APT25GP120BDQ1 [ADPOW]

POWER MOS 7 IGBT; 功率MOS 7 IGBT
APT25GP120BDQ1
型号: APT25GP120BDQ1
厂家: ADVANCED POWER TECHNOLOGY    ADVANCED POWER TECHNOLOGY
描述:

POWER MOS 7 IGBT
功率MOS 7 IGBT

晶体 晶体管 功率控制 瞄准线 双极性晶体管 局域网
文件: 总9页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1200V  
APT25GP120BDQ1  
APT25GP120BDQ1G*  
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.  
®
POWER MOS 7 IGBT  
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch  
Through Technology this IGBT is ideal for many high frequency, high voltage switching  
applications and has been optimized for high frequency switchmode power supplies.  
G
C
E
• Low Conduction Loss  
• Low Gate Charge  
• 100 kHz operation @ 800V, 11A  
• 50 kHz operation @ 800V, 19A  
• RBSOA Rated  
C
E
• Ultrafast Tail Current shutoff  
G
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Parameter  
Symbol  
UNIT  
APT25GP120BDQ1(G)  
VCES  
VGE  
IC1  
Collector-Emitter Voltage  
1200  
Volts  
±30  
Gate-Emitter Voltage  
Continuous Collector Current @ TC = 25°C  
69  
IC2  
Continuous Collector Current @ TC = 110°C  
33  
90  
Amps  
1
Pulsed Collector Current  
@ TC = 150°C  
ICM  
Reverse Bias Safe Operating Area @ TJ = 150°C  
90A @ 960V  
417  
RBSOA  
PD  
Total Power Dissipation  
Watts  
°C  
TJ,TSTG  
Operating and Storage Junction Temperature Range  
-55 to 150  
300  
TL  
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol Characteristic / Test Conditions  
MIN  
TYP  
MAX  
Units  
V(BR)CES  
VGE(TH)  
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 350µA)  
Gate Threshold Voltage (VCE = VGE, IC = 1mA, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 25A, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 25A, Tj = 125°C)  
1200  
3
4.5  
3.3  
3.0  
6
Volts  
3.9  
VCE(ON)  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)  
350  
ICES  
IGES  
µA  
nA  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)  
Gate-Emitter Leakage Current (VGE = ±20V)  
3000  
±100  
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.  
APT Website - http://www.advancedpower.com  
DYNAMIC CHARACTERISTICS  
Symbol Characteristic  
APT25GP120BDQ1(G)  
UNIT  
Test Conditions  
Capacitance  
MIN  
TYP  
2090  
200  
40  
MAX  
Cies  
Input Capacitance  
Coes  
pF  
V
Output Capacitance  
VGE = 0V, VCE = 25V  
f = 1 MHz  
Cres  
Reverse Transfer Capacitance  
VGEP  
7.5  
Gate-to-Emitter Plateau Voltage  
Gate Charge  
VGE = 15V  
VCE = 600V  
IC = 25A  
3
Qg  
110  
15  
Total Gate Charge  
Qge  
nC  
Gate-Emitter Charge  
Qgc  
50  
Gate-Collector ("Miller") Charge  
TJ = 150°C, RG = 5Ω, VGE  
=
Reverse Bias Safe Operating Area  
RBSOA  
td(on)  
A
90  
15V, L = 100µH,VCE = 960V  
Inductive Switching (25°C)  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
Current Fall Time  
12  
14  
VCC = 600V  
VGE = 15V  
IC = 25A  
tr  
ns  
td(off)  
70  
tf  
39  
RG = 5Ω  
4
Eon1  
Eon2  
Turn-on Switching Energy  
500  
1090  
440  
12  
TJ = +25°C  
5
µJ  
ns  
Turn-on Switching Energy (Diode)  
6
Eoff  
Turn-off Switching Energy  
td(on)  
Inductive Switching (125°C)  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
tr  
VCC = 600V  
VGE = 15V  
IC = 25A  
14  
td(off)  
tf  
110  
90  
Current Fall Time  
RG = 5Ω  
4 4  
Eon1  
Eon2  
Eoff  
Turn-on Switching Energy  
500  
1575  
1185  
TJ = +125°C  
55  
µJ  
Turn-on Switching Energy (Diode)  
6
Turn-off Switching Energy  
THERMAL AND MECHANICAL CHARACTERISTICS  
Symbol Characteristic  
UNIT  
MIN  
TYP  
MAX  
.30  
R
Junction to Case (IGBT)  
Junction to Case (DIODE)  
Package Weight  
θJC  
θJC  
°C/W  
gm  
R
1.18  
WT  
5.9  
1
2
3
4
Repetitive Rating: Pulse width limited by maximum junction temperature.  
For Combi devices, Ices includes both IGBT and FRED leakages  
See MIL-STD-750 Method 3471.  
Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current  
adding to the IGBT turn-on loss. (See Figure 24.)  
5
6
Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching  
loss. (See Figures 21, 22.)  
Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)  
APT Reserves the right to change, without notice, the specifications and information contained herein.  
TYPICAL PERFORMANCE CURVES  
APT25GP120BDQ1(G)  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
TJ = 25°C  
TJ = 25°C  
20  
TJ = 125°C  
TJ = 125°C  
10  
0
0
1
2
3
4
5
0
1
2
3
4
5
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 1, Output Characteristics(T = 25°C)  
FIGURE 2, Output Characteristics (T = 125°C)  
J
J
100  
16  
14  
12  
250µs PULSE  
TEST<0.5 % DUTY  
CYCLE  
I
T
= 25A  
= 25°C  
C
J
V
=240V  
80  
60  
40  
20  
0
CE  
V
=600V  
CE  
10  
8
TJ = -55°C  
V
= 480V  
CE  
6
TJ = 25°C  
4
2
TJ = 125°C  
0
0
1
2
3
4
5
6
7
8
9
10  
0
20  
40  
60  
80  
100  
120  
V
, GATE-TO-EMITTER VOLTAGE (V)  
GATE CHARGE (nC)  
GE  
FIGURE 3, Transfer Characteristics  
FIGURE 4, Gate Charge  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
TJ = 25°C.  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
I
= 50A  
C
I
= 50A  
C
I
= 25A  
C
I
= 25A  
C
I
= 12.5A  
I
= 12.5A  
C
C
VGE = 15V.  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
0.5  
0
0.5  
0
6
8
10  
12  
14  
16  
-25  
0
25  
50  
75  
100  
125  
V
, GATE-TO-EMITTER VOLTAGE (V)  
T , Junction Temperature (°C)  
GE  
J
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage  
FIGURE 6, On State Voltage vs Junction Temperature  
1.10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
1.06  
1.02  
0.98  
0.94  
0.90  
10  
0
-50 -25  
0
25  
50  
75  
100 125  
-50 -25  
0
25 50 75 100 125 150  
T , JUNCTION TEMPERATURE (°C)  
T , CASE TEMPERATURE (°C)  
J
C
FIGURE 7, Breakdown Voltage vs. Junction Temperature  
FIGURE 8, DC Collector Current vs Case Temperature  
APT25GP120BDQ1(G)  
140  
120  
100  
80  
16  
14  
12  
10  
8
V
= 15V  
GE  
VGE =15V,TJ=125°C  
60  
6
VGE =15V,TJ=25°C  
40  
4
VCE = 600V  
VCE = 600V  
RG = 5Ω  
L = 100 µH  
TJ = 25°C, TJ =125°C  
RG = 5Ω  
L = 100µH  
20  
2
0
I
0
I
10 15 20 25 30 35 40 45 50 55  
10 15 20 25 30 35 40 45 50 55  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9, Turn-On Delay Time vs Collector Current  
FIGURE 10, Turn-Off Delay Time vs Collector Current  
35  
120  
RG = 5, L = 100µH, VCE = 600V  
RG = 5, L = 100µH, VCE = 600V  
30  
25  
20  
15  
10  
5
100  
80  
60  
40  
20  
T
=
125°C, V = 15V  
GE  
J
T
J = 25°C, VGE = 15V  
TJ = 25 or 125°C,VGE = 15V  
0
I
0
I
10 15 20 25 30 35 40 45 50 55  
10 15 20 25 30 35 40 45 50 55  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11, Current Rise Time vs Collector Current  
FIGURE 12, Current Fall Time vs Collector Current  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
V
V
R
=
=
= 5Ω  
600V  
+15V  
V
V
R
=
=
= 5Ω  
600V  
+15V  
CE  
GE  
CE  
GE  
G
G
T
J = 125°C, VGE = 15V  
T
J = 125°C,VGE =15V  
500  
0
T
J = 25°C, VGE = 15V  
T
J = 25°C,VGE =15V  
0
10 15 20 25 30 35 40 45 50 55  
, COLLECTOR TO EMITTER CURRENT (A)  
10 15 20 25 30 35 40 45 50 55  
I , COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
CE  
FIGURE 13, Turn-On Energy Loss vs Collector Current  
FIGURE 14, Turn Off Energy Loss vs Collector Current  
4500  
3500  
V
V
T
=
=
600V  
+15V  
V
V
R
=
=
= 5Ω  
600V  
+15V  
E
50A  
CE  
GE  
CE  
GE  
on2,  
E
50A  
on2,  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
= 125°C  
J
3000  
2500  
2000  
1500  
1000  
G
E
50A  
off,  
E
25A  
E
50A  
off,  
E
25A  
on2,  
on2,  
E
25A  
off,  
E
25A  
E
off,  
E
12.5A  
on2,  
E
12.5A  
25  
on2,  
500  
0
12.5A  
off,  
E
12.5A  
off,  
0
0
10  
20  
30  
40  
50  
0
50  
75  
100  
125  
R , GATE RESISTANCE (OHMS)  
T , JUNCTION TEMPERATURE (°C)  
G
J
FIGURE 15, Switching Energy Losses vs. Gate Resistance  
FIGURE 16, Switching Energy Losses vs Junction Temperature  
TYPICAL PERFORMANCE CURVES  
APT25GP120BDQ1(G)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10,000  
5,000  
Cies  
1,000  
500  
Coes  
100  
50  
Cres  
10  
0
10  
20  
30  
40  
50  
0
100 200 300 400 500 600 700 800 900 1000  
V , COLLECTOR TO EMITTER VOLTAGE  
CE  
V
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 17, Capacitance vs Collector-To-Emitter Voltage  
Figure 18,Minimim Switching Safe Operating Area  
0.35  
0.30  
D = 0.9  
0.25  
0.7  
0.20  
0.5  
0.15  
Note:  
t
1
0.3  
0.10  
0.05  
0
t
2
t
1
t
Duty Factor D =  
Peak T = P x Z  
/
SINGLE PULSE  
10-3  
2
0.1  
+ T  
C
J
DM  
θJC  
0.05  
10-5  
10-4  
10-2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (SECONDS)  
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration  
182  
100  
RC MODEL  
Fmax = min (fmax, fmax2  
)
50  
Junction  
0.05  
temp (°C)  
fmax1  
=
=
td(on) + tr + td(off) + tf  
0.128  
0.00833  
0.171  
Pdiss - Pcond  
Eon2 + Eoff  
Power  
(watts)  
fmax2  
T
T
=
125°C  
75°C  
J
=
C
D = 50 %  
V
R
TJ - TC  
RθJC  
0.173  
=
800V  
Pdiss  
=
CE  
= 5Ω  
G
10  
Case temperature(°C)  
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL  
5
10 15 20 25 30 35 40 45 50  
I , COLLECTOR CURRENT (A)  
C
Figure 20, Operating Frequency vs Collector Current  
APT25GP120BDQ1(G)  
Gate Voltage  
10%  
APT15DQ120  
TJ = 125 °C  
td(on)  
VCE  
IC  
VCC  
tr  
90%  
10%  
Collector Current  
Collector Voltage  
5 %  
5%  
A
Switching Energy  
D.U.T.  
Figure 21, Inductive Switching Test Circuit  
Figure 22, Turn-on Switching Waveforms and Definitions  
VTEST  
*DRIVER SAME TYPE AS D.U.T.  
90%  
Gate Voltage  
TJ = 125 °C  
A
VCE  
td(off)  
tf  
Collector Voltage  
IC  
100uH  
VCLAMP  
B
90%  
0
10%  
Collector Current  
A
Switching Energy  
D.U.T.  
DRIVER*  
Figure 24, E  
Test Circuit  
Figure 23, Turn-off Switching Waveforms and Definitions  
ON1  
TYPICAL PERFORMANCE CURVES  
APT25GP120BDQ1(G)  
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE  
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Symbol  
IF(AV)  
Characteristic / Test Conditions  
APT25GP120BDQ1(G)  
UNIT  
Maximum Average Forward Current (TC = 127°C, Duty Cycle = 0.5)  
RMS Forward Current (Square wave, 50% duty)  
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)  
15  
29  
IF(RMS)  
Amps  
IFSM  
110  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol  
UNIT  
Characteristic / Test Conditions  
MIN  
TYP  
MAX  
MAX  
IF = 25A  
3.24  
4.03  
2.91  
Volts  
Forward Voltage  
IF = 50A  
VF  
IF = 25A, TJ = 125°C  
DYNAMIC CHARACTERISTICS  
Characteristic  
Symbol  
MIN  
TYP  
UNIT  
Test Conditions  
Reverse Recovery Time  
trr  
trr  
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C  
-
21  
ns  
Reverse Recovery Time  
Reverse Recovery Charge  
-
240  
IF = 15A, diF/dt = -200A/µs  
VR = 800V, TC = 25°C  
Qrr  
IRRM  
trr  
nC  
Amps  
ns  
-
-
-
-
-
-
-
-
260  
3
Maximum Reverse Recovery Current  
Reverse Recovery Time  
-
-
290  
960  
6
IF = 15A, diF/dt = -200A/µs  
VR = 800V, TC = 125°C  
Qrr  
Reverse Recovery Charge  
nC  
Amps  
ns  
IRRM  
trr  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
130  
1340  
19  
IF = 15A, diF/dt = -1000A/µs  
VR = 800V, TC = 125°C  
Qrr  
Reverse Recovery Charge  
nC  
IRRM  
Maximum Reverse Recovery Current  
Amps  
1.20  
D = 0.9  
0.7  
1.00  
0.80  
0.60  
0.40  
0.20  
0
0.5  
Note:  
t
1
0.3  
0.1  
t
2
t
SINGLE PULSE  
1
t
/
2
Duty Factor D =  
Peak T = P  
x Z  
+ T  
θJC C  
0.05  
J
DM  
10-5  
10-4  
10-3  
10-2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (seconds)  
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION  
RC MODEL  
Junction  
temp. (°C)  
0.676  
0.504  
0.00147  
0.0440  
Power  
(watts)  
Case temperature. (°C)  
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL  
APT25GP120BDQ1(G)  
60  
50  
40  
30  
20  
10  
0
400  
350  
300  
250  
200  
150  
100  
T
V
= 125°C  
= 800V  
J
T
= 175°C  
= 125°C  
R
J
30A  
T
J
15A  
T
= 25°C  
J
7.5A  
T
= -55°C  
J
50  
0
0
1
2
3
4
5
0
200  
400  
600  
800 1000 1200  
-di /dt, CURRENT RATE OF CHANGE(A/µs)  
Figure 27. Reverse Recovery Time vs. Current Rate of Change  
V , ANODE-TO-CATHODE VOLTAGE (V)  
F
F
Figure 26. Forward Current vs. Forward Voltage  
2500  
2000  
1500  
1000  
25  
T
V
= 125°C  
= 800V  
T
V
= 125°C  
= 800V  
J
J
30A  
R
R
30A  
20  
15  
10  
5
15A  
15A  
7.5A  
7.5A  
500  
0
0
0
200  
400  
600  
800 1000 1200  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
0
200  
400  
600  
800 1000 1200  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
F
F
Figure 28. Reverse Recovery Charge vs. Current Rate of Change  
Figure 29. Reverse Recovery Current vs. Current Rate of ChangeTum tes-  
1.2  
35  
Duty cycle = 0.5  
Q
rr  
T
= 175°C  
t
J
rr  
30  
25  
20  
15  
10  
1.0  
I
RRM  
t
rr  
0.8  
0.6  
Q
rr  
0.4  
0.2  
0.0  
5
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
Case Temperature (°C)  
Figure 31. Maximum Average Forward Current vs. CaseTemperature  
100  
125  
150  
175  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 30. Dynamic Parameters vs. Junction Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
10  
100 200  
V , REVERSE VOLTAGE (V)  
R
Figure 32. Junction Capacitance vs. Reverse Voltage  
TYPICAL PERFORMANCE CURVES  
APT25GP120BDQ1(G)  
V
r
diF/dt Adjust  
+18V  
0V  
APT10078BLL  
D.U.T.  
t
Q
/
30µH  
rr rr  
Waveform  
PEARSON 2878  
CURRENT  
TRANSFORMER  
Figure 33. Diode Test Circuti  
1
2
IF - Forward Conduction Current  
1
4
5
diF/dt - Rate of Diode Current Change Through Zero Crossing.  
IRRM - Maximum Reverse Recovery Current.  
Zero  
3
4
0.25 I  
RRM  
t
- Reverse Recovery Time, measured from zero crossing where diode  
current goes from positive to negative, to the point at which the straight  
3
rr  
2
line through IRRM and 0.25 IRRM passes through zero.  
5
Q
- Area Under the Curve Defined by IRRM and t .  
rr  
rr  
Figure 34, Diode Reverse Recovery Waveform and Definitions  
TO-247 Package Outline  
e1  
SAC: Tin, Silver, Copper  
4.69 (.185)  
5.31 (.209)  
15.49 (.610)  
16.26 (.640)  
1.49 (.059)  
2.49 (.098)  
5.38 (.212)  
6.20 (.244)  
6.15 (.242) BSC  
20.80 (.819)  
21.46 (.845)  
3.55 (.138)  
3.81 (.150)  
2.87 (.113)  
3.12 (.123)  
4.50 (.177) Max.  
1.65 (.065)  
2.13 (.084)  
0.40 (.016)  
0.79 (.031)  
19.81 (.780)  
20.32 (.800)  
1.01 (.040)  
1.40 (.055)  
Gate  
Collector  
(Cathode)  
Emitter  
(Anode)  
2.21 (.087)  
2.59 (.102)  
5.45 (.215) BSC  
2-Plcs.  
Dimensions in Millimeters and (Inches)  
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522  
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY