AD9057BRSZ-RL60 [ADI]

8-Bit, 40/60/80 MSPS A/D Converter;
AD9057BRSZ-RL60
型号: AD9057BRSZ-RL60
厂家: ADI    ADI
描述:

8-Bit, 40/60/80 MSPS A/D Converter

信息通信管理 光电二极管 转换器
文件: 总13页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit 40 MSPS/60 MSPS/80 MSPS  
A/D Converter  
a
AD9057  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
8-Bit, Low Power ADC: 200 mW Typical  
120 MHz Analog Bandwidth  
V
PWRDN  
V
DD  
D
On-Chip 2.5 V Reference and Track-and-Hold  
1 V p-p Analog Input Range  
Single 5 V Supply Operation  
AD9057  
8
AIN  
D7–D0  
T/H  
ADC  
1k  
5 V or 3 V Logic Interface  
Power-Down Mode: <10 mW  
3 Performance Grades (40 MSPS, 60 MSPS, 80 MSPS)  
BIAS OUT  
VREF IN  
VREF OUT  
2.5V  
APPLICATIONS  
Digital Communications (QAM Demodulators)  
RGB and YC/Composite Video Processing  
Digital Data Storage Read Channels  
Medical Imaging  
GND  
ENCODE  
Digital Instrumentation  
PRODUCT DESCRIPTION  
power-down function may be exercised to bring total consumption  
to <10 mW. In power-down mode, the digital outputs are driven  
to a high impedance state.  
The AD9057 is an 8-bit monolithic analog-to-digital converter  
optimized for low cost, low power, small size, and ease of use.  
With 40 MSPS, 60 MSPS, or 80 MSPS encode rate capability  
and full-power analog bandwidth of 120 MHz, the component is  
ideal for applications requiring excellent dynamic performance.  
Fabricated on an advanced BiCMOS process, the AD9057 is  
available in a space-saving 20-lead shrink small outline package  
(20-lead SSOP) and is specified over the industrial temperature  
range (–40C to +85C).  
To minimize system cost and power dissipation, the AD9057  
includes an internal 2.5 V reference and a track-and-hold (T/H)  
circuit. The user must provide only a 5 V power supply and an  
encode clock. No external reference or driver components are  
required for many applications.  
Customers desiring multichannel digitization may consider the  
AD9059, a dual 8-bit, 60 MSPS monolithic based on the  
AD9057 ADC core. The AD9059 is available in a 28-lead sur-  
face-mount plastic package (28-lead SSOP) and is specified over  
the industrial temperature range.  
The AD9057’s encode input is TTL/CMOS compatible, and the  
8-bit digital outputs can be operated from 5 V or 3 V supplies. A  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9057* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Technical Articles  
Correlating High-Speed ADC Performance to Multicarrier  
3G Requirements  
DOCUMENTATION  
DNL and Some of its Effects on Converter Performance  
MS-2210: Designing Power Supplies for High Speed ADC  
Application Notes  
AN-348: Avoiding Passive-Component Pitfalls  
AN-501: Aperture Uncertainty and ADC System  
Performance  
DESIGN RESOURCES  
AD9057 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-715: A First Approach to IBIS Models: What They Are  
and How They Are Generated  
AN-737: How ADIsimADC Models an ADC  
AN-741: Little Known Characteristics of Phase Noise  
AN-756: Sampled Systems and the Effects of Clock Phase  
Noise and Jitter  
DISCUSSIONS  
View all AD9057 EngineerZone Discussions.  
Data Sheet  
AD9057: 8-Bit, 40/60/80 MSPS A/D Converter Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
AD9057 IBIS Models  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
(V = 5 V, V = 3 V; external reference, unless otherwise noted.)  
AD9057–SPECIFICATIONS  
D
DD  
Test  
Level  
AD9057BRS-40  
AD9057BRS-60  
AD9057BRS-80  
Parameter  
Temp  
Min Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
8
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
25C  
Full  
25C  
Full  
Full  
25C  
Full  
I
VI  
I
VI  
VI  
I
VI  
V
0.75  
0.75  
1.9  
2.0  
1.9  
2.0  
0.75  
0.75  
1.9  
2.0  
1.9  
2.0  
0.75  
0.75  
1.9  
2.0  
1.9  
2.0  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Gain Error1  
Guaranteed  
–2.5  
Guaranteed  
–2.5  
Guaranteed  
–2.5  
–6  
–8  
+6  
+8  
–6  
–8  
+6  
+8  
–6  
–8  
+6  
+8  
% FS  
% FS  
ppm/C  
Gain Tempco1  
Full  
±70  
±70  
±70  
ANALOG INPUT  
Input Voltage Range  
(Centered at 2.5 V)  
Input Offset Voltage  
25C  
25C  
Full  
25C  
25C  
25C  
Full  
V
I
VI  
V
V
I
1.0  
0
1.0  
0
1.0  
0
V p-p  
mV  
mV  
kW  
–15  
–25  
+15  
+25  
–15  
–25  
+15  
+25  
–15  
–25  
+15  
+25  
Input Resistance  
Input Capacitance  
Input Bias Current  
150  
2
6
150  
2
6
150  
2
6
pF  
16  
25  
16  
25  
16  
25  
mA  
VI  
V
mA  
Analog Bandwidth  
25C  
120  
120  
120  
MHz  
BAND GAP REFERENCE  
Output Voltage  
Temperature Coefficient  
Full  
Full  
VI  
V
2.4  
40  
2.5  
±10  
2.6  
2.4  
60  
2.5  
±10  
2.6  
2.4  
80  
2.5  
±10  
2.6  
V
ppm/C  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Aperture Delay (tA)  
Full  
Full  
25C  
25C  
Full  
Full  
VI  
IV  
V
V
IV  
IV  
MSPS  
MSPS  
ns  
ps rms  
ns  
5
5
5
2.7  
5
6.6  
11.5  
2.7  
5
6.6  
9.5  
2.7  
5
6.6  
8.0  
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)2  
4.0  
4.0  
4.0  
2
Output Propagation Delay (tPD  
)
18.0  
14.2  
11.3  
ns  
DYNAMIC PERFORMANCE3  
Transient Response  
Overvoltage Recovery Time  
Signal-to-Noise Ratio (SINAD)  
(With Harmonics)  
25C  
25C  
V
V
9
9
9
9
9
9
ns  
ns  
f
IN = 10.3 MHz  
fIN = 76 MHz  
Effective Number of Bits (ENOB)  
IN = 10.3 MHz  
25C  
25C  
I
V
42  
45.5  
44.0  
42  
45  
43.5  
41.5  
6.6  
45  
43.5  
dB  
dB  
f
25C  
25C  
I
V
6.7  
7.2  
7.0  
6.7  
7.2  
6.9  
7.2  
6.9  
Bits  
Bits  
fIN = 76 MHz  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
f
f
IN = 10.3 MHz  
IN = 76 MHz  
25C  
25C  
I
V
43  
46.5  
45.5  
43  
46  
45  
42.5  
–50  
–46  
46  
45  
dB  
dB  
Second Harmonic Distortion  
fIN = 10.3 MHz  
IN = 76 MHz  
Third Harmonic Distortion  
fIN = 10.3 MHz  
25C  
25C  
I
V
–50  
–46  
–62  
–54  
–50  
–46  
–62  
–54  
–62  
–54  
dBc  
dBc  
f
25C  
25C  
I
V
–60  
–54  
–60  
–54  
–60  
–54  
dBc  
dBc  
f
IN = 76 MHz  
Two Tone Intermodulation  
Distortion (IMD)  
Differential Phase  
25C  
25C  
25C  
V
V
V
–52  
0.8  
1.0  
–52  
0.8  
1.0  
–52  
0.8  
1.0  
dBc  
Degrees  
%
Differential Gain  
DIGITAL INPUTS  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
Input Capacitance  
Encode Pulsewidth High (tEH  
Encode Pulsewidth Low (tEL  
Full  
Full  
Full  
Full  
25C  
25C  
25C  
VI  
VI  
VI  
VI  
V
IV  
IV  
2.0  
2.0  
2.0  
V
V
0.8  
±1  
±1  
0.8  
±1  
±1  
0.8  
±1  
±1  
mA  
mA  
pF  
ns  
ns  
4.5  
4.5  
4.5  
)
)
9.0  
9.0  
166  
166  
6.7  
6.7  
166  
166  
5.5  
5.5  
166  
166  
–2–  
REV. D  
AD9057  
Test  
Temp Level  
AD9057BRS-40  
AD9057BRS-60  
Min Typ Max  
AD9057BRS-80  
Min Typ Max  
Parameter  
Min Typ  
Max  
Unit  
DIGITAL OUTPUTS  
Logic 1 Voltage (VDD = 3 V)  
Logic 1 Voltage (VDD = 5 V)  
Logic 0 Voltage  
Full  
Full  
Full  
VI  
IV  
VI  
2.95  
4.95  
2.95  
4.95  
2.95  
4.95  
V
V
V
0.05  
Offset Binary Code  
0.05  
Offset Binary Code  
0.05  
Offset Binary Code  
Output Coding  
POWER SUPPLY  
VD Supply Current (VD = 5 V)  
VDD Supply Current (VDD = 3 V)4  
Power Dissipation5, 6  
Power-Down Dissipation  
Power Supply Rejection Ratio  
(PSRR)  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
36  
4.0  
192  
6
48  
38  
5.5  
205  
6
48  
40  
7.4  
220  
6
51  
mA  
mA  
mW  
mW  
6.5  
260  
10  
6.5  
260  
10  
8.8  
281  
10  
25C  
V
3
3
3
mV/V  
NOTES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed 2.5 V external reference).  
2tV and tPD are measured from the 1.5 V level of the encode to the 10%/90% levels of the digital output swing. The digital output load during test is not to exceed  
an ac load of 10 pF or a dc current of ±40 mA.  
3SNR/harmonics based on an analog input voltage of –0.5 dBFS referenced to a 1.0 V full-scale input range.  
4Digital supply current based on VDD = 3 V output drive with <10 pF loading under dynamic test conditions.  
5Power dissipation is based on specified encode and 10.3 MHz analog input dynamic test conditions (VD = 5 V ± 5%, VDD = 3 V ± 5%).  
6Typical thermal impedance for the RS style (SSOP) 20-lead package: qJC = 46C/W, qCA = 80C/W, and qJA = 126C/W.  
Specifications subject to change without notice.  
EXPLANATION OF TEST LEVELS  
Test Level  
Description  
I
100% production tested.  
II  
100% production tested at 25C and sample  
tested at specified temperatures.  
III  
IV  
Sample tested only.  
Parameter is guaranteed by design and charac-  
terization testing.  
V
Parameter is a typical value only.  
VI  
100% production tested at 25C; guaranteed  
by design and characterization testing  
for industrial temperature range.  
N
N + 5  
N + 3  
AIN  
N + 1  
N + 4  
N + 2  
tA  
tEH  
tEL  
ENCODE  
tV  
DIGITAL  
OUTPUTS  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
tPD  
MIN TYP MAX  
2.7 ns  
t
t
APERTURE DELAY  
A
PULSEWIDTH HIGH  
PULSEWIDTH LOW  
OUTPUT VALID TIME  
OUTPUT PROP DELAY  
EH  
166 ns  
t
EL  
166 ns  
t
V
4.0 ns  
6.6 ns  
9.5 ns  
t
PD  
Figure 1. Timing Diagram  
–3–  
REV. D  
AD9057  
ABSOLUTE MAXIMUM RATINGS*  
PIN CONFIGURATION  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
VREF Input . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55C to +125C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65C to +150C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . 150C  
1
2
20  
PWRDN  
D0 (LSB)  
19 D1  
18 D2  
17 D3  
VREF OUT  
VREF IN  
GND  
3
4
AD9057  
V
D
5
TOP VIEW 16 GND  
(Not to Scale)  
BIAS OUT  
AIN  
6
15  
V
DD  
7
14 D4  
13  
V
D
8
D5  
12 D6  
D7 (MSB)  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
9
GND  
10  
11  
ENCODE  
PIN FUNCTION DESCRIPTIONS  
ORDERING GUIDE  
Temperature  
Pin No.  
Mnemonic  
Function  
Model  
Range  
Package Option*  
1
PWRDN  
Power-Down Function Select;  
Logic High for Power-Down  
Mode (Digital Outputs Go to  
High Impedance State).  
AD9057BRS-40  
AD9057BRS-60  
AD9057BRS-80  
AD9057/PCB  
–40C to +85C RS-20  
–40C to +85C RS-20  
–40C to +85C RS-20  
25C  
Evaluation Board  
2
3
VREF OUT  
VREF IN  
Internal Reference Output  
(2.5 V typ); Bypass with 0.1 mF  
to Ground.  
*RS = Shrink Small Outline Package (SSOP).  
Table I. Digital Coding (VREF = 2.5 V)  
Analog Input Voltage Level Digital Output  
Reference Input for ADC (2.5 V  
typ, ±10%).  
Ground (Analog/Digital).  
Analog 5 V Power Supply.  
4, 9, 16  
5, 8  
GND  
3.0 V  
Positive Full Scale  
Midscale +1/2 LSB  
Midscale –1/2 LSB  
Negative Full Scale  
1111 1111  
1000 0000  
0111 1111  
0000 0000  
VD  
2.502 V  
2.498 V  
2.0 V  
6
BIAS OUT  
Bias Pin for AC Coupling  
(1 kW to REF IN).  
Analog Input for ADC.  
7
AIN  
10  
ENCODE  
Encode Clock for ADC (ADC  
Samples on Rising Edge of  
Encode).  
11–14, 17–20 D7–D0  
15 VDD  
Digital Outputs of ADC.  
Digital Output Power Supply;  
Nominally 3 V to 5 V.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9057 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. D  
Typical Performance Characteristics–AD9057  
0
–10  
–20  
–30  
–30  
ENCODE = 60MSPS  
ANALOG IN = 10.3MHz, –0.5dBFS  
SINAD = 46.1dB  
ENCODE = 60MSPS  
–35  
AIN = –0.5dBFS  
ENOB = 7.36 BITS  
SNR = 46.5dB  
–40  
–45  
SECOND HARMONIC  
–50  
–40  
–50  
–60  
–70  
–80  
–90  
–55  
THIRD HARMONIC  
–60  
–65  
–70  
0
30  
0
20  
40  
60  
80  
100  
120  
140  
160  
FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
TPC 1. Spectral Plot 60 MSPS, 10.3 MHz  
TPC 4. Harmonic Distortion vs. AIN Frequency  
0
0
ENCODE = 60MSPS  
ENCODE = 60MSPS  
ANALOG IN = 76MHz, –0.5dBFS  
–10  
–10  
F1 IN = 9.5MHz @ –7.0dBFS  
SINAD = 44.9dB  
ENOB = 7.16 BITS  
–20 SNR = 45.2dB  
F2 IN = 9.9MHz @ –7.0dBFS  
2F1 – F2 = –52.0dBc  
2F2 – F1 = –53.0dBc  
–20  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–60  
–70  
–80  
–80  
–90  
–90  
0
30  
0
10  
20  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 2. Spectral Plot 60 MSPS, 76 MHz  
TPC 5. Two-Tone Intermodulation Distortion  
48  
46  
44  
42  
40  
54  
SNR  
SNR  
48  
42  
SINAD  
SINAD  
36  
30  
ENCODE = 60MSPS  
AIN = –0.5dBFS  
38  
36  
34  
32  
30  
AIN = 10.3MHz, –0.5dBFS  
24  
18  
12  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
5
10  
20  
30  
40  
50  
60  
70  
80  
90  
ENCODE RATE (MSPS)  
ANALOG INPUT FREQUENCY (MHz)  
TPC 3. SINAD/SNR vs. AIN Frequency  
TPC 6. SINAD/SNR vs. Encode Rate  
–5–  
REV. D  
AD9057  
12.0  
350  
11.0  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
300  
250  
200  
150  
100  
50  
V
= 3V  
DD  
V
= 5V  
DD  
V
= 3V  
DD  
V
= 5V  
DD  
AIN = 10.3MHz, –0.5dBFS  
0
5
–45  
0
25  
TEMPERATURE ( C)  
70  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
ENCODE RATE (MSPS)  
TPC 7. Power Dissipation vs. Encode Rate  
TPC 10. tPD vs. Temperature/Supply (VDD = 3 V/5 V)  
46.5  
46.0  
46.5  
46.0  
SNR  
SNR  
45.5  
45.0  
45.5  
45.0  
44.5  
44.0  
SINAD  
44.5  
44.0  
ENCODE = 60MSPS  
43.5  
AIN = 10.3MHz, –0.5dBFS  
SINAD  
43.0  
42.5  
42.0  
41.5  
43.5  
ENCODE = 60MSPS  
AIN = 10.3MHz, –05dBFS  
43.0  
42.5  
5.8  
6.7  
7.5  
8.35  
9.2  
10.0  
10.9  
–45  
0
25  
70  
90  
TEMPERATURE ( C)  
ENCODE HIGH PULSEWIDTH (ns  
)
TPC 8. SINAD/SNR vs. Temperature  
TPC 11. SINAD/SNR vs. Encode Pulsewidth  
0
–1  
–2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–3  
ENCODE = 60MSPS  
AIN = –0.5dBFS  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–45  
0
25  
70  
90  
1
2
5
10  
20  
50  
100  
200  
500  
TEMPERATURE ( C)  
ANALOG FREQUENCY (MHz)  
TPC 9. ADC Gain vs. Temperature (with External  
2.5 V Reference)  
TPC 12. ADC Frequency Response  
–6–  
REV. D  
AD9057  
5V  
THEORY OF OPERATION  
The AD9057 combines Analog Devices’ proprietary MagAmp  
gray code conversion circuitry with flash converter technology  
to provide a high performance, low cost ADC. The design  
architecture ensures low power, high speed, and 8-bit accuracy.  
A single-ended TTL/CMOS compatible ENCODE input controls  
ADC timing for sampling the analog input pin and strobing the  
digital outputs (D7–D0). An internal voltage reference (VREF  
OUT) may be used to control ADC gain and offset or an exter-  
nal reference may be applied.  
VREF OUT  
AD9057  
VREF IN  
10k  
0.1F  
10k⍀  
5V  
AD8041  
VIN  
(–0.5V  
TO +0.5V)  
AIN  
1k⍀  
The analog input signal is buffered at the input of the ADC and  
applied to a high speed track-and-hold. The track-and-hold  
circuit holds the analog input value during the conversion process  
(beginning with the rising edge of the encode command). The  
track-and-hold’s output signal passes through the gray code and  
flash conversion stages to generate coarse and fine digital  
representations of the held analog input level. Decode logic  
combines the multistage data and aligns the 8-bit word for  
strobed outputs on the rising edge of the encode command. The  
MagAmp/Flash architecture of the AD9057 results in three  
pipeline delays for the output data.  
1k⍀  
Figure 3. DC-Coupled AD9057 (Inverted VIN)  
Voltage Reference  
A stable and accurate 2.5 V voltage reference is built into the  
AD9057 (VREF OUT). The reference output may be used to  
set the ADC gain/offset by connecting VREF OUT to VREF IN.  
The internal reference is capable of providing 300 mA of drive  
current (for dc biasing the analog input or other user circuitry).  
Some applications may require greater accuracy, improved  
temperature performance, or gain adjustments that cannot be  
obtained using the internal reference. An external voltage may  
be applied to the VREF IN with VREF OUT disconnected for  
gain adjustment of up to ±10% (the VREF IN pin is internally  
tied directly to the ADC circuitry). ADC gain and offset will  
vary simultaneously with external reference adjustment with a  
1:1 ratio (a 2% or 50 mV adjustment to the 2.5 V reference  
varies ADC gain by 2% and ADC input range center offset by  
50 mV). Theoretical input voltage range versus reference input  
voltage may be calculated from the following equations:  
USING THE AD9057  
Analog Inputs  
The AD9057 provides a single-ended analog input impedance  
of 150 kW. The input requires a dc bias current of 6 mA (typical)  
centered near 2.5 V (±10%). The dc bias may be provided by  
the user or may be derived from the ADC’s internal voltage  
reference. Figure 2 shows a low cost dc bias implementation  
allowing the user to capacitively couple ac signals directly into  
the ADC without additional active circuitry. For best dynamic  
performance, the VREF OUT pin should be decoupled to  
ground with a 0.1 mF capacitor (to minimize modulation of  
the reference voltage) and the bias resistor should be approxi-  
mately 1 kW. A 1 kW bias resistor (±20%) is included within  
the AD9057 and may be used to reduce application board size  
and complexity.  
V
RANGE (p-p)  
= VREF IN/2.5  
= VREF IN  
VMIDSCALE  
VTOP-OF-RANGE  
= VREF IN + VRANGE/2  
VBOTTOM-OF-RANGE = VREF IN – VRANGE/2  
Digital Logic (5 V/3 V Systems)  
The digital inputs and outputs of the AD9057 can easily be  
configured to interface directly with 3 V or 5 V logic systems.  
The encode and power-down (PWRDN) inputs are CMOS  
stages with TTL thresholds of 1.5 V, making the inputs compat-  
ible with TTL, 5 V CMOS, and 3 V CMOS logic families. As  
with all high speed data converters, the encode signal should be  
clean and jitter free to prevent degradation of ADC dynamic  
performance.  
5V  
VREF OUT  
VREF IN  
0.1F  
1k⍀  
BIAS OUT  
0.1F  
The AD9057’s digital outputs will also interface directly with  
5 V or 3 V CMOS logic systems. The voltage supply pin (VDD  
for these CMOS stages is isolated from the analog VD voltage  
VIN  
(1V p-p)  
AIN  
AD9057  
)
supply. By varying the voltage on this supply pin, the digital  
output high level will change for 5 V or 3 V systems. Optimum  
SNR is obtained running the outputs at 3 V. Care should be  
taken to isolate the VDD supply voltage from the 5 V analog  
supply to minimize digital noise coupling into the ADC.  
Figure 2. Capacitively Coupled AD9057  
Figure 3 shows typical connections for high performance dc  
biasing using the ADC’s internal voltage reference. All compo-  
nents may be powered from a single 5 V supply. In the example,  
analog input signals are referenced to ground.  
REV. D  
–7–  
AD9057  
The AD9057 provides high impedance digital output operation  
when the ADC is driven into power-down mode (PWRDN, logic  
high). A 200 ns (minimum) power-down time should be  
provided before a high impedance characteristic is required at  
the outputs. A 200 ns power-up period should be provided to  
ensure accurate ADC output data after reactivation (valid out-  
put data is available three clock cycles after the 200 ns delay).  
full-power analog bandwidth of 2¥ the maximum sampling rate,  
the ADC provides sufficient pixel-to-pixel transient settling time  
to ensure accurate 60 MSPS video digitization. Figure 5 shows a  
typical RGB video digitizer implementation for the AD9057.  
8
AD9057  
AD9057  
AD9057  
RED  
Timing  
8
8
GREEN  
The AD9057 is guaranteed to operate with conversion rates from  
5 MSPS to 80 MSPS depending on grade. The ADC is designed  
to operate with an encode duty cycle of 50%, but performance  
is insensitive to moderate variations. Pulsewidth variations of  
up to ±10% (allowing the encode signal to meet the minimum/  
maximum high/low specifications) will cause no degradation in  
ADC performance (see Figure 1 timing diagram).  
BLUE  
PIXEL CLOCK  
H-SYNC  
PLL  
Power Dissipation  
Figure 5. RGB Video Encoder  
Evaluation Board  
The power dissipation of the AD9057 is specified to reflect a  
typical application setup under the following conditions: analog  
input is –0.5 dBFS at 10.3 MHz, VD is 5 V, VDD is 3 V, and digital  
outputs are loaded with 7 pF typical (10 pF maximum). The  
actual dissipation will vary as these conditions are modified in  
user applications. TPC 7 shows typical power consumption for the  
AD9057 versus ADC encode frequency and VDD supply voltage.  
The AD9057/PCB evaluation board provides an easy-to-use  
analog/digital interface for the 8-bit, 60 MSPS ADC. The board  
includes typical hardware configurations for a variety of high  
speed digitization evaluations. On-board components include  
the AD9057 (in the 20-lead SSOP package), an optional analog  
input buffer amplifier, a digital output latch, board timing drivers,  
an analog reconstruction digital-to-analog converter, and config-  
urable jumpers for ac coupling, dc coupling, and power-down  
function testing. The board is configured at shipment for dc  
coupling using the AD9057’s internal voltage reference.  
A power-down function allows users to reduce power dissipation  
when ADC data is not required. A TTL/CMOS high signal  
(PWRDN) shuts down portions of the ADC and brings total  
power dissipation to less than 10 mW. The internal band gap  
voltage reference remains active during power-down mode to  
minimize ADC reactivation time. If the power-down function is  
not desired, Pin 1 should be tied to ground.  
For dc-coupled analog input applications, amplifier U2 is con-  
figured to operate as a unity gain inverter with adjustable offset  
for the analog input signal. For full-scale ADC drive, the analog  
input signal should be 1 V p-p into 50 W (R1) referenced to  
ground (0 V). The amplifier offsets the analog signal by +VREF  
(2.5 V typical) to center the voltage for proper ADC input drive.  
For dc-coupled operation, connect E1 to E2 (analog input to  
R2) and E11 to E12 (amplifier output to analog input of AD9057)  
using the board jumper connectors. DC offset of the analog  
input signal can be modified by adjusting potentiometer R10.  
APPLICATIONS  
The wide analog bandwidth of the AD9057 makes it attractive for  
a variety of high performance receiver and encoder applications.  
Figure 4 shows two ADCs in a typical low cost I and Q demodula-  
tor implementation for cable, satellite, or wireless LAN modem  
receivers. The excellent dynamic performance of the ADC at  
higher analog input frequencies and encode rates empowers  
users to employ direct IF sampling techniques (refer to TPC 2  
spectral plot). IF sampling eliminates or simplifies analog mixer  
and filter stages to reduce total system cost and power.  
For ac-coupled analog input applications, amplifier U2 is  
removed from the analog signal path. The analog signal is  
coupled into the input of the AD9057 through capacitor C2.  
The ADC pulls analog input bias current from the VREF IN  
voltage through the 1 kW resistor internal to the AD9057 (BIAS  
OUT). The analog input signal to the board should be 1 V p-p  
into 50 W (R1) for full-scale ADC drive. For ac-coupled operation,  
connect E1 to E3 (analog input A to C2 feedthrough capacitor)  
and E10 to E12 (C2 to the analog input and internal bias resis-  
tor) using the board jumper connectors.  
BPF  
BPF  
AD9057  
AD9057  
IF IN  
90  
The on-board reference voltage may be used to drive the ADC  
or an external reference may be applied. To use the internal  
voltage reference, connect E6 to E5 (VREF OUT to VREF IN).  
To apply an external voltage reference, connect E4 to E5  
(external reference from the REF banana jack to VREF IN).  
The external voltage reference should be 2.5 V ± 10%.  
VCO  
VCO  
Figure 4. I and Q Digital Receiver  
The high sampling rate and analog bandwidth of the AD9057  
are ideal for computer RGB video digitizer applications. With a  
–8–  
REV. D  
AD9057  
The power-down function of the AD9057 can be done through a  
board jumper connection. Connect E7 to E9 (5 V to PWRDN) for  
power-down operation. For normal operation, connect E8 to E9  
(ground to PWRDN).  
oscilloscope or spectrum analyzer. The DAC converts the ADC’s  
digital outputs to an analog signal for examination at the DAC  
OUT connector. The DAC is clocked at the ADC encode  
frequency. The AD9760 is a 10-bit/100 MSPS single 5 V supply  
DAC. The reconstruction signal facilitates quick system trouble-  
shooting or confirmation of ADC functionality without requiring  
external digital memory, timing, or display interfaces. The DAC  
can be used for limited dynamic testing, but customers should note  
that test results will be based on the combined performance of the  
ADC and DAC (the best ADC performance will be recognized  
by evaluating the digital outputs of the ADC directly).  
The encode signal source should be TTL/CMOS compatible and  
capable of driving a 50 W termination (R7). The digital outputs  
of the AD9057 are buffered through latches on the evaluation  
board (U3) and are available for the user at connector Pins 30  
to 37. Latch timing is derived from the ADC encode clock and a  
digital clocking signal is provided for the board user at connector  
Pins 2 and 21.  
An on-board reconstruction digital-to-analog converter is  
available for quick evaluations of ADC performance using an  
V
D
V
D
ENCODE  
PWRDN  
500  
V
AIN  
REF IN  
Digital Inputs  
Analog Input  
V
, 3V TO 5V  
DD  
V
D
1k⍀  
BIAS OUT  
V
REF IN  
D0–D7  
Digital Outputs  
Bias Output  
V
D
V
D
3k⍀  
V
V
REF OUT  
REF IN  
2.5k⍀  
VREF Output  
VREF Input  
Figure 6. Equivalent Circuits  
REV. D  
–9–  
AD9057  
E7  
5V  
PWRDN  
E9  
E8  
J6, REF  
GND  
C17  
0.1F  
ANALOG IN  
C37DRPF  
P2  
U2  
E4  
E5  
E6  
AD8041Q  
AD9057  
1
2
3
4
5
R2  
1k⍀  
1
2
3
4
5
20  
19  
18  
17  
16  
1
2
3
4
8
7
6
5
PWRDN  
VREF OUT  
VREF IN  
GND  
D0  
D1  
D2  
D3  
DIS  
+V  
NC  
(LSB) D0  
D1  
U3  
E2  
R5  
BNC  
J1  
74ACQ574  
S
2k⍀  
E1  
9
8
7
6
5
12  
13  
14  
15  
16  
D2  
D3  
GND  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
8D 8Q  
7D 7Q  
6D 6Q  
5D 5Q  
4D 4Q  
3D 3Q  
2D 2Q  
C1  
0.1F  
R10  
500  
E3  
NC  
GND  
5V  
–V  
S
GND  
V
D
6
7
6
7
15  
14  
13  
12  
11  
V
R3  
1k⍀  
DD  
BIAS OUT  
AIN  
R1  
50⍀  
R4  
2k⍀  
V
DD  
D4  
D5  
D6  
D7  
8
9
10  
11  
12  
D4  
D5  
D6  
8
9
R6  
10⍀  
5V  
GND  
4
3
2
17  
18  
19  
V
D
E11  
GND  
ENC  
10  
E12  
E10  
(MSB) D7  
1D 1Q  
CK  
OE  
13  
14  
15  
16  
17  
18  
19  
11  
1
C2  
0.1F  
20  
21  
22  
23  
24  
25  
26  
U4  
BNC  
J3  
74AC00  
DAC  
AD9760AR  
1
2
3
28  
ENCODE  
5V  
C18  
CLOCK  
27  
24  
R7  
50⍀  
U4  
74AC00  
5V  
5V  
DVDD  
AVDD  
(MSB)  
DB9  
1
2
3
0.1F  
DA7  
DA6  
DA5  
4
5
27  
28  
29  
6
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
23  
19  
COMP2  
COMP1  
4
DA4  
5
C19  
0.1F  
U4  
74AC00  
30  
31  
32  
33  
34  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA3  
DA2  
DA1  
DA0  
GND  
GND  
18  
12  
13  
6
7
FS ADJ  
11  
8
17  
16  
R9  
2k⍀  
REFIO  
REFLO  
8
9
U4  
74AC00  
35  
36  
37  
10  
15  
9
SLEEP  
10  
C13  
0.1F  
(LSB)  
IOUT  
A
B
21  
BNC  
J2  
22  
ANALOG  
RECONSTRUCT  
DAC OUT  
PWRDN  
V
J7, V  
DD  
DD  
R8  
50⍀  
R11  
50⍀  
+
C11  
10F  
C10  
0.1F  
J4, GND  
J5, 5V  
C7  
0.1F  
C8  
0.1F  
C14  
0.1F  
+
C5  
0.1F  
C9  
0.1F  
C12  
10F  
C3  
0.1F  
C4  
0.1F  
DECOUPLING CAPS  
Figure 7. Evaluation Board Schematic  
–10–  
REV. D  
AD9057  
Figure 8. Evaluation Board Layout  
REV. D  
–11–  
AD9057  
OUTLINE DIMENSIONS  
20-Lead Shrink Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
7.50  
7.20  
6.90  
20  
11  
10  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
1.85  
1.75  
1.65  
2.00 MAX  
0.25  
0.09  
8؇  
4؇  
0؇  
0.65  
BSC  
0.95  
0.75  
0.55  
0.38  
0.22 SEATING  
PLANE  
0.05 MIN  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-150AE  
Revision History  
Location  
Page  
5/03—Data Sheet changed from REV. C to REV. D.  
Change to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
9/01—Data Sheet changed from REV. B to REV. C.  
Edit to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
–12–  
REV. D  

相关型号:

AD9057PCB

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter
ADI

AD9057_03

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter
ADI

AD9058

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AJD

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AJJ

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AJJ-REEL

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AKD

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AKJ

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATD/883B

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATD883B

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATJ

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATJ/883B

Dual 8-Bit 50 MSPS A/D Converter
ADI