
10%  
Collector Current  
A
Switching Energy  
D.U.T.  
DRIVER*  
Figure 23, Turn-off Switching Waveforms and Definitions  
Figure 24, E  
ON1  
Test Circuit  
TYPICAL PERFORMANCE CURVES  
APT25GP120BDF1  
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE  
MAXIMUMRATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Characteristic / Test Conditions  
APT25GP120BDF1  
Symbol  
IF(AV)  
UNIT  
Maximum Average Forward Current (TC = 90°C, Duty Cycle = 0.5)  
RMS Forward Current (Square wave, 50% duty)  
15  
22  
IF(RMS)  
Amps  
IFSM  
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)  
110  
STATICELECTRICALCHARACTERISTICS  
Symbol Characteristic / Test Conditions  
MIN  
TYP  
MAX  
UNIT  
IF = 25A  
3.70  
4.65  
2.97  
VF  
Forward Voltage  
IF = 50A  
Volts  
IF = 25A, TJ = 125°C  
DYNAMICCHARACTERISTICS  
Characteristic  
Symbol  
TestConditions  
MIN  
TYP  
MAX  
UNIT  
trr  
trr  
Reverse Recovery Time  
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C  
-
36  
ns  
Reverse Recovery Time  
-
280  
IF = 15A, diF/dt = -200A/µs  
VR = 800V, TC = 25°C  
Qrr  
IRRM  
trr  
Reverse Recovery Charge  
nC  
Amps  
ns  
-
-
-
-
-
-
-
-
270  
3
Maximum Reverse Recovery Current  
Reverse Recovery Time  
-
-
390  
1000  
6
IF = 15A, diF/dt = -200A/µs  
VR = 800V, TC = 125°C  
Qrr  
IRRM  
trr  
Reverse Recovery Charge  
nC  
Amps  
ns  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
150  
1500  
20  
IF = 15A, diF/dt = -1000A/µs  
VR = 800V, TC = 125°C  
Qrr  
IRRM  
Reverse Recovery Charge  
nC  
Maximum Reverse Recovery Current  
Amps  
1.20  
0.9  
0.7  
1.00  
0.80  
0.60  
0.40  
0.5  
0.3  
Note:  
t
1
t
2
0.20  
0
t
SINGLEPULSE  
1
/
t
0.1  
Duty Factor D =  
Peak T = P x Z  
2
+ T  
0.05  
J
DM θJC  
C
10-5  
10-4  
10-3  
10-2  
10-1  
1.0  
RECTANGULARPULSEDURATION(seconds)  
FIGURE25a.MAXIMUMEFFECTIVETRANSIENTTHERMALIMPEDANCE,JUNCTION-TO-CASEvs.PULSEDURATION  
RC MODEL  
Junction  
temp(°C)  
0.676 °C/W  
0.504 °C/W  
0.00147 J/°C  
0.0440 J/°C  
Power  
(watts)  
Case temperature(°C)  
FIGURE25b,TRANSIENT THERMAL IMPEDANCE MODEL  
APT25GP120BDF1  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
500  
400  
300  
200  
100  
0
T
= 125°C  
= 800V  
J
V
R
30A  
T = 150°C  
J
T = 125°C  
J
15A  
7.5A  
T = 25°C  
J
T = -55°C  
J
0
1
2
3
4
5
6
7
0
200  
400  
600  
800  
1000 1200  
V ,ANODE-TO-CATHODEVOLTAGE(V)  
-di /dt, CURRENT RATE OF CHANGE(A/µs)  
F
F
Figure 26. Forward Current vs. Forward Voltage  
Figure 27. Reverse Recovery Time vs. Current Rate of Change  
2500  
2000  
1500  
1000  
25  
T
V
= 125°C  
= 800V  
T
V
= 125°C  
= 800V  
J
J
R
R
30A  
20  
15  
10  
5
30A  
15A  
15A  
7.5A  
7.5A  
500  
0
0
0
200  
400  
600  
800  
1000 1200  
0
200  
400  
600  
800  
1000 1200  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
-di /dt,CURRENTRATEOFCHANGE(A/µs)  
F
F
Figure 28. Reverse Recovery Charge vs. Current Rate of Change  
Figure29. ReverseRecoveryCurrentvs. CurrentRateofChange  
1.2  
25  
Duty cycle  
= 0.5  
Q
rr  
t
T
= 150°C  
rr  
J
1.0  
0.8  
0.6  
0.4  
20  
15  
10  
I
RRM  
t
rr  
Q
rr  
5
0
0.2  
0.0  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
Case Temperature (°C)  
Figure 31. Maximum Average Forward Current vs. CaseTemperature  
100  
125  
150  
T ,JUNCTIONTEMPERATURE(°C)  
J
Figure 30. Dynamic Parameters vs. Junction Temperature  
100  
80  
60  
40  
20  
0
1
10  
V , REVERSEVOLTAGE(V)  
100 200  
R
Figure 32. Junction Capacitance vs. Reverse Voltage  
APT25GP120BDF1  
V
r
diF/dt Adjust  
+18V  
0V  
APT10035LLL  
D.U.T.  
t
Q
/
30µH  
rr rr  
Waveform  
PEARSON 2878  
CURRENT  
TRANSFORMER  
Figure 33. Diode Test Circuit  
1
2
IF - Forward Conduction Current  
diF/dt - Rate of Diode Current Change Through Zero Crossing.  
1
4
5
Zero  
3
4
IRRM - Maximum Reverse Recovery Current.  
0.25 I  
RRM  
t
- Reverse ecovery Time, measured from zero crossing where diode  
current goes from positive to negative, to the point at which the straight  
R
3
rr  
2
line through IRRM and 0.25 IRRM passes through zero.  
5
Q
- Area Under the Curve Defined by IRRM and t .  
rr  
rr  
Figure 34, Diode Reverse Recovery Waveform and Definitions  
T0-247 Package Outline  
4.69 (.185)  
5.31 (.209)  
15.49 (.610)  
16.26 (.640)  
1.49 (.059)  
2.49 (.098)  
5.38 (.212)  
6.20 (.244)  
6.15 (.242) BSC  
20.80 (.819)  
21.46 (.845)  
3.55 (.138)  
3.81 (.150)  
2.87 (.113)  
3.12 (.123)  
4.50 (.177) Max.  
1.65 (.065)  
2.13 (.084)  
0.40 (.016)  
0.79 (.031)  
19.81 (.780)  
20.32 (.800)  
Gate  
Collector  
(Cathode)  
1.01 (.040)  
1.40 (.055)  
Emitter  
(Anode)  
2.21 (.087)  
2.59 (.102)  
5.45 (.215) BSC  
2-Plcs.  
Dimensions in Millimeters and (Inches)  
APT’sproductsarecoveredbyoneormoreofU.S.patents4,895,810 5,045,903 5,089,434 5,182,234 5,019,522  
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058andforeignpatents. USandForeignpatentspending. AllRightsReserved.  

相关型号:

APT25GP120BDQ1

POWER MOS 7 IGBT
ADPOW

APT25GP120BDQ1G

POWER MOS 7 IGBT
ADPOW

APT25GP120BDQ1G

Power Semiconductors Power Modules
MICROSEMI

APT25GP120BG

Power Semiconductors Power Modules
MICROSEMI

APT25GP90B

POWER MOS 7 IGBT
ADPOW

APT25GP90BDF1

POWER MOS 7 IGBT
ADPOW

APT25GP90BDQ1

POWER MOS 7 IGBT
ADPOW

APT25GP90BDQ1G

POWER MOS 7 IGBT
ADPOW

APT25GP90BG

Insulated Gate Bipolar Transistor, 72A I(C), 900V V(BR)CES, N-Channel, TO-247AD, TO-247, 3 PIN
MICROSEMI

APT25GR120B

Power Semiconductors Power Modules
MICROSEMI

APT25GR120BD15

Power Semiconductors Power Modules
MICROSEMI

APT25GR120BSCD10

Power Semiconductors Power Modules
MICROSEMI