AD9058 [ADI]

Dual 8-Bit 50 MSPS A/D Converter; 双路,8位50 MSPS A / D转换器
AD9058
型号: AD9058
厂家: ADI    ADI
描述:

Dual 8-Bit 50 MSPS A/D Converter
双路,8位50 MSPS A / D转换器

转换器
文件: 总8页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 8-Bit 50 MSPS  
A/D Converter  
a
AD9058  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Two Matched ADCs on Single Chip  
50 MSPS Conversion Speed  
On-Board Voltage Reference  
Low Power (<1W)  
Low Input Capacitance (10 pF)  
65 V Power Supplies  
AD9058  
+V  
REF  
8-BIT  
ANALOG-  
TO-  
DIGITAL  
CONVERTER  
ENCODE  
8
A
Flexible Input Range  
A
IN  
APPLICATIONS  
–V  
REF  
Quadrature Demodulation for Communications  
Digital Oscilloscopes  
Electronic Warfare  
+2 V  
REF  
Radar  
+V  
REF  
8-BIT  
ANALOG-  
TO-  
8
ENCODE  
B
DIGITAL  
CONVERTER  
GENERAL DESCRIPTION  
A
IN  
The AD9058 combines two independent high performance  
8-bit analog-to-digital converters (ADCs) on a single mono-  
lithic IC. Combined with an optional onboard voltage refer-  
ence, the AD9058 provides a cost effective alternative for  
systems requiring two or more ADCs.  
–V  
REF  
QUADRATURE RECEIVER  
Dynamic performance (SNR, ENOB) is optimized to provide  
up to 50 MSPS conversion rates. The unique architecture  
results in low input capacitance while maintaining high per-  
formance and low power (<0.5 watt/channel). Digital inputs  
and outputs are TTL compatible.  
8
8
G
Q
AD9058  
RF  
LO  
90°  
Performance has been optimized for an analog input of 2 V  
p-p ( 1 V; 0 V to +2 V). Using the onboard +2 V voltage  
reference, the AD9058 can be set up for unipolar positive  
operation (0 V to +2 V). This internal voltage reference can  
drive both ADCs.  
G
I
Commercial (0°C to +70°C) and military (–55°C to +125°C)  
temperature range parts are available. Parts are supplied in  
hermetic 48-lead DIP and 44-lead “J” lead packages.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD9058–SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS1  
–VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –1.5  
Operating Temperature Range  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . .1.5 V to +2.5 V  
+VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
–VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.8 V to –6 V2  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +VS  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Voltage Reference Current . . . . . . . . . . . . . . . . . . . . . . .53 mA  
+VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.5 V  
AD9058JD/JJ/KD/KJ . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Maximum Junction Temperature3  
AD9058JD/JJ/KD/KJ . . . . . . . . . . . . . . . . . . . . . . . .+175°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . .+300°C  
[؎VS = ؎5 V; VREF = +2 V (internal); ENCODE = 40 MSPS; AIN = 0 V to +2 V; –VREF  
=
GROUND, unless otherwise noted.]2 All specifications apply to either of the two ADCs  
ELECTRICAL CHARACTERISTICS  
Test  
AD9058JD/JJ  
AD9058KD/KJ  
Parameter (Conditions)  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
VI  
0.25  
0.5  
0.65  
0.8  
1.3  
1.4  
0.25  
0.5  
0.5  
0.7  
1.0  
1.25  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Full  
GUARANTEED  
GUARANTEED  
ANALOG INPUT  
Input Bias Current  
+25°C  
Full  
+25°C  
+25°C  
+25°C  
I
VI  
I
IV  
V
75  
170  
340  
75  
170  
340  
µA  
µA  
Input Resistance  
Input Capacitance  
Analog Bandwidth  
12  
28  
10  
175  
12  
28  
10  
175  
kΩ  
pF  
MHz  
15  
15  
REFERENCE INPUT  
Reference Ladder Resistance  
+25°C  
Full  
Full  
+25°C  
Full  
+25°C  
Full  
Full  
I
120  
80  
170  
220  
270  
120  
80  
170  
220  
270  
VI  
V
I
VI  
I
VI  
V
Ladder Tempco  
Reference Ladder Offset  
(Top)  
Reference Ladder Offset  
(Bottom)  
0.45  
8
0.45  
8
/°C  
mV  
mV  
mV  
mV  
µV/°C  
16  
24  
23  
33  
16  
24  
23  
33  
8
8
Offset Drift Coefficient  
50  
50  
INTERNAL VOLTAGE REFERENCE  
Reference Voltage  
+25°C  
Full  
Full  
I
VI  
V
1.95  
1.90  
2.0  
150  
10  
2.20  
2.25  
1.95  
1.90  
2.0  
150  
10  
2.20  
2.25  
V
V
µV/°C  
Temperature Coefficient  
Power Supply Rejection  
Ratio (PSRR)  
+25°C  
I
25  
25  
mV/V  
SWITCHING PERFORMANCE  
Maximum Conversion Rate4  
Aperture Delay (tA)  
Aperture Delay Matching  
Aperture Uncertainty (Jitter)  
Output Delay (Valid) (tV)4  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
Full  
+25°C  
Full  
+25°C  
I
50  
0.8  
0.2  
10  
8
16  
12  
–16  
1
50  
0.1  
60  
0.8  
0.2  
10  
8
16  
12  
–16  
1
MSPS  
ns  
ns  
ps, rms  
ns  
ps/°C  
ns  
ps/°C  
ns  
IV  
IV  
V
I
V
I
0.1  
1.5  
0 5  
1.5  
0.5  
5
Output Delay (tV) Tempco  
4
Propagation Delay (tPD  
)
19  
Propagation Delay (tPD) Tempco  
Output Time Skew  
V
V
ENCODE INPUT  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Pulsewidth (High)  
Pulsewidth (Low)  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
VI  
VI  
VI  
VI  
V
I
I
2
2
V
V
µA  
µA  
pF  
ns  
ns  
0.8  
600  
1000  
0.8  
600  
1000  
5
8
8
5
8
8
–2–  
REV. B  
AD9058  
Test  
Level Min  
AD9058JD/JJ  
AD9058KD/KJ  
Parameter (Conditions)  
Temp  
Typ  
Max Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Transient Response  
+25°C  
+25°C  
V
V
2
2
2
2
ns  
ns  
Overvoltage Recovery Time  
Effective Number of Bits (ENOB)5  
Analog Input @ 2.3 MHz  
@ 10.3 MHz  
+25°C  
+25°C  
I
I
7.7  
7.4  
7.2  
7.1  
7.7  
7.4  
Bits  
Bits  
Signal-to-Noise Ratio5  
Analog Input @ 2.3 MHz  
@ 10.3 MHz  
+25°C  
+25°C  
I
I
48  
46  
45  
44  
48  
46  
dB  
dB  
Signal-to-Noise Ratio5 (Without Harmonics)  
Analog Input @ 2.3 MHz  
@ 10.3 MHz  
+25°C  
+25°C  
I
I
48  
47  
46  
45  
48  
47  
dB  
dB  
2nd Harmonic Distortion  
Analog Input @ 2.3 MHz  
@ 10.3 MHz  
+25°C  
+25°C  
I
I
58  
58  
48  
48  
58  
58  
dBc  
dBc  
3rd Harmonic Distortion  
Analog Input @ 2.3 MHz  
@ 10.3 MHz  
+25°C  
+25°C  
+25°C  
I
I
IV  
58  
58  
60  
50  
50  
48  
58  
58  
60  
dBc  
dBc  
dBc  
Crosstalk Rejection6  
DIGITAL OUTPUTS  
Logic “1” Voltage (IOH = 2 mA)  
Logic “0” Voltage (IOL = 2 mA)  
Full  
Full  
VI  
VI  
2.4  
2.4  
V
V
0.4  
0.4  
POWER SUPPLY7  
+VS Supply Current  
–VS Supply Current  
Power Dissipation  
Full  
Full  
Full  
VI  
VI  
VI  
127  
27  
770  
154  
38  
960  
127  
27  
770  
154  
38  
960  
mA  
mA  
mW  
NOTES  
1Absolute maximum ratings are limiting values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is  
not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.  
2For applications in which +VS may be applied before –VS, or +VS current is not limited to 500 mA, a reverse biased clamping diode should be inserted between  
ground and –VS to prevent destructive latch up. See section entitled “Using the AD9058.”  
3Typical thermal impedances: 44-lead hermetic J-Leaded ceramic package: θJA = 86.4°C/W; θJC = 24.9°C/W; 48-lead hermetic DIP θJA = 40°C/W;  
θ
JC = 12°C/W.  
4To achieve guaranteed conversion rate, connect each data output to ground through  
a 2 k pull-down resistor.  
5SNR performance limits for the 48-lead DIP “D” package are 1 dB less than shown. ENOB limits are degraded by 0.3 dB. SNR and ENOB measured with  
analog input signal 1 dB below full scale at specified frequency.  
6Crosstalk rejection measured with full-scale signals of different frequencies (2.3 MHz and 3.5 MHz) applied to each channel. With both signals synchronously  
encoded at 40 MSPS, isolation of the undesired frequency is measured with an FFT.  
7Applies to both A/Ss and includes internal ladder dissipation.  
Specifications subject to change without notice.  
EXPLANATION OF TEST LEVELS  
Test Level  
ORDERING GUIDE  
Temperature  
Package  
Option1  
I
– 100% production tested.  
Model  
Range  
Description  
II – 100% production tested at +25°C, and sample tested at  
specified temperatures.  
AD9058JJ  
0°C to +70°C  
44-Lead J-Leaded  
Ceramic2  
J-44  
J-44  
J-44  
III – Sample tested only.  
IV – Parameter is guaranteed by design and characterization  
testing.  
AD9058KJ  
0°C to +70°C  
44-Lead J-Leaded  
Ceramic, AC Tested  
AD9058TJ/8833 –55°C to +125°C 44-Lead J-Leaded  
V
– Parameter is a typical value only.  
Ceramic, AC Tested  
VI – All devices are 100% production tested at +25°C. 100%  
production tested at temperature extremes for extended  
temperature devices; sample tested at temperature  
extremes for commercial/industrial devices.  
AD9058JD  
AD9058KD  
0°C to +70°C  
0°C to +70°C  
48-Lead Ceramic DIP D-48  
48-Lead Ceramic  
DIP, AC Tested  
D-48  
AD9058TD/8833 –55°C to +125°C 48-Lead Ceramic  
D-48  
DIP, AC Tested  
NOTES  
1D = Hermetic Ceramic DIP Package; J = Leaded Ceramic Package.  
2Hermetically sealed ceramic package; footprint equivalent to PLCC.  
3For specifications, refer to Analog Devices Military Products Databook.  
–3–  
REV. B  
AD9058  
PIN DESCRIPTIONS  
Function  
J-Lead  
Pin Number  
ADC-A ADC-B  
Ceramic DIP  
Pin Number  
Name  
ADC-A  
ADC-B  
3
4
5
6
7
8
9
43  
42  
41  
40  
39  
38  
37  
36  
35  
34–29  
28  
27  
26  
25  
24  
+VREF  
GROUND  
+VS  
AIN  
–VS  
–VREF  
+VS  
ENCODE  
D7 (MSB)  
D6–D1  
D0 (LSB)  
GROUND  
–VS  
Top of internal voltage reference ladder.  
Analog ground return.  
Positive 5 V analog supply voltage.  
Analog input voltage.  
14  
15  
16  
17  
19  
20  
22  
23  
11  
10  
9
8
6
5
3
2
48  
47–42  
41  
1, 4, 40  
39  
38  
Negative 5 V supply voltage.  
Bottom of internal voltage reference ladder.  
Positive 5 V digital supply voltage.  
TTL compatible convert command.  
Most significant bit of TTL digital output.  
TTL compatible digital output bits.  
Least significant bit of TTL digital output.  
Digital ground return.  
Negative 5 V supply voltage.  
Analog ground return.  
Positive 5 V analog supply voltage.  
10  
11  
12–17  
18  
19  
20  
21  
22  
25  
26–31  
32  
21, 24, 33  
34  
35  
GROUND  
+VS  
36  
37  
COMMON PINS  
1
COMMON PINS  
12  
COMP  
+VINT  
Connection for external (0.1 µF)  
compensation capacitor.  
Internal +2 V reference; can drive  
+VREF for both ADCs.  
2
13  
GROUND  
ENCODE  
1
48  
D
(MSB)  
7
D
D
D
D
6
5
4
3
+V  
S
6
40  
GROUND  
39  
V  
7
V  
REF  
V  
S
S
V  
S
D
D
2
1
V  
V  
REF  
REF  
NC  
A
D
(LSB)  
0
IN  
+V  
+V  
S
S
+V  
S
GROUND  
ENCODE  
(MSB)  
ENCODE  
V  
GROUND  
S
D
(MSB)  
D
7
+V  
7
GROUND  
REF  
AD9058  
TOP VIEW  
+V  
S
COMP  
D
6
D
D
D
6
5
4
+V  
S
+V  
INT  
D
5
(Not to Scale)  
+V  
GROUND  
REF  
D
4
V  
GROUND  
S
+V  
S
GROUND  
D
3
D
D
3
A
D
(LSB)  
IN  
0
D
2
2
D
D
D
D
NC  
1
2
3
4
GROUND  
D
1
D
1
V  
S
V  
29  
REF  
17  
GROUND  
18  
28  
+V  
S
D
D
5
6
ENCODE  
GROUND  
24  
D
(MSB)  
7
25  
NC = NO CONNECT  
NC = NO CONNECT  
AD9058JD/KD Pinouts  
AD9058JJ/KJ Pinouts  
+V  
S
+5.0V  
+V  
D D *  
V  
REF  
S
0
7
+V  
A
**  
INT  
IN  
13k  
ENCODE**  
+V  
+V  
REF  
+5V  
5.2V  
S
S
COMP AD9058  
GROUND  
ENCODE  
0.1F  
V  
DIGITAL BITS  
* INDICATES EACH PIN IS CONNECTED THROUGH 2 k⍀  
** INDICATES EACH PIN IS CONNECTED THROUGH 100 ⍀  
AD9058 Equivalent Encode Circuit  
AD9058 Burn-In Connections  
AD9058 Equivalent Digital Outputs  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9058 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. B  
AD9058  
THEORY OF OPERATION  
ANALOG IN  
128  
127  
The AD9058 contains two separate 8-bit analog-to-digital con-  
verters (ADCs) on a single silicon die. The two devices can be  
operated independently with separate analog inputs, voltage  
references and clocks.  
+V  
REF  
256  
8
8
In a traditional flash converter, 256 input comparators are required  
to make the parallel conversion for 8-bit resolution. This is in  
marked contrast to the scheme used in the AD9058, as shown  
in Figure 1.  
2
1
Unlike traditional “flash,” or parallel, converters, each of the two  
ADCs in the AD9058 utilizes a patented interpolating archi-  
tecture to reduce circuit complexity, die size and input capacitance.  
These advantages accrue because, compared to a conventional  
flash design, only half the normal number of input comparator  
cells is required to accomplish the conversion.  
V  
REF  
Figure 1. AD9058 Comparator Block Diagram  
The onboard voltage reference, +VINT, is a bandgap reference  
which has sufficient drive capability for both reference ladders.  
It provides a +2 V reference that can drive both ADCs in the  
AD9058 for unipolar positive operation (0 V to +2 V).  
In this unit, each of the two independent ADCs uses only 128  
(27) comparators to make the conversion. The conversion for  
the seven most significant bits (MSBs) is performed by the 128  
comparators. The value of the least significant bit (LSB) is  
determined by interpolation between adjacent comparators in  
the decoding register. A proprietary decoding scheme processes  
the comparator outputs and provides an 8-bit code to the output  
register of each ADC; the scheme also minimizes error codes.  
USING THE AD9058  
Refer to Figure 2. Using the internal voltage reference con-  
nected to both ADCs as shown reduces the number of external  
components required to create a complete data acquisition sys-  
tem. The input ranges of the ADCs are positive unipolar in this  
configuration, ranging from 0 V to +2 V. Bipolar input signals  
are buffered, amplified and offset into the proper input range of  
the ADC using a good low distortion amplifier such as the  
AD9617 or AD9618.  
Analog input range is established by the voltages applied at the  
voltage reference inputs (+VREF and –VREF). The AD9058 can  
operate from 0 V to +2 V using the internal voltage reference,  
or anywhere between –1 V and +2 V using external references.  
Input range is limited to 2 V p-p when using external references.  
The internal resistor ladder divides the applied voltage reference  
into 128 steps, with each step representing two 8-bit quantiza-  
tion levels.  
1k  
ENCODE  
74HCT04  
10pF  
50  
10  
36  
ENCODE  
A
ENCODE  
B
5, 9, 22,  
8
+V  
+5V  
V  
S
REF A  
24, 37, 41  
400  
38  
V  
REF B  
18  
D
(LSB)  
200  
0A  
ANALOG  
IN A  
17  
16  
15  
14  
13  
12  
11  
5
6
0.5 V  
A
AD9617  
+
IN A  
8
800  
+
2
3
+V  
INT  
2V  
AD707  
20k  
20k  
0.1µF  
D
(MSB)  
(LSB)  
+2V  
7A  
0.1µF  
+V  
REF A  
CLOCK  
28  
29  
30  
31  
32  
33  
34  
35  
D
0B  
43  
1
+V  
REF B  
800  
400  
8
COMP  
0.1µF  
200  
ANALOG  
IN B  
5
40  
0.5 V  
A
AD9617  
+
D
(MSB)  
IN B  
7B  
CLOCK  
7, 20,  
V  
5V  
S
AD9058  
26, 39  
(J-LEAD)  
1N4001  
(SEE TEXT)  
0.1µF  
4,19, 21  
25, 27, 42  
Figure 2. AD9058 Using Internal +2 V Voltage Reference  
–5–  
REV. B  
AD9058  
+5V  
1
3
AD580  
2
1k  
74ACT04  
ENCODE  
10pF  
50k  
10k  
10k  
+5V  
10  
36  
+
150  
2N3904  
10  
ENCODE  
A
1/2  
AD708  
ENCODE  
B
0.1µF  
5, 9, 22,  
24, 37, 41  
+V  
+5V  
0.1µF  
3
S
+V  
REF A  
20k  
400  
0.1µF  
5
43  
+1V  
+V  
A
REF B  
50  
ANALOG  
IN A  
0.125 V  
RZ1  
18  
D
(LSB)  
0A  
1V  
6
17  
16  
15  
14  
13  
12  
11  
AD9618  
IN A  
+
8
20k  
150  
10  
8
V  
REF A  
D
(MSB)  
(LSB)  
7A  
1/2  
AD708  
0.1µF  
CLOCK  
38  
RZ2  
2N3906  
5V  
V  
+
REF B  
28  
29  
30  
31  
32  
33  
34  
35  
1V  
D
0B  
400  
8
50  
ANALOG  
IN B  
5k  
1 V  
0.125 V  
AD9618  
A
IN B  
40  
1
+
D
(MSB)  
7B  
COMP  
CLOCK  
0.1µF  
7, 20,  
V  
AD9058  
(J-LEAD)  
S
5V  
1N4001  
RZ1, RZ2 = 2,000SIP (8/PKG)  
26, 39  
(SEE TEXT)  
0.1µF  
4,19, 21  
25, 27, 42  
Figure 3. AD9058 Using External Voltage References  
The AD9058 offers considerable flexibility in selecting the ana-  
log input ranges of the ADCs; the two independent ADCs can  
even have different input ranges if required. In Figure 3 above,  
the AD9058 is shown configured for 1 V operation.  
logic family devices have short set-up and hold times and are the  
recommended choices for speeds of 40 MSPS or more.  
Layout  
To insure optimum performance, a single low-impedance ground  
plane is recommended. Analog and digital grounds should be  
connected together and to the ground plane at the AD9058 de-  
vice. Analog and digital power supplies should be bypassed to  
ground through 0.1 µF ceramic capacitors as close to the unit as  
possible.  
The Reference Ladder Offset shown in the specifications table re-  
fers to the error between the voltage applied to the +VREF (top)  
or –VREF (bottom) of the reference ladder and the voltage re-  
quired at the analog input to achieve a 1111 1111 or 0000 0000  
transition. This indicates the amount of adjustment range which  
must be designed into the reference circuit for the AD9058.  
An evaluation board (ADI part #AD9058/PCB) is available to  
aid designers and provide a suggested layout. The use of sockets  
may limit the dynamic performance of the part and is not rec-  
ommended except for prototype or evaluation purposes.  
The diode shown between ground and –VS is normally reverse  
biased and is used to prevent latch-up. Its use is recommended  
for applications in which power supply sequencing might allow  
+VS to be applied before –VS; or the +VS supply is not current  
limited. If the negative supply is allowed to float (the +5 V sup-  
ply is powered up before the –5 V supply), substantial +5 V  
supply current will attempt to flow through the substrate (VS  
supply contact) to ground. If this current is not limited to <500  
mA, the part may be destroyed. The diode prevents this poten-  
tially destructive condition from occurring.  
For prototyping or evaluation, surface mount sockets are available  
from Methode (part #213-0320602) for evaluating AD9058 sur-  
face mount packages. To evaluate the AD9058 in through-hole  
PCB designs, use the AD9058JD/KD with individual pin sockets  
(AMP part #6-330808-0). Alternatively, surface mount AD9058  
units can be mounted in a through-hole socket (Circuit Assembly  
Corporation, Irvine California part #CA-44SPC-T).  
Timing  
AD9058 APPLICATIONS  
Refer to the AD9058 Timing Diagram. The AD9058 provides  
latched data outputs with no pipeline delay. To conserve power,  
the data outputs have relatively slow rise and fall times. When  
designing system timing, it is important to observe (1) set-up  
and hold times; and (2) the intervals when data is changing.  
Combining two ADCs in a single package is an attractive alter-  
native in a variety of systems when cost, reliability and space are  
important considerations. Different systems emphasize particu-  
lar specifications, depending on how the part is used.  
In high density digital radio communications, a pair of high  
speed ADCs are used to digitize the in-phase (I) and quadrature  
(Q) components of a modulated signal. The signal presented to  
each ADC in this type of system consists of message-dependent  
amplitudes varying at the symbol rate, which is equal to the  
sample rates of the converters.  
Figure 3 shows 2 kpull-down resistors on each of the D0–D7  
output data bits. When operating at conversion rates higher than  
40 MSPS, these resistors help equalize rise and fall times and  
ease latching the output data into external latches. The 74ACT  
–6–  
REV. B  
AD9058  
N
ANALOG INPUT  
ENCODE  
tA  
N + 1  
N + 2  
tA= APERTURE TIME  
= DATA DELAY OF  
PRECEDING ENCODE  
tV  
tV  
tPD = OUTPUT PROPAGATION DELAY  
VALID DATA  
FOR N 1  
VALID DATA  
FOR N  
VALID DATA  
FOR N + 1  
D
D  
7
0
tPD  
DATA  
CHANGING  
Figure 4. AD9058 Timing Diagram  
Figure 5 below shows what the analog input to the AD9058 would  
look like when observed relative to the sample clock. Signal-  
to-noise ratio (SNR), transient response, and sample rate are all  
critical specifications in digitizing this “eye pattern.”  
is actual rms error calculated from the converter’s outputs with  
a pure sine wave applied as the input.  
Maximum conversion rate is defined as the encode (sample) rate  
at which SNR of the lowest frequency analog test signal drops  
no more than 3 dB below the guaranteed limit.  
ANALOG  
INPUT  
60  
+125°C  
+25°C  
55  
55°C  
SAMPLE  
CLOCK  
50  
45  
40  
Figure 5. AD9058 I and Q Input Signals  
Receiver sensitivity is limited by the SNR of the system. For the  
ADC, SNR is measured in the frequency domain and calculated  
with a Fast Fourier Transform (FFT). The signal-to-noise ratio  
equals the ratio of the fundamental component of the signal  
(rms amplitude) to the rms level of the noise. Noise is the sum  
of all other spectral components, including harmonic distortion,  
but excluding dc.  
35  
30  
0.1  
1
10  
100  
INPUT FREQUENCY MHz  
Although the signal being sampled does not have a significant  
slew rate at the instant it is encoded, dynamic performance of  
the ADC and the system is still critical. Transient response is the  
time required for the AD9058 to achieve full accuracy when a  
step function input is applied. Overvoltage recovery time is the in-  
terval required for the AD9058 to recover to full accuracy after  
an overdriven analog input signal is reduced to its input range.  
Figure 6. Harmonic Distortion vs. Analog Input Frequency  
55  
+25°C AND +125°C  
50  
45  
8.0  
7.2  
6.4  
5.5  
Time domain performance of the ADC is also extremely impor-  
tant in digital oscilloscopes. When a track (sample)-and-hold is  
used ahead of the ADC, its operation becomes similar to that  
described above for receivers.  
40  
35  
30  
55°C  
The dynamic response to high-frequency inputs can be described  
by the effective number of bits (ENOB). The effective number of bits  
is calculated with a sine wave curve fit and is expressed as:  
ENOB = N – LOG2 [Error (measured)/Error (ideal)]  
0.1  
1
10  
100  
where N is the resolution (number of bits) and measured error  
INPUT FREQUENCY MHz  
Figure 7. AD9058 Dynamic Performance vs. Analog Input  
Frequency  
–7–  
REV. B  
AD9058  
MECHANICAL INFORMATION  
Die Dimensions . . . . . . . . . . . . . . . . 106 × 108 × 15 ( 2) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 × 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitride  
Die Attach . . . . . . . . . . . . . . . . . . . . Gold Eutectic (Ceramic)  
Bond Wire . . . . . . . . . . . . 1–1.3 mil, Gold; Gold Ball Bonding  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
44-Lead J-Leaded Ceramic (J-44) Package  
48-Lead Hermetic Ceramic DIP (D-48) Package  
0.690 0.012 SQ.  
(17.5 0.305)  
0.650 0.008 SQ.  
(16.51 0.203)  
PIN 1  
6
40  
48  
1
25  
24  
7
39  
0.225 MAX  
(5.72 MAX)  
2.400 0.024  
0.060 (1.52)  
0.050 TYP  
(1.27)  
(60.96 0.609)  
0.015 (0.38)  
0.020 TYP  
(0.508)  
0.70 MAX  
(1.77 MAX)  
0.023 (0.58)  
0.014 (0.36)  
0.110 (2,79)  
0.090 (2.29)  
0.150  
(3.81)  
MIN  
29  
17  
0.62 (15.75)  
0.59 (12.95)  
18  
28  
0.500 0.008  
(12.70 0.203)  
0.135 (3.42)  
MAX  
0.015 (0.38)  
0.008 (0.20)  
0.017 (0.432)  
TYP  
0.037 0.012  
(0.940 0.305)  
0.63 (16.00)  
0.52 (13.21)  
0.630 0.020  
(16.0 0.058)  
–8–  
REV. B  

相关型号:

AD9058AJD

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AJJ

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AJJ-REEL

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AKD

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058AKJ

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATD/883B

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATD883B

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATJ

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATJ/883B

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058ATJ883B

Dual 8-Bit 50 MSPS A/D Converter
ADI

AD9058CHIPS

IC DUAL 1-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, UUC42, 0.106 X 0.108 INCH, 0.015 INCH HEIGHT, DIE-42, Analog to Digital Converter
ADI

AD9058JD

Dual 8-Bit 50 MSPS A/D Converter
ADI