AD9057PCB [ADI]

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter; 8位40 MSPS / 60 MSPS / 80 MSPS A / D转换器
AD9057PCB
型号: AD9057PCB
厂家: ADI    ADI
描述:

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter
8位40 MSPS / 60 MSPS / 80 MSPS A / D转换器

转换器
文件: 总12页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit  
a
40 MSPS/60 MSPS/80 MSPS A/D Converter  
AD9057  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
8-Bit, Low Pow er ADC: 200 m W Typical  
120 MHz Analog Bandw idth  
V
PWRDN  
V
DD  
D
On-Chip +2.5 V Reference and T/ H  
1 V p-p Analog Input Range  
Single +5 V Supply Operation  
+5 V or +3 V Logic Interface  
Pow er-Dow n Mode: < 10 m W  
Three Perform ance Grades (40 MSPS, 60 MSPS, 80 MSPS)  
AD9057  
8
AIN  
D7–D0  
T/H  
ADC  
1k  
BIAS OUT  
VREF IN  
VREF OUT  
+2.5V  
GND  
APPLICATIONS  
Digital Com m unications (QAM Dem odulators)  
RGB & YC/ Com posite Video Processing  
Digital Data Storage Read Channels  
Medical Im aging  
ENCODE  
Digital Instrum entation  
P RO D UCT D ESCRIP TIO N  
Customers desiring multichannel digitization may consider the  
AD9059, a dual 8-bit, 60 MSPS monolithic based on the  
AD9057 ADC core. T he AD9059 is available in a 28-lead sur-  
face mount plastic package (28 SSOP) and is specified over the  
industrial temperature range.  
T he AD9057 is an 8-bit monolithic analog-to-digital converter  
optimized for low cost, low power, small size, and ease of use.  
With a 40 MSPS, 60 MSPS or 80 MSPS encode rates capabil-  
ity and full-power analog bandwidth of 120 MHz, the compo-  
nent is ideal for applications requiring excellent dynamic  
performance.  
P IN CO NFIGURATIO N  
T o minimize system cost and power dissipation, the AD9057  
includes an internal +2.5 V reference and a track-and-hold  
circuit. T he user must provide only a +5 V power supply and an  
encode clock. No external reference or driver components are  
required for many applications.  
20  
D0 (LSB)  
PWRDN  
1
2
19 D1  
18 D2  
17 D3  
VREF OUT  
3
VREF IN  
GND  
4
AD9057  
T he AD9057s encode input is T T L/CMOS compatible and the  
8-bit digital outputs can be operated from +5 V or +3 V supplies.  
A power-down function may be exercised to bring total con-  
sumption to < 10 mW. In power-down mode the digital outputs  
are driven to a high impedance state.  
V
D
5
TOP VIEW 16  
(Not to Scale)  
15  
GND  
BIAS OUT  
AIN  
6
V
DD  
14 D4  
13  
7
V
D
8
D5  
12 D6  
D7 (MSB)  
9
GND  
Fabricated on an advanced BiCMOS process, the AD9057 is  
available in a space saving 20-lead surface mount plastic pack-  
age (20 SSOP) and is specified over the industrial (–40°C to  
+85°C) temperature range.  
10  
11  
ENCODE  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
(V = +5 V, V = +3 V; external reference)  
AD9057–SPECIFICATIONS  
D
DD  
Test  
AD 9057BRS-40  
AD 9057BRS-60  
AD 9057BRS-80  
P aram eter  
Tem p  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
RESOLUT ION  
8
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
VI  
I
VI  
VI  
I
VI  
V
0.75  
0.75  
1.9  
2.0  
1.9  
2.0  
0.75  
0.75  
1.9  
2.0  
1.9  
2.0  
0.75  
0.75  
1.9  
2.0  
1.9  
2.0  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Gain Error1  
GUARANT EED  
GUARANT EED  
GUARANT EED  
–6  
–8  
–2.5  
+6  
+8  
–6  
–8  
–2.5  
+6  
+8  
–6  
–8  
–2.5  
+6  
+8  
% FS  
% FS  
ppm/°C  
Gain T empco1  
Full  
±70  
±70  
±70  
ANALOG INPUT  
Input Voltage Range  
(Centered at +2.5 V)  
Input Offset Voltage  
+25°C  
+25°C  
Full  
+25°C  
+25°C  
+25°C  
Full  
V
I
VI  
V
V
I
1.0  
±0  
1.0  
±0  
1.0  
±0  
V p-p  
mV  
mV  
kΩ  
pF  
µA  
–15  
–25  
+15  
+25  
–15  
–25  
+15  
+25  
–15  
–25  
+15  
+25  
Input Resistance  
Input Capacitance  
Input Bias Current  
150  
2
6
150  
2
6
150  
2
6
16  
25  
16  
25  
16  
25  
VI  
V
µA  
MHz  
Analog Bandwidth  
+25°C  
120  
120  
120  
BANDGAP REFERENCE  
Output Voltage  
T emperature Coefficient  
Full  
Full  
VI  
V
2.4  
40  
2.5  
±10  
2.6  
2.4  
60  
2.5  
±10  
2.6  
2.4  
80  
2.5  
±10  
2.6  
V
ppm/°C  
SWIT CHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Aperture Delay (tA)  
Full  
Full  
+25°C  
+25°C  
Full  
VI  
IV  
V
V
IV  
IV  
MSPS  
MSPS  
ns  
ps, rms  
ns  
5
5
5
2.7  
5
6.6  
11.5  
2.7  
5
6.6  
9.5  
2.7  
5
6.6  
8.0  
Aperture Uncertainty (Jitter)  
Output Valid T ime (tV)2  
4.0  
4.0  
4.0  
2
Output Propagation Delay (tPD  
)
Full  
18.0  
14.2  
11.3  
ns  
DYNAMIC PERFORMANCE3  
T ransient Response  
Overvoltage Recovery T ime  
Signal-to-Noise Ratio (SINAD)  
(With Harmonics)  
+25°C  
+25°C  
V
V
9
9
9
9
9
9
ns  
ns  
fIN = 10.3 MHz  
fIN = 76 MHz  
Effective Number of Bits  
fIN = 10.3 MHz  
fIN = 76 MHz  
+25°C  
+25°C  
I
V
42  
45.5  
44.0  
42  
45  
43.5  
41.5  
6.6  
45  
43.5  
dB  
dB  
+25°C  
+25°C  
I
V
6.7  
7.2  
7.0  
6.7  
7.2  
6.9  
7.2  
6.9  
Bits  
Bits  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
fIN = 10.3 MHz  
fIN = 76 MHz  
2nd Harmonic Distortion  
fIN = 10.3 MHz  
fIN = 76 MHz  
3rd Harmonic Distortion  
fIN = 10.3 MHz  
+25°C  
+25°C  
I
V
43  
46.5  
45.5  
43  
46  
45  
42.5  
–50  
–46  
46  
45  
dB  
dB  
+25°C  
+25°C  
I
V
–50  
–46  
–62  
–54  
–50  
–46  
–62  
–54  
–62  
–54  
dBc  
dBc  
+25°C  
+25°C  
I
V
–60  
–54  
–60  
–54  
–60  
–54  
dBc  
dBc  
fIN = 76 MHz  
T wo T one Intermodulation  
Distortion (IMD)  
Differential Phase  
+25°C  
+25°C  
+25°C  
V
V
V
–52  
0.8  
1.0  
–52  
0.8  
1.0  
–52  
0.8  
1.0  
dBc  
Degrees  
%
Differential Gain  
DIGIT AL INPUT S  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
VI  
VI  
VI  
VI  
V
2.0  
2.0  
2.0  
V
V
0.8  
±1  
±1  
0.8  
±1  
±1  
0.8  
±1  
±1  
µA  
µA  
pF  
ns  
ns  
4.5  
4.5  
4.5  
Encode Pulse Width High (tEH  
Encode Pulse Width Low (tEL  
)
IV  
IV  
9.0  
9.0  
166  
166  
6.7  
6.7  
166  
166  
5.5  
5.5  
166  
166  
)
–2–  
REV. B  
AD9057  
Test  
AD 9057BRS-40  
AD 9057BRS-60  
AD 9057BRS-80  
P aram eter  
Tem p Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
DIGIT AL OUT PUT S  
Logic “1” Voltage (VDD = +3 V)  
Logic “1” Voltage (VDD = +5 V)  
Logic “0” Voltage  
Full  
Full  
Full  
VI  
IV  
VI  
2.95  
4.95  
V
V
V
0.05  
Output Coding  
Offset Binary Code  
POWER SUPPLY  
VD Supply Current (VD = +5 V)  
Full  
VI  
VI  
VI  
VI  
36  
4.0  
192  
6
48  
38  
5.5  
205  
6
48  
40  
7.4  
220  
6
51  
mA  
mA  
mW  
mW  
VDD Supply Current (VDD = +3 V)4 Full  
6.5  
260  
10  
6.5  
260  
10  
8.8  
281  
10  
Power Dissipation5, 6  
Power-Down Dissipation  
Power Supply Rejection Ratio  
(PSRR)  
Full  
Full  
+25°C  
I
15  
15  
15  
mV/V  
NOT ES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed +2.5 V external reference).  
2tV and tPD are measured from the 1.5 V level of the ENCODE to the 10%/90% levels of the digital output swing. T he digital output load during test is not to exceed  
an ac load of 10 pF or a dc current of ±40 µA.  
3SNR/harmonics based on an analog input voltage of –0.5 dBFS referenced to a 1.0 V full-scale input range.  
4Digital supply current based on VDD = +3 V output drive with <10 pF loading under dynamic test conditions.  
5Power dissipation is based on specified encode and 10.3 MHz analog input dynamic test conditions (V D = +5 V ± 5%, VDD = +3 V ± 5%).  
6T ypical thermal impedance for the RS style (SSOP) 20-pin package: θJC = 46°C/W, θCA = 80°C/W, θJA = 126°C/W.  
Specifications subject to change without notice.  
EXP LANATIO N O F TEST LEVELS  
Test Level  
D escription  
I
100% Production T ested  
II  
100% Production T ested at +25°C and Sample  
T ested at Specified T emperatures  
III  
IV  
Sample T ested Only  
Parameter is Guaranteed by Design and Char-  
acterization T esting  
V
Parameter is a T ypical Value Only  
VI  
100% Production T ested at +25°C; Guaran-  
teed by Design and Characterization T esting  
for Industrial T emperature Range  
N
N + 5  
N + 3  
AIN  
N + 1  
N + 4  
N + 2  
tA  
tEH  
tEL  
ENCODE  
tV  
DIGITAL  
OUTPUTS  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
tPD  
MIN TYP  
2.7 ns  
MAX  
t
APERTURE DELAY  
PULSE WIDTH HIGH  
PULSE WIDTH LOW  
OUTPUT VALID TIME  
OUTPUT PROP DELAY  
A
t
166 ns  
166 ns  
EH  
t
EL  
t
6.6 ns  
9.5 ns  
V
4.0 ns  
t
PD  
Figure 1. Tim ing Diagram  
–3–  
REV. B  
AD9057  
ABSO LUTE MAXIMUM RATINGS  
P IN D ESCRIP TIO NS  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
VREF Input . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating T emperature . . . . . . . . . . . . . . . –55°C to +125°C  
Storage T emperature . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction T emperature . . . . . . . . . . . . . . . . +175°C  
Maximum Case T emperature . . . . . . . . . . . . . . . . . . +150°C  
P in No.  
Nam e  
Function  
1
PWRDN  
Power-Down Function Select;  
Logic HIGH for Power-Down  
Mode (Digital Outputs Go to  
High Impedance State).  
2
3
VREF OUT  
VREF IN  
Internal Reference Output  
(+2.5 V typ); Bypass with  
0.1 µF to Ground.  
Reference Input for ADC (+2.5  
V typ, ±10%).  
O RD ERING GUID E  
Tem perature  
4, 9, 16  
5, 8  
GND  
Ground (Analog/Digital).  
Analog +5 V Power Supply.  
Model  
Range  
P ackage O ption*  
VD  
AD9057BRS–40, –60, –80 –40°C to +85°C RS-20  
6
BIAS OUT  
Bias Pin for AC Coupling  
AD9057/PCB +25°C Evaluation Board  
(1 kto REF IN).  
7
AIN  
Analog Input for ADC.  
*RS = Shrink Small Outline (SSOP).  
10  
ENCODE  
Encode Clock for ADC (ADC  
Samples on Rising Edge of  
ENCODE).  
Table I. D igital Coding (VREF = +2.5 V)  
11–14, 17–20 D7D4, D3–D0  
15 VDD  
Digital Outputs of ADC.  
Digital Output Power Supply.  
Nominally +3 V to +5 V.  
Analog Input  
Voltage Level  
D igital O utput  
3.0 V  
Positive Full Scale  
Midscale +1/2 LSB  
Midscale –1/2 LSB  
Negative Full Scale  
1111 1111  
1000 0000  
0111 1111  
0000 0000  
2.502 V  
2.498 V  
2.0  
P IN CO NFIGURATIO N  
20  
D0 (LSB)  
PWRDN  
1
2
19 D1  
18 D2  
17 D3  
VREF OUT  
3
VREF IN  
GND  
4
AD9057  
V
D
5
TOP VIEW 16  
(Not to Scale)  
15  
GND  
BIAS OUT  
AIN  
6
V
DD  
14 D4  
13  
7
V
D
8
D5  
12 D6  
9
GND  
10  
D7 (MSB)  
11  
ENCODE  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9057 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–4–  
Typical Performance Characteristics–AD9057  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–30  
ENCODE = 60MSPS  
ANALOG IN = 10.3MHz, –0.5dBFS  
SINAD = 46.1dB  
ENOB = 7.36 BITS  
SNR = 46.5dB  
ENCODE = 60MSPS  
–35  
AIN = –0.5dBFS  
–40  
–45  
ND  
2
HARMONIC  
–50  
–55  
–60  
RD  
3
HARMONIC  
–65  
–70  
0
30  
0
20  
40  
60  
80  
100  
120  
140  
160  
FREQUENCY – MHz  
ANALOG INPUT FREQUENCY – MHz  
Figure 2. Spectral Plot 60 MSPS, 10.3 MHz  
Figure 5. Harm onic Distortion vs. AIN Frequency  
0
0
ENCODE = 60MSPS  
ENCODE = 60MSPS  
F1 IN = 9.5MHz @ –7.0dBFS  
F2 IN = 9.9MHz @ –7.0dBFS  
2F1 - F2 = –52.0dBc  
ANALOG IN = 76MHz, –0.5dBFS  
SINAD = 44.9dB  
ENOB = 7.16 BITS  
SNR = 45.2dB  
–10  
–10  
–20  
–20  
2F2 - F1 = –53.0dBc  
–30  
–30  
–40  
–50  
–60  
–70  
–80  
–40  
–50  
–60  
–70  
–80  
–90  
–90  
0
30  
0
10  
20  
30  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 3. Spectral Plot 60 MSPS, 76 MHz  
Figure 6. Two-Tone Interm odulation Distortion  
54  
48  
SNR  
SNR  
46  
44  
42  
40  
38  
36  
34  
48  
42  
SINAD  
SINAD  
36  
30  
ENCODE = 60MSPS  
AIN = –0.5dBFS  
AIN = 10.3MHz, –0.5dBFS  
24  
18  
12  
0
32  
30  
5
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
20  
40  
60  
80  
100  
120  
140  
160  
ENCODE RATE – MSPS  
ANALOG INPUT FREQUENCY – MHz  
Figure 4. SINAD/SNR vs. AIN Frequency  
Figure 7. SINAD/SNR vs. Encode Rate  
REV. B  
–5–  
AD9057–Typical Performance Characteristics  
350  
12  
11  
10  
300  
V
= +3V  
DD  
V
= +5V  
DD  
250  
200  
150  
100  
50  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
V
= +3V  
DD  
V
= +5V  
DD  
AIN = 10.3MHz, –0.5dBFS  
0
5
10  
20  
30  
40  
50  
60  
70  
80  
90  
–45  
0
25  
TEMPERATURE –  
70  
90  
ENCODE RATE – MSPS  
°
C
Figure 8. Power Dissipation vs. Encode Rate  
Figure 11. tPD vs. Tem perature/Supply (VDD = +3 V/+5 V)  
46.5  
46.5  
46  
46.0  
SNR  
45.5  
45.0  
SNR  
45.5  
SINAD  
45  
44.5  
44  
44.5  
44.0  
43.5  
43.0  
42.5  
42.0  
41.5  
ENCODE = 60MSPS  
AIN = 10.3MHz, –0.5dBFS  
SINAD  
43.5  
ENCODE = 60MSPS  
AIN = 10.3MHz, –05dBFS  
43  
42.5  
5.8  
–45  
0
25  
70  
90  
6.7  
7.5  
8.35  
9.2  
10  
10.9  
TEMPERATURE – °C  
ENCODE HIGH PULSE WIDTH ns  
Figure 9. SINAD/SNR vs. Tem perature  
Figure 12. SINAD/SNR vs. Encode Pulse Width  
0
0
–1  
–2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–3  
ENCODE = 60MSPS  
AIN = –0.5dBFS  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
1
2
5
10  
20  
50  
100  
200  
500  
–45  
0
25  
70  
90  
ANALOG FREQUENCY – MHz  
TEMPERATURE – °C  
Figure 13. ADC Frequency Response  
Figure 10. ADC Gain vs. Tem perature (with External  
+2.5 V Reference)  
REV. B  
–6–  
AD9057  
+5V  
TH EO RY O F O P ERATIO N  
T he AD9057 combines Analog Devices’ proprietary MagAmp  
gray code conversion circuitry with flash converter technology to  
provide a high performance, low cost ADC. T he design archi-  
tecture ensures low power, high speed, and 8-bit accuracy. A  
single-ended T T L/CMOS compatible ENCODE input controls  
ADC timing for sampling the analog input pin and strobing the  
digital outputs (D7–D0). An internal voltage reference (VREF  
OUT ) may be used to control ADC gain and offset or an exter-  
nal reference may be applied.  
2
3
7
REF OUT  
AD9057  
REF IN  
10k  
10kΩ  
0.1µF  
+5V  
AD8041  
AIN  
1kΩ  
VIN  
(–0.5V TO +0.5V)  
T he analog input signal is buffered at the input of the ADC and  
applied to a high speed track-and-hold. T he T /H circuit holds  
the analog input value during the conversion process (beginning  
with the rising edge of the ENCODE command). T he T /Hs  
output signal passes through the gray code and flash conversion  
stages to generate coarse and fine digital representations of the  
held analog input level. Decode logic combines the multistage  
data and aligns the 8-bit word for strobed outputs on the rising  
edge of the ENCODE command. T he MagAmp/Flash architec-  
ture of the AD9057 results in three pipeline delays for the out-  
put data.  
1kΩ  
Figure 15. DC Coupled AD9057 (Inverted VIN)  
Voltage Refer ence  
A stable and accurate +2.5 V voltage reference is built into the  
AD9057 (VREF OUT ). T he reference output may be used to  
set the ADC gain/offset by connecting VREF OUT to VREF IN.  
T he internal reference is capable of providing 300 µA of drive  
current (for dc biasing the analog input or other user circuitry).  
Some applications may require greater accuracy, improved  
temperature performance, or gain adjustments which cannot be  
obtained using the internal reference. An external voltage may  
be applied to the VREF IN with VREF OUT disconnected for  
gain adjustment of up to ±10% (the VREF IN pin is internally  
tied directly to the ADC circuitry). ADC gain and offset will  
vary simultaneously with external reference adjustment with a  
1:1 ratio (a 2% or 50 mV adjustment to the +2.5 V reference  
varies ADC gain by 2% and ADC input range center offset by  
50 mV). T heoretical input voltage range versus reference input  
voltage may be calculated from the following equations:  
USING TH E AD 9057  
Analog Inputs  
T he AD9057 provides a single-ended analog input impedance of  
150 k. T he input requires a dc bias current of 6 µA (typical)  
centered near +2.5 V (±10%). T he dc bias may be provided by  
the user or may be derived from the ADC’s internal voltage  
reference. Figure 14 shows a low cost dc bias implementation  
allowing the user to capacitively couple ac signals directly into  
the ADC without additional active circuitry. For best dynamic  
performance, the VREF OUT pin should be decoupled to  
ground with a 0.1 µF capacitor (to minimize modulation of  
the reference voltage) and the bias resistor should be approxi-  
mately 1 k. A 1 kbias resistor (±20%) is included within  
the AD9057 and may be used to reduce application board size  
and complexity.  
VRANGE (p-p)  
VMIDSCALE  
= VREF IN/2.5  
= VREF IN  
VTOP-OF-RANGE  
= VREF IN + VRANGE/2  
VBOTTOM-OF-RANGE = VREF IN – VRANGE/2  
D igital Logic (+5 V/+3 V System s)  
+5V  
T he digital inputs and outputs of the AD9057 can easily be  
configured to interface directly with +3 V or +5 V logic systems.  
T he ENCODE and power-down (PWRDN) inputs are CMOS  
stages with T T L thresholds of 1.5 V, making the inputs compat-  
ible with T T L, +5 V CMOS, and +3 V CMOS logic families.  
As with all high speed data converters, the encode signal should  
be clean and jitter free to prevent degradation of ADC dynamic  
performance.  
2
3
6
7
REF OUT  
REF IN  
1k  
0.1µF  
BIAS OUT  
0.1µF  
AIN  
VIN  
(1V p-p)  
AD9057  
T he AD9057s digital outputs will also interface directly with  
+5 V or +3 V CMOS logic systems. T he voltage supply pin  
(VDD) for these CMOS stages is isolated from the analog VD  
voltage supply. By varying the voltage on this supply pin the  
digital output HIGH level will change for +5 V or +3 V systems.  
Optimum SNR is obtained running the outputs at +3 V. Care  
should be taken to isolate the VDD supply voltage from the +5 V  
analog supply to minimize digital noise coupling into the ADC.  
Figure 14. Capacitively Coupled AD9057  
Figure 15 shows typical connections for high performance dc  
biasing using the ADC’s internal voltage reference. All compo-  
nents may be powered from a single +5 V supply (in the example  
analog input signals are referenced to ground).  
REV. B  
–7–  
AD9057  
full-power analog bandwidth of 2× the maximum sampling  
rate, the ADC provides sufficient pixel to pixel transient set-  
tling time to ensure accurate 60 MSPS video digitization. Fig-  
ure 17 shows a typical RGB video digitizer implementation for  
the AD9057.  
T he AD9057 provides high impedance digital output operation  
when the ADC is driven into power-down mode (PWRDN,  
logic HIGH). A 200 ns (minimum) power-down time should be  
provided before a high impedance characteristic is required at  
the outputs. A 200 ns power-up period should be provided to  
ensure accurate ADC output data after reactivation (valid output  
data is available three clock cycles after the 200 ns delay).  
8
AD9057  
AD9057  
AD9057  
RED  
Tim ing  
T he AD9057 is guaranteed to operate with conversion rates  
from 5 MSPS to 80 MSPS depending on grade. T he ADC is  
designed to operate with an encode duty cycle of 50%, but per-  
formance is insensitive to moderate variations. Pulse width varia-  
tions of up to ±10% (allowing the encode signal to meet the  
minimum/maximum HIGH/LOW specifications) will cause no  
degradation in ADC performance (see Figure 1 timing diagram).  
8
8
GREEN  
BLUE  
PIXEL CLOCK  
PLL  
H-SYNC  
P ower D issipation  
T he power dissipation of the AD9057 is specified to reflect a  
typical application setup under the following conditions: analog  
input is –0.5 dBFS at 10.3 MHz, VD is +5 V, VDD is +3 V, and  
digital outputs are loaded with 7 pF typical (10 pF maximum).  
T he actual dissipation will vary as these conditions are modified  
in user applications. Figure 8 shows typical power consumption  
for the AD9057 versus ADC encode frequency and VDD supply  
voltage.  
Figure 17. RGB Video Encoder  
Evaluation Boar d  
T he AD9057/PCB evaluation board provides an easy to use  
analog/digital interface for the 8-bit, 60 MSPS ADC. T he  
board includes typical hardware configurations for a variety of  
high speed digitization evaluations. On board components  
include the AD9057 (in the 20-pin SSOP package), an optional  
analog input buffer amplifier, a digital output latch, board  
timing drivers, an analog reconstruction digital-to-analog con-  
verter, and configurable jumpers for ac coupling, dc coupling,  
and power-down function testing. T he board is configured at  
shipment for dc coupling using the AD9057’s internal voltage  
reference.  
A power-down function allows users to reduce power dissipation  
when ADC data is not required. A T T L/CMOS HIGH signal  
(PWRDN) shuts down portions of the ADC and brings total  
power dissipation to less than 10 mW. T he internal bandgap  
voltage reference remains active during power-down mode to  
minimize ADC reactivation time. If the power-down function is  
not desired, Pin 1 should be tied to ground.  
For dc coupled analog input applications, amplifier U2 is con-  
figured to operate as a unity gain inverter with adjustable offset  
for the analog input signal. For full-scale ADC drive the analog  
input signal should be 1 V p-p into 50 (R1) referenced to  
ground (0 V). T he amplifier offsets the analog signal by  
+VREF (+2.5 V typical) to center the voltage for proper ADC  
input drive. For dc coupled operation, connect E1 to E2 (ana-  
log input to R2) and E11 to E12 (amplifier output to analog  
input of AD9057) using the board jumper connectors. DC  
offset of the analog input signal can be modified by adjusting  
potentiometer R10.  
AP P LICATIO NS  
T he wide analog bandwidth of the AD9057 makes it attractive  
for a variety of high performance receiver and encoder applica-  
tions. Figure 16 shows two ADCs in a typical low cost I & Q  
demodulator implementation for cable, satellite, or wireless  
LAN modem receivers. T he excellent dynamic performance of  
the ADC at higher analog input frequencies and encode rates  
empowers users to employ direct IF sampling techniques (refer  
to Figure 3 spectral plot). IF sampling eliminates or simplifies  
analog mixer and filter stages to reduce total system cost and  
power.  
For ac coupled analog input applications, amplifier U2 is  
removed from the analog signal path. T he analog signal is  
coupled into the input of the AD9057 through capacitor C2.  
T he ADC pulls analog input bias current from the VREF IN  
voltage through the 1 kresistor internal to the AD9057  
(BIAS OUT ). T he analog input signal to the board should be  
1 V p-p into 50 (R1) for full-scale ADC drive. For ac  
coupled operation, connect E1 to E3 (analog input A to C2  
feedthrough capacitor) and E10 to E12 (C2 to the analog input  
and internal bias resistor) using the board jumper connectors.  
AD9057  
AD9057  
BPF  
BPF  
IF IN  
90°  
VCO  
VCO  
T he onboard reference voltage may be used to drive the ADC  
or an external reference may be applied. T o use the internal  
voltage reference, connect E6 to E5 (VREF OUT to VREF  
IN). T o apply an external voltage reference, connect E4 to E5  
(external reference from the REF banana jack to VREF IN).  
T he external voltage reference should be +2.5 V ± 10%.  
Figure 16. I & Q Digital Receiver  
T he high sampling rate and analog bandwidth of the AD9057  
are ideal for computer RGB video digitizer applications. With a  
REV. B  
–8–  
AD9057  
T he power-down function of the AD9057 can be exercised  
through a board jumper connection. Connect E7 to E9 (+5 V to  
PWRDN) for power-down operation. For normal operation,  
connect E8 to E9 (ground to PWRDN).  
oscilloscope or spectrum analyzer. T he DAC converts the  
ADCs digital outputs to an analog signal for examination at  
the DAC OUT connector. T he DAC is clocked at the ADC  
ENCODE frequency. T he AD9760 is a 10-bit/100 MSPS single  
+5 V supply DAC. T he reconstruction signal facilitates quick  
system troubleshooting or confirmation of ADC functionality  
without requiring external digital memory, timing, or display  
interfaces. T he DAC can be used for limited dynamic testing,  
but customers should note that test results will be based on the  
combined performance of the ADC and DAC (the best ADC  
performance will be recognized by evaluating the digital outputs  
of the ADC directly).  
T he encode signal source should be T T L/CMOS compatible  
and capable of driving a 50 termination (R7). T he digital  
outputs of the AD9057 are buffered through latches on the  
evaluation board (U3) and are available for the user at connec-  
tor Pins 30–37. Latch timing is derived from the ADC EN-  
CODE clock and a digital clocking signal is provided for the  
board user at connector Pins 2 and 21.  
An onboard reconstruction digital-to-analog converter is  
available for quick evaluations of ADC performance using an  
+V  
D
+V  
D
ENCODE  
PWRDN  
500  
V
AIN  
REFIN  
Analog Input  
Digital Inputs  
+V , +3V TO +5V  
DD  
+V  
D
1kΩ  
V
BIAS OUT  
REFIN  
D0–D7  
Bias Output  
Digital Outputs  
+V  
D
+V  
D
3kΩ  
V
REFIN  
V
REFOUT  
2.5kΩ  
V
Output  
V
Input  
REF  
REF  
Figure 18. Equivalent Circuits  
REV. B  
–9–  
AD9057  
E7  
E9  
+5V  
PWRDN  
E8  
J6, REF  
GND  
C17  
0.1µF  
ANALOG IN  
C37DRPF  
P2  
U2  
AD8041Q  
E4  
E5  
E6  
1
2
3
4
5
1
2
3
4
5
20  
19  
18  
17  
16  
R2  
1k  
1
2
3
4
8
7
6
5
DIS  
+V  
PWRDN  
REF OUT  
REF IN  
GND  
NC  
(LSB) D0  
D1  
D0  
U3  
74ACQ574  
E2  
E1  
E3  
R5  
2kΩ  
BNC  
J1  
D1  
S
D2  
D2  
9
8
7
6
5
12  
13  
14  
15  
16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
8D  
7D  
6D  
5D  
4D  
3D  
2D  
1D  
8Q  
7Q  
6Q  
5Q  
4Q  
3Q  
2Q  
1Q  
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
C1  
0.1µF  
R10  
500Ω  
NC  
GND  
+5V  
–V  
D3  
D3  
S
V
D
GND  
GND  
6
7
6
7
15  
14  
13  
12  
11  
R3  
1kΩ  
BIAS OUT  
AIN  
V
V
DD  
DD  
R1  
50Ω  
R4  
2kΩ  
D4  
D5  
D4  
D5  
D6  
D7  
8
8
R6  
10Ω  
V
D
+5V  
4
3
2
17  
18  
19  
9
9
E11  
GND  
GND  
ENC  
D6  
10  
11  
12  
10  
E12  
E10  
(MSB) D7  
CK  
OE  
13  
14  
15  
16  
17  
18  
19  
11  
1
C2  
0.1µF  
20  
21  
22  
23  
24  
25  
26  
U4  
74AC00  
BNC  
J3  
DAC  
AD9760AR  
1
2
3
28  
ENCODE  
+5V  
C18  
CLK  
27  
R7  
50Ω  
U4  
74AC00  
+5V  
+5V  
DVDD  
(MSB)  
DB9  
1
24  
0.1µF  
DA7  
2
AVDD  
4
5
27  
28  
29  
6
11  
8
DA6  
3
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
23  
19  
COMP2  
COMP1  
DA5  
4
C19  
0.1µF  
U4  
74AC00  
DA4  
5
30  
31  
32  
33  
34  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA3  
18  
12  
13  
6
FSADJ  
DA2  
7
17  
16  
DA1  
8
R9  
2kΩ  
REFIO  
DA0  
9
U4  
74AC00  
REFLO  
GND  
10  
35  
36  
37  
15  
9
GND  
DB0  
SLEEP  
10  
C13  
(LSB)  
0.1µF  
IOUT  
A
B
BNC  
J2  
22  
21  
ANALOG  
PWRDN  
RECONSTRUCT  
DAC OUT  
V
J7, V  
DD  
DD  
R8  
50Ω  
R11  
50Ω  
+
C10  
0.1µF  
C11  
10µF  
J4, GND  
J5, +5V  
C7  
0.1µF  
C8  
0.1µF  
C14  
0.1µF  
+
C3  
0.1µF  
C4  
0.1µF  
C5  
0.1µF  
C9  
0.1µF  
C12  
10µF  
DECOUPLING CAPS  
Figure 19. Evaluation Board Schem atic  
REV. B  
–10–  
AD9057  
Figure 20. Evaluation Board Layout  
REV. B  
–11–  
AD9057  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
20-Lead SSO P  
(RS-20)  
0.295 (7.50)  
0.271 (6.90)  
20  
11  
1
10  
0.07 (1.78)  
0.078 (1.98)  
PIN 1  
0.066 (1.67)  
0.068 (1.73)  
0.037 (0.94)  
8°  
0°  
0.0256  
(0.65)  
BSC  
0.022 (0.559)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
REV. B  
–12–  

相关型号:

AD9057_03

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter
ADI

AD9058

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AJD

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AJJ

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AJJ-REEL

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AKD

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AKJ

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATD/883B

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATD883B

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATJ

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATJ/883B

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATJ883B

Dual 8-Bit 50 MSPS A/D Converter
ADI