AD7292BCPZ [ADI]

10-Bit Monitor and Control System with ADC,DACs, Temperature Sensor, and GPIOs;
AD7292BCPZ
型号: AD7292BCPZ
厂家: ADI    ADI
描述:

10-Bit Monitor and Control System with ADC,DACs, Temperature Sensor, and GPIOs

文件: 总41页 (文件大小:734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit Monitor and Control System with ADC,  
DACs, Temperature Sensor, and GPIOs  
Data Sheet  
AD7292  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
REF  
REF DV  
IN  
AV  
V
DD DRIVE  
OUT  
DD  
10-bit SAR ADC  
8 multiplexed analog input channels  
Single-ended mode of operation  
Differential mode of operation  
5 V analog input range  
TEMPERATURE  
SENSOR  
÷4  
AD7292  
1.25V  
REF  
BUF  
BUF  
VIN0  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VIN6  
VIN7  
10-BIT  
DAC  
V
REF, 2 × VREF, or 4 × VREF input ranges  
VOUT0  
VOUT1  
VOUT2  
VOUT3  
Input measured with respect to AGND or VDD  
4 monotonic, 10-bit, 5 V DACs  
2 µs settling time  
10-BIT  
SAR ADC  
CONTROL  
LOGIC  
10-BIT  
DAC  
MUX  
T/H  
Power-on reset to 0 V  
10-BIT  
DAC  
10 mA sink and source capability  
Internal temperature sensor  
1°C accuracy  
12 general-purpose digital I/O pins  
Internal 1.25 V reference  
10-BIT  
DAC  
ALERT AND LIMIT  
REGISTERS  
Built-in monitoring features  
Minimum and maximum value register for each channel  
Programmable alert thresholds  
Programmable hysteresis  
SPI  
INTERFACE  
DIGITAL I/Os  
SPI interface  
Temperature range: −40°C to +125°C  
Package type: 36-lead LFCSP  
APPLICATIONS  
Base station power amplifier (PA) monitoring and control  
RF control loops  
Optical communication system control  
General-purpose system monitoring and control  
Figure 1.  
GENERAL DESCRIPTION  
The AD7292 contains all the functionality required for general-  
purpose monitoring of analog signals and control of external  
devices, integrated into a single-chip solution. The AD7292  
features an 8-channel, 10-bit SAR ADC, four 10-bit DACs, a  
1°C accurate internal temperature sensor, and 12 GPIOs to  
aid system monitoring and control.  
Four 10-bit digital-to-analog converters (DACs) provide outputs  
from 0 V to 5 V. A n internal, high accuracy, 1.25 V reference  
provides a separately buffered reference source for both the ADC  
and the DACs.  
A high accuracy band gap temperature sensor is monitored and  
digitized by the 10-bit ADC to give a resolution of 0.03125°C.  
The AD7292 also features built-in limit and alarm functions.  
The 10-bit, high speed, low power successive approximation  
register (SAR) ADC is designed to monitor a variety of single-  
ended input signals. Differential operation is also available by  
configuring VIN0 and VIN1 to operate as a differential pair.  
The AD7292 is a highly integrated solution offered in a 36-lead  
LFCSP package with an operating temperature range of −40°C  
to +125°C.  
The AD7292 offers a register programmable ADC sequencer,  
which enables the selection of a programmable sequence of  
channels for conversion.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD7292* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD7292 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD7292 Evaluation Board  
DOCUMENTATION  
Application Notes  
DISCUSSIONS  
View all AD7292 EngineerZone Discussions.  
AN-1178: AD7292 DAC Disable Function Timing  
Data Sheet  
SAMPLE AND BUY  
AD7292: 10-Bit Monitor and Control System with ADC,  
Visit the product page to see pricing options.  
DACs, Temperature Sensor, and GPIOs Data Sheet  
User Guides  
TECHNICAL SUPPORT  
UG-449: Evaluating the AD7292 10-Bit Monitor and  
Control System  
Submit a technical question or find your regional support  
number.  
SOFTWARE AND SYSTEMS REQUIREMENTS  
DOCUMENT FEEDBACK  
AD7292 Evaluation Software  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD7292  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ADC Sequence Register (Address 0x03)................................. 21  
Configuration Register Bank (Address 0x05) .......................... 21  
Alert Limits Register Bank (Address 0x06) ............................ 30  
Alert Flags Register Bank (Address 0x07) .............................. 31  
Minimum and Maximum Register Bank (Address 0x08) .... 32  
Offset Register Bank (Address 0x09)....................................... 32  
DAC Buffer Enable Register (Address 0x0A)......................... 33  
GPIO Register (Address 0x0B)................................................. 33  
Conversion Command Register (Address 0x0E)................... 34  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADC Specifications ...................................................................... 3  
DAC Specifications....................................................................... 4  
General Specifications ................................................................. 5  
Temperature Sensor Specifications ............................................ 5  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 15  
Analog Inputs.............................................................................. 15  
ADC Transfer Functions ........................................................... 16  
Temperature Sensor ................................................................... 17  
DAC Operation........................................................................... 17  
Digital I/O Pins........................................................................... 17  
Serial Port Interface (SPI).............................................................. 18  
Interface Protocol ....................................................................... 18  
Register Structure ........................................................................... 20  
Register Descriptions ..................................................................... 21  
Vendor ID Register (Address 0x00)......................................... 21  
ADC Data Register (Address 0x01)......................................... 21  
ADC Conversion Result Registers, VIN0 to VIN7  
(Address 0x10 to Address 0x17)............................................... 34  
TSENSE Conversion Result Register (Address 0x20) ................ 34  
DAC Channel Registers (Address 0x30 to Address 0x33).... 34  
ADC Conversion Control ............................................................. 35  
ADC Conversion Command.................................................... 35  
ADC Sequencer .......................................................................... 36  
DAC Output Control ..................................................................... 37  
LDAC Operation ........................................................................ 37  
Simultaneous Update of All DAC Outputs............................. 37  
Alerts and Limits ............................................................................ 38  
Alert Limit Monitoring Features.............................................. 38  
Hardware Alert Pins................................................................... 38  
Alert Flag Bits in the Conversion Result Registers................ 38  
Alert Flags Register Bank.......................................................... 39  
Minimum and Maximum Conversion Results ...................... 39  
Outline Dimensions ....................................................................... 40  
Ordering Guide .......................................................................... 40  
REVISION HISTORY  
9/14—Rev. 0 to Rev. A  
Changes to VIN ALERT0 Routing and VIN ALERT1 Routing  
Subregisters (Address 0x15 and Address 0x16) Section,  
Table 25, and Table 26.................................................................... 27  
Changes to Figure 40 and Figure 41 ............................................ 35  
Changes to Figure 42...................................................................... 36  
Changes to Figure 2.......................................................................... 6  
Changed t11 from 4 ns max to 4 ns min and Removed  
Endnote 4; Table 5 .......................................................................... 21  
Changes to Figure 35...................................................................... 18  
Changes to Table 15........................................................................ 21  
Changes to VIN Filter Subregister (Address 0x13) Section,  
Conversion Delay Control Subregister (Address 0x14) Section,  
Table 23, and Table 24.................................................................... 26  
10/12—Revision 0: Initial Version  
Rev. A | Page 2 of 40  
 
Data Sheet  
AD7292  
SPECIFICATIONS  
ADC SPECIFICATIONS  
AVDD = 4.75 V to 5.25 V, DVDD = 1.8 V to 5.25 V, VREF = 1.25 V internal, VDRIVE = 1.8 V to 5.25 V, AGND = 0 V, TA = −40°C to +125°C,  
unless otherwise noted. Specifications apply to single-ended mode only, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC ACCURACY  
Resolution  
Integral Nonlinearity (INL)1  
10  
Bits  
LSB  
LSB  
0.11  
0.5  
0.6  
(AVDD − 4 × VREF) to AVDD input range  
(AVDD − 4 × VREF) to AVDD input range  
Differential Nonlinearity (DNL)1  
Offset Error  
0.1  
3
0.99  
8
12  
1
LSB  
mV  
mV  
mV  
ppm/°C  
% FS  
% FS  
% FS  
ppm/°C  
Offset Error Matching  
Offset Error Drift  
Gain Error  
0.5  
0.22  
0.09  
0.25  
0.36  
(AVDD − 4 × VREF) to AVDD input range  
fIN = 10 kHz sine wave  
Gain Error Matching  
Gain Error Drift  
DYNAMIC PERFORMANCE1  
0.5  
4.17  
Signal-to-Noise Ratio (SNR)  
Signal-to-Noise-and-Distortion (SINAD)  
Ratio  
61.5  
61.5  
dB  
dB  
Total Harmonic Distortion (THD)  
Spurious-Free Dynamic Range (SFDR)  
Channel-to-Channel Isolation  
Full Power Bandwidth  
−84  
84.5  
−80  
60  
dB  
dB  
dB  
MHz  
MHz  
fIN = 3 kHz to 1000 kHz  
At −3 dB (0 V to VREF input range)  
At −0.1 dB (0 V to VREF input range)  
3
CONVERSION RATE  
Conversion Time  
900  
ns  
See Table 5  
Track-and-Hold Acquisition Time  
Throughput Rate  
45  
625  
ns  
kSPS  
ADC only; temperature sensor  
disabled  
150  
kSPS  
ADC and temperature sensor  
ANALOG INPUT  
Single-Ended Input Range  
With Respect to AGND  
0
0
0
4 × VREF  
2 × VREF  
VREF  
V
V
V
With Respect to AVDD  
Fully Differential Input Range  
AVDD − 4 × VREF  
−4 × VREF  
−2 × VREF  
−VREF  
AVDD  
V
V
V
V
+4 × VREF  
+2 × VREF  
+VREF  
VIN0 and VIN1 inputs only  
Input Capacitance  
23  
18  
15  
pF  
pF  
pF  
µA  
0 V to VREF input range  
0 V to 2 × VREF input range  
0 V to 4 × VREF input range  
DC Input Leakage Current  
INTERNAL REFERENCE  
1
Reference Output Voltage  
Reference Temperature Coefficient  
1.245  
1.25  
13  
1.255  
V
At 25°C  
ppm/°C  
Rev. A | Page 3 of 40  
 
 
AD7292  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
EXTERNAL REFERENCE  
Reference Input Voltage  
4.75  
AVDD  
V
Internal reference used to calibrate  
temperature sensor  
Input Resistance  
100  
kΩ  
1 Specifications also apply to differential mode.  
DAC SPECIFICATIONS  
AVDD = 4.75 V to 5.25 V, DVDD = 1.8 V to 5.25 V, VREF = 1.25 V internal, VDRIVE = 1.8 V to 5.25 V, AGND = 0 V, TA = −40°C to +125°C,  
unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC ACCURACY  
Resolution  
10  
Bits  
LSB  
LSB  
mV  
% FS  
mV  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Zero-Scale Error  
Full-Scale Error  
0.2  
0.1  
4.8  
0.1  
1.62  
1
0.3  
10  
0.5  
10  
Guaranteed monotonic  
All 0s loaded to DAC register  
All 1s loaded to DAC register  
Measured in the linear region,  
TA = −40°C to +125°C  
Offset Error  
Offset Error Drift  
Gain Error  
Gain Error Drift  
DC Power Supply Rejection Ratio (PSRR)  
DC Crosstalk  
4.4  
0.35  
2.6  
ppm/°C  
% FS  
ppm/°C  
dB  
Measured in the linear region, TA = 25°C  
fRIPPLE up to 100 kHz  
0.5  
−50  
5
μV  
DAC OUTPUT CHARACTERISTICS  
Output Voltage Range  
Short-Circuit Current  
Load Current  
0
4 × VREF  
V
mA  
mA  
30  
10  
Sink/source current; within 200 mV  
of supply  
Resistive Load to AGND  
Capacitive Load Stability  
DC Output Impedance  
AC CHARACTERISTICS1  
Output Voltage Settling Time  
500  
1
Ω
nF  
Ω
1
2
1
µs  
¼ to ¾ scale step change within 1 LSB,  
measured from last SCLK edge  
Overshoot  
200  
mV  
¼ to ¾ scale step change within 1 LSB,  
measured from last SCLK edge;  
CL = 200 pF, RL = 25 kΩ  
Slew Rate  
9
12  
4
0.4  
2
730  
28  
5
V/µs  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
DAC-to-DAC Crosstalk  
Output Noise Spectral Density  
Output Noise  
nV-sec  
nV-sec  
nV-sec  
nV/√Hz  
μV rms  
mV  
DAC code = midscale, 1 kHz  
0.1 Hz to 10 Hz  
AVDD ramp of 1 ms with 100 kΩ load  
Output Transient Response During  
Power-Up  
1 The DAC buffer output level is undefined until 30 µs after all supplies reach their minimum specified operating voltages.  
Rev. A | Page 4 of 40  
 
Data Sheet  
AD7292  
GENERAL SPECIFICATIONS  
AVDD = 4.75 V to 5.25 V, DVDD = 1.8 V to 5.25 V, VREF = 1.25 V internal, VDRIVE = 1.8 V to 5.25 V, AGND = 0 V, TA = −40°C to +125°C,  
unless otherwise noted.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS  
Input High Voltage, VIH  
0.7 × VDRIVE  
0.8 × VDRIVE  
V
V
V
V
µA  
pF  
V
VDRIVE = 2.3 V to 5.25 V  
VDRIVE = 1.8 V to 1.95 V  
VDRIVE = 2.3 V to 5.25 V  
VDRIVE = 1.8 V to 1.95 V  
Input Low Voltage, VIL  
0.3 × VDRIVE  
0.2 × VDRIVE  
1
Input Leakage Current, IIN  
Input Capacitance, CIN  
Input Hysteresis, VHYST  
GPIO OUTPUTS  
ISINK/ISOURCE  
Output High Voltage, VOH  
Output Low Voltage, VOL  
POWER REQUIREMENTS  
AVDD  
3
0.05 × VDRIVE  
1.6  
mA  
V
V
DVDD − 0.2  
ISINK/ISOURCE = 1.6 mA  
ISINK/ISOURCE = 1.6 mA  
0.4  
4.75  
1.8  
1.8  
5.25  
5.25  
5.25  
V
V
V
DVDD  
VDRIVE  
Static Current  
IAVDD  
IDVDD  
4.2  
5.4  
1.3  
0.35  
mA  
mA  
mA  
mA  
0.65  
0.12  
4.97  
IDRIVE  
Total Static Current  
Dynamic Current  
IAVDD  
IDVDD  
IDRIVE  
AVDD + DVDD + VDRIVE  
6.45  
0.65  
0.12  
7.22  
8.5  
1.3  
0.35  
mA  
mA  
mA  
mA  
Total Dynamic Current  
AVDD + DVDD + VDRIVE, DAC outputs loaded  
and converting at full scale, continuous  
conversion on ADC inputs  
Power Dissipation  
Static  
Dynamic  
26  
37.9  
34.125  
50.925  
mW  
mW  
TEMPERATURE SENSOR SPECIFICATIONS  
AVDD = 4.75 V to 5.25 V, DVDD = 1.8 V to 5.25 V, VREF = 1.25 V internal, VDRIVE = 1.8 V to 5.25 V, AGND = 0 V, TA = −40°C to +125°C,  
unless otherwise noted.  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INTERNAL TEMPERATURE SENSOR  
Operating Range  
Accuracy  
−40  
+125  
3
2
°C  
°C  
°C  
°C  
°C  
ms  
1
1
TA = −40°C to +125°C  
TA = 0°C to +125°C  
TA = 25°C  
0.5  
0.03125  
1.25  
1.5  
Resolution  
Update Rate  
Digital filter enabled  
Rev. A | Page 5 of 40  
 
 
AD7292  
Data Sheet  
TIMING SPECIFICATIONS  
AVDD = 4.75 V to 5.25 V, DVDD = 1.8 V to 5.25 V, VREF = 1.25 V internal, VDRIVE = 1.8 V to 5.25 V, AGND = 0 V, CL = 27 pF, TA = −40°C  
to +125°C, unless otherwise noted.1  
Table 5.  
Limit at TMIN/TMAX  
Parameter  
Description  
VDRIVE = 1.8 V  
VDRIVE = 2.7 V to 5.25 V  
Unit  
tCONVERT  
ADC conversion time/BUSY high time  
Temperature sensor disabled  
Temperature sensor enabled  
ADC acquisition time  
950  
5.85  
50  
15  
66  
33  
33  
4
950  
5.85  
50  
25  
40  
20  
20  
4
ns max  
μs max  
ns max  
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns min  
ns max  
ns min  
ns min  
ns max  
tACQ  
fSCLK  
t1  
Frequency of serial read clock2  
SCLK period  
t2  
t3  
t4  
SCLK low  
SCLK high  
CS falling edge to SCLK rising edge  
DIN setup time to SCLK falling edge  
DIN hold time after SCLK falling edge  
SCLK falling edge to CS rising edge  
CS high  
t5  
t6  
4
2
5
4
2
5
3
t7  
t8  
5
5
t9  
t10  
t11  
SCLK to output data valid delay time  
SCLK to output data valid hold time  
CS rising edge to SCLK rising edge  
CS rising edge to DOUT high impedance  
30  
7
4
19  
5
4
4
t12  
15  
15  
1 Sample tested during initial release to ensure compliance. All input signals are specified with tR = tF = 5 ns (10% to 90% of VDRIVE).  
2 For VDRIVE = 2.5 V, fSCLK = 22 MHz maximum.  
3 Time required for the output to cross 0.2 × VDRIVE and 0.8 × VDRIVE when VDRIVE = 1.8 V; time required for the output to cross 0.3 × VDRIVE and 0.7 × VDRIVE when VDRIVE = 2.7 V to 5.25 V.  
4 Guaranteed by design.  
Timing Diagram  
2
BUSY  
t7  
t8  
t3  
CS  
t11  
t2  
t1  
t4  
SCLK  
DIN  
t5  
t6  
X
R
W
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
X
t10  
HIGH-Z  
HIGH-Z  
t12  
1
LSB  
DOUT  
t9  
1
2
PROVIDED THE READ BIT IS SET.  
IF AN ADC CONVERSION IS REQUESTED.  
t7 = 5ns IF NO ADC CONVERSION  
955ns WITH ADC CONVERSION  
Figure 2. Serial Interface Timing Diagram  
Rev. A | Page 6 of 40  
 
 
Data Sheet  
AD7292  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
Rating  
AVDD to AGND  
DVDD to DGND  
VDRIVE to DGND  
VINx to AGND  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to +2.2 V  
−0.3 V to AVDD + 0.3 V  
0.3 V  
THERMAL RESISTANCE  
VOUTx to AGND  
Digital Inputs/Outputs to DGND  
CS, SCLK, DIN, DOUT to DGND  
REFOUT to AGND  
REFIN to AGND  
DGND to AGND  
Table 7. Thermal Resistance  
Package Type  
θJA  
Unit  
36-Lead LFCSP  
54.1  
°C/W  
ESD CAUTION  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature (TJ max)  
ESD, Human Body Model  
Reflow Soldering Peak Temperature  
−40°C to +125°C  
−65°C to +150°C  
150°C  
2.5 kV  
260°C  
Rev. A | Page 7 of 40  
 
 
 
AD7292  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
27 GPIO0/ALERT0  
26 GPIO1/ALERT1  
25 GPIO2/DAC DISABLE0  
24 GPIO3/LDAC  
23 GPIO4/DAC DISABLE1  
22 GPIO5  
21 GPIO6/BUSY  
20 GPIO7  
19 REF  
OUT  
AV  
A
D
1
2
3
4
5
6
7
8
9
DD  
GND  
GND  
DV  
AD7292  
TOP VIEW  
(Not to Scale)  
DD  
V
DRIVE  
CS  
SCLK  
DIN  
DOUT  
NOTES  
1. THE EXPOSED PAD IS INTERNALLY CONNECTED TO A  
AND  
GND  
CAN BE SOLDERED TO THE GROUND PLANE OF THE SYSTEM.  
Figure 3. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
AVDD  
Supply Pin. This pin should be decoupled to AGND with a 0.1 μF decoupling capacitor.  
2, 14  
AGND  
Analog Ground. Ground reference point for all analog circuitry on the AD7292. All analog signals should  
be referred to AGND. Both the AGND and DGND pins should be connected to the ground plane of the system.  
3
DGND  
Digital Ground. Ground reference point for all digital circuitry on the AD7292. All digital signals should be  
referred to DGND. Both the DGND and AGND pins should be connected to the ground plane of the system.  
4
5
DVDD  
VDRIVE  
Sets the GPIO voltage level. This pin should be decoupled to DGND with a 0.1 μF decoupling capacitor.  
This pin sets the reference level of the SPI bus from 1.8 V to 5.25 V. This pin should be decoupled to DGND  
with a 0.1 μF decoupling capacitor.  
6
7
8
CS  
Chip Select Signal. This active low logic input signal is used to frame the serial data input.  
SPI Clock Input.  
SPI Serial Data Input. Serial data to be loaded into the registers of the AD7292 is provided on this pin.  
Data is clocked into the serial interface on the falling edge of SCLK.  
SCLK  
DIN  
9
DOUT  
SPI Serial Data Output. Serial data to be read from the registers of the AD7292 is provided on this pin.  
Data is clocked out on the rising edge of SCLK. DOUT is high impedance when it is not outputting data.  
10 to 13  
VOUT3 to VOUT0 Buffered DAC Analog Outputs. Each DAC analog output is driven from an output amplifier and has a  
maximum output voltage span of 5 V. Each DAC is capable of sourcing and sinking 10 mA and driving a  
1 nF load.  
15 to 18  
19  
GPIO11 to GPIO8 General-Purpose Input/Output Pins.  
REFOUT  
ADC Internal Reference Output. Decouple the internal ADC reference buffer to AGND with a 0.1 μF  
decoupling capacitor.  
20  
21  
GPIO7  
GPIO6/BUSY  
General-Purpose Input/Output Pin.  
General-Purpose Input/Output Pin (GPIO6).  
Busy Output Pin (BUSY). When a conversion starts, this output pin transitions high and remains high until  
the conversion is completed.  
22  
23  
GPIO5  
GPIO4/  
General-Purpose Input/Output Pin.  
General-Purpose Input/Output Pin (GPIO4).  
DAC DISABLE1  
DAC Disable Pin 1 (DAC DISABLE1). When this pin is activated, the selected DAC outputs are disabled.  
Select the DAC channels to be disabled by this pin using the GPIO4/DAC DISABLE1 subregister within the  
configuration register bank (see Table 30).  
24  
25  
GPIO3/LDAC  
General-Purpose Input/Output Pin (GPIO3).  
LDAC Input Pin (LDAC). When this input is taken high, the DAC registers are updated.  
General-Purpose Input/Output Pin (GPIO2).  
GPIO2/  
DAC DISABLE0  
DAC Disable Pin 0 (DAC DISABLE0). When this pin is activated, the selected DAC outputs are disabled.  
Select the DAC channels to be disabled by this pin using the GPIO2/DAC DISABLE0 subregister within the  
configuration register bank (see Table 29).  
Rev. A | Page 8 of 40  
 
Data Sheet  
AD7292  
Pin No.  
Mnemonic  
Description  
26  
GPIO1/ALERT1  
GPIO0/ALERT0  
VIN0 to VIN7  
General-Purpose Input/Output Pin (GPIO1).  
Alert Pin 1 (ALERT1). When configured as an alert, this pin acts as an out-of-range indicator and becomes  
active when the conversion result violates the high or low limit stored in the alert limits register bank. The  
polarity of the alert signal is controlled using the general subregister within the configuration register bank.  
27  
General-Purpose Input/Output Pin (GPIO0).  
Alert Pin 0 (ALERT0). When configured as an alert, this pin acts as an out-of-range indicator and becomes  
active when the conversion result violates the high or low limit stored in the alert limits register bank. The  
polarity of the alert signal is controlled using the general subregister within the configuration register bank.  
Analog Inputs. The eight single-ended analog inputs of the AD7292 are multiplexed into the on-chip  
track-and-hold amplifier. Each input channel can accept analog inputs from 0 V to 5 V. Any unused input  
channels should be connected to AGND to avoid noise pickup.  
28 to 35  
36  
REFIN  
EPAD  
Voltage Reference Input. An external reference for the AD7292 can be applied to this pin. If this pin is  
unused, connect it to AGND  
.
EPAD  
The exposed pad is internally connected to AGND and can be soldered to the ground plane of the system.  
Rev. A | Page 9 of 40  
AD7292  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–20  
AV  
DV  
= 5V  
= 5V  
= 3V  
AV  
DV  
= 5V  
= 5.25V  
DD  
DD  
DD  
DD  
–20  
–40  
V
V
= 1.8V  
DRIVE  
DRIVE  
= 25°C  
T
T = 25°C  
A
fSAMPLE = 200kSPS  
A
fSAMPLE = 200kSPS  
RANGE = 0V TO V  
–40  
RANGE = 0V TO 2 × V  
REF  
REF  
SINGLE-ENDED MODE  
SNR = 61.6dB  
THD = –84.0dB  
SINAD = 61.49dB  
SFDR = 79.05dB  
DIFFERENTIAL MODE  
SNR = 61.798dB  
THD = –86.602dB  
SINAD = 61.784dB  
SFDR = 86.142dB  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 4. ADC FFT, 200 kSPS, fIN = 10 kHz, Single-Ended Mode  
Figure 7. ADC FFT, 200 kSPS, fIN = 10 kHz, Differential Mode  
0.3  
0.3  
0.2  
AV = DV = 5.25V  
DD  
DD  
AV = 4.75V  
DD  
T = 25°C  
A
V
= 1.8V  
DRIVE  
DV = 5.25V  
WCP INL = 0.091LSB  
WCN INL = –0.093LSB  
DD  
CHANNEL 3  
V
= 3.3V  
DRIVE  
0.2  
0.1  
INTERNAL REFERENCE  
CHANNEL 0 AND CHANNEL 1  
INTERNAL REFERENCE  
DIFFERENTIAL MODE, 0V TO V  
T
= 25°C  
A
WCP INL = 0.068LSB  
RANGE  
WCN INL = –0.255LSB  
REF  
0.1  
SINGLE-ENDED MODE, 0V TO 4 × V  
RANGE  
REF  
0
0
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
ADC CODE  
ADC CODE  
Figure 5. Typical ADC INL, Single-Ended Mode  
Figure 8. Typical ADC INL, Differential Mode  
0.3  
0.2  
0.25  
0.20  
0.15  
0.10  
0.05  
0
AV = DV = 5.25V  
T
= 25°C  
AV = 4.75V  
DD  
T = 25°C  
A
WCP INL = 0.067LSB  
WCN INL = –0.08LSB  
DD  
DD  
A
V
= 1.8V  
WCP DNL = 0.11LSB  
WCN DNL = –0.119LSB  
DV = 5.25V  
DRIVE  
DD  
CHANNEL 3  
INTERNAL REFERENCE  
SINGLE-ENDED MODE, 0V TO 4 × V  
V
= 3.3V  
DRIVE  
CHANNEL 0 AND CHANNEL 1  
INTERNAL REFERENCE  
DIFFERENTIAL MODE, 0V TO V  
RANGE  
REF  
RANGE  
REF  
0.1  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.1  
–0.2  
–0.3  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
ADC CODE  
ADC CODE  
Figure 6. Typical ADC DNL, Single-Ended Mode  
Figure 9. Typical ADC DNL, Differential Mode  
Rev. A | Page 10 of 40  
 
Data Sheet  
AD7292  
0.4  
0.3  
1.0  
AV  
DV  
= 5V  
= 3V  
AV  
DV  
= 5V  
= 3V  
DD  
DD  
DD  
DD  
0.8  
0.6  
V
f
= 3V  
V
f
= 3V  
DRIVE  
SAMPLE  
DRIVE  
SAMPLE  
= 225kSPS  
= 225kSPS  
INTERNAL REFERENCE  
SINGLE-ENDED MODE  
INTERNAL REFERENCE  
SINGLE-ENDED MODE  
0.2  
0.4  
0.1  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
0V TO V  
0V TO V  
0V TO 2 × V  
0V TO 2 × V  
0V TO 4 × V  
0V TO 4 × V  
, –INL  
, +INL  
0V TO V  
0V TO V  
0V TO 2 × V  
0V TO 2 × V  
0V TO 4 × V  
0V TO 4 × V  
, –DNL  
, +DNL  
REF  
REF  
REF  
REF  
, –INL  
, –DNL  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
, +INL  
, –INL  
, +INL  
, +DNL  
, –DNL  
, +DNL  
(AV  
(AV  
– 4 × V  
– 4 × V  
) TO AV , –INL  
(AV  
(AV  
– 4 × V  
– 4 × V  
) TO AV , –DNL  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
) TO AV , +INL  
) TO AV , +DNL  
DD  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. ADC INL vs. Temperature  
Figure 13. ADC DNL vs. Temperature  
3
2
5
4
AV  
DV  
V
= 5.25V  
= 5V  
AV  
DV  
V
= 5.25V  
= 5V  
DD  
DD  
DD  
DD  
= 3.3V  
= 3.3V  
DRIVE  
DRIVE  
f
= 200kSPS  
f
= 200kSPS  
SAMPLE  
3
SAMPLE  
INTERNAL REFERENCE  
INTERNAL REFERENCE  
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
0V TO V  
0V TO 2 × V  
0V TO 4 × V  
REF  
0V TO V  
0V TO 2 × V  
0V TO 4 × V  
REF  
REF  
REF  
REF DD  
REF  
REF  
(AV  
– 4 × V  
) TO AV  
DD  
(AV – 4 × V  
) TO AV  
DD  
DD  
REF  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Offset Error vs. Temperature, Single-Ended  
and Differential Modes  
Figure 14. ADC Gain Error vs. Temperature, Single-Ended  
and Differential Modes  
120  
–20  
–30  
115  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
AV – 4 × V  
0Ω  
220Ω  
510Ω  
0V TO V  
0V TO V  
0V TO V  
0V TO 2 × V  
0V TO 2 × V  
0V TO 2 × V  
0Ω  
220Ω  
510Ω  
DD  
REF,  
REF,  
REF,  
REF,  
REF,  
REF,  
AV – 4 × V  
DD  
AV – 4 × V  
DD  
–40  
0V TO 4 × V  
0Ω  
0Ω  
220Ω  
510Ω  
REF,  
REF,  
REF,  
REF,  
0V TO 4 × V  
0V TO 4 × V  
0V TO 4 × V  
220Ω  
430Ω  
510Ω  
–50  
REF,  
REF,  
REF,  
–60  
AV  
DV  
= 5V  
= 3V  
–70  
DD  
DD  
V
f
= 3V  
DRIVE  
–80  
= 250kSPS  
SAMPLE  
0V TO V  
0V TO 2 × V  
0V TO 4 × V  
REF  
T
= 25°C  
AV  
DV  
V
= 5V  
= 3V  
= 3V  
= 225kSPS  
A
–90  
DD  
DD  
DRIVE  
REF  
REF  
REF DD  
INTERNAL REFERENCE  
fIN = 10kHz  
(AV  
– 4 × V  
) TO AV  
–100  
–110  
–120  
DD  
f
SAMPLE  
T
FULL-SCALE SIGNAL ON CHANNEL,  
VIN0 TO VIN3 AND VIN5 TO VIN7  
INPUT FREQUENCY RAMPED MEASUREMENTS ON VIN4  
= 25°C  
A
INTERNAL REFERENCE  
100  
1k  
10k  
100k  
1M  
10M  
100M  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (kHz)  
Figure 12. THD vs. Input Frequency for Various Source Impedances,  
Single-Ended Mode  
Figure 15. ADC Channel-to-Channel Isolation  
Rev. A | Page 11 of 40  
AD7292  
Data Sheet  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
AV  
DV  
= 5V  
= 5V  
= 2.5V  
DD  
DD  
V
T
DRIVE  
= 25°C  
A
AV  
DV  
= 5V  
DD  
DD  
= V  
= 3V  
DRIVE  
fSAMPLE = 225kSPS  
ANALOG INPUT RANGE = AV – 4 × V  
DD REF  
T
= 25°C  
A
1k  
10k  
100k  
1M  
510  
511  
512  
LOAD RESISTANCE (Ω)  
OUTPUT CODE  
Figure 19. Reference Voltage vs. Load Resistance  
Figure 16. Histogram of Codes  
0.5  
0.3  
0.25  
0.15  
0.1  
0.05  
–0.1  
–0.3  
–0.05  
–0.15  
–0.25  
AV = 5.25V  
DD  
DV = 5V  
DD  
AV = 5.25V  
DD  
DV = 5V  
DD  
V
T
= 3.3V  
= 25°C  
V
T
= 3.3V  
= 25°C  
DRIVE  
DRIVE  
A
A
INTERNAL REFERENCE  
INTERNAL REFERENCE  
–0.5  
0
128  
256  
384  
512  
640 768 896  
1024  
0
128  
256  
384  
512  
640 768 896 1024  
DAC CODE  
DAC CODE  
Figure 17. Typical DAC INL vs. Output Code  
Figure 20. Typical DAC DNL vs. Output Code  
1.0  
0.9  
1.0  
0.9  
0.8  
0.8  
0.7  
0.7  
0.6  
0.6  
0.5  
0.5  
0.4  
0.4  
0.3  
0.3  
0.2  
0.1  
0
0.2  
0.1  
0
DNL MAX  
DNL MIN  
INL MAX  
INL MIN  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
–40  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
AV  
DV  
= 5.25V  
= 5V  
AV  
DV  
V
= 5.25V  
= 5V  
DD  
DD  
DD  
DD  
V
= 3.3V  
= 3.3V  
DRIVE  
DRIVE  
INTERNAL REFERENCE  
INTERNAL REFERENCE  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. DAC INL vs. Temperature  
Figure 21. DAC DNL vs. Temperature  
Rev. A | Page 12 of 40  
Data Sheet  
AD7292  
0.4  
0.3  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DV  
= 5V  
= 3.3V  
DD  
V
DRIVE  
INTERNAL REFERENCE  
0.2  
0.1  
0
AV = 5.25V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
AV  
= 5.25V  
AV = 4.75V  
DD  
DD  
DV  
V
= 5V  
DD  
= 3.3V  
DRIVE  
AV  
= 4.75V  
0
INTERNAL REFERENCE  
60 80 100 120  
TEMPERATURE (°C)  
DD  
–40  
–20  
0
20  
40  
–40  
–20  
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 22. DAC Offset Error vs. Temperature  
Figure 25. DAC Gain Error vs. Temperature  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
4.996  
AV = 5.25V  
DD  
DV = 5V  
4.995  
4.994  
4.993  
4.992  
4.991  
4.990  
4.989  
4.988  
DD  
V
= 3.3V  
DRIVE  
INTERNAL REFERENCE  
CODE = 0x3FF  
T
= 25°C  
A
AV = 5.25V  
DD  
DV = 5V  
DD  
V
= 3.3V  
DRIVE  
INTERNAL REFERENCE  
CODE = 0x000  
T
= 25°C  
A
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
SINK CURRENT (mA)  
SOURCE CURRENT (mA)  
Figure 23. DAC Source Current (Full Scale)  
Figure 26. DAC Sink Current (Zero Scale)  
1.255  
1.254  
1.253  
1.252  
1.251  
1.250  
1.249  
1.248  
1.247  
1.246  
1.245  
2.510  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
AV = DV = V  
DD DD DRIVE  
10 DEVICES  
= 5V  
AV  
DV = 5V  
= 5.25V  
DD  
DD  
V
= 3.3V  
DRIVE  
INTERNAL REFERENCE  
CODE = 0x200  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 27. Reference Voltage vs. Temperature  
Figure 24. DAC Output Voltage vs. Load Current (Midscale)  
Rev. A | Page 13 of 40  
AD7292  
Data Sheet  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
AV = DV = V = 5V  
DRIVE  
10 DEVICES  
DD  
DD  
AVDD = 5V, DVDD = 3V, VDRIVE = 3V, SCLK VARIED  
AVDD = 5.25V, DVDD = 5.25V, VDRIVE = 5.25V, SCLK FIXED, 25MHz  
AVDD = 4.75V, DVDD = 1.8V, VDRIVE = 1.8V, SCLK FIXED, 15 MHz  
–0.2  
–0.4  
–40  
0
100  
200  
300  
400  
500  
600  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
SAMPLING FREQUENCY (kHz)  
Figure 28. Temperature Sensor Error vs. Temperature  
Figure 30. Total Supply Current vs. Throughput Rate  
80  
70  
60  
50  
40  
30  
20  
10  
0
AV  
DV  
= 5V  
= 3V  
= 3V  
DD  
DD  
V
T
DRIVE  
= 25°C  
0V TO V  
0V TO 2 × V  
0V TO 4 × V  
A
REF  
fSAMPLE = 225kSPS  
INTERNAL REFERENCE  
REF  
REF  
1k  
10k  
100k  
1M  
10M  
POWER SUPPLY RIPPLE FREQUENCY (Hz)  
Figure 29. PSRR vs. Power Supply Ripple Frequency  
Rev. A | Page 14 of 40  
Data Sheet  
AD7292  
THEORY OF OPERATION  
ANALOG INPUTS  
V
V
IN+  
IN–  
VIN0  
V
V
p-p  
p-p  
REF  
REF  
The AD7292 has eight analog input channels. By default, these  
channels are configured as single-ended inputs. Differential  
operation is also available by configuring VIN0 and VIN1 to  
operate as a differential pair.  
AD7292  
COMMON-MODE  
VOLTAGE  
VIN1  
Single-Ended Mode  
Figure 32. Differential Analog Input  
In applications where the signal source has high impedance, it  
is recommended that the analog input be buffered before it is  
applied to the ADC.  
The amplitude of the differential signal is the difference  
between the signals applied to the input pins of the differential  
pair, VIN0 and VIN1. The resulting converted data is stored in  
straight binary format in the ADC data register. VIN0 and VIN1  
should be simultaneously driven by two signals that are 180° out  
of phase; each signal should be of maximum amplitude VREF  
2 × VREF, or 4 × VREF, depending on the selected range.  
The analog input range is programmed to one of these values:  
0 V to VREF, 0 V to 2 × VREF, or 0 V to 4 × VREF. For information  
about programming the input range, see the VIN RANGE0 and  
VIN RANGE1 Subregisters (Address 0x10 and Address 0x11)  
section.  
,
Therefore, if the 0 V to VREF range is selected, the amplitude of  
the differential signal is −VREF to +VREF peak-to-peak (2 × VREF),  
regardless of the common-mode voltage (VCM).  
In 0 V to 2 × VREF mode, the input is scaled by a factor of 2 before  
the conversion takes place. In 0 V to 4 × VREF mode, the input  
is scaled by a factor of 4 before the conversion takes place. Note  
that the voltage with respect to AGND on the ADC analog input  
The common-mode voltage is the average of the two signals.  
pins cannot exceed AVDD  
.
VCM = (VIN+ + VIN−)/2  
If the analog input signal to be sampled is bipolar, the internal  
reference of the ADC can be used to externally bias this signal  
up so that it is correctly formatted for the ADC. Figure 31 shows  
a typical connection diagram when operating the ADC in single-  
ended mode with a bipolar 0.625 V input signal.  
+1.25V  
The common-mode voltage is, therefore, the voltage on which  
the two inputs are centered; the resulting span for each input is  
VCM VREF/2. This voltage must be set up externally. When the  
inputs are driven with an amplifier, the actual common-mode  
range is determined by the output voltage swing of the amplifier  
and the input common-mode range of the AD7292. The common-  
mode voltage must be in this range to guarantee the functionality  
of the AD7292 (see Figure 33). When a conversion takes place,  
the common-mode voltage is rejected, resulting in a virtually  
R
0V  
+0.625V  
R
V
0V  
IN  
VIN0  
VIN7  
3R  
noise-free signal of amplitude −VREF to +VREF  
.
–0.625V  
AD7292  
R
69  
REF  
OUT  
DIFFERENTIAL MODE  
AV  
DV  
= 5V  
= 3V  
= 3V  
DD  
67  
65  
63  
61  
59  
57  
DD  
V
T
DRIVE  
= 25°C  
0.47µF  
fSAAMPLE = 225kSPS  
INTERNAL REFERENCE  
Figure 31. Interfacing to a Bipolar Input Signal  
Differential Mode  
The AD7292 can be configured to have one differential analog  
input pair (VIN0 and VIN1). Differential signals have some  
benefits over single-ended signals, including noise immunity  
based on the common-mode rejection of the device and improve-  
ments in distortion performance. Figure 32 shows the fully  
differential analog input of the AD7292.  
1 × V  
REF  
2 × V  
4 × V  
REF  
REF  
55  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
COMMON-MODE VOLTAGE (V)  
Figure 33. Common-Mode Voltage (Dependent on Input Range)  
Rev. A | Page 15 of 40  
 
 
 
 
 
AD7292  
Data Sheet  
The LSB size depends on the input range selected (see Table 9).  
ADC TRANSFER FUNCTIONS  
The output coding of the AD7292 is 10-bit straight binary for the  
analog input channels. The designated code transitions occur at  
successive LSB values.  
Table 9. Input Range and LSB Size  
Input Range  
LSB Size  
VREF/210  
0 V to VREF  
0 V to 2 × VREF  
0 V to 4 × VREF  
2VREF/210  
4VREF/210  
To select the input range, set the appropriate bits in the VIN  
RANGE1 and VIN RANGE0 subregisters of the configuration  
register bank (see Table 10).  
The ideal transfer function for the AD7292 when operating  
with an input range of 0 V to VREF is shown in Figure 34.  
Table 10. Analog Input Range Selection  
2
Sample with Respect to AGND  
Sample with Respect to AVDD  
Single-Ended Input Range  
(VIN0 to VIN7)  
Subregister Bit Settings1  
Single-Ended Input Range Differential Input Range  
VIN RANGE1  
VIN RANGE0  
(VIN0 to VIN7)  
0 V to 4 × VREF  
0 V to 2 × VREF  
0 V to 2 × VREF  
0 V to VREF  
(VIN0 and VIN1 Only)  
−4 × VREF to +4 × VREF  
−2 × VREF to +2 × VREF  
−2 × VREF to +2 × VREF  
−VREF to +VREF  
0
0
1
1
0
1
0
1
(AVDD − 4 × VREF) to AVDD  
Not applicable  
Not applicable  
Not applicable  
1 For more information, see the ADC Sampling Mode Subregister (Address 0x12) section.  
2 The contents of the VIN RANGE0 and VIN RANGE1 subregisters are ignored when the AD7292 is configured to sample with respect to AVDD; the only input range  
allowed when sampling with respect to AVDD is from (AVDD − 4 × VREF) to AVDD  
.
111...111  
111...110  
111...000  
011...111  
1LSB = V  
/1024  
REF  
000...010  
000...001  
000...000  
0V  
1LSB  
+V  
– 1LSB  
REF  
ANALOG INPUT  
NOTES  
1. V  
IS 1.25V.  
REF  
2. INPUT RANGE IS 0V TO V  
.
REF  
Figure 34. Straight Binary Transfer Characteristic Corresponding to Single-Ended Input Range of 0 V to VREF  
Table 11. Output Codes and Ideal Input Voltages (AVDD = 5 V)  
Analog Input Range  
Single-Ended Mode of Operation  
Differential Mode of Operation  
0 V to  
4 × VREF  
0 V to  
2 × VREF  
(AVDD − 4 × VREF  
to AVDD  
)
−4 × VREF to  
−2 × VREF to  
+2 × VREF  
Digital Output  
−VREF to +VREF Code (Hex)  
Description  
+FSR − 1 LSB  
Midscale + 1 LSB  
Midscale  
Midscale − 1 LSB  
−FSR + 1 LSB  
−FSR  
0 V to VREF  
+4 × VREF  
4.990234 V  
0.009766 V  
0 V  
−0.009766 V  
4.995117 V  
−5 V  
4.995117 V  
2.504883 V  
2.5 V  
2.495117 V  
0.004883 V  
0 V  
2.497559 V 1.248779 V 4.995117 V  
1.252441 V 0.626221 V 2.504883 V  
1.25 V  
1.247559 V 0.623779 V 2.495117 V  
0.002441 V 0.001221 V 0.004883 V  
0 V  
2.495117 V  
0.004883 V  
0 V  
−0.004883 V  
−2.495117 V  
−2.5 V  
1.247559 V  
0.002441 V  
0 V  
−0.002441 V  
−1.247559 V  
−1.25 V  
0x3FF  
0x201  
0x200  
0x1FF  
0x001  
0x000  
0.625 V  
2.5 V  
0 V  
0 V  
Rev. A | Page 16 of 40  
 
 
 
 
Data Sheet  
AD7292  
TEMPERATURE SENSOR  
DAC OPERATION  
The AD7292 contains one local temperature sensor. The on-chip,  
band gap temperature sensor measures the temperature of the  
AD7292 die. The temperature sensor input gathers data and  
computes a value over a period of several hundred microseconds.  
The temperature measurement takes place continuously in the  
background, leaving the user free to perform conversions on the  
other channels.  
The four DACs of the AD7292 provide digital control with 10 bits  
of resolution. DAC outputs VOUT0 to VOUT3 feature an output  
voltage range up to 5 V (LSB of 4.88 mV).  
The DAC output buffer can be controlled via software using the  
GPIO2/DAC DISABLE0 and GPIO4/DAC DISABLE1 subregisters  
within the configuration register bank, or via hardware using  
the GPIO2/DAC DISABLE0 and GPIO4/DAC DISABLE1 pins.  
After a temperature value is computed, a signal passes to the  
control logic to initiate a conversion automatically. If an ADC  
conversion is in progress, the temperature sensor conversion is  
performed as soon as the ADC conversion is completed. If the  
ADC is idle, the temperature sensor conversion takes place  
immediately.  
DIGITAL I/O PINS  
To aid in system monitoring, the AD7292 features 12 digital I/O  
pins. All 12 pins can be configured as GPIO pins. Six of the digital  
I/O pins can be configured for other functionality; on power-up,  
the non-GPIO functionality of these six pins is enabled by default.  
For more information, see the Digital Output Driver Subregister  
(Address 0x01) section and the Digital I/O Function Subregister  
(Address 0x02) section.  
The TSENSE conversion result register stores the result of the last  
conversion on the temperature channel; this result can be read at  
any time provided that the temperature sensor is enabled via the  
temperature sensor subregister within the configuration register  
bank (see the Temperature Sensor Subregister (Address 0x20)  
section).  
GPIO0/ALERT0 and GPIO1/ALERT1 Pins  
When Pin 27 and Pin 26 (GPIO0/ALERT0 and GPIO1/ALERT1,  
respectively) are configured as alert pins, they act as out-of-range  
indicators that become active when the selected conversion result  
exceeds the high or low limit stored in the alert limits register bank.  
The polarity of the alert output pins can be set to active high or  
active low via the general subregister within the configuration  
register bank (see the General Subregister (Address 0x08) section).  
Temperature readings from the ADC are stored in the TSENSE  
conversion result register. Results are in 14-bit straight binary  
format and accommodate both positive and negative tempera-  
ture measurements. Bit D0 and Bit D1 hold alert flags; Bit D2  
stores the LSB, which corresponds to 0.03125°C if the digital  
filter is enabled.  
GPIO2/DAC DISABLE0 and GPIO4/DAC DISABLE1 Pins  
When Pin 25 and Pin 23 (GPIO2/DAC DISABLE0 and GPIO4/  
DAC DISABLE1, respectively) are configured as DAC disable pins,  
they can be used to power down the selected DAC outputs, as  
determined by the contents of the GPIO2/DAC DISABLE0 and  
GPIO4/DAC DISABLE1 subregisters within the configuration  
register bank. For more information, see the GPIO2/DAC  
DISABLE0 and GPIO4/DAC DISABLE1 Subregisters (Address  
0x30 and Address 0x31) section.  
Table 12 provides examples of temperature sensor data. An output  
of all 0s is equal to −256°C; this value is output by the AD7292  
until the first measurement is completed. Note that when digital  
filtering is disabled, Bit D3 and Bit D2 of the TSENSE conversion  
result register are set to 0, producing a 12-bit straight binary result  
with an LSB of 0.125°C. When the TSENSE conversion result is  
read via the ADC data register (Address 0x01), the temperature  
sensor result is a 10-bit result with an LSB that equates to 0.5°C.  
GPIO3/LDAC Pin  
Table 12. Temperature Sensor Data Format  
When Pin 24 (GPIO3/LDAC) is configured as an LDAC pin,  
the DAC registers are updated when this input pin is taken high.  
T
SENSE Conversion Result Register,  
Temperature (°C)  
Bits[D15:D2]  
−40  
−25  
−10  
−0.03125  
0
+0.03125  
+10  
+25  
+50  
+75  
01 1011 0000 0000  
01 1100 1110 0000  
01 1110 1100 0000  
01 1111 1111 1111  
10 0000 0000 0000  
10 0000 0000 0001  
10 0001 0100 0000  
10 0011 0010 0000  
10 0110 0100 0000  
10 1001 0110 0000  
10 1100 1000 0000  
10 1111 1010 0000  
GPIO6/BUSY Pin  
Pin 21 (GPIO6/BUSY) can be configured as a general-purpose  
input/output or as a busy output pin. When configured as a busy  
output pin, this pin transitions high when a conversion starts  
and remains high until the conversion is completed.  
+100  
+125  
Rev. A | Page 17 of 40  
 
 
 
 
AD7292  
Data Sheet  
SERIAL PORT INTERFACE (SPI)  
The AD7292 serial port interface (SPI) allows the user to  
configure the device for specific functions and operations  
through an internal structured register space. The interface  
Table 13. Address Pointer  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R
W
Register select  
CS  
consists of four signals: , SCLK, DIN, and DOUT. The SPI  
After the address pointer, subsequent data for writing to the part  
is supplied in bytes (see Figure 36). Some registers are located  
within register banks and, therefore, require both a pointer address  
and a subpointer address. The subpointer address is specified  
in the first byte following the pointer address (see Figure 37).  
Figure 36 through Figure 38 show the read and write data formats.  
These figures show read operations; for a write to a register or  
subregister, the write bit is set and the DOUT line remains high  
impedance.  
reference level is set by Pin 5 (VDRIVE) to a level in the range of  
1.8 V to 5.25 V.  
SCLK is the serial clock input for the device; all data transfers  
on DIN or DOUT take place with respect to SCLK. The chip  
CS  
select input pin ( ) is an active low control that initiates the  
data transfer and conversion process.  
Data is clocked into the AD7292 on the SCLK falling edge.  
Data is loaded into the device MSB first. The length of each  
frame can vary and depends on the command being sent. Data  
is clocked out of the AD7292 on DOUT in the same frame as  
If neither the read nor write bit is set (Bit D7 and Bit D6 of the  
address pointer are set to 0), the address pointer is updated but  
no data is read or written. Note that writing this command also  
reinitializes the ADC sequencer (see the ADC Conversion  
Control section).  
CS  
the read command, on the rising edge of SCLK while  
is low.  
CS  
When  
is high, the SCLK and DIN signals are ignored and  
the DOUT line becomes high impedance.  
On completion of a read or write, the AD7292 is ready to accept  
INTERFACE PROTOCOL  
CS  
a new pointer address; alternatively, the  
to terminate the operation.  
pin can be taken high  
When reading from or writing to the AD7292, the first byte con-  
tains the address pointer (see Table 13). Bit D7 and Bit D6 of the  
address pointer are the read and write bits, respectively. Bit D5 to  
Bit D0 of the address pointer specify the register address for the  
read or write operation. A register can be simultaneously read  
from and written to by setting both Bit D7 and Bit D6 to 1.  
2
BUSY  
t7  
t8  
t3  
CS  
t11  
t2  
t1  
t4  
SCLK  
t5  
t6  
DIN  
X
R
W
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
X
t10  
HIGH-Z  
HIGH-Z  
t12  
1
LSB  
DOUT  
t9  
1
2
PROVIDED THE READ BIT IS SET.  
IF AN ADC CONVERSION IS REQUESTED.  
t7 = 5ns IF NO ADC CONVERSION  
955ns WITH ADC CONVERSION  
Figure 35. Serial Interface Timing Diagram  
CS  
DIN  
R
W
POINTER [D5:D0]  
DIN [D15:D8]  
DIN [D7:D0]  
1
DOUT [D15:D0]  
DOUT  
1
PROVIDED THE READ BIT IS SET.  
Figure 36. Accessing a 16-Bit Register  
Rev. A | Page 18 of 40  
 
 
 
 
Data Sheet  
AD7292  
CS  
DIN  
R
W
POINTER [D5:D0]  
SUBPOINTER [D7:D0]  
DIN [D7:D0]  
1
DOUT [D7:D0]  
DOUT  
1
PROVIDED THE READ BIT IS SET.  
Figure 37. Accessing an 8-Bit Subregister Within a Register Bank  
CS  
DIN  
R
W
POINTER [D5:D0]  
SUBPOINTER [D7:D0]  
DIN [D15:D8]  
DIN [D7:D0]  
1
DOUT [D15:D0]  
DOUT  
1
PROVIDED THE READ BIT IS SET.  
Figure 38. Accessing a 16-Bit Subregister Within a Register Bank  
Rev. A | Page 19 of 40  
 
 
AD7292  
Data Sheet  
REGISTER STRUCTURE  
The AD7292 contains internal registers that store conversion  
results, high and low conversion limits, and information to  
configure and control the device (see Figure 39). Each register  
has an address; the address pointer register points to the address  
when communicating with the register. Some registers and sub-  
registers contain reserved bits. The AD7292 allows either a 0 or  
a 1 to be written to these reserved bits.  
Table 14 lists each register and specifies whether the register has  
read access or read and write access.  
Table 14. AD7292 Registers  
Data  
Address Register Name  
Access1 Format  
0x00  
0x01  
0x03  
0x05  
0x06  
0x07  
0x08  
Vendor ID register  
ADC data register  
R
R
Figure 36  
Figure 36  
Figure 36  
Figure 38  
Figure 38  
Figure 38  
Figure 38  
ADC sequence register  
Configuration register bank  
Alert limits register bank  
Alert flags register bank  
Minimum and maximum  
register bank  
R/W  
R/W  
R/W  
R/W  
R/W  
VENDOR ID  
REGISTER  
ADC DATA  
ADC SEQUENCE  
REGISTER  
CONFIGURATION  
REGISTER BANK  
0x09  
0x0A  
0x0B  
0x0E  
0x10  
Offset register bank  
DAC buffer enable register  
GPIO register  
R/W  
R/W  
R/W  
N/A  
R
Figure 37  
Figure 36  
Figure 36  
N/A  
ALERT LIMITS  
REGISTER BANK  
Conversion command2  
ALERT FLAGS  
REGISTER BANK  
ADC conversion result register,  
Channel 0  
Figure 36  
ADDRESS  
POINTER  
REGISTER  
MINIMUM AND MAXIMUM  
REGISTER BANK  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
ADC conversion result register,  
Channel 1  
ADC conversion result register,  
Channel 2  
ADC conversion result register,  
Channel 3  
ADC conversion result register,  
Channel 4  
ADC conversion result register,  
Channel 5  
ADC conversion result register,  
Channel 6  
ADC conversion result register,  
Channel 7  
R
R
R
R
R
R
R
Figure 36  
Figure 36  
Figure 36  
Figure 36  
Figure 36  
Figure 36  
Figure 36  
OFFSET  
REGISTER BANK  
DAC BUFFER  
ENABLE REGISTER  
GPIO  
REGISTER  
CONVERSION  
COMMAND  
ADC CONVERSION  
RESULT REGISTERS × 8  
T
CONVERSION  
SENSE  
RESULT REGISTER  
DAC CHANNEL  
REGISTERS × 4  
DIN  
0x20  
0x30  
0x31  
0x32  
0x33  
TSENSE conversion result register  
DAC Channel 0 register  
DAC Channel 1 register  
DAC Channel 2 register  
DAC Channel 3 register  
R
Figure 36  
Figure 36  
Figure 36  
Figure 36  
Figure 36  
SCLK  
DOUT  
CS  
SERIAL BUS INTERFACE  
R/W  
R/W  
R/W  
R/W  
Figure 39. AD7292 Register Structure  
1 R is read only; R/W is read/write.  
2 See the ADC Conversion Command section for more information.  
Rev. A | Page 20 of 40  
 
 
 
Data Sheet  
AD7292  
REGISTER DESCRIPTIONS  
VENDOR ID REGISTER (ADDRESS 0x00)  
CONFIGURATION REGISTER BANK (ADDRESS 0x05)  
The 16-bit, read-only vendor ID register stores the Analog  
Devices vendor ID, 0x0018. The vendor ID register is provided  
to identify the AD7292 to an SPI master such as a microcontroller.  
The configuration register bank subregisters are listed in Table 15.  
On power-up, the subregisters within the configuration register  
bank contain all 0s by default.  
ADC DATA REGISTER (ADDRESS 0x01)  
Table 15. Configuration Register Bank Subregisters  
Subaddress (Hex) Subregister Name1  
The 16-bit, read-only ADC data register provides read access to  
the most recent ADC conversion result. This register provides  
10 bits of conversion data, four channel identifier bits, and two  
alert bits (see the ADC Conversion Control section).  
0x01  
0x02  
0x08  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x20  
0x21  
0x30  
0x31  
Digital output driver  
Digital I/O function  
General  
VIN RANGE0  
VIN RANGE1  
ADC SEQUENCE REGISTER (ADDRESS 0x03)  
The 16-bit, read/write ADC sequence register allows the user to  
specify a preprogrammed sequence of ADC channels for conver-  
sion. The ADC converts on each of the specified ADC channels  
in turn. For more information, see the ADC Conversion Control  
section. Table 16 describes the register bit functions. Bit D15 is  
the first bit in the data stream. On power-up, the ADC sequence  
register contains all 0s by default.  
ADC sampling mode  
VIN filter  
Conversion delay control  
VIN ALERT0 routing  
VIN ALERT1 routing  
Temperature sensor  
Temperature sensor alert routing  
GPIO2/DAC DISABLE0  
GPIO4/DAC DISABLE1  
Temperature sensor results can be inserted into the sequence by  
writing a 1 to Bit D8 of the ADC sequence register, provided that  
the temperature sensor has been enabled in the temperature  
sensor subregister within the configuration register bank (see  
the Temperature Sensor Subregister (Address 0x20) section).  
1 All subregisters in the configuration register bank are read/write.  
Table 16. ADC Sequence Register, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D9]  
D8  
Reserved  
TSENSE readback enable  
Reserved  
0 = disable TSENSE readback  
1 = enable TSENSE readback  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ADC Channel 7 convert  
ADC Channel 6 convert  
ADC Channel 5 convert  
ADC Channel 4 convert  
ADC Channel 3 convert  
ADC Channel 2 convert  
ADC Channel 1 convert  
ADC Channel 0 convert  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = disable conversion of Channel 7  
1 = enable conversion of Channel 7  
0 = disable conversion of Channel 6  
1 = enable conversion of Channel 6  
0 = disable conversion of Channel 5  
1 = enable conversion of Channel 5  
0 = disable conversion of Channel 4  
1 = enable conversion of Channel 4  
0 = disable conversion of Channel 3  
1 = enable conversion of Channel 3  
0 = disable conversion of Channel 2  
1 = enable conversion of Channel 2  
0 = disable conversion of Channel 1  
1 = enable conversion of Channel 1  
0 = disable conversion of Channel 0  
1 = enable conversion of Channel 0  
Rev. A | Page 21 of 40  
 
 
 
 
 
 
 
AD7292  
Data Sheet  
Digital Output Driver Subregister (Address 0x01)  
Digital I/O Function Subregister (Address 0x02)  
The 16-bit digital output driver subregister enables the output  
drivers of the digital I/O pins. Setting Bits[D11:D0] to 1 enables  
the corresponding digital I/O output driver. Six of the 12 digital  
I/O pins offer mixed functionality (see Table 18). When a digital  
I/O pin is configured as a GPIO pin and its output is enabled, its  
value is controlled by the GPIO register (see the GPIO Register  
(Address 0x0B) section).  
Six of the 12 GPIO pins offer dual functionality. To enable  
standard GPIO functionality, write a 1 to the corresponding  
bit in the 16-bit digital I/O subregister. To enable the alternative  
functionality, write a 0 to the appropriate bit (see Table 18). For  
example, to configure the GPIO6/BUSY pin as an ADC busy pin,  
write a 0 to Bit D6 of Address 0x02.  
Table 17. Digital Output Driver Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
[D15:D12] Reserved  
Reserved  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO11 output  
0 = disable GPIO11 output driver; 1 = enable GPIO11 output driver  
0 = disable GPIO10 output driver; 1 = enable GPIO10 output driver  
0 = disable GPIO9 output driver; 1 = enable GPIO9 output driver  
0 = disable GPIO8 output driver; 1 = enable GPIO8 output driver  
0 = disable GPIO7 output driver; 1 = enable GPIO7 output driver  
0 = disable GPIO6 output driver; 1 = enable GPIO6/BUSY output driver  
0 = disable GPIO5 output driver; 1 = enable GPIO5 output driver  
0 = disable GPIO4 output driver; 1 = enable GPIO4/DAC DISABLE1 output driver  
0 = disable GPIO3 output driver; 1 = enable GPIO3/LDAC output driver  
0 = disable GPIO2 output driver; 1 = enable GPIO4/DAC DISABLE0 output driver  
0 = disable GPIO1 output driver; 1 = enable GPIO1/ALERT1 output driver  
0 = disable GPIO0 output driver; 1 = enable GPIO1/ALERT0 output driver  
GPIO10 output  
GPIO9 output  
GPIO8 output  
GPIO7 output  
GPIO6 output  
GPIO5 output  
GPIO4 output  
GPIO3 output  
GPIO2 output  
GPIO1 output  
GPIO0 output  
Table 18. Digital I/O Function Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D12] Reserved  
Reserved  
0 = reserved  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO11  
1 = enable the GPIO11 function  
0 = reserved  
1 = enable the GPIO10 function  
0 = reserved  
1 = enable the GPIO9 function  
0 = reserved  
1 = enable the GPIO8 function  
0 = reserved  
1 = enable the GPIO7 function  
0 = enable the ADC busy output function  
1 = enable the GPIO6 function  
0 = reserved  
1 = enable the GPIO5 function  
0 = enable the DAC DISABLE1 input function  
1 = enable the GPIO4 function  
0 = enable the LDAC input function  
1 = enable the GPIO3 function  
0 = enable the DAC DISABLE0 input function  
1 = enable the GPIO2 function  
0 = enable the ALERT1 output function  
1 = enable the GPIO1 function  
GPIO10  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
GPIO9  
GPIO8  
GPIO7  
GPIO6/BUSY  
GPIO5  
GPIO4/DAC DISABLE1  
GPIO3/LDAC  
GPIO2/DAC DISABLE0  
GPIO1/ALERT1  
GPIO0/ALERT0  
0 = enable the ALERT0 output function  
1 = enable the GPIO0 function  
Rev. A | Page 22 of 40  
 
 
 
Data Sheet  
AD7292  
General Subregister (Address 0x08)  
Bit D5 and Bit D4 of the general subregister are used to configure  
the polarity of the ALERT output pins when the GPIO1/ALERT1  
and GPIO0/ALERT0 pins are configured as alert outputs (see the  
Digital Output Driver Subregister (Address 0x01) section and  
the Digital I/O Function Subregister (Address 0x02) section).  
When the GPIO2/DAC DISABLE0 and GPIO4/DAC DISABLE1  
pins are configured as DAC disable pins (via the digital I/O func-  
tion subregister), Bits[D2:D1] of the 16-bit general subregister  
control the power disable mode of these two pins. Table 19 shows  
the four power disable modes. The GPIO2/DAC DISABLE0 and  
GPIO4/DAC DISABLE1 subregisters determine which DAC out-  
puts are controlled by the GPIO2/DAC DISABLE0 and GPIO4/  
DAC DISABLE1 pins (see Table 29 and Table 30).  
Bit D8 is used to select the source of the voltage reference used  
for the AD7292. When this bit is set to 1, the external reference  
is used. When this bit is set to 0, the internal reference is used.  
Table 19. General Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D9]  
D8  
Reserved  
Reference mode  
Reserved.  
This bit specifies whether the internal reference or an external reference is used.  
0 = internal reference used (default).  
1 = external reference used.  
[D7:D6]  
D5  
Reserved  
ALERT1 polarity  
R/W  
R/W  
Reserved.  
When the GPIO1/ALERT1 pin is configured to function as an alert, this bit sets the polarity  
of the ALERT1 pin.  
0 = active low (default).  
1 = active high.  
D4  
ALERT0 polarity  
R/W  
When the GPIO0/ALERT0 pin is configured to function as an alert, this bit sets the polarity  
of the ALERT0 pin.  
0 = active low (default).  
1 = active high.  
D3  
[D2:D1]  
Reserved  
DAC disable mode  
R/W  
R/W  
Reserved.  
These bits control the disable mode of the GPIO2/DAC DISABLE0 and GPIO4/DAC DISABLE1  
pins when these pins are configured to function as DAC disable pins.  
00 = 1 kΩ and 100 kΩ resistors in parallel to ground (default).  
01 = 100 kΩ resistor to ground.  
10 = 1 kΩ resistor to ground.  
11 = high impedance.  
D0  
Reserved  
R/W  
Reserved.  
Rev. A | Page 23 of 40  
 
 
AD7292  
Data Sheet  
VIN RANGE0 and VIN RANGE1 Subregisters  
(Address 0x10 and Address 0x11)  
each channel; that is, setting Bit D0 of VIN RANGE1 and Bit D0  
of VIN RANGE0 enables a divide-by-4 factor for the VIN0 input  
range. The settings of the VIN RANGE0 and VIN RANGE1 bits  
are ignored if samples are with respect to AVDD (see the ADC  
Sampling Mode Subregister (Address 0x12) section).  
The 16-bit VIN RANGE0 and VIN RANGE1 subregisters  
specify a divide-by-2 factor for each analog input channel,  
VIN0 to VIN7. A divide-by-2 factor from both the VIN  
RANGE0 and VIN RANGE1 subregisters can be applied to  
Table 20. VIN RANGE0 and VIN RANGE1 Subregisters, Bit Function Descriptions (Default = 0)  
Bits  
[D15:D8]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Bit Name  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved  
VIN7 range  
VIN6 range  
VIN5 range  
VIN4 range  
VIN3 range  
VIN2 range  
VIN1 range  
VIN0 range  
Analog input range for VIN7 (see Table 21)  
Analog input range for VIN6 (see Table 21)  
Analog input range for VIN5 (see Table 21)  
Analog input range for VIN4 (see Table 21)  
Analog input range for VIN3 (see Table 21)  
Analog input range for VIN2 (see Table 21)  
Analog input range for VIN1 (see Table 21)  
Analog input range for VIN0 (see Table 21)  
D0  
Table 21. Analog Input Range Selection  
Subregister Bit Settings  
Sample with Respect to AGND  
Sample with Respect to AVDD  
Single-Ended Input Range  
(VIN0 to VIN7)  
Single-Ended Input Range Differential Input Range  
VIN RANGE1  
VIN RANGE0  
(VIN0 to VIN7)  
0 V to 4 × VREF  
0 V to 2 × VREF  
0 V to 2 × VREF  
0 V to VREF  
(VIN0 and VIN1 Only)  
−4 × VREF to +4 × VREF  
−2 × VREF to +2 × VREF  
−2 × VREF to +2 × VREF  
−VREF to +VREF  
0
0
1
1
0
1
0
1
(AVDD − 4 × VREF) to AVDD  
Not applicable  
Not applicable  
Not applicable  
Rev. A | Page 24 of 40  
 
 
Data Sheet  
AD7292  
ADC Sampling Mode Subregister (Address 0x12)  
input to the ADC is (VIN0, VIN1). When enabled and convert-  
ing on VIN1, the differential input to the ADC is (VIN1, VIN0).  
To use differential mode, Bit D0 must be set to 1.  
Table 22 lists the bit function descriptions for the 16-bit ADC  
sampling mode subregister. Bit D0 allows the user to enable  
differential input mode for analog input channels VIN0 and  
VIN1. When enabled and converting on VIN0, the differential  
Bits[D15:D8] specify whether the corresponding analog input,  
VIN7 to VIN0, is measured with respect to AVDD or AGND  
.
Table 22. ADC Sampling Mode Subregister, Bit Function Descriptions (Default = 0)  
Bits  
Bit Name  
R/W  
Description  
D15  
VIN7 sampling mode  
R/W  
This bit specifies whether VIN7 is measured with respect to AVDD or AGND  
.
.
.
.
.
.
.
.
0 = sample with respect to AVDD.  
1 = sample with respect to AGND  
.
D14  
D13  
D12  
D11  
D10  
D9  
VIN6 sampling mode  
VIN5 sampling mode  
VIN4 sampling mode  
VIN3 sampling mode  
VIN2 sampling mode  
VIN1 sampling mode  
VIN0 sampling mode  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
This bit specifies whether VIN6 is measured with respect to AVDD or AGND  
0 = sample with respect to AVDD.  
1 = sample with respect to AGND  
.
This bit specifies whether VIN5 is measured with respect to AVDD or AGND  
0 = sample with respect to AVDD.  
1 = sample with respect to AGND  
.
This bit specifies whether VIN4 is measured with respect to AVDD or AGND  
0 = sample with respect to AVDD.  
1 = sample with respect to AGND  
.
This bit specifies whether VIN3 is measured with respect to AVDD or AGND  
0 = sample with respect to AVDD.  
1 = sample with respect to AGND  
.
This bit specifies whether VIN2 is measured with respect to AVDD or AGND  
0 = sample with respect to AVDD.  
1 = sample with respect to AGND  
.
This bit specifies whether VIN1 is measured with respect to AVDD or AGND  
0 = sample with respect to AVDD.  
1 = sample with respect to AGND  
.
D8  
This bit specifies whether VIN0 is measured with respect to AVDD or AGND  
0 = sample with respect to AVDD.  
1 = sample with respect to AGND  
.
[D7:D1]  
D0  
R/W  
R/W  
Reserved.  
VIN0/VIN1 differential  
mode  
This bit specifies whether VIN0 and VIN1 function as two single-ended inputs or as a  
differential pair.  
0 = single-ended mode.  
1 = differential mode.  
Rev. A | Page 25 of 40  
 
 
AD7292  
Data Sheet  
VIN Filter Subregister (Address 0x13)  
Conversion Delay Control Subregister (Address 0x14)  
The 16-bit VIN filter subregister enables digital filtering of the  
analog inputs channels. The digital filter consists of a simple  
low-pass filter function to help reduce unwanted noise on dc  
signals. Writing a 1 to Bits[D7:D0] in this subregister enables  
digital filtering of the corresponding analog input channel (see  
Table 23). On power-up, the VIN filter subregister contains all  
0s by default.  
The 16-bit conversion delay control subregister is used to delay  
the start (including the sample point) of a conversion. The delay  
is a count of internal ADC clocks following the falling SCLK  
signal that triggers the start of a conversion.  
For example, if the conversion delay control subregister holds  
the value 0x0003, three ADC clocks are counted before the  
ADC enters hold mode and the conversion begins. The ADC  
clock has a period of 40 ns typically.  
If the conversion delay control subregister is set to a nonzero  
value N, the ADC waits for the programmed number of ADC  
clock periods (N) after a conversion is triggered before  
sampling the input. If the register holds the default value of 0,  
there is no delay, and the conversion is started from the falling  
SCLK that triggers the start of the conversion. When using the  
conversion delay, the conversion is extended by N + 1 clocks.  
Table 23. VIN Filter Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D8] Reserved  
Reserved  
0 = disable digital filtering of VIN7  
1 = enable digital filtering of VIN7  
0 = disable digital filtering of VIN6  
1 = enable digital filtering of VIN6  
0 = disable digital filtering of VIN5  
1 = enable digital filtering of VIN5  
0 = disable digital filtering of VIN4  
1 = enable digital filtering of VIN4  
0 = disable digital filtering of VIN3  
1 = enable digital filtering of VIN3  
0 = disable digital filtering of VIN2  
1 = enable digital filtering of VIN2  
0 = disable digital filtering of VIN1  
1 = enable digital filtering of VIN1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Enable digital filtering of VIN7  
Enable digital filtering of VIN6  
Enable digital filtering of VIN5  
Enable digital filtering of VIN4  
Enable digital filtering of VIN3  
Enable digital filtering of VIN2  
Enable digital filtering of VIN1  
Enable digital filtering of VIN0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = disable digital filtering of VIN0  
1 = enable digital filtering of VIN0  
Table 24. Conversion Delay Control Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
Description  
[D15:D0]  
Delay value  
R/W  
These bits specify the 16-bit delay value (0 to 0xFFFF) before the start of a conver-  
sion. The delay is a count of internal ADC clocks following the falling SCLK signal.  
Rev. A | Page 26 of 40  
 
Data Sheet  
AD7292  
VIN ALERT0 Routing and VIN ALERT1 Routing  
Subregisters (Address 0x15 and Address 0x16)  
For information about how to configure the GPIO0/ALERT0  
and GPIO1/ALERT1 pins as alert pins, see the Digital I/O  
Function Subregister (Address 0x02) section and the Digital  
Output Driver Subregister (Address 0x01) section.  
The 16-bit VIN ALERT0 and VIN ALERT1 subregisters enable  
the routing of alerts from the analog input channels, VIN0 to  
VIN7, to the GPIO0/ALERT0 and GPIO1/ALERT1 pins (see  
Table 25 and Table 26.  
For information about how to enable routing of the temperature  
sensor alerts, see the Temperature Sensor Alert Routing  
Subregister (Address 0x21) section.  
Table 25. VIN ALERT0 Routing Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D8]  
D7  
Reserved  
Route VIN7 alerts to ALERT0 pin  
Reserved  
0 = disable routing ofVIN7 alerts to the ALERT0 pin  
1 = enable routing ofVIN7 alerts to the ALERT0 pin  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Route VIN6 alerts to ALERT0 pin  
Route VIN5 alerts to ALERT0 pin  
Route VIN4 alerts to ALERT0 pin  
Route VIN3 alerts to ALERT0 pin  
Route VIN2 alerts to ALERT0 pin  
Route VIN1 alerts to ALERT0 pin  
Route VIN0 alerts to ALERT0 pin  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = disable routing of VIN6 alerts to the ALERT0 pin  
1 = enable routing of VIN6 alerts to the ALERT0 pin  
0 = disable routing of VIN5 alerts to the ALERT0 pin  
1 = enable routing of VIN5 alerts to the ALERT0 pin  
0 = disable routing of VIN4 alerts to the ALERT0 pin  
1 = enable routing of VIN4 alerts to the ALERT0 pin  
0 = disable routing of VIN3 alerts to the ALERT0 pin  
1 = enable routing of VIN3 alerts to the ALERT0 pin  
0 = disable routing of VIN2 alerts to the ALERT0 pin  
1 = enable routing of VIN2 alerts to the ALERT0 pin  
0 = disable routing of VIN1 alerts to the ALERT0 pin  
1 = enable routing of VIN1 alerts to the ALERT0 pin  
0 = disable routing of VIN0 alerts to the ALERT0 pin  
1 = enable routing of VIN0 alerts to the ALERT0 pin  
Table 26. VIN ALERT1 Routing Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D0]  
D7  
Reserved  
Route VIN7 alerts to ALERT1 pin  
Reserved  
0 = disable routing ofVIN7 alerts to the ALERT1 pin  
1 = enable routing ofVIN7 alerts to the ALERT1 pin  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Route VIN6 alerts to ALERT1 pin  
Route VIN5 alerts to ALERT1 pin  
Route VIN4 alerts to ALERT1 pin  
Route VIN3 alerts to ALERT1 pin  
Route VIN2 alerts to ALERT1 pin  
Route VIN1 alerts to ALERT1 pin  
Route VIN0 alerts to ALERT1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = disable routing ofVIN6 alerts to the ALERT1 pin  
1 = enable routing ofVIN6 alerts to the ALERT1 pin  
0 = disable routing ofVIN5 alerts to the ALERT1 pin  
1 = enable routing ofVIN5 alerts to the ALERT1 pin  
0 = disable routing ofVIN4 alerts to the ALERT1 pin  
1 = enable routing ofVIN4 alerts to the ALERT1 pin  
0 = disable routing ofVIN3 alerts to the ALERT1 pin  
1 = enable routing ofVIN3 alerts to the ALERT1 pin  
0 = disable routing ofVIN2 alerts to the ALERT1 pin  
1 = enable routing ofVIN2 alerts to the ALERT1 pin  
0 = disable routing ofVIN1 alerts to the ALERT1 pin  
1 = enable routing ofVIN1 alerts to the ALERT1 pin  
0 = disable routing ofVIN0 alerts to the ALERT1 pin  
1 = enable routing ofVIN0 alerts to the ALERT1 pin  
Rev. A | Page 27 of 40  
 
 
AD7292  
Data Sheet  
Temperature Sensor Subregister (Address 0x20)  
For information about how to configure the GPIO0/ALERT0 and  
GPIO1/ALERT1 pins as alert pins, see the Digital I/O Function  
Subregister (Address 0x02) section and the Digital Output Driver  
Subregister (Address 0x01) section.  
The 16-bit temperature sensor subregister enables temperature  
sensor conversions and digital filtering of the temperature sensor  
channel. To enable temperature sensor conversions or digital  
filtering, the corresponding bit in the temperature sensor sub-  
register must be set to 1 (see Table 27). On power-up, the  
temperature sensor subregister contains all 0s by default.  
For information about how to enable routing of the analog input  
channel alerts, see the VIN Filter Subregister (Address 0x13)  
and Conversion Delay Control Subregister (Address 0x14)  
section.  
Temperature Sensor Alert Routing Subregister  
(Address 0x21)  
The 16-bit temperature sensor alert routing subregister enables  
the routing of alerts from the internal temperature sensor to the  
GPIO0/ALERT0 and GPIO1/ALERT1 pins (see Table 28).  
Table 27. Temperature Sensor Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D9]  
D8  
Reserved  
Enable/disable digital  
filtering of TSENSE  
Reserved.  
This bit specifies whether digital filtering is enabled on the temperature sensor channel.  
0 = disable digital filtering of the temperature sensor channel (default).  
1 = enable digital filtering of the temperature sensor channel.  
[D7:D1]  
D0  
Reserved  
Enable/disable TSENSE  
conversions  
R/W  
R/W  
Reserved.  
This bit enables or disables conversion of the temperature sensor channel.  
0 = disable TSENSE conversions (default).  
1 = enable TSENSE conversions.  
Table 28. Temperature Sensor Alert Routing Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D9]  
D8  
Reserved  
Route TSENSE alerts to  
ALERT1 pin  
Reserved.  
This bit specifies whether alerts from the internal temperature sensor are routed to the  
ALERT1 pin.  
0 = disable routing of alerts from the temperature sensor to the ALERT1 pin (default).  
1 = enable routing of alerts from the temperature sensor to the ALERT1 pin.  
[D7:D1]  
D0  
Reserved  
Route TSENSE alerts to  
ALERT0 pin  
R/W  
R/W  
Reserved.  
This bit specifies whether alerts from the internal temperature sensor are routed to the  
ALERT0 pin.  
0 = disable routing of alerts from the temperature sensor to the ALERT0 pin (default).  
1 = enable routing of alerts from the temperature sensor to the ALERT0 pin.  
Rev. A | Page 28 of 40  
 
 
 
 
Data Sheet  
AD7292  
GPIO2/DAC DISABLE0 and GPIO4/DAC DISABLE1  
Subregisters (Address 0x30 and Address 0x31)  
For information about how to enable the DAC disable function  
on the GPIO2/DAC DISABLE0 and GPIO4/DAC DISABLE1  
pins, see the Digital Output Driver Subregister (Address 0x01)  
section and the Digital I/O Function Subregister (Address 0x02)  
section.  
The 16-bit, read/write GPIO2/DAC DISABLE0 and GPIO4/DAC  
DISABLE1 subregisters specify which DAC channels are disabled  
by the GPIO2/DAC DISABLE0 and GPIO4/DAC DISABLE1 pins.  
For example, when Bit D0 in the GPIO2/DAC DISABLE0 sub-  
register is set to 1, the GPIO2/DAC DISABLE0 pin disables DAC  
output VOUT0 when the pin is taken high. On power-up, these  
subregisters contain all 0s by default.  
Table 29. GPIO2/DAC DISABLE0 Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D4]  
D3  
Reserved  
Disable VOUT3 pin  
Reserved.  
This bit specifies whether the VOUT3 output is disabled when the GPIO2/DAC DISABLE0  
pin is high.  
0 = disable control of VOUT3 by the GPIO2/DAC DISABLE0 pin (default).  
1 = enable control of VOUT3 by the GPIO2/DAC DISABLE0 pin.  
D2  
D1  
D0  
Disable VOUT2 pin  
Disable VOUT1 pin  
Disable VOUT0 pin  
R/W  
R/W  
R/W  
This bit specifies whether the VOUT2 output is disabled when the GPIO2/DAC DISABLE0  
pin is high.  
0 = disable control of VOUT2 by the GPIO2/DAC DISABLE0 pin (default).  
1 = enable control of VOUT2 by the GPIO2/DAC DISABLE0 pin.  
This bit specifies whether the VOUT1 output is disabled when the GPIO2/DAC DISABLE0  
pin is high.  
0 = disable control of VOUT1 by the GPIO2/DAC DISABLE0 pin (default).  
1 = enable control of VOUT1 by the GPIO2/DAC DISABLE0 pin.  
This bit specifies whether the VOUT0 output is disabled when the GPIO2/DAC DISABLE0  
pin is high.  
0 = disable control of VOUT0 by the GPIO2/DAC DISABLE0 pin (default).  
1 = enable control of VOUT0 by the GPIO2/DAC DISABLE0 pin.  
Table 30. GPIO4/DAC DISABLE1 Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D4]  
D3  
Reserved  
Disable VOUT3 pin  
Reserved.  
This bit specifies whether the VOUT3 output is disabled when the GPIO4/DAC DISABLE1  
pin is high.  
0 = disable control of VOUT3 by the GPIO4/DAC DISABLE1 pin (default).  
1 = enable control of VOUT3 by the GPIO4/DAC DISABLE1 pin.  
D2  
D1  
D0  
Disable VOUT2 pin  
Disable VOUT1 pin  
Disable VOUT0 pin  
R/W  
R/W  
R/W  
This bit specifies whether the VOUT2 output is disabled when the GPIO4/DAC DISABLE1  
pin is high.  
0 = disable control of VOUT2 by the GPIO4/DAC DISABLE1 pin (default).  
1 = enable control of VOUT2 by the GPIO4/DAC DISABLE1 pin.  
This bit specifies whether the VOUT1 output is disabled when the GPIO4/DAC DISABLE1  
pin is high.  
0 = disable control of VOUT1 by the GPIO4/DAC DISABLE1 pin (default).  
1 = enable control of VOUT1 by the GPIO4/DAC DISABLE1 pin.  
This bit specifies whether the VOUT0 output is disabled when the GPIO4/DAC DISABLE1  
pin is high.  
0 = disable control of VOUT0 by the GPIO4/DAC DISABLE1 pin (default).  
1 = enable control of VOUT0 by the GPIO4/DAC DISABLE1 pin.  
Rev. A | Page 29 of 40  
 
 
 
AD7292  
Data Sheet  
Table 31. Alert Limits Register Bank Subregisters  
Subaddress (Hex) Subregister Name1  
ALERT LIMITS REGISTER BANK (ADDRESS 0x06)  
The alert limits register bank comprises subregisters that set the  
high and low alert limits for the eight analog input channels and  
the temperature sensor channel (see Table 31). Each subregister  
is 16 bits in length; values are 10-bit, left-justified (padded with  
0s as the 6 LSBs). On power-up, the low limit and hysteresis  
subregisters contain all 0s, whereas the high limit subregisters  
are set to 0xFFC0.  
0x00  
0x01  
0x02  
VIN0 alert high limit  
VIN0 alert low limit  
VIN0 hysteresis  
0x03  
0x04  
0x05  
VIN1 alert high limit  
VIN1 alert low limit  
VIN1 hysteresis  
0x06  
0x07  
0x08  
VIN2 alert high limit  
VIN2 alert low limit  
VIN2 hysteresis  
If a conversion result exceeds the high or low limit set in the  
alert limits subregister, the AD7292 signals an alert in one or  
more of the following ways:  
0x09  
0x0A  
0x0B  
VIN3 alert high limit  
VIN3 alert low limit  
VIN3 hysteresis  
Via hardware using the GPIO0/ALERT0 and GPIO1/ALERT1  
pins (see the Hardware Alert Pins section)  
Via software using the alert flag bits in the conversion result  
registers (see the ADC Conversion Result Registers, VIN0  
to VIN7 (Address 0x10 to Address 0x17) section and the  
0x0C  
0x0D  
0x0E  
VIN4 alert high limit  
VIN4 alert low limit  
VIN4 hysteresis  
T
SENSE Conversion Result Register (Address 0x20) section)  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
VIN5 alert high limit  
VIN5 alert low limit  
VIN5 hysteresis  
VIN6 alert high limit  
VIN6 alert low limit  
VIN6 hysteresis  
Via software using the alert bits in the alert flags register  
bank (see the Alert Flags Register Bank (Address 0x07)  
section)  
Alert High Limit and Alert Low Limit Subregisters  
The alert high limit subregisters store the upper limit that  
activates an alert. If the conversion result is greater than the value  
in the alert high limit subregister, an alert is triggered. The alert  
low limit subregister stores the lower limit that activates an alert.  
If the conversion result is less than the value in the alert low limit  
subregister, an alert is triggered.  
0x15  
0x16  
0x17  
0x18 to 0x2F  
0x30  
0x31  
0x32  
0x33 to 0xFF  
VIN7 alert high limit  
VIN7 alert low limit  
VIN7 hysteresis  
Reserved  
TSENSE alert high limit  
TSENSE alert low limit  
TSENSE hysteresis  
An alert associated with either the alert high limit or alert low  
limit subregister is cleared automatically after the monitored  
signal is back in range, that is, when the conversion result returns  
between the configured high and low limits. The contents of the  
alert flags subregisters are updated after each conversion (see the  
Alert Flags Register Bank (Address 0x07) section).  
Reserved  
1 All subregisters in the alert limits register bank are read/write.  
Hysteresis Subregisters  
Each channel has an associated hysteresis subregister that stores  
the hysteresis value, N (see Table 31). The hysteresis subregisters  
can be used to avoid flicker on the GPIO0/ALERT0 and GPIO1/  
ALERT1 pins. If the hysteresis function is enabled, the conversion  
result must return to a value of at least N LSB below the alert high  
limit subregister value, or N LSB above the alert low limit sub-  
register value for the alert output pins and alert flag bits to be reset  
(see Figure 46). The value of N is taken from the 10 MSBs of the  
16-bit, read/write hysteresis subregister. For more information,  
see the Hysteresis section.  
Rev. A | Page 30 of 40  
 
 
Data Sheet  
AD7292  
These subregisters contain two status bits per channel: one  
ALERT FLAGS REGISTER BANK (ADDRESS 0x07)  
corresponding to the high limit, and the other corresponding to  
the low limit. A bit with a status of 1 shows the channel on which  
the violation occurred and whether the violation occurred on the  
high or low limit.  
If a conversion result activates an alert (as specified in the alert  
limits register bank), the alert flags register bank can be read  
to obtain more information about the alert. This register bank  
contains the ADC alert flags and TSENSE alert flags subregisters.  
Both subregisters store flags that are triggered when the mini-  
mum or maximum conversion limits, as defined in the alert  
limits register bank, are exceeded.  
If additional alert events occur on any other channels after the  
first alert is triggered but before the alert flags subregister is read,  
the corresponding bits for the new alert events are also set. For  
example, if Bit D14 in the ADC alert flags subregister is set to 1,  
the low limit on Channel 7 has been exceeded, whereas if Bit D3  
is set to 1, the high limit on Channel 1 has been exceeded.  
Table 32. Alert Flags Register Bank Subregisters  
Subaddress (Hex) Subregister Name1  
0x00  
0x01  
ADC alert flags subregister  
Reserved  
To find out which channel or channels caused the alert flag, the  
user must read the ADC alert flags subregister or the TSENSE alert  
flags subregister. If the ADC alert flags subregister or the TSENSE  
alert flags subregister is accessed with both the read and write bits  
of the address pointer set to 1, the stored alert flags can be read  
and reset in one operation. A blanket reset can be performed by  
writing 0xFFFF to the ADC alert flags subregister, or 0x0003 to  
the TSENSE alert flags subregister, thus clearing all alert flags.  
0x02  
0x03 to 0xFF  
TSENSE alert flags subregister  
Reserved  
1 Bits in the alert flags subregisters can be reset by writing 1 to the selected bits.  
ADC Alert Flags and TSENSE Alert Flags Subregisters  
(Address 0x00 and Address 0x02)  
The ADC alert flags subregister stores alerts for the analog volt-  
age conversion channels, VIN0 to VIN7. The TSENSE alert flags  
subregister stores alerts for the temperature sensor channel.  
Table 33. ADC Alert Flags Subregister, Bit Function Descriptions  
Bits  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
Bit Name  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
VIN7 high limit flag  
VIN7 low limit flag  
VIN6 high limit flag  
VIN6 low limit flag  
VIN5 high limit flag  
VIN5 low limit flag  
VIN4 high limit flag  
VIN4 low limit flag  
VIN3 high limit flag  
VIN3 low limit flag  
VIN2 high limit flag  
VIN2 low limit flag  
VIN1 high limit flag  
VIN1 low limit flag  
VIN0 high limit flag  
VIN0 low limit flag  
1 = VIN7 high limit exceeded  
1 = VIN7 low limit exceeded  
1 = VIN6 high limit exceeded  
1 = VIN6 low limit exceeded  
1 = VIN5 high limit exceeded  
1 = VIN5 low limit exceeded  
1 = VIN4 high limit exceeded  
1 = VIN4 low limit exceeded  
1 = VIN3 high limit exceeded  
1 = VIN3 low limit exceeded  
1 = VIN2 high limit exceeded  
1 = VIN2 low limit exceeded  
1 = VIN1 high limit exceeded  
1 = VIN1 low limit exceeded  
1 = VIN0 high limit exceeded  
1 = VIN0 low limit exceeded  
D4  
D3  
D2  
D1  
D0  
Table 34. TSENSE Alert Flags Subregister, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
R/W  
Description  
[D15:D2]  
D1  
D0  
Reserved  
TSENSE high limit flag  
TSENSE low limit flag  
Reserved  
1 = TSENSE high limit exceeded  
1 = TSENSE low limit exceeded  
Rev. A | Page 31 of 40  
 
 
 
AD7292  
Data Sheet  
MINIMUM AND MAXIMUM REGISTER BANK  
(ADDRESS 0x08)  
OFFSET REGISTER BANK (ADDRESS 0x09)  
The offset register bank contains nine subregisters. Each of the  
eight analog input channels, as well as the temperature sensor  
channel, has a corresponding offset register (see Table 36).  
The minimum and maximum register bank contains the mini-  
mum and maximum conversion values for each of the eight  
analog input channels and the temperature sensor channel.  
Values are 10-bit, left justified.  
Table 36. Offset Register Bank Subregisters  
Subaddress (Hex)  
Subregister Name1  
VIN0 offset  
VIN1 offset  
VIN2 offset  
VIN3 offset  
VIN4 offset  
VIN5 offset  
VIN6 offset  
The minimum and maximum subregisters are cleared when a  
value is written to them—that is, they return to their power-up  
values. This means that if a subregister is accessed with both the  
read and write bits set, the stored minimum or maximum value  
can be read and reset in one operation. On power-up, the mini-  
mum value subregisters contain 0xFFC0, and the maximum value  
subregisters contain 0x0000.  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x10  
VIN7 offset  
Temperature sensor offset  
Table 35. Minimum and Maximum Register Bank Subregisters  
Subaddress (Hex)  
Subregister Name1  
VIN0 maximum value  
VIN0 minimum value  
VIN1 maximum value  
VIN1 minimum value  
VIN2 maximum value  
VIN2 minimum value  
VIN3 maximum value  
VIN3 minimum value  
VIN4 maximum value  
VIN4 minimum value  
VIN5 maximum value  
VIN5 minimum value  
VIN6 maximum value  
VIN6 minimum value  
VIN7 maximum value  
VIN7 minimum value  
Reserved  
1 All subregisters in the offset register bank are read/write.  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Each 8-bit, read/write offset subregister stores data in twos  
complement format. Values are added to the ADC conversion  
results. The offset encoding scheme used for the analog input  
channels and the temperature sensor are shown in Table 39 and  
Table 40, respectively. The default value for all subregisters in  
the offset register bank is 0x00.  
When bits in these subregisters are set, the offset value is cumula-  
tive. Table 37 provides examples of analog input channel values,  
and Table 38 provides examples of temperature sensor channel  
values.  
Table 37. Examples of Analog Input Channel Offset Values  
Offset Subregister Value  
Offset Value (LSB)  
10000000  
11000000  
00001000  
−32  
−16  
+2  
0x10 to 0x1F  
0x20  
0x21  
TSENSE maximum value  
TSENSE minimum value  
Reserved  
Table 38. Examples of Temperature Sensor Channel Offset  
Values  
0x22 to 0xFF  
1 Bits in the minimum and maximum subregisters can be reset by writing 1 to  
the selected bits.  
Offset Subregister Value  
Offset Value (°C)  
10000000  
11000000  
−16  
−8  
00001000  
+1  
Table 39. VIN0 to VIN7 Offset Encoding Scheme  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
−32 LSB  
+16 LSB  
+8 LSB  
+4 LSB  
+2 LSB  
+1 LSB  
+0.5 LSB  
+0.25 LSB  
Table 40. Temperature Sensor Offset Encoding Scheme  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
−16°C  
+8°C  
+4°C  
+2°C  
+1°C  
+0.5°C  
+0.25°C  
+0.125°C  
Rev. A | Page 32 of 40  
 
 
 
 
 
 
 
Data Sheet  
AD7292  
DAC BUFFER ENABLE REGISTER (ADDRESS 0x0A)  
GPIO REGISTER (ADDRESS 0x0B)  
The 16-bit, read/write DAC buffer enable register enables the  
DAC output buffers. Setting the appropriate bit to 1 enables the  
corresponding DAC output buffer (see Table 41). On power-up,  
the DAC buffer enable register contains all 0s by default.  
The 16-bit, read/write GPIO register is used to read or write data  
to the GPIO pins, provided that the GPIO functionality is enabled  
(see the Digital Output Driver Subregister (Address 0x01) section  
and the Digital I/O Function Subregister (Address 0x02) section).  
On power-up, the GPIO register contains all 0s by default.  
Table 41. DAC Buffer Enable Register, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D4]  
D3  
Reserved  
Enable DAC 3  
Reserved  
0 = disable DAC 3 output buffer (default)  
1 = enable DAC 3 output buffer  
D2  
D1  
D0  
Enable DAC 2  
Enable DAC 1  
Enable DAC 0  
R/W  
R/W  
R/W  
0 = disable DAC 2 output buffer (default)  
1 = enable DAC 2 output buffer  
0 = disable DAC 1 output buffer (default)  
1 = enable DAC 1 output buffer  
0 = disable DAC 0 output buffer (default)  
1 = enable DAC 0 output buffer  
Table 42. GPIO Register, Bit Function Descriptions  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[D15:D12] Reserved  
Reserved  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO11  
GPIO10  
GPIO9  
GPIO8  
GPIO7  
GPIO6  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
0 = low output for write; low input for read  
1 = high output for write; high input for read  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. A | Page 33 of 40  
 
 
 
AD7292  
Data Sheet  
CONVERSION COMMAND REGISTER  
(ADDRESS 0x0E)  
TSENSE CONVERSION RESULT REGISTER  
(ADDRESS 0x20)  
The conversion command signals the ADC to begin conversions.  
See the ADC Conversion Control section for more information.  
The 16-bit, read-only TSENSE conversion result register stores the  
ADC data generated from the internal temperature sensor. The  
temperature data is stored in a 14-bit straight binary format. Bit D2  
has a weight of 0.03125°C. An output of all 0s is equal to −256°C;  
this value is output by the AD7292 until the first measurement is  
completed. An output of 10 0000 0000 0000 corresponds to 0°C.  
ADC CONVERSION RESULT REGISTERS, VIN0 TO  
VIN7 (ADDRESS 0x10 TO ADDRESS 0x17)  
The 16-bit, read-only ADC conversion result registers store the  
conversion results of the eight ADC input channels. Bits[D15:D6]  
store the 10-bit, straight binary result; Bits[D5:D0] contain the  
channel ID and alert information. Table 43 lists the contents  
of the two bytes that are read from the ADC conversion result  
registers. Channel ID numbers 0 to 7 correspond to the analog  
input channels, VIN0 to VIN7.  
When digital filtering is disabled, Bit D3 and Bit D2 are set to 0,  
producing a 12-bit straight binary result with an LSB of 0.125°C.  
See the Temperature Sensor section for more information.  
DAC CHANNEL REGISTERS (ADDRESS 0x30 TO  
ADDRESS 0x33)  
Writing to the DAC channel registers sets the DAC output voltage  
codes. For more information, see the DAC Output Control section.  
Table 43. ADC Conversion Result Register Format  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
[D5:D2]  
D1  
D0  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
4-bit channel ID TSENSE  
ADC  
(0000 to 0111)  
alert flag alert flag  
Table 44. TSENSE Conversion Result Register Format  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
B6  
D7  
B5  
D6  
D5  
D4  
D31  
D21  
D1  
D0  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B4  
B3  
B2  
B1  
B0  
TSENSE  
alert  
flag  
ADC  
alert  
flag  
1 When digital filter is enabled (see the Temperature Sensor Subregister (Address 0x20) section).  
Table 45. DAC Channel Register Format  
MSB  
LSB  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
0
0
Copy  
LDAC  
Rev. A | Page 34 of 40  
 
 
 
 
 
Data Sheet  
AD7292  
ADC CONVERSION CONTROL  
In this example, the ADC sequence register is programmed to  
convert on analog input channels VIN0 and VIN1. The AD7292  
stays in conversion mode and performs a new ADC conversion  
ADC CONVERSION COMMAND  
To initiate an ADC conversion on a channel, the conversion  
command must be written to the AD7292. The special address  
pointer byte, 0x8E, consists of the conversion command register  
(Address 0x0E) with the MSB read bit set to 1 to signify an  
ADC conversion. When the conversion command is received,  
the AD7292 uses the current value of the address pointer to  
determine which channel to convert on.  
CS  
at the end of each read until the  
input signal is taken high.  
In the examples shown in Figure 40 and Figure 41, an SCLK  
delay is inserted following the conversion command to allow  
the ADC to perform the conversion before the data is read. If  
temperature sensor conversions are requested, a longer delay  
is necessary (see the Temperature Sensor section).  
In Figure 40, the first byte sets the address pointer with both the  
read and write bits cleared and sets Bits[D5:D0] to point to the  
selected channel conversion result register. The second byte con-  
tains the conversion command with the read bit set. After receiving  
the conversion command, the AD7292 stays in conversion mode,  
performing a new ADC conversion at the end of each read, until  
In some applications, the SPI bus master may not allow the  
serial clock to be held low during a read sequence, and it may  
CS  
be necessary to take  
high, as shown in Figure 42. In this  
line must remain low while the ADC conversion is  
CS  
case, the  
in progress to prevent possible corruption of the ADC result.  
CS  
the  
(chip select) input signal is taken high.  
In the example shown in Figure 42, the address pointer is set  
to point to the ADC data register (Address 0x01) with both the  
read and write bits cleared. The conversion command is issued  
In Figure 41, the address pointer is set to point to the ADC data  
register (Address 0x01) with both the read and write bits cleared.  
The conversion command is issued, and the contents of the ADC  
sequence register specify the sequence of ADC channels for  
conversion (see the ADC Sequencer section).  
CS  
with the read bit set. The  
line is taken high after the conver-  
CS  
sion on VIN0 is completed. The  
line is then brought low,  
and the ADC data register is pointed to with the read bit set.  
The conversion result is clocked out. The conversion command  
CS  
is reissued before the  
line is taken high again, and so on.  
CS  
1
16  
1
16  
1
16  
8
SCLK  
DIN  
POINT TO CHANNEL ISSUE CONVERSION  
FOR CONVERSION COMMAND  
CONVERSION RESULT FOR  
SELECTED CHANNEL [D15:D0]  
CONVERSION RESULT FOR  
SELECTED CHANNEL [D15:D0]  
DOUT  
CONVERT  
SELECTED  
CHANNEL  
BUSY  
CONVERT  
SELECTED  
CHANNEL  
CONVERT  
SELECTED  
CHANNEL  
NOTES  
1. CS CANNOT BE TAKEN HIGH UNTIL AFTER A CHANNEL CONVERSION HAS TAKEN PLACE OR WHEN BUSY IS HIGH.  
Figure 40. ADC Conversion Command (ADC Sequencer Not Used)  
CS  
1
16  
1
16  
1
8
16  
8
8
SCLK  
DIN  
POINT TO ADC  
DATA REGISTER  
ISSUE CONVERSION  
COMMAND  
VIN0 RESULT  
[D15:D0]  
VIN1 RESULT  
[D15:D0]  
DOUT  
NOTE 2  
CONVERT  
VIN0  
CONVERT  
VIN1  
CONVERT  
VIN0  
BUSY  
NOTES  
1. CS CANNOT BE TAKEN HIGH UNTIL AFTER A CHANNEL CONVERSION HAS TAKEN PLACE OR WHEN BUSY IS HIGH.  
2. TEMP SENSOR CONVERSIONS TAKE PLACE EACH 1.25ms AFTER THE NEXT CHANNEL CONVERSION.  
Figure 41. ADC Conversion Command (ADC Sequencer Used)  
Rev. A | Page 35 of 40  
 
 
 
 
AD7292  
Data Sheet  
CS  
1
8
16  
1
8
16  
24  
32  
1
8
16  
24  
SCLK  
DIN  
POINT TO  
ADC DATA  
REGISTER  
ISSUE  
CONVERSION  
COMMAND  
POINT TO  
ADC DATA  
REGISTER  
POINT TO  
ADC DATA  
REGISTER  
ISSUE  
CONVERSION  
COMMAND  
VIN0 RESULT  
[D15:D0]  
VIN1 RESULT  
[D15:D0]  
DOUT  
BUSY  
CONVERT  
VIN0  
CONVERT  
VIN1  
CS  
Figure 42. ADC Conversion Command ( Line Taken High After Conversions)  
CS  
1
16  
24  
40  
1
8
16  
8
32  
SCLK  
DIN  
POINT TO ADC  
SEQUENCE  
REGISTER  
POINT TO ADC  
DATA  
REGISTER  
WRITE TO ADC  
SEQUENCE REGISTER [D15:D0]  
ISSUE CONVERSION  
COMMAND  
CONVERSION RESULT FOR VIN0  
[D15:D0]  
DOUT  
BUSY  
CONVERT  
VIN0  
CS  
1
16  
1
16  
8
8
SCLK  
DIN  
CONVERSION RESULT FOR VIN1  
[D15:D0]  
CONVERSION RESULT FOR VIN2  
[D15:D0]  
DOUT  
BUSY  
CONVERT  
VIN1  
CONVERT  
VIN2  
Figure 43. Example of Using the ADC Sequencer  
After the first ADC conversion is complete, the first result is read  
back, which requires 16 serial clocks. The first 10 bits contain  
the ADC result, the next four bits are the channel identifier, and  
the last two bits are alert bits (see Table 43). On the last falling  
edge of the clock, the next ADC conversion begins.  
ADC SEQUENCER  
The AD7292 provides an ADC sequencer, which enables the  
selection of a preprogrammable sequence of channels for con-  
version. Figure 43 shows the operation of the ADC sequencer.  
To initiate a write to the ADC sequence register (Address 0x03),  
point to it in the address pointer register with the write bit set  
and the read bit cleared. The next two bytes specify the sequence  
of channels that the ADC converts on (see Table 16). The ADC  
data register (Address 0x01) is then pointed to and the conver-  
sion command is issued. Note that the read bit is set when issuing  
the conversion command.  
The AD7292 continues converting on the channels specified by  
the ADC sequence register. On completing the first sequence of  
conversions, the sequencer loops back and begins the sequence  
CS  
again until  
is taken high. The AD7292 is ready to accept a new  
CS  
address pointer after  
is taken low. It is recommended that the  
serial clock be kept low during the ADC conversions to ensure  
that there is no disturbance of the results.  
When the ADC sequencer is used, ADC conversions are trig-  
gered based on the contents of the ADC sequence register; the  
address pointer reverts to its previous value—in this example,  
the ADC data register—allowing the conversion results to be  
read back.  
Rev. A | Page 36 of 40  
 
 
 
Data Sheet  
AD7292  
DAC OUTPUT CONTROL  
To set the DAC output voltage codes, the user must write to the  
DAC channel registers (Address 0x30 to Address 0x33). Figure 44  
shows an example of how to set the DAC output voltage codes.  
LDAC  
bit in the DAC channel register is set to 1, the  
10-bit DAC value is stored, but the DAC channel output is not  
updated. When a write to any DAC channel register occurs with  
When the  
LDAC  
the  
the stored values from previous writes.  
LDAC  
bit cleared, all DAC channel outputs are updated with  
1. The DAC buffer enable register (Address 0x0A) is pointed  
to with the write bit set.  
2. The following two bytes specify which of the four DAC  
output buffers are enabled.  
3. The DAC channel register (DAC Channel 0 register in  
Figure 44) is pointed to with the write bit set.  
4. The following two bytes contain the value to be written to  
the DAC channel.  
When the  
bit in the DAC channel register is used to control  
the updating of the DAC output, the LDAC pin function should  
be disabled, that is, the GPIO3/LDAC pin should be configured  
as GPIO3.  
The GPIO3/LDAC pin can be used to update the DAC outputs  
with the stored values when the pin is configured as an LDAC  
pin (see the Digital Output Driver Subregister (Address 0x01)  
section and the Digital I/O Function Subregister (Address 0x02)  
section). If the GPIO3/LDAC pin is configured as an LDAC  
input and is taken high, the DAC output registers are updated;  
conversely, if this input pin is held low, the DAC value is stored  
but the channel output is not updated.  
On completion of this write, the DAC channel output is imme-  
LDAC  
diately updated to the new value, provided that the  
the DAC channel register is not set.  
bit in  
Note that the process can be reversed—that is, the user can first  
write a value to the DAC channel register and then enable the  
DAC output buffer.  
SIMULTANEOUS UPDATE OF ALL DAC OUTPUTS  
LDAC OPERATION  
It may be useful to update all four DAC channel registers  
simultaneously with the same value but not update the DAC  
A write to a DAC channel register (Address 0x30 to Address 0x33)  
is addressed to the DAC input register; a read from a DAC channel  
register is addressed to the DAC output register (see Figure 45).  
LDAC  
outputs (  
bit is set to 1; LDAC pin is set to 0). Setting  
the copy bit (Bit 1) when writing to any DAC channel register  
instructs the AD7292 to copy the new DAC value to all the DAC  
input registers.  
LDAC  
The DAC output registers are updated based on the  
bit in  
the DAC channel register or on the polarity of the GPIO3/LDAC  
pin (if the pin is configured as an LDAC pin).  
CS  
1
24  
48  
8
32  
SCLK  
DIN  
POINT TO DAC  
BUFFER ENABLE  
REGISTER  
POINT TO DAC  
CHANNEL 0  
REGISTER  
WRITE TO DAC  
BUFFER ENABLE REGISTER [D15:D0]  
WRITE TO DAC  
CHANNEL 0 REGISTER [D15:D0]  
Figure 44. Setting the DAC Output Voltage Code  
READ  
DAC CHANNEL REGISTER (0x30 TO 0x33)  
DAC INPUT REGISTER DAC OUTPUT REGISTER  
WRITE  
SCLK  
DAC  
VOUTx  
LDAC BIT  
1
GPIO3/LDAC PIN  
1
PROVIDED THE GPIO3/LDAC PIN IS CONFIGUREDAS AN LDAC PIN.  
Figure 45. DAC Input and Output Registers  
Rev. A | Page 37 of 40  
 
 
 
 
 
AD7292  
Data Sheet  
ALERTS AND LIMITS  
The advantage of using the hysteresis subregister associated with  
each limit subregister is that hysteresis prevents chatter on the  
alert bits associated with each ADC channel and also prevents  
flicker on the alert output pins. Figure 46 shows the limit check-  
ing operation.  
ALERT LIMIT MONITORING FEATURES  
The alert limits register bank comprises subregisters that set the  
high and low alert limits for the eight analog input channels and  
the temperature sensor channel (see Table 31). Each subregister  
is 16 bits in length; values are 10-bit, left-justified (padded with  
0s as the 6 LSBs). On power-up, the low limit and hysteresis sub-  
registers contain all 0s, whereas the high limit subregisters are  
set to 0xFFC0.  
HARDWARE ALERT PINS  
Pin 27 and Pin 26 (GPIO0/ALERT0 and GPIO1/ALERT1,  
respectively) can be configured as alert pins (see the Digital I/O  
Function Subregister (Address 0x02) section). When these pins  
are configured as alert pins, they become active when the selected  
conversion result exceeds the high or low limit stored in the alert  
limits register bank. The polarity of the alert output pins can be  
set to active high or active low via the general subregister within  
the configuration register bank (see the General Subregister  
(Address 0x08) section).  
The alert high limit subregisters store the upper limit that  
activates an alert. If the conversion result is greater than the value  
in the alert high limit subregister, an alert is triggered. The alert  
low limit subregister stores the lower limit that activates an alert.  
If the conversion result is less than the value in the alert low limit  
subregister, an alert is triggered.  
If a conversion result exceeds the high or low limit set in the  
alert limits subregister, the AD7292 signals an alert in one or  
more of the following ways:  
If an alert pin signals an alert event and the contents of the alert  
flags subregisters are not read before the next conversion is com-  
pleted, the contents of the subregister may change if the out-of-  
range signal returns to the specified range. In this case, the ALERTx  
pin no longer signals the occurrence of an alert event.  
Via hardware using the GPIO0/ALERT0 and GPIO1/  
ALERT1 pins  
Via software using the alert flag bits in the conversion  
result registers  
Via software using the alert bits in the alert flags register  
bank  
ALERT FLAG BITS IN THE CONVERSION RESULT  
REGISTERS  
The TSENSE alert and ADC alert flag bits in the ADC conversion  
result and TSENSE conversion result registers indicate whether the  
conversion result being read or any other channel result has  
violated the limit registers associated with it. If an alert occurs  
and the alert bit is set in a conversion result register, the master  
can read the alert flags register bank to obtain more information  
about where the alert occurred.  
Hysteresis  
The hysteresis value determines the reset point for the alert pins  
and alert flags if a violation of the limits occurs. Each channel has  
an associated hysteresis subregister that stores the hysteresis  
value, N (see Table 31). If the hysteresis function is enabled, the  
conversion result must return to a value of at least N LSB below  
the alert high limit subregister value, or N LSB above the alert  
low limit subregister value to reset the alert output pins and the  
alert flag bits (see Figure 46).  
HIGH LIMIT  
HIGH LIMIT – HYSTERESIS  
INPUT SIGNAL  
LOW LIMIT + HYSTERESIS  
LOW LIMIT  
ALERT SIGNAL  
TIME  
Figure 46. Limit Checking: Alert High Limit, Alert Low Limit, and Hysteresis  
Rev. A | Page 38 of 40  
 
 
 
 
 
 
Data Sheet  
AD7292  
To find out which channel or channels caused the alert flag, the  
user must read the ADC alert flags subregister or the TSENSE alert  
flags subregister. If the ADC alert flags subregister or the TSENSE  
alert flags subregister is accessed with both the read and write bits  
of the address pointer set to 1, the stored alert flags can be read  
and reset in one operation. A blanket reset can be performed by  
writing 0xFFFF to the ADC alert flags subregister, or 0x0003 to  
the TSENSE alert flags subregister, thus clearing all alert flags.  
ALERT FLAGS REGISTER BANK  
The alert flags register bank contains two subregisters: the ADC  
alert flags subregister and the TSENSE alert flags subregister. The  
ADC alert flags subregister stores alerts for the analog voltage  
conversion channels, VIN0 to VIN7. The TSENSE alert flags sub-  
register stores alerts for the temperature sensor channel. These  
subregisters contain two status bits per channel: one correspond-  
ing to the high limit, and the other corresponding to the low  
limit (see Table 33 and Table 34). A bit with a status of 1 shows  
the channel on which the violation occurred and whether the  
violation occurred on the high or low limit.  
MINIMUM AND MAXIMUM CONVERSION RESULTS  
The read-only minimum/maximum register bank contains the  
minimum and maximum conversion values for each of the eight  
analog input channels and the temperature sensor channel.  
Values are 10-bit, left justified.  
If additional alert events occur on any other channels after the  
first alert is triggered but before the alert flags subregister is read,  
the corresponding bits for the new alert events are also set. For  
example, if Bit D14 in the ADC alert flags subregister is set to 1,  
the low limit on Channel 7 has been exceeded, whereas if Bit D3  
is set to 1, the high limit on Channel 1 has been exceeded.  
The minimum and maximum subregisters are cleared when a  
value is written to them—that is, they return to their power-up  
values. This means that if a subregister is accessed with both the  
read and write bits set, the stored minimum or maximum value  
can be read and reset in one operation. On power-up, the mini-  
mum value subregisters contain 0xFFC0, and the maximum value  
subregisters contain 0x0000.  
An alert associated with either the alert high limit or alert low  
limit subregister is cleared automatically after the monitored  
signal is back in range, that is, when the conversion result returns  
between the configured high and low limits. The contents of the  
alert flags subregister are updated after each conversion.  
Rev. A | Page 39 of 40  
 
 
AD7292  
Data Sheet  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
28  
36  
1
27  
0.50  
BSC  
4.05  
3.90 SQ  
3.85  
EXPOSED  
PAD  
19  
18  
9
10  
0.70  
0.60  
0.40  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 47. 36-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-36-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD7292BCPZ  
AD7292BCPZ-RL  
EVAL-AD7292SDZ  
EVAL-SDP-CB1Z  
−40°C to +125°C  
−40°C to +125°C  
36-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
36-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
CP-36-3  
CP-36-3  
System Development Platform  
1 Z = RoHS Compliant Part.  
©2012–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10660-0-9/14(A)  
Rev. A | Page 40 of 40  
 
 

相关型号:

AD7292BCPZ-RL

10-Bit Monitor and Control System with ADC,DACs, Temperature Sensor, and GPIOs
ADI

AD7293

12-Bit Power Amplifier Current Controller
ADI

AD7293BCPZ

12-Bit Power Amplifier Current Controller with ADC, DACs, Temperature and Current Sensors
ADI

AD7293BCPZ-RL

12-Bit Power Amplifier Current Controller
ADI

AD7294

12-Bit, Multichannel, DAC/ADC Temperature Sensor and Current Sense for Monitor and Control Applications
ADI

AD7294-2BSUZ

SPECIALTY ANALOG CIRCUIT
ADI

AD7294-2BSUZ-RL

12-Bit Monitor and Control System with Multichannel ADC, DACs, Temperature Sensor, and Current Sense
ADI

AD7294BCPZ

12-Bit Monitor and Control System with Multichannel
ADI

AD7294BCPZRL

12-Bit Monitor and Control System with Multichannel ADC, DACs, Temperature Sensor, and Current Sense
ADI

AD7294BSUZ

12-Bit Monitor and Control System with Multichannel
ADI

AD7294BSUZRL

12-Bit Monitor and Control System with Multichannel
ADI

AD7294_17

12-Bit Monitor and Control System with Multichannel
ADI