AD7293 [ADI]

12-Bit Power Amplifier Current Controller;
AD7293
型号: AD7293
厂家: ADI    ADI
描述:

12-Bit Power Amplifier Current Controller

文件: 总78页 (文件大小:1562K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit Power Amplifier Current Controller with  
ADC, DACs, Temperature and Current Sensors  
Data Sheet  
AD7293  
FEATURES  
SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM  
4 closed-loop power amplifier (PA) drain current controllers  
Built-in PA protection, sequencing, and alert features  
Compatible with both depletion mode and enhancement mode  
power amplifiers  
PAV  
PRECISION  
2.5V  
DD  
PMOS  
CONTROL  
PA_ON  
REFERENCE  
AD7293  
1
×
2
1.25V  
2.5V  
Highly integrated  
BIPOLAR  
DAC  
Σ
4 uncommitted 12-bit analog-to-digital converter (ADC) inputs  
0.ꢀ LSB typical integral nonlinearity (INL)  
Eight 12-bit voltage digital-to-analog converters (DACs)  
1.3 μs maximum settling  
+
0V TO +5V  
–4V TO +1V  
–5V TO 0V  
12-BIT  
SAR ADC  
4 high-side current sense amplifiers, 0.1% gain error  
2 external temperature sensor inputs, 1.1ꢁC accuracy  
Internal temperature sensor, 1.2ꢀꢁC accuracy  
2.ꢀ V on-chip reference  
MUX  
ALERT  
AND LIMIT  
REGISTERS  
UNIPOLAR  
DAC  
D0+  
Flexible monitoring and control ranges  
ADC input ranges: 0 V to 1.2ꢀ V, 0 V to 2.ꢀ V, and 0 V to ꢀ V  
Bipolar DAC ranges: 0 V to +ꢀ V, −4 V to +1 V, and −ꢀ V to 0 V  
Bipolar DAC reset and clamping relative to VCLAMPx voltage  
Unipolar DAC ranges: 0 V to ꢀ V, 2.ꢀ V to 7.ꢀ V, and ꢀ V to 10 V  
Current sense gain: 6.2ꢀ, 12.ꢀ, 2ꢀ, ꢀ0, 100, and more  
Adjustable closed-loop setpoint ramp time  
High-side voltage current sensing  
0V TO 5V  
2.5V TO 7.5V  
5V TO 10V  
D0–  
D1+  
CONTROL  
LOGIC  
D1–  
RESET  
SPI  
DIGITAL  
LDAC AND  
INPUT/OUTPUT CLAMP CONTROL  
LOGIC INTERFACE  
4 current sense inputs  
4 V to AVSS + 60 V, 200 mV input range  
Small package and flexible interface  
Serial port interface (SPI) with VDRIVE supporting 1.8 V, 3 V, and  
ꢀ V interfaces  
ꢀ6-lead LFCSP  
Figure 1.  
The device also includes limit registers for alert functions and four  
high-side current sense amplifiers to measure current across  
external shunt resistors. These amplifiers can be optionally set to  
operate as part of four independent closed-loop drain current  
controllers.  
Temperature range: −40ꢁC to +12ꢀꢁC  
APPLICATIONS  
GaN and GaAs power amplifier monitoring and controls  
Base station power amplifiers  
General-purpose system monitoring and controls  
A high accuracy 2.ꢀ V internal reference is provided to drive the  
DACs and the ADC. The 12-bit ADC monitors and digitizes the  
internal temperature sensor, and two inputs are included for the  
external diode temperature sensors.  
GENERAL DESCRIPTION  
The AD7293 is a PA drain current controller containing  
functionality for general-purpose monitoring and control of  
current, voltage, and temperature, integrated into a single chip  
solution with an SPI-compatible interface.  
Note that throughout this data sheet, multifunction pins, such  
as GPIO4/ALERT1, are referred to either by the entire pin name  
or by a single function of the pin, for example, ALERT1, when  
only that function is relevant.  
The device features a 4-channel, 12-bit successive approximation  
register (SAR) ADC, eight 12-bit DACs (four bipolar and four  
unipolar with output ranges that can be configured to shut  
down under external pin control), a 1.2ꢀ5C accurate internal  
temperature sensor, and eight general-purpose input/output  
(GPIO) pins.  
PRODUCT HIGHLIGHTS  
1. Four independent closed-loop drain current controllers.  
2. Built-in monitoring, sequencing, and alert features.  
3. Compatible with both depletion mode and enhancement  
mode power amplifiers.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD7293  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
AVDD and AVSS Alarm................................................................ 30  
Maximum and Minimum Pages............................................... 30  
Hysteresis..................................................................................... 30  
Register Settings.............................................................................. 31  
Registers Common to All Pages............................................... 32  
Result 0/DAC Input (Page 0x00).............................................. 33  
Result 1 (Page 0x01)................................................................... 35  
Configuration (Page 0x02)........................................................ 36  
Sequence (Page 0x03) ................................................................ 45  
High Limit 0 (Page 0x04) .......................................................... 47  
High Limit 1 (Page 0x05) .......................................................... 48  
Low Limit 0 (Page 0x06)............................................................ 49  
Low Limit 1 (Page 0x07)............................................................ 50  
Hysteresis 0 (Page 0x08)............................................................ 51  
Hysteresis 1 (Page 0x09)............................................................ 52  
Minimum 0 (Page 0x0A)........................................................... 53  
Minimum 1 (Page 0x0B) ........................................................... 54  
Maximum 0 (Page 0x0C) .......................................................... 55  
Maximum 1 (Page 0x0D) .......................................................... 56  
Offset 0 (Page 0x0E)................................................................... 57  
Offset 1 (Page 0x0F)................................................................... 59  
Alert (Page 0x10)........................................................................ 60  
ALERT0 Pin Routing (Page 0x11) ........................................... 62  
ALERT1 Pin Routing (Page 0x12) ........................................... 66  
Serial Port Interface........................................................................ 70  
Interface Protocol....................................................................... 70  
Modes of Opertion..................................................................... 71  
Applications Information.............................................................. 75  
Base Station Power Amplifier Control .................................... 75  
Depletion Mode Amplifier Biasing and Protection............... 76  
Loop Component Selection ...................................................... 77  
Outline Dimensions....................................................................... 78  
Ordering Guide .......................................................................... 78  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Simplified Functional Block Diagram ........................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagrams............................................................. 3  
Specifications..................................................................................... 5  
ADC ............................................................................................... 5  
DAC................................................................................................ 6  
Temperature Sensor ..................................................................... 7  
Current Sensor.............................................................................. 8  
Closed-Loop Specifications......................................................... 8  
General........................................................................................... 9  
Timing Characteristics .............................................................. 10  
Absolute Maximum Ratings.......................................................... 12  
Thermal Resistance .................................................................... 12  
ESD Caution................................................................................ 12  
Pin Configuration and Function Descriptions........................... 13  
Typical Performance Characteristics ........................................... 16  
Theory of Operation ...................................................................... 21  
Analog-to-Digital Converter (ADC) Overview..................... 21  
ADC Transfer Functions ........................................................... 21  
Analog Inputs.............................................................................. 22  
Current Sensor............................................................................ 22  
Temperature Sensor ................................................................... 23  
Internal Channel Monitoring ................................................... 24  
DAC Operation........................................................................... 24  
Reference ..................................................................................... 26  
VDRIVE Feature .............................................................................. 26  
Open-Loop Mode....................................................................... 26  
Closed-Loop Mode .................................................................... 26  
Digital Input/Output Registers................................................. 28  
Load DAC (LDAC Pin).............................................................. 28  
Alerts and Limits ........................................................................ 28  
REVISION HISTORY  
1/2018—Rev. A to Rev. B  
Changes to Ordering Guide ......................................................... 78  
Changes to Figure 7........................................................................ 13  
Changes to Table 11........................................................................ 14  
Updated Outline Dimensions ...................................................... 78  
6/2016—Revision A: Initial Version  
Rev. B | Page 2 of 78  
 
Data Sheet  
AD7293  
FUNCTIONAL BLOCK DIAGRAMS  
REF  
V
V
REFIN  
ADC REFOUT  
PRECISION  
AD7293  
2.5V  
REFERENCE  
BI-V  
BI-V  
BI-V  
BI-V  
0
OUT MON  
PAV  
DD  
PMOS  
1
OUT MON  
CONTROL  
PA_ON  
RS3+  
2
OUT MON  
1
2
×
3
OUT MON  
CLOSED-LOOP 3  
CLOSED-LOOP 2  
1.25V  
2.5V  
RS3–  
Σ
DACV  
DACV  
DD-BI  
BIPOLAR  
DAC  
BI-V  
3
OUT  
+
DD-UNI  
AV  
SS  
RS2+  
RS2–  
AV  
DD  
Σ
BIPOLAR  
DAC  
V
0
BI-V  
2
1
IN  
IN  
IN  
IN  
OUT  
+
V
V
V
1
2
3
RS1+  
RS1–  
MUX  
CLOSED-LOOP 1  
CLOSED-LOOP 0  
Σ
BIPOLAR  
DAC  
BI-V  
OUT  
+
D0+  
RS0+  
RS0–  
CONTROL  
LOGIC  
1
1
Σ
BIPOLAR  
DAC  
BI-V  
0
OUT  
+
D0–  
D1+  
0V TO 5V  
UNIPOLAR  
DAC  
UNI-V  
UNI-V  
UNI-V  
UNI-V  
0
OUT  
OUT  
OUT  
OUT  
2.5V TO 7.5V  
5V TO 10V  
UNIPOLAR  
DAC  
1
D1–  
V
UNIPOLAR  
DAC  
DRIVE  
ALERT AND  
LIMIT  
REGISTERS  
2
3
DV  
DD  
UNIPOLAR  
DAC  
V
V
0
1
RESET  
SPI  
DIGITAL  
LDAC AND  
CLAMP  
LOGIC INTERFACE  
INPUT/OUTPUT CLAMP CONTROL  
CLAMP  
Figure 2. Closed-Loop Functional Block Diagram  
Rev. B | Page 3 of 78  
 
AD7293  
Data Sheet  
REF  
V
V
REFIN  
ADC REFOUT  
PRECISION  
AD7293  
2.5V  
REFERENCE  
BI-V  
BI-V  
BI-V  
BI-V  
0
OUT MON  
PAV  
DD  
PMOS  
1
OUT MON  
CONTROL  
PA_ON  
RS0+  
2
OUT MON  
1
2
×
3
OUT MON  
CURRENT  
SENSOR  
1.25V  
2.5V  
RS0–  
DACV  
DACV  
DD-BI  
0V TO +5V  
–4V TO +1V  
–5V TO 0V  
BIPOLAR  
DAC  
BI-V  
0
OUT  
DD-UNI  
AV  
SS  
RS1+  
RS1–  
CURRENT  
SENSOR  
AV  
DD  
BIPOLAR  
DAC  
V
0
BI-V  
1
2
IN  
IN  
IN  
IN  
OUT  
V
V
V
1
2
3
RS2+  
RS2–  
CURRENT  
SENSOR  
MUX  
BIPOLAR  
DAC  
BI-V  
OUT  
D0+  
RS3+  
RS3–  
CURRENT  
SENSOR  
CONTROL  
LOGIC  
1
1
BIPOLAR  
DAC  
BI-V  
3
OUT  
D0–  
D1+  
0V TO 5V  
2.5V TO 7.5V  
5V TO 10V  
UNIPOLAR  
DAC  
UNI-V  
UNI-V  
UNI-V  
UNI-V  
0
1
2
3
OUT  
OUT  
OUT  
OUT  
UNIPOLAR  
DAC  
D1–  
V
UNIPOLAR  
DAC  
DRIVE  
ALERT AND  
LIMIT  
REGISTERS  
DV  
DD  
UNIPOLAR  
DAC  
V
V
0
1
RESET  
SPI  
DIGITAL  
INPUT/OUTPUT  
LDAC AND  
CLAMP CONTROL  
CLAMP  
LOGIC INTERFACE  
CLAMP  
Figure 3. Open-Loop Functional Block Diagram  
Rev. B | Page 4 of 78  
Data Sheet  
AD7293  
SPECIFICATIONS  
ADC  
AVDD, DVDD, DACVDD-BI = 4.5 V to 5.5 V (connect AVDD and DACVDD-BI to the same potential), DACVDD-UNI = 5 V, AV SS = − 5 V, PAV DD  
5 V, AGND = DGND = 0 V, VREFIN = 2.5 V internal or external; VDRIVE = 1.7 V to 5.5 V; TA = −40°C to +125°C, unless otherwise noted.  
=
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC ACCURACY  
Resolution  
12  
0.5  
0.5  
Bits  
LSB  
0.99 LSB  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Single-Ended Mode  
Zero Code Error  
Zero Code Error Mismatch  
Full-Scale Error  
1
No missing codes  
0.4  
0.6  
2.5  
6.5  
LSB  
LSB  
LSB  
LSB  
Full-Scale Error Mismatch  
Differential Mode  
1.5  
Gain Error  
Gain Error Mismatch  
Zero Code Error  
3
6.5  
2
LSB  
LSB  
LSB  
LSB  
1.5  
0.5  
0.6  
Zero Code Error Mismatch  
DYNAMIC PERFORMANCE  
fIN = 1 kHz sine wave; single-ended mode;  
0 V to 4 × REFADC  
Signal-to-Noise Ratio (SNR)1, 2  
Signal-to-Noise + Distortion (SINAD) Ratio1, 2  
Total Harmonic Distortion (THD)1, 2  
Channel to Channel Isolation2  
Full Power Bandwidth2  
72  
72  
−90.5  
95  
7
dB  
dB  
dB  
dB  
fIN = 100 Hz to 80 kHz  
At 0.1 dB; single-ended mode; 0 V to 4 × REFADC  
MHz  
CONVERSION RATE  
Conversion Time2  
Track-and-Hold Acquisition Time2  
ANALOG INPUT1  
500  
100  
ns  
ns  
Voltage inputs in command mode  
REFADC = 1.25 V  
Single-Ended Input Range  
0
0
0
0
0
0
1.25  
2.5  
5
1.25  
2.5  
5
+1.25  
+2.5  
+5  
V
V
V
V
V
V
V
V
0 V to REFADC mode  
0 V to 2 × REFADC mode  
0 V to 4 × REFADC mode  
0 V to REFADC mode  
0 V to 2 × REFADC mode  
0 V to 4 × REFADC mode  
0 V to REFADC mode  
3
Pseudo Differential Range (VIN+ − VIN−  
)
4
Differential Range (VIN+ − VIN−  
)
−1.25  
−2.5  
−5  
0 V to 2 × REFADC mode  
0 V to 4 × REFADC mode  
V
pF  
µA  
Input Capacitance2  
DC Input Leakage Current  
30  
1
INTERNAL BI-VOUTx MONITORING INPUTS  
Full-Scale Input Range  
Resolution  
Gain Error  
Offset Error  
−5  
0
+5  
V
Bits  
%
12  
0.53  
14  
LSB step size ≈ 2.5 mV  
LSB step size ≈ 15.2 mV  
mV  
INTERNAL RSx+ MONITORING INPUTS  
Full-Scale Input Range  
Resolution  
Gain Error  
Offset Error  
62.5  
V
Bits  
%
12  
0.06  
11  
mV  
Rev. B | Page 5 of 78  
 
 
AD7293  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INTERNAL SUPPLY MONITORING INPUTS  
AVDD  
.
Gain Error  
0.33  
%
Offset Error  
52  
mV  
AVSS  
Gain Error  
Offset Error  
0.53  
14  
%
mV  
DACVDD-UNI  
Gain Error  
Offset Error  
0.16  
12  
%
mV  
DACVDD-BI  
Gain Error  
Offset Error  
0.33  
52  
%
mV  
INTERNAL REFERENCE2  
Reference Output Voltage  
Reference Temperature Coefficient  
EXTERNAL REFERENCE  
Reference Input Voltage Range  
DC Input Leakage Current  
2.495 2.5  
10  
2.505  
30  
V
At TA = 25°C only  
ppm/°C  
2.48  
2.5  
2.52  
2
V
µA  
1 See the Analog-to-Digital Converter (ADC) Overview section for more details.  
2 Guaranteed by design and characterization; not production tested.  
3 VIN− = 0 V for specified performance.  
4 VIN+ and VIN− must remain within GND and AVDD  
.
DAC  
AVDD, DVDD, DACVDD-BI = 4.5 V to 5.5 V (connect AVDD and DACVDD-BI to the same potential), DACVDD-UNI = 5 V, AV SS = − 5 V, PAV DD  
=
5 V, AGND = DGND = 0 V, VREFIN = 2.5 V internal or external; VDRIVE = 1.7 V to 5.5 V; TA = −40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
ACCURACY1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
Integral Nonlinearity (INL)  
12  
Bits  
LSB  
1
1.7  
3
Bipolar  
Unipolar  
1
0.3  
2.5  
LSB  
LSB  
mV  
Load current 10 mA within 300 mV of supply  
Guaranteed monotonic  
All 1s loaded to DAC register, no load applied  
Differential Nonlinearity (DNL)  
Full-Scale (FS) Error  
−0.99  
+1  
0.65  
% of FS 10 mA load applied  
Offset Error  
10  
mV  
Unipolar, 2.5 V to 7.5 V range, 5 V to 10 V range  
10  
12  
mV  
mV  
µV/°C  
% FSR  
% FSR  
ppm/°C  
Unipolar, 0 V to 5 V range  
Bipolar  
Measured in the linear region, TA = 25°C  
Bipolar  
2.5  
8
Offset Error Temperature Coefficient  
Gain Error  
0.15  
0.4  
Unipolar  
Gain Error Temperature Coefficient  
DAC OUTPUT CHARACTERISTICS  
Bipolar Open-Loop DAC Range  
3
0
5
+1  
0
5
7.5  
10  
V
V
V
V
V
V
BI-VOUT0, BI-VOUT1, BI-VOUT2, and BI-VOUT3  
−4  
−5  
0
2.5  
5
Unipolar DAC Range  
UNI-VOUT0, UNI-VOUT1, UNI-VOUT2, and UNI-VOUT3  
Rev. B | Page 6 of 78  
 
Data Sheet  
AD7293  
Parameter  
Min  
Typ  
40  
42  
Max  
Unit  
mA  
mA  
mA  
nF  
Test Conditions/Comments  
Shorted to AGND or DACVDD-UNI  
Shorted to AVSS or DACVDD-BI  
Source and/or sink within 300 mV of supply  
RL = ∞  
Unipolar DAC Short-Circuit Current  
Bipolar DAC Short-Circuit Current  
Load Current2  
−10  
+10  
Capacitive Load Stability  
DC Output Impedance  
AC CHARACTERISTICS  
10  
1
Ω
Midscale  
Output Voltage Settling Time2  
1.2  
1.3  
µs  
¼ to ¾ change within 1 LSB, measured from  
the last SCLK rising edge, CL = 200 pF  
Slew Rate2  
7.5  
0.1  
0.2  
55  
110  
102  
135  
V/µs  
nV-sec  
nV-sec  
Digital Feedthrough2  
DAC to DAC Crosstalk2, 3  
Output Noise Spectral Density2, 3  
nV/√Hz fIN = 10 kHz, bipolar  
nV/√Hz fIN = 10 kHz, unipolar  
µV p-p  
µV p-p  
Output Noise2, 3  
Bipolar  
Unipolar  
CLAMP INPUTS  
Clamp Output Voltage2  
Controlled by SLEEP0 and SLEEP1 digital pins  
−3 ×  
V
BI-VOUTx = −3 × VCLAMP0, VCLAMP  
1
VCLAMP0,  
V
CLAMP1  
Gain Error  
0.2  
5
1
%
Within 200 mV of AVSS  
Input Referred Offset Error  
VCLAMP0 and VCLAMP1 Input Current  
Clamp Voltage Range  
Output Current2  
Clamp to Open-Loop Settling Time2  
mV  
µA  
V
mA  
µs  
AVSS  
−10  
0
+10  
5
Source and/or sink within 300 mV of supply  
RL = ∞, CL = 200 pF, output voltage within 10%,  
5 V transition  
1 Specification tested with output unloaded. Linearity calculated using best fit line method and based on a reduced code range equivalent to 100 mV within either side  
of supply or ground 82 codes.  
2 Guaranteed by design and characterization; not production tested.  
3 All unipolar DACs must be enabled with an output code set to a minimum code of 41 LSBs.  
TEMPERATURE SENSOR  
AVDD, DVDD, DACVDD-BI = 4.5 V to 5.5 V (connect AVDD and DACVDD-BI to the same potential), DACVDD-UNI = 5 V, AV SS = − 5 V, PAV DD  
5 V, AGND = DGND = 0 V, VREFIN = 2.5 V internal or external; VDRIVE = 1.7 V to 5.5 V; TA = −40°C to +125°C, unless otherwise noted.  
=
Table 3.  
Parameter  
Min Typ  
Max Unit Test Conditions/Comments  
+125 °C See Figure 30 for −55°C to +125°C operation  
INTERNAL TEMPERATURE SENSOR1  
Operating Range2  
Accuracy  
−40  
1.25  
1.25  
0.125  
3
°C  
°C  
°C  
Internal temperature sensor, TA = −40°C to +125°C  
TA = 25°C  
Resolution  
EXTERNAL TEMPERATURE SENSOR1  
External transistor = 2N3906; no capacitor between Dx−/Dx+ pins, and  
no series resistor between transistor and Dx−/Dx+ pins  
Operating Range  
Accuracy  
Resolution  
−55  
+150 °C  
Limited by external transistor  
TA = −40°C to +105°C  
LSB size  
1.1  
0.125  
3
°C  
°C  
1 Guaranteed by design and characterization; not production tested.  
2 Guaranteed functional to −55°C by design but accuracy is not guaranteed.  
Rev. B | Page 7 of 78  
 
AD7293  
Data Sheet  
CURRENT SENSOR  
AVDD, DVDD, DACVDD-BI = 4.5 V to 5.5 V (connect AVDD and DACVDD-BI to the same potential), DACVDD-UNI = 5 V, AV SS = −5 V, PAVDD = 5 V,  
AGND = DGND = 0 V, VREFIN = 2.5 V internal or external; VDRIVE = 1.7 V to 5.5 V; TA = −40°C to +125°C, gain = 6.25, unless otherwise noted.  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RSx+ = AVDD to AVSS + 60 V  
AVSS = 0 V  
CURRENT SENSE  
Common-Mode Input Voltage Range  
4
60  
V
4
55  
V
AVSS = −5 V  
Differential Input Voltage Range  
Gain Error  
−200  
+200  
0.7  
mV  
%
Gain = 6.25, for gain settings, see Table 44  
0.1  
Gain Error Temperature Coefficient  
Offset Error (Referred to Input, RTI)  
Offset Error Drift  
DC Common-Mode Rejection  
RSx+1 Pin Input Current  
RSx−1 Pin Input Current  
Differential Input Resistance2  
−16  
ppm/°C  
µV  
µV/°C  
dB  
µA  
nA  
200  
1
100  
140  
105  
10  
700  
kΩ  
1 Where x is 0, 1, 2, or 3.  
2 Guaranteed by design and characterization; not production tested.  
CLOSED-LOOP SPECIFICATIONS  
AVDD, DVDD, DACVDD-BI = 4.5 V to 5.5 V (connect AVDD and DACVDD-BI to the same potential), DACVDD-UNI = 5 V, AV SS = − 5 V, PAV DD  
5 V, AGND = DGND = 0 V, VREFIN = 2.5 V internal or external; VDRIVE = 1.7 V to 5.5 V; TA = −40°C to +125°C, unless otherwise noted.  
Power amplifier transconductance = 1 S to 5 S, and external gate filter time constant (τG) = 5 µs to 50 µs.  
=
Table 5.  
Parameter  
NORMAL OPERATION1, 2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Setpoint Resolution  
12  
Bits  
Equivalent to 200 mV/4096 = 49 µV at the current  
sense input  
Sense Resistor Voltage Range  
Setpoint Gain Error  
Setpoint Offset Error (RTI)  
Integrator Time Constant3  
Closed-Loop Update Rate3  
Capacitive Load Stability  
0
200  
mV  
%
0.5  
100  
840  
59.6  
1
µV  
µs  
kHz  
µF  
µs  
V
Referred to current sense input; see Figure 31  
Programmable; see Table 50  
5 Ω series resistance  
Within 10%  
See the Bipolar DAC (BI-VOUTx) Offset Registers  
(Register 0x34 to Register 0x37) section  
Closed-Loop to Clamp Settling Time  
Bipolar Closed-Loop Output Range  
1
AVSS  
AVDD  
Integrator Programmable Voltage Limit Resolution  
2.5  
mV  
See the Closed-Loop Integrator Programmable  
Voltage Limit section  
START SEQUENCING PA_ON CONTROL2  
PA_ON Pin Output Voltage  
AGND  
PAVDD  
500  
500  
V
µs  
µs  
PA_ON Off State Enable  
Measured from AVSS failure event, CL = 1 nF  
Measured from SLEEP0 or SLEEP1 pin, 0 to 1  
transition, CL = 1 nF  
PA_ON On State Enable  
PA_ON Short-Circuit Current  
PA_ON Resistance  
500  
µs  
mA  
Ω
Measured from SLEEP1 to SLEEP0 transition, CL = 1 nF  
10  
250  
AVDD/AVSS ALARM  
AVDD Alarm Threshold  
AVSS Alarm Threshold  
3.2  
−3.8  
3.6  
−4.1  
3.9  
−4.4  
V
V
1 Power amplifier characteristic dependent.  
2 Guaranteed by design and characterization; not production tested.  
3 Expressed as a function of the internal oscillator frequency.  
Rev. B | Page 8 of 78  
 
 
Data Sheet  
AD7293  
GENERAL  
DVDD, AVDD, DACVDD-BI = 4.5 V to 5.5 V (connect AVDD and DACVDD-BI to the same potential), DACVDD-BI = 5 V, AV SS = −5 V, RSx+ = AVDD to  
55 V, AGND = DGND = 0 V, VREFIN = 2.5 V internal or external, VDRIVE = 1.7 V to 5.5 V, TA = −40°C to +125°C, unless otherwise noted.  
Table 6.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS  
Input Voltage  
High  
VIH  
VIL  
IIN  
0.8 × VDRIVE  
V
V
µA  
pF  
Low  
0.2 × VDRIVE  
Input Leakage Current  
Input Capacitance  
LOGIC OUTPUTS1  
1
3
CIN  
GPIO0/IS BLANK, GPIO1/CONVST,  
GPIO2/BUSY, GPIO3/ALERT0, and  
GPIO4/ALERT1 are open-drain outputs  
Output Voltage  
High  
Low  
Floating-State Leakage Current  
Floating-State Output Capacitance  
GENERAL-PURPOSE OUPUTS  
Output Voltage  
High  
VOH  
VOL  
0.4  
0.6  
1
V
V
µA  
pF  
ISINK = 3 mA  
ISINK = 6 mA  
8
VOH  
VOL  
VDRIVE − 0.2  
0.4  
V
V
ISINK/ISOURCE = 1 mA  
ISINK/ISOURCE = 1 mA  
Low  
POWER REQUIREMENTS  
Supply Voltages  
Positive Analog  
Negative Analog  
Logic Power  
Unipolar DAC  
Bipolar DAC  
PA_ON Power  
RSx+ Voltage  
AVDD  
AVSS  
VDRIVE  
DACVDD-UNI  
DACVDD-BI  
PAVDD  
VRSx+  
4.5  
−5.5  
1.7  
4.5  
4.5  
4.5  
4
5.5  
−4.5 or 0  
5.5  
12.5  
5.5  
V
V
V
V
V
V
V
Supports 1.8 V, 3 V, and 5 V interfaces  
AVSS + 60  
AVSS + 60  
Supply Currents  
All power supplies set to maximum  
voltage; ADC on and converting;  
DACs enabled with no load applied  
AVDD  
AVSS  
VDRIVE  
DACVDD-UNI  
DACVDD-BI  
PAVDD  
AIDD  
AISS  
IDRIVE  
DACIDD-UNI  
DACIDD-BI  
PAIDD  
9
−4.4  
1
2.1  
5
81  
110  
12.5  
−5.4  
2.1  
3
8.2  
100  
mA  
mA  
mA  
mA  
mA  
µA  
Power Dissipation  
mW  
1 Guaranteed by design and characterization; not production tested.  
Rev. B | Page 9 of 78  
 
AD7293  
Data Sheet  
TIMING CHARACTERISTICS  
SPI Serial Interface  
AVDD, DVDD, DACVDD-BI = 4.5 V to 5.5 V (connect AVDD and DACVDD-BI to the same potential), DACVDD-UNI = 2.7 V to 16 V, AVSS = 0 V,  
RSx+ = AVDD to 55 V, AGND = DGND = 0 V, VREFIN = 2.5 V internal or external, VDRIVE = 1.7 V to 5.5 V, TA = −40°C to +125°C, unless  
otherwise noted.  
Table 7.  
Limit at TMIN/TMAX  
Parameter  
Description  
VDRIVE = 1.7 V to 2.7 V  
VDRIVE = 2.7 V to 5.5 V  
Unit  
fSCLK  
t1  
t2  
t3  
t4  
Frequency of serial read clock1  
8
15  
66.67  
26  
26  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns min  
ns min  
ns min  
ns max  
SCLK period  
SCLK low  
SCLK high  
CS falling edge to SCLK rising edge  
DIN setup time to SCLK rising edge  
DIN hold time after SCLK rising edge  
Last SCLK rising edge to CS rising edge  
CS high  
150  
40  
40  
5
t5  
t6  
10  
10  
5
10  
10  
5
2
t7  
t8  
12  
1
10  
1
3
t9  
CS rising edge to next SCLK rising edge  
SCLK falling edge to CS falling edge  
t10  
t11  
1
1
SCLK falling edge to output data valid delay time from  
60  
30  
high impedance4  
t12  
t13  
t14  
SCLK falling edge to output data valid delay time4  
Last SCLK falling edge to DOUT high impedance4  
CS rising edge to DOUT high impedance4  
60  
20  
25  
30  
20  
15  
ns max  
ns typ  
ns max  
1 DOUT loaded with 10 pF for DOUT timing specifications.  
2 Time required for the output to cross 0.2 × VDRIVE and 0.8 × VDRIVE when VDRIVE < 2.7 V; time required for the output to cross 0.3 × VDRIVE and 0.7 × VDRIVE when 2.7 ≤ VDRIVE ≤5.5 V.  
3 Guaranteed by design and characterization; not production tested.  
4 MISO speed set to maximum in the general register.  
Asynchronous Inputs  
AVDD, DVDD, DACVDD-BI = 4.5 V to 5.5 V (connect AVDD and DACVDD-BI to the same potential), DACVDD-UNI = 2.7 V to 16 V, AVSS = 0 V,  
RSx+ = AVDD to 55 V, AGND = DGND = 0 V, VREFIN = 2.5 V internal or external, VDRIVE = 1.7 V to 5.5 V, TA = −40°C to +125°C, unless  
otherwise noted.  
Table 8.  
Limit at TMIN/TMAX  
Parameter  
Description  
VDRIVE = 1.7 V to 2.7 V  
VDRIVE = 2.7 V to 5.5 V  
Unit  
1
t15  
Minimum LDAC pulse width  
Minimum CONVST pulse width  
Minimum IS BLANK pulse width  
Minimum RESET pulse width  
90  
90  
90  
90  
90  
90  
90  
90  
ns min  
ns min  
ns min  
ns min  
t16  
t17  
t18  
1 Guaranteed by design and characterization; not production tested.  
Rev. B | Page 10 of 78  
 
 
Data Sheet  
AD7293  
Timing Diagrams  
t8  
CS  
t7  
t4  
t1  
t9  
t10  
SCLK  
t3  
t2  
t5  
t6  
DIN  
P7(W/R)  
P0  
MSB  
MSB  
LSB  
t13  
t11  
t12  
t14  
DOUT  
LSB  
Figure 4. Serial Interface Timing Diagram  
LDAC  
CONVST  
IS BLANK  
RESET  
t15  
t16  
t17  
t18  
Figure 5. Asynchronous Inputs  
200µA  
I
OL  
V
DRIVE  
2
TO OUTPUT PIN  
C
L
50pF  
I
200µA  
OH  
Figure 6. Load Circuit for Digital Output (DOUT) Timing Specifications  
Rev. B | Page 11 of 78  
AD7293  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 9.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
5 V Analog Output Pins (BI-VOUT0, BI-VOUT1,  
BI-VOUT2, BI-VOUT3) to AVSS  
12.5 V Analog Output Pins (UNI-VOUT0,  
UNI-VOUT1, UNI-VOUT2, UNI-VOUT3) to AGND  
12.5 V Supply (DACVDD-UNI) to AGND  
2 V Analog Pins (REFADC, D1−, D1+, D0−, D0+)  
to AGND  
AVSS − 0.3 V to  
DACVDD-BI + 0.3 V  
−0.3 V to  
DACVDD-UNI + 0.3 V  
−0.3 V to +15 V  
−0.3 V to +2 V  
THERMAL RESISTANCE  
5 V Analog Pins (FACTORY TEST, VREFIN  
,
−0.3 V to  
AVDD + 0.3 V  
−0.3 V to  
θJA is specified for a 4-layer JEDEC 2S2P type printed circuit  
board (PCB) with a thermal via, that is, a device soldered in a  
circuit board for surface-mount packages, per JESD51-7.  
VREFOUT, VCLAMP0, VCLAMP1, VINx1) to AGND  
5 V Digital Pins (GPIO5/SLEEP0,  
GPIO6/SLEEP1, RESET, GPIO7/LDAC, CS,  
DOUT) to DGND  
5 V Open-Drain Pins (GPIO4/ALERT1, SCLK,  
DIN, DVDD, GPIO3/ALERT0, GPIO2/BUSY,  
GPIO1/CONVST, GPIO0/IS BLANK) to DGND  
V
DRIVE + 0.3 V  
Table 10. Thermal Resistance  
−0.3 V to +7 V  
Package Type  
θJA  
θJC  
Unit  
56-Lead LFCSP  
27  
0.5  
°C/W  
5 V Supply Pins2 (VDRIVE, DACVDD-BI, AVDD) to  
AGND  
−5 V Supply Pin (AVSS) to AGND  
60 V Analog Pins (RSx−) to RSx+  
−0.3 V to +7 V  
−7 V to +0.3 V  
(RSx+) − 0.3 V to  
(RSx+) + 0.3 V  
ESD CAUTION  
60 V Digital Pin (PA_ON) to AGND  
−0.3 V to  
PAVDD + 0.3 V  
60 V Supply Pins (RSx+, PAVDD) to AGND  
−0.3 V to  
AVSS + 65 V  
Ground Pins (DGND, AGND) to AGND  
Operating Temperature Range  
Storage Temperature Range  
Reflow Profile  
Maximum Junction Temperature  
ESD Rating, All Pins  
−0.3 V to +0.3 V  
−40°C to +125°C  
−65°C to +125°C  
J-STD 20 (JEDEC)  
150°C  
Human Body Model (HBM)  
Field-Induced Charged Device Model  
(FICDM)  
2 kV  
1 kV  
1 x = 0, 1, 2, or 3.  
2 Connect AVDD and DACVDD-BI to the same potential.  
Rev. B | Page 12 of 78  
 
 
 
Data Sheet  
AD7293  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
FACTORY TEST  
GPIO4/ALERT1  
GPIO5/SLEEP0  
GPIO6/SLEEP1  
RESET  
1
2
3
4
5
6
7
8
9
42 REF  
41 PAV  
ADC  
DD  
40 PA_ON  
39 RS0+  
38 RS0–  
37 RS1+  
36 RS1–  
35 AGND  
34 RS2+  
33 RS2–  
32 RS3+  
31 RS3–  
GPIO7/LDAC  
SCLK  
AD7293  
TOP VIEW  
(Not to Scale)  
CS  
DIN  
DOUT 10  
DGND 11  
V
12  
13  
14  
DRIVE  
30 V  
0
1
DV  
CLAMP  
DD  
DD-UNI  
29 V  
DACV  
CLAMP  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD IS LOCATED ON THE UNDERSIDE OF THE  
PACKAGE. CONNECT THE EXPOSED PAD TO AV USING MULTIPLE VIAS OR  
SS  
LEAVE IT FLOATING.  
Figure 7. Pin Configuration  
Table 11. Pin Function Descriptions  
Pin Number  
Mnemonic  
Description  
1
2
FACTORY TEST  
GPIO4/ALERT1  
Factory Test Pin. Leave this pin unconnected, or connect it to DGND.  
General-Purpose Input/Output 4 Pin (GPIO4, Default as Input).  
Alert 1 Pin (ALERT1, Default). When configured as an alert, this pin acts as an out of range  
indicator. The polarity of the pin is register selectable. This pin is an open-drain output, and  
requires a pull-up resistor connected to VDRIVE  
.
3
4
GPIO5/SLEEP0  
GPIO6/SLEEP1  
General-Purpose Input/Output 5 Pin (GPIO5, Default as Input).  
Sleep 0 Pin (SLEEP0). DAC power-down digital input pin (polarity is register selectable). This  
pin can be configured to trigger DAC clamping on any combination of DAC channels.  
General-Purpose Input/Output 6 Pin (GPIO6).  
Sleep 1 Pin (SLEEP1, Default). DAC power-down digital input pin (polarity is register  
selectable). This pin can be configured to trigger DAC clamping on any combination of DAC  
channels.  
5
6
RESET  
Reset Input. Taking this pin low performs a hardware reset.  
General-Purpose Input/Output 7 Pin (GPIO7).  
GPIO7/LDAC  
DAC Load Pin (LDAC, Default). When this input is active, the DAC registers are updated. The  
polarity of this pin is register selectable. See the Load DAC (LDAC Pin) section for more  
information.  
7
8
9
SCLK  
CS  
SPI Serial Clock Input.  
Chip Select Signal. This active low, logic input signal frames the serial data input.  
DIN  
SPI Serial Data Input. The serial data loaded into the registers is provided on this pin. Data is  
clocked into the device on the rising edge of SCLK.  
10  
11  
DOUT  
DGND  
SPI Serial Data Output. The serial data read from the registers is provided on this pin. Data is  
clocked out on the falling edge of SCLK. DOUT is high impedance when it is not outputting  
data.  
Digital Ground. DGND is the ground reference point for all digital circuitry. Refer all digital  
signals to DGND. Connect both the DGND and AGND pins to the ground plane of the system.  
Rev. B | Page 13 of 78  
 
AD7293  
Data Sheet  
Pin Number  
Mnemonic  
VDRIVE  
DVDD  
Description  
12  
13  
14  
Drive Voltage Reference Level of the SPI Bus from 1.7 V to 5.5 V.  
Digital Supply Voltage from 4.5 V to 5.5 V.  
DAC Positive Supply Pin for the Unipolar DAC Output Amplifiers on UNI-VOUT0, UNI-VOUT1, UNI-  
VOUT2, and UNI-VOUT3.  
DACVDD-UNI  
15, 16, 18, 19 UNI-VOUT0, UNI-VOUT1,  
UNI-VOUT2, UNI-VOUT3,  
Unipolar DAC Outputs. The clamp and power-on reset voltage for these DACs is 0 V.  
17, 22, 35, 43 AGND  
Analog Ground. Connect both the AGND and DGND pins to the ground plane of the system.  
Reference Input to the Device. Connect this pin to an external reference voltage, or tie this  
20  
VREFIN  
pin to VREFOUT  
.
21  
VREFOUT  
2.5 V Reference Output. Connect to VREFIN to operate in internal reference mode. An optional  
10 nF capacitor is recommended between the reference output and AGND for noise filtering.  
23, 24, 27, 28 BI-VOUT0, BI-VOUT1,  
Bipolar DAC Outputs in Open-Loop Mode and Integrator Outputs in Closed-Loop Mode. The  
clamp and power-on reset voltage for these DACs is dictated by the VCLAMPx pins.  
BI-VOUT2, BI-VOUT  
3
25  
26  
AVSS  
DAC Negative Supply Pin for the BI-VOUT0, BI-VOUT1, BI-VOUT2, and BI-VOUT3 DAC Output  
Amplifiers.  
Analog Supply Pin for BI-VOUT0, BI-VOUT1, BI-VOUT2, and BI-VOUT3. Connect AVDD and DACVDD-BI to  
the same potential.  
DACVDD-BI  
29  
30  
VCLAMP  
VCLAMP  
RS3−, RS2−, RS1−, RS0−  
RS3+, RS2+, RS1+, RS0+  
PA_ON  
1
0
Power-On Reset and Clamp Voltage for BI-VOUT2 and BI-VOUT3.  
Power-On Reset and Clamp Voltage for BI-VOUT0 and BI-VOUT1.  
Negative Connection for External Shunt Resistors.  
31, 33, 36, 38  
32, 34, 37, 39  
40  
Positive Connection for External Shunt Resistors.  
Power Amplifier On. This pin drives an external, positive channel metal oxide semiconductor  
(PMOS) switch capable of turning on/off the drain current to a PA transistor. The maximum  
voltage is set by PAVDD and limited to AVSS + 60 V. The power amplifier is turned on when the  
output is low. The AVSS and AVDD supply alarms can be configured to automatically trigger  
PA_ON. An alert condition can be configured to trigger PA_ON. Additionally, PA_ON can be  
turned on/off by issuing a register write.  
41  
42  
PAVDD  
REFADC  
Power Supply for the PA_ON Control Signal. This pin is limited to 4 V to AVSS + 60 V.  
Internal ADC Reference Voltage. The output at this pin is half the reference value (VREFIN),  
1.25 V. Connect decoupling capacitors to this pin to decouple the reference buffer. For best  
performance, connect a 4.7 µF compensation capacitor between REFADC and AGND. For  
stability, the amplifier requires a minimum capacitance of 220 nF (X7R/C0G ceramic)  
connected between REFADC and AGND, located as close to the AD7293 as possible (no more  
than 1 Ω of interconnect resistance).  
44  
AVDD  
Supply Voltage for All of the Analog Circuitry on the AD7293. The operating range is 4.5 V to  
5.5 V. Connect AVDD and DACVDD-BI to the same potential.  
45 to 48  
VIN3, VIN2, VIN1, VIN0  
ADC Analog Inputs. Unused inputs must not be left floating. The input range of these pins is  
register selectable: 0 V to 1.25 V, 0 V to 2.5 V, or 0 V to 5 V.  
49, 50, 51, 52 D1−, D1+, D0−, D0+  
Temperature Sensor Analog Inputs. Connect these pins to the external temperature sensing  
transistor. Tie these pins to AGND if unused.  
53  
54  
55  
GPIO3/ALERT0  
General-Purpose Input/Output 3 Pin (GPIO3, Default as Input).  
Alert 0 Pin (ALERT0). When ALERT0 is configured as an alert, this pin acts as an out of range  
indicator. Open-drain output whether in GPIO mode or alert mode. The polarity of this pin is  
register selectable. A pull-up resistor connected to VDRIVE is required.  
GPIO2/BUSY  
General-Purpose Input/Output 2 Pin (GPIO2, Default as Input).  
Busy Pin (BUSY). When BUSY is configured as a busy output, this pin becomes active when a  
conversion is in progress. Open-drain output whether in GPIO mode or busy mode. The  
polarity of this pin is register selectable. A pull-up resistor connected to VDRIVE is required.  
General-Purpose Input/Output 1 Pin (GPIO1, Default as Input). This pin is an open-drain  
output in GPIO mode. The polarity of this pin is register selectable.  
GPIO1/CONVST  
ADC External Convert Start Input Pin (CONVST). CONVST triggers conversions via this pin. The  
CONVST pin is useful for synchronizing the ADC sampling instant with an external source. A  
pull-up resistor connected to VDRIVE is required in GPIO mode or if unused.  
56  
GPIO0/IS BLANK  
General-Purpose Input/Output 0 Pin (GPIO0, Default as Input). This pin is an open-drain  
output in GPIO mode. The polarity of this pin is register selectable. A pull-up resistor  
connected to VDRIVE is required in GPIO mode or if unused.  
Current Sensor Conversion Blank Pin (IS BLANK). This pin can blank current sensor  
conversions and the polarity of this pin is register selectable.  
Rev. B | Page 14 of 78  
Data Sheet  
AD7293  
Pin Number  
Mnemonic  
EPAD  
Description  
Exposed Pad. The exposed pad is located on the underside of the package. Connect the  
exposed pad to AVSS using multiple vias or leave it floating.  
Rev. B | Page 15 of 78  
AD7293  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
1.0  
0.8  
M = 131072 SAMPLES  
fS = 131.072kHz  
fIN = 1.005kHz  
–20  
fIN = 1.005kHz  
RUNS = 20  
0.6  
NONCOHERENT SAMPLING  
–40  
EFFECTIVE SAMPLES = 2621440  
HITS/CODE = 640  
SEVEN-TERM BLACKMAN-HARRIS WINDOW USED  
M = 131072 SAMPLES  
0.4  
–60  
fS = 131.072kHz  
0.2  
fIN = 1.005kHz  
–80  
–100  
–120  
–140  
–160  
–180  
SNR = 72.6366dB  
THD = –91.63dB  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
10  
20  
30  
40  
50  
60  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
FREQUENCY (kHz)  
Figure 8. Signal-to-Noise Ratio, Single-Ended Input, 2 × REFADC Range  
Figure 11. ADC INL Single-Ended, REFADC Range  
0
2.5  
2.0  
fIN = 1.005kHz  
–20  
1.5  
NONCOHERENT SAMPLING  
–40  
SEVEN-TERM BLACKMAN-HARRIS WINDOW USED  
M = 131072 SAMPLES  
1.0  
–60  
fS = 131.072kHz  
0.5  
fIN = 1.005kHz  
–80  
–100  
–120  
–140  
–160  
–180  
SNR = 73.5961dB  
THD = –90.23dB  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
10  
20  
30  
40  
50  
60  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Figure 12. ADC Zero Code Error vs. Temperature  
Figure 9. Signal-to-Noise Ratio, Differential Input, REFADC Range  
0
1.0  
M = 131072 SAMPLES  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
fS = 131.072kHz  
0.8  
0.6  
fIN = 1.005kHz  
RUNS = 20  
EFFECTIVE SAMPLES = 2621440  
HITS/CODE = 640  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
TEMPERATURE (°C)  
Figure 13. ADC Full-Scale Error vs. Temperature  
Figure 10. ADC DNL Single-Ended, REFADC Range  
Rev. B | Page 16 of 78  
 
Data Sheet  
AD7293  
1.0  
400  
350  
300  
250  
200  
150  
100  
50  
EXTERNAL REFERENCE, 0V TO +5V, UNIPOLAR DAC  
INTERNAL REFERENCE, +5V TO +10V, UNIPOLAR  
INTERNAL REFERENCE, –5V TO 0V, BIPOLAR DAC  
EXTERNAL REFERENCE, –5V TO 0V, BIPOLAR DAC  
EXTERNAL REFERENCE, +5V TO +10V, UNIPOLAR DAC  
INTERNAL REFERENCE, 0V TO +5V, BIPOLAR DAC  
BIPOLAR DNL, –5V TO 0V  
BIPOLAR INL, –5V TO 0V  
BIPOLAR DNL, –4V TO +1V  
BIPOLAR INL, –4V TO +1V  
BIPOLAR DNL, 0V TO +5V  
BIPOLAR INL, 0V TO +5V  
0.8  
0.6  
0.4  
EXTERNAL REFERENCE, 0V TO +5V, BIPOLAR DAC  
INTERNAL REFERENCE, 0V TO +5V, UNIPOLAR DAC  
INTERNAL REFERENCE, –4V TO +1V, BIPOLAR DAC  
EXTERNAL REFERENCE, –4V TO +1V, BIPOLAR DAC  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
40  
540  
1040  
1540  
2040  
2540  
3040  
3540  
4040  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
CODE  
CODE  
Figure 14. Bipolar DAC INL and DNL  
Figure 17. 0.1 Hz to 10 Hz DAC Output Noise vs. Code  
3
4.00  
3.75  
3.50  
BIPOLAR, 0nF  
BIPOLAR, 1nF  
BIPOLAR, 10nF  
UNIPOLAR, 0nF  
UNIPOLAR, 1nF  
UNIPOLAR, 10nF  
2
1
0
–1  
–2  
–3  
DNL UNIPOLAR, 2.5V TO 7.5V  
INL UNIPOLAR, 5V TO 10V  
INL UNIPOLAR, 2.5V TO 7.5V  
DNL UNIPOLAR, 0V TO 5V  
DNL UNIPOLAR, 5V TO 10V  
INL UNIPOLAR, 0V TO 5V  
40  
540  
1040  
1540  
2040  
2540  
3040  
3540  
4040  
0
2
4
6
8
10  
12  
14  
16  
28  
20  
CODE  
TIME (µs)  
Figure 15. Unipolar DAC INL and DNL  
Figure 18. Zoomed In Settling Time for a ¼ to ¾ Output Voltage Step  
40  
5.05  
0V TO 5V, CODE 4095 (FULL SCALE)  
0V TO 5V, CODE 3850 (FULL SCALE – 300mV)  
30  
20  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
10  
0
–10  
–20  
–30  
–40  
0
5
10  
15  
20  
25  
30  
35  
40  
0
2
4
6
8
10  
12  
14  
16  
TIME (Seconds)  
LOAD CURRENT (mA)  
Figure 16. 0.1 Hz to 10 Hz DAC Output Noise, Input Code 0x000  
Figure 19. DAC4 Output (Full Scale) vs. Load Current  
Rev. B | Page 17 of 78  
AD7293  
Data Sheet  
–4.65  
–4.70  
–4.75  
–4.80  
–4.85  
–4.90  
–4.95  
–5.00  
16  
14  
12  
10  
8
UNIPOLAR OFFSET ERROR 0V TO +5V  
UNIPOLAR OFFSET ERROR +2.5V TO +7.5V  
UNIPOLAR OFFSET ERROR +5V TO +10V  
BIPOLAR OFFSET ERROR 0V TO +5V  
BIPOLAR OFFSET ERROR –4V TO +1V  
BIPOLAR OFFSET ERROR –5V TO 0V  
–5V TO 0V, CODE 246 (ZERO SCALE + 300mV)  
–5V TO 0V, CODE 0 (ZERO SCALE)  
6
4
2
0
–2  
–5.05  
–16  
–4  
–40  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
0
–20  
0
20  
40  
60  
80  
100  
120  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 20. BI-VOUT0 Output Voltage (Zero Scale) vs. Load Current  
Figure 23. DAC Offset Error vs. Temperature  
6
4
12  
11  
10  
9
–4.45  
–4.50  
–4.55  
–4.60  
–4.65  
–4.70  
–4.75  
–4.80  
–4.85  
–4.90  
–4.95  
–5.00  
–5.05  
–5.10  
AV  
DD  
PA_ON  
AV  
8
2
SS  
DAC BIPOLAR OUTPUT  
7
6
0
5
4
–2  
3
2
BI-V  
BI-V  
BI-V  
BI-V  
BI-V  
0 0/4 SCALE  
0 1/4 SCALE  
0 2/4 SCALE  
0 3/4 SCALE  
0 4/4 SCALE  
OUT  
OUT  
OUT  
OUT  
OUT  
–4  
1
0
–1  
–6  
–80  
0
5
10  
15  
20  
25  
30  
35  
40  
–60  
–40  
–20  
0
20  
40  
60  
80  
TIME (ms)  
LOAD CURRENT (mA)  
Figure 24. Bipolar DAC Response to AVDD Failure  
Figure 21. BI-VOUT0 Output Voltage vs. Load Current  
10  
500  
400  
UNIPOLAR GAIN ERROR, +2.5V TO +7.5V  
UNIPOLAR GAIN ERROR, +5V TO +10V  
UNIPOLAR GAIN ERROR, 0V TO +5V  
BIPOLAR GAIN ERROR, 0V TO +5V  
BIPOLAR GAIN ERROR, –4V TO +1V  
BIPOLAR GAIN ERROR, –5V TO 0V  
5
0
300  
200  
100  
–5  
0
–100  
–200  
–300  
–400  
–500  
–10  
–15  
–20  
UNIPOLAR, 0V TO 5V, HIGH TO LOW  
UNIPOLAR, 5V TO 10V, LOW TO HIGH  
UNIPOLAR, 0V TO 5V, LOW TO HIGH  
BIPOLAR, 0V TO 5V, HIGH TO LOW  
UNIPOLAR, 5V TO 10V, HIGH TO LOW  
BIPOLAR, 0V TO 5V, LOW TO HIGH  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 25. DAC Glitch Energy vs. Code  
Figure 22. DAC Gain Error vs. Temperature  
Rev. B | Page 18 of 78  
Data Sheet  
AD7293  
1.0  
0.5  
–60  
–65  
0
–70  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–75  
–80  
–85  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
SENSOR RESULT AT +25°C  
–6.0  
–6.5  
–7.0  
–7.5  
SENSOR RESULT AT +105°C  
SENSOR RESULT AT +150°C  
SENSOR RESULT AT –40°C  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Figure 26. Temperature Error vs. Capacitance from Dx+ to Dx−  
Figure 29. High-Side Current Sensor at Common-Mode Rejection Ratio (CMRR)  
5.0  
2.504  
2.503  
2.502  
2.501  
SENSOR RESULT AT +150°C  
SENSOR RESULT AT +105°C  
SENSOR RESULT AT +25°C  
SENSOR RESULT AT –40°C  
SENSOR RESULT AT –55°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
TESTER TRIMMED DUT1  
TESTER TRIMMED DUT2  
TESTER TRIMMED DUT3  
TESTER TRIMMED DUT4  
TESTER TRIMMED DUT5  
TESTER TRIMMED DUT6  
TESTER TRIMMED DUT7  
TESTER TRIMMED DUT8  
TESTER TRIMMED DUT9  
TESTER TRIMMED DUT10  
TESTER TRIMMED DUT11  
TESTER TRIMMED DUT12  
TESTER TRIMMED DUT13  
–0.5  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
SERIES RESISTANCE (kΩ)  
Figure 27. Temperature Error vs. Series Resistance for Typical Devices  
Figure 30. ADC Reference vs. Temperature  
1.0  
0.8  
0.10022  
0.10020  
0.10018  
0.10016  
0.10014  
0.10012  
0.10010  
0.10008  
0.10006  
0.10004  
0.10002  
MIDSCALE DRIFT WITH EXTERNAL REFERENCE  
MIDSCALE DRIFT WITH INTERNAL REFERENCE  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
DUT TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 28. Temperature Sensor Error vs. Device Under Test (DUT)  
Temperature  
Figure 31. Closed-Loop RSENSE Voltage Regulation vs. Temperature  
Rev. B | Page 19 of 78  
 
 
AD7293  
Data Sheet  
0.8  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
BIPOLAR CHANNEL 0  
10% LINE  
1% LINE POSITIVE  
1% LINE NEGATIVE  
TIME ZERO  
0.3  
–0.2  
–0.7  
–1.2  
–1.7  
DNL: +25°C  
INL: +25°C  
DNL: +125°C  
INL: +125°C  
DNL: –40°C  
INL: –40°C  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
DAC (Codes)  
Figure 32. Closed-Loop INL and DNL  
Figure 34. Closed Loop to Clamp Settling Time  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
BIPOLAR CHANNEL 0  
10% LINE  
1% LINE POSTIVE  
1% LINE NEGATIVE  
TIME ZERO  
–5.0  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
Figure 33. Open Loop to Clamp Settling Time  
Rev. B | Page 20 of 78  
Data Sheet  
AD7293  
THEORY OF OPERATION  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
OVERVIEW  
1LSB = 2 × REF  
ADC  
/4096  
011...111  
011...110  
The AD7293 provides the user with a multichannel multiplexer,  
an on-chip track-and-hold, and a successive approximation  
ADC based around a capacitive DAC. The analog input range  
000...001  
000...000  
for the ADC is selectable as a 0 V to REFADC, 0 V to 2 × REFADC  
,
111...111  
or 0 V to 4 × REFADC input single-ended input, where REFADC  
=
1.25 V.  
100...010  
100...001  
The various monitored and uncommitted input signals are  
multiplexed into the ADC. The AD7293 has four uncommitted  
analog input channels, VIN0 to VIN3.  
100...000  
–REF  
+ 1LSB  
0
REF  
– 1LSB  
ADC  
ADC  
ANALOG INPUT  
ADC TRANSFER FUNCTIONS  
Figure 36. Differential Transfer Characteristics  
The designed code transitions occur at successive integer least  
significant bit (LSB) values (1 LSB, 2 × LSB, and so on). The  
reference voltage for the ADC is referred from the main 2.5 V  
reference through an amplifier that attenuates the voltage by  
one half. REFADC = 1.25 V.  
Table 12. Code Transition and Voltage  
Code  
Transition  
Single-Ended  
Voltage (VIN)  
Differential Voltage  
(VIN+ − VIN−)  
0x000 to 0x001 REFADC × Range/4096  
−REFADC × Range ×  
2047/2048  
In single-ended mode, the LSB size is REFADC/4096 when the  
0 V to REFADC range is selected, 2 × REFADC/4096 when the 0 V  
to 2 × REFADC range is selected, and 4 × REFADC/4096 when the  
0 V to 4 × REFADC range is selected (which is the default value).  
Figure 35 shows the ideal transfer characteristic for the ADC  
when outputting straight binary coding.  
0x7FF to 0x800 REFADC × Range/2  
0 V  
0xFFE to 0xFFF  
REFADC × Range ×  
4095/4096  
+REFADC × Range ×  
2047/2048  
For VIN0 to VIN3 in single-ended mode, the output code is  
straight binary, and the ideal input voltage is given by  
VIN = ((Code + 0.5)/ 4096) × REFADC × Range  
The differential code is shown in Table 12, and the associated  
voltage is calculated by  
111...111  
111...110  
V
IN+ VIN− = ((Code − 2047.5)/2048) × REFADC × Range  
111...000  
where:  
1LSB = REF  
/4096  
ADC  
Code is the decimal equivalent of the binary code read from the  
ADC register.  
011...111  
REFADC = 1.25 V.  
000...010  
000...001  
000...000  
Range = 1 when in the 0 V to REFADC range.  
Range = 2 when in the 0 V to 2 × REFADC range.  
Range = 4 when in the 0 V to 4 × REFADC range.  
REF  
– 1LSB  
ADC  
1LSB  
0V  
ANALOG INPUT  
NOTES  
1.REF  
Table 13. ADC Range Selected vs. LSB Size  
IS REF  
, 2 × REF  
, OR 4 × REF .  
ADC  
ADC  
ADC  
ADC  
Single-Ended  
ADC LSB  
Differential  
ADC LSB  
Figure 35. Single-Ended Transfer Characteristics  
Range  
00  
01  
10  
11  
Value  
1
1
1
4 × REFADC  
2 × REFADC  
2 × REFADC  
4 × REFADC/4096  
2 × REFADC/4096  
2 × REFADC/4096  
REFADC/4096  
8 × REFADC/4096  
4 × REFADC/4096  
4 × REFADC/4096  
2 × REFADC/4096  
In differential mode, the LSB size is 2 × REFADC/4096 when the  
0 V to REFADC range is selected, 4 × REFADC/4096 when the 0 V to  
2 × REFADC range is selected, and 8 × REFADC/4096 when the 0 V  
to 4 × REFADC range is selected. Figure 36 shows the ideal transfer  
characteristic for the ADC when outputting differential coding  
(with the 2 × REFADC range).  
1
REFADC  
1 REFADC = 1.25 V.  
Rev. B | Page 21 of 78  
 
 
 
 
 
 
AD7293  
Data Sheet  
Pseudo Differential Mode  
ANALOG INPUTS  
The four uncommitted analog input channels can be configured  
as two pseudo differential pairs. Two uncommitted inputs, VIN0  
and VIN1, are a pseudo differential pair, as are VIN2 and VIN3. In  
this mode, VIN+ is connected to the signal source, which can have  
The AD7293 has four analog inputs, VIN3 to VIN0. Depending  
on the configuration register setup, they can be configured as  
four single-ended inputs or two fully differential channels.  
Single-Ended Mode  
a maximum amplitude of REFADC, 2 × REFADC, or 4 × REFADC  
,
The AD7293 can have four single-ended analog input channels.  
In applications where the signal source is high impedance, it is  
recommended to buffer the analog input before applying it to the  
ADC. The analog input range is programmed to the following  
modes: 0 V to REFADC, 0 V to 2 × REFADC, or 4 × REFADC mode.  
The voltage, with respect to AGND on the ADC analog input  
pins, cannot exceed AVDD.  
depending on the range that is chosen, to make use of the full  
dynamic range of the device. A dc input is applied to VIN−. The  
voltage applied to this input provides an offset from ground or a  
pseudo ground for the VIN+ input. The ADC channel allocation  
determines the channel specified as VIN+. The differential mode  
must be selected to operate in the pseudo differential mode. The  
resulting converted pseudo differential data is stored in twos  
complement format in the result register.  
Differential Mode  
The AD7293 can have two differential input pairs (VIN3 and VIN2,  
VIN1 and VIN0). The amplitude of the differential signal is the  
difference between the signals at VIN+ and VIN− (VIN0 and VIN1,  
or VIN3 and VIN2). Simultaneously drive VIN+ and VIN− by two  
For VIN0, the governing equation for the pseudo differential  
mode is  
V
OUT = 2(VIN+ VIN−) − REFADC  
where:  
signals, each of amplitude REFADC, 2 × REFADC, or 4 × REFADC  
,
V
V
IN+ is the single-ended signal.  
IN− is a dc voltage.  
depending on the range chosen, which are 180° out of phase.  
REFADC = 1.25 V.  
ADC  
ADC  
p-p  
p-p  
V
IN+  
REF  
REF  
AD72931  
The benefit of pseudo differential inputs is that they separate  
the analog input signal ground from the ADC ground, allowing  
dc common-mode voltages to be cancelled.  
COMMON-MODE  
VOLTAGE  
V
IN–  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
AD72931  
V
p-p  
Figure 37. Differential Input (VIN+/VIN− Refer to VIN0 to VIN3)  
REF  
V
IN+  
Assuming that the 0 V to REFADC range is selected, the amplitude  
of the differential signal is, therefore, −REFADC to +REFADC peak  
to peak, regardless of the common-mode voltage (VCM).  
V
IN–  
DC INPUT  
VOLTAGE  
The common-mode voltage is the average of the two signals.  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
(VIN+ + VIN−)/2  
Figure 38. Pseudo Differential Input (VIN+/VIN− Refer to VIN0 to VIN3)  
The common-mode voltage is the voltage on which the two  
inputs are centered. The result is that the span of each input is  
VCM REFADC/2. This common-mode voltage must be set up  
externally.  
CURRENT SENSOR  
Four bidirectional high-side current sense amplifiers are  
provided that can accurately amplify differential current shunt  
voltages in the presence of high common-mode voltages from  
AVDD up to AVSS + 60 V. The current sensors can be read  
directly, or optionally, they can be set to operate as part of the four  
independent closed-loop, drain current controllers. See the  
Closed-Loop section for more information.  
When a conversion takes place, the common-mode voltage is  
rejected, resulting in a virtually noise free signal of amplitude  
−REFADC to +REFADC, corresponding to the digital output codes  
of −2048 to +2047 in twos complement format.  
When using the 2 × REFADC range, the input signal amplitude  
extends from −2 × REFADC (VIN+ = 0 V and VIN− = REFADC) to  
+2 × REFADC (VIN− = 0 V and VIN+ = REFADC).  
In open-loop operation, the current sense amplifiers measure  
the current through a shunt resistor. Each amplifier can accept  
differential inputs up to 200 mV. A selectable gain amplifies  
the measured voltage drop across the current sensor.  
Similarly, when using the 4 × REFADC range, the input signal  
amplitude extends from −4 × REFADC (VIN+ = 0 V and VIN−  
=
REFADC) to +4 × REFADC (VIN− = 0 V and VIN+ = REFADC).  
Rev. B | Page 22 of 78  
 
 
Data Sheet  
AD7293  
The AD7293 high-side current sense amplifier is configured as  
V
RSx− is the voltage for the RSx− pins.  
a differential integrator.  
REFADC = 1.25 V.  
RESET  
Gain can be set between 6.25 and 781.25 as shown in Table 14.  
ISENSE LSB = 2 × (REFADC/(Gain × 4096 × RSENSE))  
where:  
RESET, HOLD  
6pF  
224kΩ  
RSx+  
RSx–  
+
I
SENSE LSB is the current sense input channel LSB size in  
amperes.  
SENSE is the external sense resistor.  
Choosing the External Sense Resistor (RSENSE  
224kΩ  
+
R
6pF  
)
The resistor values used in conjunction with the current sense  
amplifiers on the AD7293 are determined by the specific applica-  
tion requirements in terms of voltage, current, and power.  
RESET  
Figure 39. Current Sensor Internal Diagram  
Small resistors minimize power dissipation, have low induct-  
ance to prevent induced voltage spikes, and have good tolerance,  
which reduces current variations. The final values chosen are a  
compromise between low power dissipation and good accuracy.  
Low value resistors have less power dissipation and good accu-  
racy; however, higher value resistors may be required to use the  
full input range of the ADC.  
Before each measurement, the integrator is held in a reset state  
for 9.2 µs. The input is then connected and measured for a  
programmable amount of time, resulting in a gain equal to the  
following:  
Gain = Integration Time/(224 kΩ × 6 pF)  
Table 14. Current Sensor Gain Settings  
Typical  
When the sense current is known, the voltage range of the  
AD7293 current sensor is divided by the maximum sense  
current to yield a suitable resistor value. If the power dissipation  
in the shunt resistor is too large, the shunt resistor can be  
reduced, in which case, the current sensor gain can be increased  
to maximize the ADC input range used.  
Typical Voltage Across Integration  
Code  
0000 (Default)  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Gain  
6.25  
12.5  
18.75  
25  
37.5  
50  
75  
100  
200  
400  
781.25  
RSENSE1 (mV)  
200  
100  
66.67  
50  
33.33  
25  
16.67  
12.5  
6.25  
3.125  
1.6  
Time (µs)  
8.4  
16.8  
25.2  
33.6  
50.4  
67.2  
100.8  
134.4  
268.8  
537.6  
1050  
R
SENSE must be able to dissipate the I2R losses. If the power  
dissipation rating of the resistor is exceeded, its value may drift,  
or the resistor may be damaged, resulting in an open circuit. If  
the power dissipation of the resistor is exceeded, it can result in  
a differential voltage across the AD7293 terminals in excess of  
the absolute maximum ratings.  
1000  
1001  
1010  
Current Sensor Input Voltage Range  
RSENSE  
ISENSE(MAX)  
1 RSENSE is the external sense resistor.  
When integration is complete, the input switches open, keeping  
the output constant until the ADC completes its conversion of  
the output signal. If no other ADC channels are enabled, the  
conversion takes an additional 4.2 µs. Otherwise, the current  
sense amplifier waits for its turn in the ADC conversion  
sequence before resetting and starting a new measurement.  
where:  
SENSE is the value of the current sense resistor in Ω.  
Current Sensor Input Voltage Range is the current sensor  
amplifier input voltage range as dictated by the gain setting  
chosen (see Table 14).  
R
I
SENSE (MAX) is the maximum current required in A.  
Keep the external source impedance low with respect to the  
input resistance of the integrator to avoid creating a gain error.  
TEMPERATURE SENSOR  
The AD7293 contains one local and two remote temperature  
sensors. The temperature sensors can continuously monitor the  
three temperature inputs, and new readings are automatically  
available every 5 ms.  
Calculate the current sensor input channel LSB as follows:  
V
SENSE LSB = (2 × REFADC)/(Gain × 4096)  
V
V
RSx+ VRSx− = −REFADC/Gain, with DOUT = 0x000  
RSx+ VRSx− = 0 V, with DOUT = 0x7FF  
The on-chip temperature sensor measures the device die  
temperature. The internal temperature sensor measures  
between −40°C and 125°C, where the LSB size is 0.125°C.  
V
RSx+ VRSx− = REFADC/Gain, with DOUT = 0xFFF  
where:  
The AD7293 includes two remote temperate sensors. The  
device is factory calibrated to work with 2N3906 discrete  
transistors.  
V
V
SENSE LSB is the current sense input channel LSB size in volts.  
RSx+ is the voltage for the RSx+ pins.  
Rev. B | Page 23 of 78  
 
 
AD7293  
Data Sheet  
For RF applications, the use of high Q capacitors functioning as  
a filter protects the integrity of the measurement. Connect these  
capacitors between the base and the emitter, as close to the  
external device as possible. However, large capacitances affect  
the accuracy of the temperature measurement; therefore, the  
recommended maximum capacitor value is 100 pF. In most  
cases, a capacitor is not required; the selection of any capacitor  
is dependent on the noise frequency level.  
and 0xFFFF equates to approximately +2.5 V. R E F ADC = 1.25 V.  
For RSx+MON (internal monitoring of the voltage on the RS0+ to  
RS3+ pins), divide by 50 to scale them to the 0 V to REFADC  
range. Use the ADC in single-ended mode. The RSx+MON monitor  
result registers store the 12-bit ADC results for the current sense  
supply channels (see Figure 42).  
0V TO +62.5V  
0V TO +62.5V  
0V TO +62.5V  
0V TO +62.5V  
–5V TO +5V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
0V TO +1.25V  
RS0+  
RS1+  
RS2+  
RS3+  
MON  
MON  
MON  
MON  
The AD7293 automatically cancels out the effect of parasitic,  
base, and collector resistance on the temperature reading. This  
cancelation gives a more accurate result, without the need for  
any user characterization of the parasitic resistance. The AD7293  
can compensate for up to 4 kΩ series resistance typically.  
BI-V  
BI-V  
BI-V  
BI-V  
0
OUT MON  
–5V TO +5V  
1
12-BIT  
SAR ADC  
OUT MON  
MUX  
–5V TO +5V  
2
OUT MON  
–5V TO +5V  
3
OUT MON  
0V TO +6.25V  
0V TO 25V  
AD7293  
DACV  
DD-BI  
DACV  
DD-UNI  
–7.5V TO +2.5V  
0V TO +6.25V  
2N3904  
NPN  
AV  
SS  
Dx+  
10pF  
AV  
DD  
Dx–  
Figure 42. Internal Channel Monitoring  
Figure 40. Measuring Temperature Using a NPN Transistor  
DAC OPERATION  
The AD7293 contains eight 12-bit DACs, four bipolar DACs,  
and four unipolar DACs. These provide digital control with 12 bits  
of resolution combined with offset range select registers and a  
2.5 V internal reference. The DAC core is a 12-bit string DAC. The  
resistor string structure consists of a string of resistors, each of  
Value R. The code loaded to the DAC register determines at  
which node on the string the voltage is tapped off to be fed into  
the output amplifier. When one of the switches connecting the  
string to an amplifier is closed, the voltage is tapped off. This  
architecture is inherently monotonic and linear. The eight DACs  
are split into two groups based on their output range.  
AD7293  
Dx+  
10pF  
2N3906  
Dx–  
PNP  
Figure 41. Measuring Temperature Using a PNP Transistor  
Table 15. Temperature Sensor Data Format  
Temperature  
(°C)  
TSENSEx Result Registers (Page 0x00,  
Register 0x20 to Register 0x22), Bits[D15:D4]  
−40  
−25  
−10  
−0.125  
0
+0.125  
+10  
+25  
+50  
+75  
0110 1100 0000  
0111 0011 1000  
0111 1011 0000  
0111 1111 1111  
1000 0000 0000  
1000 0000 0001  
1000 0101 0000  
1000 1100 1000  
1001 10 01 0000  
1010 0101 1000  
1011 0010 0000  
1011 1110 1000  
Bipolar DACs  
The bipolar DACs (BI-VOUT0, BI-VOUT1, BI-VOUT2, and BI-VOUT3)  
can be configured through the offset range registers to 0 V to  
+5 V, 5 V to 0 V, or −4 V to +1 V (see Table 85).  
Writing to these register addresses sets the 12-bit DAC output  
voltage. There is also a load bit and a copy bit (see Table 27).  
If the load bit is set to 1, the device waits for LDAC to become  
active before loading the voltage codes onto the DACs rather than  
immediately after the write operation. If the copy bit is set to 1  
when writing to a bipolar DAC register, it sets all bipolar DAC  
registers to the same value in open-loop mode only.  
+100  
+125  
INTERNAL CHANNEL MONITORING  
The ADC can internally read the outputs of the four bipolar  
DACs, AVDD, DACVDD-UNI, DACVDD-BI, AVSS, and the voltage on  
the RS0+ to RS3+ pins in the background. A sequencer is  
available that allows multiple channels to be converted in a  
predetermined sequence.  
D
VOUT = 2×V  
×
+V  
OFFSET  
REFIN  
2n  
where:  
REFIN = 2.5 V.  
V
D is the decimal equivalent of the binary code that is loaded to  
the DAC register (0 to 4095 for the 12-bit AD7293).  
n is the resolution of the DAC.  
The ADC is used in its single-ended mode. The LSB size varies  
with the different supply monitoring registers. AVDD and DACVDD-BI  
are divided by 5, and DACVDD-UNI is divided by 20 to scale within  
the 0 V to REFADC range. AVSS is level shifted to within a −7.5 V  
to +2.5 V range, where 0x0000 equates to approximately −7.5 V,  
V
OFFSET = 0 V (0 V to +5 V range), −4 V (−4 V to +1 V range), or  
−5 V (−5 V to 0 V range).  
Rev. B | Page 24 of 78  
 
 
 
Data Sheet  
AD7293  
Table 16. Bipolar DAC Voltage Offset Ranges  
Table 17. Unipolar DAC Voltage Offset Ranges  
Range (V)  
0x000  
0xFFF  
VOFFSET (V )  
Range (V)  
0x000  
0xFFF  
VOFFSET (V)  
0 to +5  
−4 to +1  
−5 to 0  
0 V  
2 V × VREFIN  
0.4 V × VREFIN  
0 V  
0
−4  
−5  
0 to 5  
2.5 to 7.5  
5 to 10  
0 V  
VREFIN  
2 V × VREFIN  
2 V × VREFIN  
3 V × VREFIN  
4 V × VREFIN  
0
2.5  
5
−1.6 V × VREFIN  
−2 V × VREFIN  
The ADC can also monitor these four outputs.  
DAC Enabling and Clamping  
The bipolar DACs in addition to the four current sensors in the  
PA controller can operate as four independent closed-loop  
drain current controllers (see the Closed-Loop Mode section).  
CLAMP/  
On power-up, the DAC outputs default to their clamp values  
(see Table 18). All DACs can be enabled and disabled/clamped  
via the DAC enable register (common to all pages).  
DAC  
0V TO +5V  
Table 18. Clamp Values  
RANGE  
ENABLE  
2.5V  
REF  
–4V TO +1V  
–5V TO 0V  
SELECT  
DAC Output  
Clamp Value  
REF(+)  
UNI-VOUT  
UNI-VOUT  
UNI-VOUT  
UNI-VOUT  
0
1
2
3
0 V  
0 V  
0 V  
0 V  
BI-V  
X
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
REF(–)  
–3  
V
X
BI-VOUT  
BI-VOUT  
BI-VOUT  
BI-VOUT  
0
1
2
3
−3 × VCLAMP  
−3 × VCLAMP  
−3 × VCLAMP  
−3 × VCLAMP  
0
0
1
1
CLAMP  
Figure 43. Bipolar DAC Architecture Block Diagram  
Unipolar DACs  
The unipolar DAC outputs, UNI-VOUT0, UNI-VOUT1, UNI-  
All DACs (bipolar DACs only on power-up) can be set to clamp  
using the digital SLEEP0 and SLEEP1 pins. The DAC outputs  
controlled by the digital SLEEP0 and SLEEP1 pins are selectable by  
writing to the corresponding sleep bit in the DAC snooze/SLEEPx  
pin register (see Table 45) in the configuration page. When the  
SLEEPx pin is pulled active, the corresponding unipolar and  
bipolar DACs associated with the pin are forced into clamp.  
Clamping does not clear the DAC output register value, making  
it possible to return to the same voltage as before the clamp  
event. While in clamp mode, the DAC registers can be updated.  
When a SLEEPx pin is used, a snooze function is available that  
clears the DAC registers and requires an additional write to the  
DAC enable register to wake up the DAC after clearing the clamp  
condition.  
VOUT2, and UNI-VOUT3, can be configured through the offset  
range registers to 0 to 5 V, 2.5 V to 7.5 V, or 5 V to 10 V (see  
Table 84).  
The DACs have one control register to control the interaction  
between two registers: input registers and output registers. The  
output registers contain the digital code used by the resistor  
strings as well as a copy and load bit. Writing to these register  
addresses sets the 12-bit DAC output voltage codes.  
If the load bit is set to one, the device waits for LDAC to become  
active before loading the voltage codes onto the DACs rather than  
immediately after the write operation. If the copy bit is set to 1,  
writing to a unipolar DAC registers sets all the other unipolar  
DAC registers to the same value.  
The bipolar DACs power-on reset and clamp value is dependent  
on the VCLAMP0 and VCLAMP1 voltage level. After a power-on reset  
or when the digital SLEEP0 or SLEEP1 pin is configured to trigger  
a clamp, the bipolar DAC outputs reset to the clamp value (see  
Table 18).  
D
VOUT = 2×V  
×
+V  
OFFSET  
REFIN  
2n  
where:  
REFIN = 2.5 V.  
V
D is the decimal equivalent of the binary code that is loaded to  
the DAC register (0 to 4095 for the 12-bit AD7293).  
n is the resolution of the DAC.  
After a power-on reset or when the digital SLEEP0 or SLEEP1  
pin is configured to trigger clamping, the unipolar DAC outputs  
default to 0 V.  
V
OFFSET = 0 V (0 V to 5 V range), 2.5 V (2.5 V to 7.5 V range), or  
Software Clamping: Internal ALERT0 Routing  
5 V (5 V to 10 V range).  
CLAMP/  
DAC  
ENABLE  
There is an option to allow the ALERT0 alert to trigger the  
clamp function. The DACs power back up when the alert is  
cleared without an additional write to the DAC enable registers.  
Bit D1 of the general register in the configuration page allows  
ALERT0 control over the clamping function of the four bipolar  
DACs.  
0V TO 5V  
RANGE  
SELECT  
2.5V  
REF  
2.5V TO 7.5V  
5V TO 10V  
REF(+)  
UNI-V  
X
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
REF(–)  
Figure 44. Unipolar DAC Architecture Block Diagram  
Rev. B | Page 25 of 78  
 
AD7293  
Data Sheet  
PMOS Drain Switch Control  
OPEN-LOOP MODE  
The AD7293 PA_ON output pin is capable of driving an  
external PMOS switch. This external PMOS turns on or off the  
drain current to a PA field effect transistor (FET). The PA_ON  
output pin controls the device during power-up and power-down.  
This feature can also be used as a protection feature when an  
alert condition is detected because ALERT0 alerts or an AVSS or  
AVDD supply failure can be used to trigger the PA_ON pin.  
PAVDD determines the maximum voltage at the output of the  
PA_ON pin. The off state is equal to PAVDD while the on state is  
equal to AGND. The default state of the PA_ON signal is off.  
V p-p  
In open-loop mode, the default mode of operation, the current  
sense amplifiers and bipolar DACs operate independently.  
CLOSED-LOOP MODE  
Alternatively, the AD7293 current sensors and bipolar DACs  
can operate as four independent closed-loop drain current  
controllers (closed-loop mode).  
In closed-loop operation, the drain current through the PA FET  
is set and automatically maintained by the PA controller through a  
regulation circuit that includes the DAC and current sense moni-  
tor. The control loop sets the PA bias current and continuously  
maintains a constant voltage across the sense resistor (VSENSE  
=
PAV  
DD  
I
SENSE × RSENSE). When the DAC current updates, the closed-loop  
PMOS  
CONTROL  
adjusts the gate voltage of the PA until the drain current matches  
the corresponding DAC code. The continuous regulation of the  
loop compensates for variations of the PA threshold or voltage  
drop on the LPF due to the PA gate current. The integrator  
leads to a smooth transition on the output of the pin.  
PMOS  
DRAIN  
SWITCH  
PA_ON  
RSx+  
CURRENT  
SENSOR  
R
SENSE  
RSx–  
AD7293  
RF IN  
RF OUT  
PA FET  
RSx+  
FILTER  
RSx–  
Figure 45. PMOS Drain Switch Control  
REFERENCE  
The AD7293 has one high performance, 2.5 V on-chip reference  
accessed via the VREFOUT pin. Noise performance can be improved  
by the addition of a 10 nF capacitor between the VREFOUT pin and  
the AGND pin. Connect VREFOUT to the VREFIN pin to use the  
on-chip reference of the AD7293. An internal amplifier attenu-  
BIPOLAR  
DAC  
Σ
(PROGRAMMABLE  
RAMP TIME)  
LPF  
Figure 46. Closed-Loop Control  
ates to the ADC core, making the voltage at the ADC, REFADC  
1.25 V, half of VREFIN = 2.5 V. Use the REFADC pin for measurement  
purposes only.  
=
Each of the four current closed loops consists of a DAC, an  
error amplifier, and an integrator in the forward path to drive  
the gate of the PA FET. A high-side current sense amplifier in  
the feedback path senses that PA drain bias current and closes  
the loop.  
A 220 nF capacitor is required on the REFADC pin and must be  
placed as close to the AD7293 as possible with no vias. The  
internal reference typically requires 20 ms to power up and settle  
when using a 220 nF decoupling capacitor on the REFADC pin.  
An external gate filter can be introduced between the gate of the  
power amplifier and the integrator output pins when operating  
in closed-loop mode to limit the noise bandwidth and to ensure  
PA stability. The gate filter time constant (τG) must be between  
5 µs and 50 µs.  
Buffer the internal reference before it is used by external circuitry.  
The AD7293 can also operate with an external reference of  
2.5 V connected to the VREFIN pin.  
Adjustable Closed-Loop Setpoint Ramp Time  
If using an external reference, select a low temperature coefficient  
specification, such as the ADR4525, to reduce the temperature  
dependence of the system output voltage on ambient conditions.  
The transition between two successive setpoints of the DAC are  
interpolated in a linear manner with the aid of a ramp generator.  
When moving to a new closed-loop setpoint, limiting the rate of  
change of the drain current is often required. To facilitate this,  
the AD7293 can automatically generate a linear ramp between  
the old and new DAC settings, over a programmable duration.  
Write to the ramp time register to enable this feature, which  
allows ramp times of between 4 ms and 31.75 ms to generate,  
programmable in 250 µs steps. If a value of less than 4 ms is  
written to the register, the ramp generator disables, and the new  
VDRIVE FEATURE  
The AD7293 also has a VDRIVE feature that controls the voltage at  
which the SPI operates. Connect the VDRIVE pin to the supply to  
which the SPI bus is pulled. The VDRIVE pin sets the input and  
output threshold levels for the digital logic pins. The VDRIVE  
feature allows the AD7293 to interface with 1.8 V, 3.3 V, and 5 V  
processors.  
Rev. B | Page 26 of 78  
 
 
 
 
Data Sheet  
AD7293  
target DAC code is set immediately. Depending on the overall  
loop time constant, an additional settling time can be required  
after the end of the ramp for the drain current to reach the  
ramp generator disables, and the DAC jumps to the target  
value quickly.  
3. Release the DACs out of clamp by writing to the DAC  
enable register (Register 0x04) and wait 5 ms for the PAs to  
settle to the initial drain current. At this point, ensure that  
the programmed ramp time is 0, such that the ramp generator  
is disabled, and the DAC resolves to the target value.  
4. Program the desired ramp times for each channel by writing  
to the corresponding ramp time registers (Register 0x2A to  
Register 0x2D) from the configuration page.  
prescribed set point.  
SETTLING  
TIME  
RAMP TIME  
DAC RAMP  
5. Program the target drain current by writing to the DAC  
registers. In addition to the ramp time, allow a delay of  
1 ms before checking whether the PA drain current  
corresponds to the intended target current. During the  
active ramp period, if the DAC input register (Page 0x00,  
Register 0x30 to Register 0x37) is read back, it is seen as  
ramping up or ramping down to the target code.  
R
VOLTAGE  
S
Figure 47. Programmable Ramp Time Representation  
If the user writes a new target drain current while the ramp is  
active, the device restarts the internal timer and aims to reach  
the new drain current within the programmed ramp time.  
Fast Ramp Feature  
To accelerate the initial settling of the closed loop, the fast ramp  
feature can be enabled. When the ramp time register is programmed  
to 0x0000, the ramp generator disables. In this mode, when the  
current sense reading is less than 0x00F, the integrator time  
constant is reduced to 408 µs, allowing the gate control voltage  
to reach the PA threshold voltage as quickly as possible. When  
above this current, the time constant automatically returns to its  
programmed value. When a different switching threshold is  
desired, use the current sense offset register to allow Code 0x00F to  
represent a higher or lower current. This features may be useful to  
prevent unwanted overshoot (lower threshold) or to speed up  
settling (higher threshold).  
If the device is configured in closed-loop mode, the ADC runs  
conversions on the corresponding current sensor channel in the  
background. In addition to the current sensor conversions,  
additional channels can be configured to run background  
conversions (via the corresponding background enable registers).  
The user can read back the conversion results via the channel  
specific result registers in Page 0x00 and Page 0x01.  
Closed-Loop Integrator Programmable Voltage Limit  
The AD7293 ADC can monitor the voltage at the output of the  
integrator by writing to a register (Register 0x23) from the  
configuration page (see Table 46).  
Closed-Loop Sequencing  
The integrator voltage limit feature allows the user to set upper  
and lower limits on the integrator output voltage in closed-loop  
mode of operation. When the integrator limit is active, the  
integrator pauses and the output voltage holds constant. The  
polarity of the error amplifier (comparison between measured  
current and target current) determines when it is safe to deactivate  
the soft limit. For example, a lower target current is programmed,  
which makes the integrator output decrease, making it safe to  
deactivate the integrator limit.  
On power-up or following a reset, the system is configured as  
follows:  
The four bipolar outputs (BI-VOUT0 to BI-VOUT3) are set to  
their clamp value, regardless of the levels of the SLEEP0 or  
the SLEEP1 pin.  
All of the DAC data registers are set to 0x0000, and the  
bipolar DACs operate in open loop.  
The PA_ON signal is set to the off state.  
It is recommended to use the hysteresis registers (see Table 66  
and Table 69) to avoid the device switching in and out of the  
alert condition close to the limits. Additionally, the integrator  
limit feature can be made a function of the upper/lower limits  
only by ignoring the polarity of the error amplifier (via D2 of  
the general register (Register 0x14) from the configuration page).  
The integrator limit feature does not enable by default and can  
be enabled by writing to the integrator limit and closed-loop  
control register (Register 0x28).  
To enter closed-loop operation, it is important to follow these steps:  
1. Configure the AD7293 for closed-loop operating mode by  
writing to the integrator limit and closed-loop control register  
(Register 0x28) from the configuration page. Additionally,  
if PMOS drain switch control is used, set the PA_ON signal  
to the on state by writing to the PA_ON control register  
(Register 0x29) from the same page.  
2. The DACs must be programmed at this point. Choose the  
target drain current such that the PA is within its operating  
region. The ISENSE gain setting must be left at the default  
value of 6.25 in closed-loop mode. At this point, setting the  
corresponding ramp time to 0 may be required so that the  
Rev. B | Page 27 of 78  
 
 
AD7293  
Data Sheet  
Closed-Loop Range Upper Voltage Limit  
LOAD DAC (LDAC PIN)  
An analog circuit within the output integrator creates a  
hardware range upper limit on the output voltage of either 0 V or  
1 V, as shown in Table 19. If the hardware limiting circuitry is  
active, an alert appears on the INTLIMITx and AVSS/AVDD alert  
register (Register 0x1A). See the INTLIMITx and AVSS/AVDD  
Alert Register (Register 0x1A) section.  
The AD7293 DACs have doubled buffered interfaces consisting  
of two banks of registers: input registers and DAC registers. The  
user can write to any combination of the input registers. If the  
load bit is held high when writing to a DAC, updates to the  
DAC register are controlled by the LDAC pin.  
Instantaneous DAC Updating (Asynchronous)  
Table 19. Closed-Loop Range Upper Voltage Limit  
In this operation mode, the SPI data is clocked into the DAC  
input register on the rising edge of the SCLK. The output register is  
updated, and the output begins to change. Instantaneous DAC  
updating is only applicable when the load bit is not set when  
writing to the DAC register. Hold the LDAC pin in its false state.  
Operation  
Open Loop  
Closed Loop  
Closed Loop  
Closed Loop  
Bipolar DAC Range (V)  
X = don’t care  
0 to +5  
−4 to +1  
−5 to 0  
Range Limit  
Off  
Off  
On (1 V)  
On (0 V)  
Deferred DAC Updating (Synchronous)  
DIGITAL INPUT/OUTPUT REGISTERS  
In this mode, the SPI data is clocked into the DAC input registers  
on the rising edge of the SCLK. However, the update of the  
output registers can be blocked during the SPI write by setting  
the load bit. The output registers can be synchronously updated  
(data is transferred from the DAC input register to the DAC  
output register) by taking the LDAC pin to its true state.  
Eight pins can be set as GPIOs or can perform various digital  
functions. Three registers located on the configuration page set  
up the functionality of the GPIO interface. GPIO0 to GPIO3  
default to the GPIOs on power-up. ALERT1, SLEEP0, SLEEP1,  
and LDAC default to digital functions on power-up.  
The GPIO register (Register 0x5) configures the GPIOs in the  
device. In GPIO mode, and with the output drivers enabled, the  
GPIO outputs reflect the value written to this register. In  
functional mode, any write to this register has no effect on the  
GPIO outputs. See the GPIO Register (Register 0x05) section.  
ALERTS AND LIMITS  
The high and low limit pages comprise registers that set the  
high and low alerts for the analog input channels, the current  
sensors, the internal supply monitoring channels, the internal  
bipolar DAC monitoring channels, and the RSx+ monitoring  
channels. Each register is 16 bits in length; values are 12-bit, left  
justified (padded with 0s as the four LSBs). On power-up, the  
low limit registers contain all zeros, whereas the high limit  
registers contain 0xFFF0.  
The digital output enable register (Register 0x11) enables the  
output drivers of the GPIO pins; therefore, when using one of  
the pins as an output in GPIO mode or functional mode (for  
alerts and busy), the corresponding bit must be set. See the  
Digital Output Enable Register (Register 0x11) section.  
The alert high limit registers on Page 0x04 (High Limit 0) and  
Page 0x05 (High Limit 1) store the upper limit that activates an  
alert (see the High Limit 0 (Page 0x04) section and the High Limit  
1 (Page 0x05) section). If the conversion result is greater than the  
value in the alert high limit register, an alert triggers. The alert low  
registers on Page 0x06 (Low Limit 0) and Page 0x07 (Low Limit 1)  
store the low limit that activates an alert (see the Low Limit 0  
(Page 0x06) section and the Low Limit 1 (Page 0x07) section). If  
the conversion result is less than the value in the alert low limit  
register, an alert triggers.  
The digital input/output function register (Register 0x12) allows the  
user to put the relevant pin into GPIO mode or functional mode.  
See the Digital Input/Output Function Register (Register 0x12)  
section.  
The digital functional polarity register (Register 0x13) sets the  
polarity of the digital input/output pins in functional mode only.  
The associated input/output signal can be made active low or  
active high. See the Digital Functional Polarity Register  
(Register 0x13) section.  
READ  
DAC CHANNEL  
DAC INPUT  
REGISTER  
DAC OUTPUT  
REGISTER  
WRITE  
SCLK  
DAC  
VOUTx  
SCLK  
LOAD BIT  
GPIO7/LDAC  
1
PIN  
LDAC  
POLARITY  
1
PROVIDED THE GPIO7/LDAC PIN IS CONFIGURED AS AN LDAC PIN.  
Figure 48. Simplified Diagram of Input Loading Circuitry for a Single DAC  
Rev. B | Page 28 of 78  
 
 
 
 
Data Sheet  
AD7293  
If a conversion result exceeds the high or low limit set in the  
alert limits register, the AD7293 signals an alert in one or more  
of the following ways:  
V
V
V
V
3 HIGH ALERT  
2 HIGH ALERT  
1 HIGH ALERT  
0 HIGH ALERT  
3 LOW ALERT  
D11  
D10  
D9  
IN  
IN  
IN  
IN  
V
IN  
D8  
ALERT  
REGISTER  
V
D3  
Via hardware using the GPIO3/ALERT0 and  
GPIO4/ALERT1 pins  
IN  
IN  
IN  
IN  
V
2 LOW ALERT  
1 LOW ALERT  
0 LOW ALERT  
D2  
V
V
D1  
Via software using the alert bits or registers on the alert  
page (Page 0x10).  
D0  
T
T
D1 HIGH ALERT  
D0 HIGH ALERT  
D10  
D9  
D8  
D2  
D1  
D0  
SENSE  
SENSE  
T
SENSE  
ALERT  
REGISTER  
T
INT HIGH ALERT  
D1 LOW ALERT  
ALERTx Pins  
SENSE  
T
SENSE  
Two pins can be configured as ALERTx pins. On power-up,  
Pin 2 (GPIO4/ALERT1) is configured as an alert whereas  
Pin 53 is configured as a GPIO (GPIO3/ALERT0). When these  
pins are configured as ALERTx pins, any combination of high  
and low alerts on any of the ADC channels can route to these  
pins. The polarity of the alert output pins can be set to active  
high or active low via the digital function polarity register on  
the configuration page.  
T
D0 HIGH ALERT  
INT LOW ALERT  
SENSE  
T
SENSE  
I
D11  
D10  
D9  
3 HIGH ALERT  
SENSE  
I
I
I
2 HIGH ALERT  
1 HIGH ALERT  
0 HIGH ALERT  
3 LOW ALERT  
2 LOW ALERT  
1 LOW ALERT  
0 LOW ALERT  
SENSE  
SENSE  
SENSE  
I
SENSE  
ALERT  
REGISTER  
D8  
I
D3  
SENSE  
SENSE  
SENSE  
SENSE  
I
D2  
I
I
D1  
ALERT  
FLAG  
D0  
OR  
BI-V  
BI-V  
BI-V  
BI-V  
3
HIGH ALERT  
HIGH ALERT  
HIGH ALERT  
HIGH ALERT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
OUT MON  
If an alert pin signals an alert event and the contents of the alert  
flags registers are not read before the next conversion is completed,  
the contents of the register may change if the out of range signal  
returns to the specified range. In this case, the ALERT0 or  
ALERT1 pin no longer signals the occurrence of an alert event.  
2
OUT MON  
1
OUT MON  
0
OUT MON  
AV HIGH ALERT  
SS  
DACV  
HIGH ALERT  
HIGH ALERT  
HIGH ALERT  
LOW ALERT  
LOW ALERT  
LOW ALERT  
LOW ALERT  
DD-BI  
SUPPLY  
AND  
DACV  
DD-UNI  
AV  
DD  
D8  
BI-V  
x
OUT MON  
ALERT  
REGISTER  
D7  
Software Alerts Page  
BI-V  
3
OUT MON  
D6  
BI-V  
BI-V  
BI-V  
2
OUT MON  
The alert summary register (Register 0x10) contains a summary of  
alerts for the voltage, temperature sensor, current sensor, and  
other monitoring inputs that have violated limits. See the Alert  
Summary (ALERTSUM) Register (Register 0x10) section.  
D5  
1
OUT MON  
D4  
0
OUT MON  
D3  
AV LOW ALERT  
SS  
D2  
DACV  
LOW ALERT  
LOW ALERT  
LOW ALERT  
DD-BI  
D1  
DACV  
DD-UNI  
D0  
AV  
DD  
To gather more detailed information, the remaining registers  
contain two individual status bits per channel: one corresponding  
to the high limit and the other corresponding to the low limit.  
A bit with a status of one shows the channel on which the  
violation occurred and whether the violation occurred on the  
high or low limit.  
D11  
D10  
D9  
D8  
D3  
D2  
D1  
D0  
D9  
D8  
D2  
D1  
D0  
RS3+  
HIGH ALERT  
HIGH ALERT  
HIGH ALERT  
HIGH ALERT  
LOW ALERT  
LOW ALERT  
LOW ALERT  
LOW ALERT  
MON  
MON  
MON  
MON  
RS2+  
RS1+  
RS0+  
RSx+  
ALERT  
REGISTER  
MON  
RS3+  
RS2+  
RS1+  
RS0+  
MON  
MON  
MON  
MON  
INT  
INT  
INT  
INT  
3 HIGH ALERT  
2 HIGH ALERT  
1 HIGH ALERT  
0 HIGH ALERT  
LIMIT  
LIMIT  
LIMIT  
LIMIT  
INT  
AND  
LIMIT  
AV /AV  
SS  
DD  
ALERT  
REGISTER  
AV /AV ALARM  
SS  
DD  
Figure 49. Software Alerts Page  
GPIO0 to GPIO3 Routing to ALERT1  
A bit in the general register allows the GPIO0 to GPIO3 status  
to route to the ALERT1 pin. Set GPIO0 to GPIO3 up as inputs  
(bit set to 0 in the digital output enable register). If the GPIO is  
read as 1, this read appears on ALERT1, and the GPIO register  
can be read for the status of the pin to detect which pin has  
caused ALERT1 to become active.  
Rev. B | Page 29 of 78  
AD7293  
Data Sheet  
AVDD AND AVSS ALARM  
MAXIMUM AND MINIMUM PAGES  
There are comparators on AVDD (+3.6 V typical) and AVSS  
(−4.1 V typical) that can be routed to the ALERTx pins or can  
be used to control the PA_ON state and to put the bipolar  
DACs/integrator outputs in the clamp state. By default, these  
alarms are enabled.  
The maximum and minimum pages contain storage registers  
for the maximum and minimum conversion results. This  
function is useful when monitoring the minimum and maxi-  
mum conversion values over time is required.  
HYSTERESIS  
When AVSS is greater than −4.1 V, there is a mask register  
available whereby an alert of AVSS or AVDD is not creating an  
alert on the ALERTx pin.  
The hysteresis value determines the reset point for the ALERTx  
pin and/or software alert bit if a violation of the limits occurs. The  
hysteresis register stores the hysteresis value when using the  
limit registers. Each pair of limit registers has a dedicated hysteresis  
register (see Figure 50). If software is periodically polling the  
device to detect an alert, the hysteresis can be useful to ensure  
that no out of limit condition is missed.  
HIGH LIMIT  
HIGH LIMIT – HYSTERESIS  
INPUT SIGNAL  
LOW LIMIT + HYSTERESIS  
LOW LIMIT  
ALERT SIGNAL  
TIME  
Figure 50. Hysteresis  
Rev. B | Page 30 of 78  
 
 
 
 
Data Sheet  
AD7293  
REGISTER SETTINGS  
The register structure for the AD7293 is partitioned using pages.  
There are 19 pages in total. Each contains a different number  
of registers that are used to store and access information to  
configure and control the device. Each page and subregister  
have an address that an 8-bit address pointer register points  
to when communicating with it. The address pointer register is  
an 8-bit register. The six LSBs (D5 to D0) are the pointer  
address bits that point to one of the AD7293 data registers, and  
the MSB (D7) is the read (high)/write (low) bit. There are read  
only and read/write registers.  
NO OP  
PAGE SELECT POINTER  
CONVERSION COMMAND  
RESULT  
PAGE 0x00  
RESULT 0/DAC INPUT  
DAC ENABLE  
GPIO  
DEVICE ID  
PAGE 0x01  
RESULT 1  
...  
...  
...  
...  
...  
...  
...  
...  
PAGE 0x02  
CONFIGURATION  
PAGE 0x03  
SEQUENCE  
NO OP  
PAGE 0x04  
HIGH LIMIT 0  
PAGE SELECT POINTER  
CONVERSION COMMAND  
RESULT  
PAGE 0x05  
HIGH LIMIT 1  
DAC ENABLE  
GPIO  
DEVICE ID  
PAGE 0x06  
...  
...  
...  
...  
...  
...  
...  
...  
LOW LIMIT 0  
ADDRESS  
POINTER  
REGISTER  
PAGE 0x07  
LOW LIMIT 1  
PAGE 0x08  
HYSTERESIS 0  
PAGE 0x09  
HYSTERESIS 1  
PAGE 0x0A  
MINIMUM 0  
PAGE 0x0B  
MINIMUM 1  
PAGE 0x0C  
MAXIMUM 0  
PAGE 0x0D  
MAXIMUM 1  
PAGE 0x0E  
OFFSET 0  
PAGE 0x0F  
OFFSET 1  
PAGE 0x10  
ALERT  
PAGE 0x11  
ALERT0 PIN  
PAGE 0x12  
ALERT1 PIN  
DIN  
SCLK  
DOUT  
CS  
SERIAL BUS INTERFACE  
NOTES  
1. EACH PAGE CONTAINS 7 COMMMON REGISTERS IN ADDITION TO PAGE SPECIFIC REGISTERS.  
2. THE CONFIGURATION PAGE CONTAINS THE REGISTERS THAT SELECT THE BACKGROUND MODE  
CYCLE OF CHANNELS TO BE CONVERTED BY THE ADC. THE SEQUENCE PAGE APPLIES TO COMMAND MODE ONLY.  
Figure 51. Register Structure  
Rev. B | Page 31 of 78  
 
AD7293  
Data Sheet  
Table 20. DAC Enable Register  
REGISTERS COMMON TO ALL PAGES  
Bit Number(s)  
Bit Name  
Description  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
A number of registers is common to all pages. The register  
function is the same for all pages.  
D7  
BI-VOUT  
BI-VOUT  
BI-VOUT  
BI-VOUT  
3
2
1
0
No Op Register (Register 0x00)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
The no op register does not physically exist and this address  
space is reserved to prevent any writes to the device when the  
input data line is held low.  
Page Select Pointer Register (Register 0x01)  
This 8-bit pointer register selects the page that the user is trying  
to access. A read of this register indicates the page the user is  
currently pointing to. The two MSBs are reserved and the six  
LSBs can be written to select any of the pages.  
UNI-VOUT  
UNI-VOUT  
UNI-VOUT  
UNI-VOUT  
3
2
1
0
Conversion Command (Register 0x02)  
The conversion command register is a special 8-bit register used  
to initiate a conversion. To command a conversion, write the  
command register address to the device with the MSB read bit  
set. When the device address pointer register receives a special  
conversion command, the previous contents of the address pointer  
are retained and used to determine which channel to convert. If  
pointing to the sequence register, the next channel in the sequence  
converts.  
Table 21. GPIO Register  
Bit Number(s)  
D7  
Bit Name  
Description  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
0: disable.  
1: enable.  
GPIO7  
Result Register (Register 0x03)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GPIO6  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
The 16-bit, read only ADC data register provides read access to  
the most recent ADC conversion result in command mode.  
Otherwise, it is necessary for the application software to keep  
track of what channel was converted.  
DAC Enable Register (Register 0x04)  
This 8-bit register enables the DACs. See Table 20.  
GPIO Register (Register 0x05)  
This 8-bit register configures the GPIOs in the device. In GPIO  
mode, and with the output drivers enabled, the GPIO outputs  
reflect the value written to this register. In functional mode, any  
write to this register has no effect on the GPIO outputs. The status  
(high/low) of the GPIO pins can be read back by reading this  
register (both in functional and GPIO modes). See Table 21.  
Device ID Register (Register 0x0C)  
Table 22. Device ID Register  
This 16-bit read-only register stores the Device ID assigned to  
Analog Devices, Inc. See Table 22 for more information.  
Bit Number(s)  
Bit Name  
Description  
Analog Devices,  
[15:0]  
ID register  
Device ID = 0x0018  
Software Reset Register (Register 0x0F)  
Table 23. Software Reset Register  
To issue a software reset write a specific value, 0x7293, to this  
Bit Number(s)  
Bit Name  
Description  
Software reset =  
0x7293  
CS  
16-bit register and pull  
high. The user must write 0x0000 to  
[15:0]  
Reset register  
this register to clear it following the software reset. See Table 23.  
Rev. B | Page 32 of 78  
 
 
 
 
 
 
Data Sheet  
AD7293  
Voltage Input (VINx) Result Registers (Register 0x10 to  
Register 0x13)  
RESULT 0/DAC INPUT (PAGE 0x00)  
Result 0/DAC input is located at Page 0x00. It contains result  
registers for the ADC, the temperature sensor, and the current  
sensor channel. The page also contains DAC input registers to  
set the output voltage.  
These registers store the 12-bit ADC results from the four input  
channels.  
In single-ended mode, the LSB size is REFADC/4096 when the  
0 V to REFADC range is selected, 2 × REFADC/4096 when the 0 V  
to 2 × REFADC range is selected, and 4 × REFADC/4096 when the  
0 V to 4 × REFADC range is selected (which is the default value).  
REFADC = 1.25 V. See the ADC Transfer Functions section for  
more information. See Table 25 for more information.  
Table 24. Result 0/DAC Input (Page 0x0)  
Address  
(Hex)  
Access  
Default  
Value1  
0x00  
0x00  
N/A  
0x0000  
0x00  
0x00  
Name  
Byte1 Type1  
0x00  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x20  
0x21  
0x22  
0x28  
0x29  
0x2A  
0x2B  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
Device ID  
Software reset  
VIN0  
VIN1  
VIN2  
VIN3  
TSENSEINT  
TSENSED0  
Temperature Sensor (TSENSEINT and TSENSEDx) Result  
Registers (Register 0x20 to Register 0x22)  
R
R/W  
R/W  
R
R/W  
R
R
R
R
R
R
R
R
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
These registers store the 12-bit ADC results from the three  
temperature sensor channels. 1 LSB = 0.125°C. See Table 26 for  
more information.  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Current Sensor (ISENSEx) Result Registers (Register 0x28 to  
Register 0x2B)  
These registers store the 12-bit ADC results from the four  
current sensor channels. See Table 25 for more information.  
DAC Input (UNI-VOUTx and BI-VOUTx) Registers  
(Register 0x30 to Register 0x37)  
TSENSED1  
Writing to these register addresses sets the 12-bit DAC output  
voltage codes, as shown in Table 27.  
ISENSE  
ISENSE  
ISENSE  
ISENSE  
0
1
2
3
If the load bit is set to 1, the device waits for the DAC load pin  
(GPIO7/LDAC) before loading the voltage codes onto the  
DACs rather than immediately after the write operation. If the  
copy bit is set to 1, writing to any of the four DAC registers  
(unipolar and bipolar are grouped separately) sets all the other  
DAC registers to the same value.  
UNI-VOUT  
UNI-VOUT  
UNI-VOUT  
UNI-VOUT  
BI-VOUT  
BI-VOUT  
BI-VOUT  
BI-VOUT  
0
1
2
3
0
1
2
3
While reading back the DAC result registers, only the 12-bit  
internal DAC output register value is visible to the user.  
Bits[D3:D0] read 0 irrespective of the status of the copy and  
load bits.  
1 N/A means not applicable.  
2 Not a physical register.  
Table 25. Voltage Input (Register 0x10 to Register 0x13) and Current Sensor (Register 0x28 to Register 0x2B) Result Registers  
MSB  
D15  
B11  
LSB  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 33 of 78  
 
 
AD7293  
Data Sheet  
Table 26. Temperature Sensor Result Register  
Bit Number(s)  
Bit Name  
Description  
0: −256°C  
1: 0°C  
D15  
B11  
D14  
D13  
D12  
D11  
D10  
D9  
B10  
B9  
0: 0°C  
1: 128°C  
0: 0°C  
1: 64°C  
0: 0°C  
1: 32°C  
0: 0°C  
1: 16°C  
0: 0°C  
1: 8°C  
B8  
B7  
B6  
B5  
0: 0°C  
1: 4°C  
D8  
B4  
0: 0°C  
1: 2°C  
D7  
B3  
0: 0°C  
1: 1°C  
D6  
B2  
0: 0°C  
1: 0.5°C  
0: 0°C  
D5  
B1  
1: 0.25°C  
0: 0°C  
D4  
B0  
1: 0.125°C  
Reserved  
[D3:D0]  
Reserved  
Table 27. DAC Input Register  
MSB  
LSB  
D15  
D14  
D13  
D12  
B8  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
B1  
D4  
[D3:D2]  
D1  
D0  
B11  
B10  
B9  
B7  
B6  
B5  
B4  
B3  
B2  
B0  
Reserved  
Copy  
Load  
Table 28. Copy and Load Bit Descriptions  
Bit Number(s)  
[D15:D4]  
D1  
Bit Name  
B11 to B0  
Copy  
Description  
Data bits  
0: no action  
1: copies data to all DAC registers  
0: all channels updated with latest results  
D0  
Load  
1: input register loaded but output voltage dependent on LDAC  
Rev. B | Page 34 of 78  
 
 
Data Sheet  
AD7293  
Voltage Supply Monitor Result Registers (Register 0x10  
to Register 0x13)  
RESULT 1 (PAGE 0x01)  
Table 29. Result 1 (Page 0x01)  
The ADC is used in its single-ended mode. The LSB size varies  
with the different supply monitoring registers. AVDD and  
DACVDD-BI are divided by 5, and DACVDD-UNI is divided by 20 to  
scale within the 0 V to REFADC range. AVSS is level shifted to  
within a −7.5 V to +2.5 V range, where 0x0000 equates to  
approximately −7.5 V and 0xFFFF equates to approximately  
+2.5 V. R E F ADC = 1.25 V.  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
R
R/W  
R/W  
R
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
Device ID  
Software reset  
AVDD  
DACVDD-UNI  
DACVDD-BI  
AVSS  
BI-VOUT0MON  
BI-VOUT1MON  
BI-VOUT2MON  
BI-VOUT3MON  
RS0+MON  
0x00  
N/A  
0x0000  
0x00  
0x00  
Bipolar DAC Internal Monitor Result (BI-VOUT0MON to  
BI-VOUT3MON) Registers (Register 0x14 to Register 0x17)  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R/W  
R
R
These registers store the 12-bit ADC results from the four  
internal inputs for monitoring the bipolar DAC outputs in  
open-loop mode or the integrator outputs in closed-loop mode.  
The DAC monitoring channel voltages between −5 V and +5 V  
are level shifted to the 0 V to REFADC range before conversions.  
R
R
R
R
R
R
R
R
RSx+MON Result Registers (Register 0x28 to  
Register 0x2B)  
The voltages on the RSx+ pins (RSx+MON) are divided by 50 to  
scale them to the 0 V to REFADC range. Use the ADC in single-  
ended mode. The RSx+MON monitor result registers store the 12-  
bit ADC results for the current sense supply channels.  
RS1+MON  
RS2+MON  
RS3+MON  
2
2
2
R
R
1 N/A means not applicable.  
2 Not a physical register.  
Table 30. Monitor Register Configuration  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Reserved  
Rev. B | Page 35 of 78  
 
AD7293  
Data Sheet  
Digital Output Enable Register (Register 0x11)  
CONFIGURATION (PAGE 0x02)  
This 16-bit register enables the output drivers of the GPIO pins  
by setting the corresponding bit to one. When using one of the  
pins as an output in GPIO mode or functional mode (for alerts  
or busy), the corresponding bit must be set.  
This page contains the registers that configure the device  
operation.  
Table 31. Configuration (Page 0x2)  
Address  
(Hex)  
Access  
Type1  
Default  
Value1  
Digital Input/Output Function Register (Register 0x12)  
Name  
Byte1  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x11  
0x12  
No op  
N/A  
1
1
2
1
1
2
2
2
N/A  
R/W  
W
0x00  
0x00  
N/A  
0x0000  
0x00  
All GPIOs are in either functional mode (power-up) or GPIO  
mode. The relevant GPIO pin is in GPIO mode when the  
corresponding bit in this register is set to 1. The relevant GPIO  
pin is in functional mode when the corresponding bit in this  
register is cleared to 0. Four pins are in functional mode and  
four pins are in GPIO mode after a power-on reset.  
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
Device ID  
Software reset  
Digital output enable  
Digital input/output  
function  
Digital functional  
polarity  
General  
VINx Range 0  
VINx Range 1  
VINx differential/  
single-ended enable  
VINx filter  
VINx background enable  
Conversion delay  
TSENSEx background  
enable  
ISENSEx background  
enable  
ISENSEx gain  
DAC snooze/SLEEP0  
pin  
R
R/W  
R/W  
R
R/W  
R/W  
R/W  
0x00  
0x0018  
0x0000  
0x0010  
0x000F  
Digital Functional Polarity Register (Register 0x13)  
This register sets the polarity of the digital input/output pins in  
functional mode only. The associated input/output signal can be  
made active low by setting the corresponding bit in this register  
to 1. Functional mode is set up in the digital input/output  
function register (Register 0x12).  
2
0x13  
2
R/W  
0x0090  
0x14  
0x15  
0x16  
0x17  
2
2
2
2
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
General Register (Register 0x14)  
This 16-bit register selects the internal ADC reference or an  
external reference and other general functions. The status on  
GPIO0 to GPIO3 can be routed to ALERT1. Error amplifier  
control over the integrator limit feature is also configurable in  
this register. ALERT0 can be routed internally to clamp the  
bipolar DACs.  
0x18  
0x19  
0x1A  
0x1B  
2
2
2
2
R/W  
R/W  
R/W  
R/W  
0x0000  
0x0000  
0x0000  
0x0000  
VINx Range x Registers (Register 0x15 and Register 0x16)  
0x1C  
2
R/W  
0x0000  
These two 16-bit registers combine together to specify the input  
range of the VINx channels. The default range is 4 × REFADC. If  
either of the corresponding range bits from the two range  
registers is set to one, the analog input voltage range is set to  
2 × REFADC. If both the bits are set to one, the analog input  
voltage range is REFADC. See Table 36 and Table 37 for range  
selection. REFADC = 1.25 V.  
0x1D  
0x1F  
2
2
R/W  
R/W  
0x0000  
0xFF00  
0x20  
0x23  
DAC snooze/SLEEP1  
pin  
RSx+MON, supply  
2
2
R/W  
R/W  
0xFF00  
0x0000  
monitor, BI-VOUT  
x
background enable  
Integrator limit and  
closed-loop control  
VINx Differential/Single-Ended Enable Register  
(Register 0x17)  
0x28  
2
R/W  
0x0000  
This register runs the ADC conversions for the voltage input  
channels in differential and pseudo differential mode. The  
corresponding differential pairs for the channels are as follows:  
VIN0 to VIN1 for Channel 0, VIN1 to VIN0 for Channel 1, VIN2 to  
VIN3 for Channel 2, and VIN3 to VIN2 for Channel 3. The  
differential mode bits are ignored when the device is in pseudo  
differential mode.  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
PA_ON control  
Ramp Time 0  
Ramp Time 1  
Ramp Time 2  
Ramp Time 3  
Closed-loop fast ramp  
and integrator time  
constant  
2
2
2
2
2
2
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0130  
0x0000  
0x0000  
0x0000  
0x0000  
0xBBBB  
VINx Filter Register (Register 0x18)  
0x2F  
INTLIMITx and AVSS/  
AVDD alarm mask  
2
R/W  
0x0000  
A digital filter can be applied to the conversion result of all four  
VINx channels. Set the corresponding filter bit to 1 to apply the  
digital filter.  
1 N/A means not applicable.  
2 Not a physical register.  
VINx Background Enable Register (Register 0x19)  
Set the corresponding enable bit to 1 to convert the VINx channels  
in the background.  
Rev. B | Page 36 of 78  
 
 
 
 
Data Sheet  
AD7293  
Conversion Delay Register (Register 0x1A)  
Integrator Limit and Closed-Loop Control Register  
(Register 0x28)  
This register can add a conversion delay (during the acquisition  
phase) to the VINx channels in command mode conversions.  
The resolution of this register is 320 ns. That is, each bit adds  
320 ns to the conversion delay.  
This register configures the device in closed-loop mode and  
controls the integrator limit function as described in the  
Closed-Loop Integrator Programmable Voltage Limit section.  
PA_ON Control Register (Register 0x29)  
Temperature Sensor (TSENSEx) Background Enable  
Register (Register 0x1B)  
This register controls the PA_ON pin and allows AVss/AVDD  
alarm control over the PA_ON pin. Note that the AVSS/AVDD  
alarm must be cleared before the PA_ON pin can switch back to  
the on state.  
To enable the temperature sensor conversions, write to the  
corresponding bit from this register. To enable digital filtering,  
also write to the corresponding bit.  
Current Sensor (ISENSEx) Background Enable Register  
(Register 0x1C)  
This register also allows clamp pin control over the PA_ON pin.  
Setting the clamp bit to 1 allows control of the PA_ON pin via  
the SLEEP0 and SLEEP1 pins, where, if the pin goes high, the  
PA_ON pin goes to the off state. If the snooze bit is set to 1, an  
additional write to this register is required to set the PA_ON pin  
to the on state after clearing the corresponding SLEEP0 and  
SLEEP1 pins.  
To enable the ISENSEx conversions, write to the corresponding bit  
from this register. To enable digital filtering, also write to the  
corresponding bit.  
Current Sensor (ISENSEx) Gain Register (Register 0x1D)  
The ISENSEx gain register is a 16-bit register that controls the gain  
settings for the four current sense channels.  
Ramp Time 0 to Ramp Time 3 Registers (Register 0x2A to  
Register 0x2D)  
DAC Snooze/SLEEP0 Pin Register (Register 0x1F)  
These 16-bit registers (Ramp Time 0 to Ramp Time 3) configure  
the ramp time for the closed-loop channels. The resolution of  
each bit is 250 µs and the maximum programmable ramp time  
is 31.75 ms.  
To clamp the relevant DAC output via the GPIO5/SLEEP0 pin  
set the corresponding bit in this register to 1. The snooze bits  
determine the power-up/power-down condition of the DACs  
after removing the clamp signal. If any of the snooze bits are set  
to 1, an additional write to the DAC enable register is required  
to wake up the corresponding DAC. If the snooze bits are not  
set, directly use the SLEEP0 pin to wake up the DAC.  
The minimum programmable ramp time for each channel is  
4 ms. Enter 0x0000 to disable the ramp circuitry and to have the  
DAC resolve the target value immediately.  
Closed-Loop Fast Ramp and Integrator Time Constant  
Register (Register 0x2E)  
DAC Snooze/SLEEP1 Pin Register (Register 0x20)  
To clamp the relevant DAC output via the GPIO6/SLEEP1 pin,  
set the corresponding bit in this register to 1.  
Use this register to disable or to enable the fast ramp scheme for  
the closed-loop channels when they release from clamp. The  
integrator time constant can trim to the values shown in Table 50.  
RSx+MON, Supply Monitor, BI-VOUTx Background Enable  
Register (Register 0x23)  
Integrator Limit Active Status (INTLIMITx) and AVSS/AVDD  
Alarm Mask Register (Register 0x2F)  
The RSx+MON and voltage supply channels can convert in the  
background by setting the corresponding enable bit to 1.  
Use this 16-bit register to mask any of the closed-loop integrator  
limit active status values or the AVss/AVDD alarm. When masked,  
the status values are not visible when reading back the correspond-  
ing alert registers, or if the status values are routed to any of the  
ALERTx pins.  
Table 32. Digital Output Enable Register (Register 0x11)  
Bit Number(s)  
Bit Name  
Description  
[D15:D8]  
D7  
Reserved  
Reserved  
GPIO7/LDAC (Pin 6)  
GPIO6/SLEEP1 (Pin 4)  
GPIO5/SLEEP0 (Pin 3)  
GPIO4/ALERT1 (Pin 2)  
GPIO3/ALERT0 (Pin 53)  
GPIO2/BUSY (Pin 54)  
GPIO1/CONVST (Pin 55)  
GPIO0/IS BLANK (Pin 56)  
1: enable output drivers. 0: disable output drivers.  
1: enable output drivers. 0: disable output drivers.  
1: enable output drivers. 0: disable output drivers.  
1: enable output drivers (default). 0: disable output drivers.  
1: enable output drivers. 0: disable output drivers.  
1: enable output drivers. 0: disable output drivers.  
1: enable output drivers. 0: disable output drivers.  
1: enable output drivers. 0: disable output drivers.  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Rev. B | Page 37 of 78  
AD7293  
Data Sheet  
Table 33. Digital Input/Output Function Register (Register 0x12)  
Bit Number(s)  
[D15:D8]  
D7  
Bit Name  
Reserved  
Pin 6  
Description  
Reserved  
0: LDAC (default)  
1: GPIO7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Pin 4  
0: SLEEP1 (default)  
1: GPIO6  
Pin 3  
0: SLEEP0 (default)  
1: GPIO5  
Pin 2  
0: ALERT1 (default)  
1: GPIO4  
Pin 53  
Pin 54  
Pin 55  
Pin 56  
0: ALERT0  
1: GPIO3 (default)  
0: BUSY  
1: GPIO2 (default)  
0: CONVST  
1: GPIO1 (default)  
0: IS BLANK  
1: GPIO0 (default)  
Table 34. Digital Functional Polarity Register (Register 0x13)  
Bit Number(s)  
[D15:D8]  
D7  
Bit Name  
Reserved  
LDAC  
Description  
Reserved  
0: LDAC is active high  
1: LDAC is active low (default)  
0: SLEEP1 is active high (default)  
1: SLEEP1 is active low  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SLEEP1  
SLEEP0  
ALERT1  
ALERT0  
BUSY  
0: SLEEP0 is active high (default)  
1: SLEEP0 is active low  
0: ALERT1 is active high  
1: ALERT1 is active low (default)  
0: ALERT0 is active high (default)  
1: ALERT0 is active low  
0: BUSY is active high (default)  
1: BUSY is active low  
CONVST  
IS BLANK  
0: CONVST is active high (default)  
1: CONVST is active low  
0: IS BLANK is active high (default)  
1: IS BLANK is active low  
Table 35. General Register (Register 0x14)  
Bit Number(s) Bit Name  
Description  
[D15:D8]  
Reserved  
Reserved  
D7  
ADC_REF  
0: external reference (default)  
1: internal reference  
0: feature disabled (default)  
D6  
GPIO ALERT1 routing  
MISO speed  
1: GPIO0 to GPIO3 status routed to ALERT1 if configured as general-purpose input  
[D5:D4]  
00: maximum (default)  
01: fast  
10: slow  
11: minimum  
Rev. B | Page 38 of 78  
Data Sheet  
AD7293  
Bit Number(s) Bit Name  
Description  
D3  
D2  
D1  
D0  
TSENSE diode check  
0: external check on (default)  
1: external check off  
Limit control  
ALERT0 clamp  
Reserved  
0: alert control over software limit feature (default)  
1: alert and error amplifier control over software limit feature  
0: no control (default)  
1: ALERT0 routed internally to clamp bipolar DACs  
Reserved  
Table 36. Voltage Input (VINx) Range 0 Voltage Input Range Register (Register 0x15)  
Bit Number(s)  
Bit Name  
Description1, 2  
[D15:D4]  
D3  
D2  
D1  
D0  
Reserved  
Reserved  
VIN3 Range 0  
VIN2 Range 0  
VIN1 Range 0  
VIN0 Range 0  
Used in conjunction with VIN3 Range 1 bit (see Table 37) to specify the input range of VIN3  
Used in conjunction with VIN2 Range 1 bit (see Table 37) to specify the input range of VIN2  
Used in conjunction with VIN1 Range 1 bit (see Table 37) to specify the input range of VIN1  
Used in conjunction with VIN0 Range 1 bit (see Table 37) to specify the input range of VIN0  
1 REFADC = 1.25 V.  
2 See Table 38 for bit descriptions.  
Table 37. VINx Range 1 Voltage Input Range Register (Register 0x16)  
Bit Number(s)  
Bit Name  
Description1, 2  
[D15:D4]  
D3  
D2  
D1  
D0  
Reserved  
Reserved  
VIN3 Range 1  
VIN2 Range 1  
VIN1 Range 1  
VIN0 Range 1  
Used in conjunction with VIN3 Range 0 bit (see Table 36) to specify the input range of VIN3  
Used in conjunction with VIN2 Range 0 bit (see Table 36) to specify the input range of VIN2  
Used in conjunction with VIN1 Range 0 bit (see Table 36) to specify the input range of VIN1  
Used in conjunction with VIN0 Range 0 bit (see Table 36) to specify the input range of VIN0  
1 REFADC = 1.25 V.  
2 See Table 38 for bit descriptions.  
Table 38. VINx Range 1 and VIN Range 0 Bit Descriptions  
VIN Range 0, VINx1 Range Bit  
VIN Range 1, VINx1 Range Bit  
VINx1 Input Range Bit  
4 × REFADC (default)  
2 × REFADC  
2 × REFADC  
REFADC  
0
0
1
1
0
1
0
1
1 x = 3, 2, 1, or 0.  
Table 39. VINx Differential/Single-Ended Enable Register (Register 0x17)  
Bit Number(s)  
[D15:D10]  
D9  
Bit Name  
Reserved  
Description  
Reserved  
VIN2_VIN3_PDIFF  
VIN2 and VIN3 pseudo differential mode  
0: disable (default)  
1: enable  
D8  
VIN0_VIN1_PDIFF  
VIN0 and VIN1 pseudo differential mode  
0: disable (default)  
1: enable  
[D7:D2]  
D1  
Reserved  
Reserved  
VIN2_VIN3_DIFF  
VIN2 and VIN3 differential mode  
0: disable (default)  
1: enable  
D0  
VIN0_VIN1_DIFF  
VIN0 and VIN1 differential mode  
0: disable (default)  
1: enable  
Rev. B | Page 39 of 78  
 
 
 
AD7293  
Data Sheet  
Table 40. VINx Filter Register (Register 0x18)  
Bit Number(s)  
[D15:D4]  
D3  
Bit Name  
Reserved  
VIN3 filter  
Description  
Reserved  
0: disable (default)  
1: enable  
D2  
D1  
D0  
VIN2 filter  
VIN1 filter  
VIN0 filter  
0: disable (default)  
1: enable  
0: disable (default)  
1: enable  
0: disable (default)  
1: enable  
Table 41. VINx Background Enable Register (Register 0x19)  
Bit Number(s)  
[D15:D4]  
D3  
Bit Name  
Reserved  
Description  
Reserved  
VIN3_BG_EN  
0: disable background conversions (default)  
1: enable background conversions  
D2  
D1  
D0  
VIN2_BG_EN  
VIN1_BG_EN  
VIN0_BG_EN  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
Table 42. Temperature Sensor (TSENSEx) Background Enable Register (Register 0x1B)  
Bit Number(s) Bit Name  
Description  
[D15:D11]  
D10  
Reserved  
Reserved  
TSENSED1 filter  
0: disable digital filtering (default)  
1: enable digital filtering  
D9  
D8  
TSENSED0 filter  
TSENSEINT filter  
0: disable digital filtering (default)  
1: enable digital filtering  
0: disable digital filtering (default)  
1: enable digital filtering  
[D7:D3]  
D2  
Reserved  
Reserved  
TSENSED1_EN  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
D1  
D0  
TSENSED0_EN  
TSENSEINT_EN  
Table 43. Current Sensor (ISENSEx) Background Enable Register (Register 0x1C)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
ISENSE3 filter  
0: disable digital filtering (default)  
1: enable digital filtering  
0: disable digital filtering (default)  
1: enable digital filtering  
0: disable digital filtering (default)  
1: enable digital filtering  
0: disable digital filtering (default)  
1: enable digital filtering  
D10  
D9  
ISENSE2 filter  
ISENSE1 filter  
ISENSE0 filter  
D8  
Rev. B | Page 40 of 78  
Data Sheet  
AD7293  
Bit Number(s) Bit Name  
Description  
[D7:D4]  
D3  
Reserved  
ISENSE3_EN  
Reserved  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
D2  
D1  
D0  
ISENSE2_EN  
ISENSE1_EN  
ISENSE0_EN  
Table 44. ISENSEx Gain Register (Register 0x1D)  
Bit Number(s)  
Bit Name  
Description  
These bits control the gain settings for the four current sense channels.  
[D15:D12], [D11:D8],  
[D7:D4], [D3:D0]  
ISENSE3 gain, ISENSE2 gain,  
ISENSE1 gain, ISENSE0 gain  
Code  
0000 (default)  
0001  
Gain Value  
6.25  
12.5  
18.75  
25  
Voltage Across RSENSE (mV)  
200  
100  
0010  
0011  
66.67  
50  
0100  
0101  
37.5  
50  
33.33  
25  
0110  
0111  
1000  
1001  
1010  
Others  
75  
100  
200  
400  
781.25  
6.25  
16.67  
12.5  
6.25  
3.125  
1.6  
200  
Table 45. DAC Snooze/SLEEP0 Pin Register (Register 0x1F) and DAC Snooze/SLEEP1 Pin Register (Register 0x20)  
Bit Number(s) Bit Name  
Description  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
BI-VOUT  
snooze  
3
0: no control  
1: snooze enabled when clamped by the SLEEP0 pin (Register 0x1F) or by the SLEEP1 pin (Register 0x20) (default)  
BI-VOUT  
2
0: no control  
snooze  
1: snooze enabled when clamped by the SLEEP0 pin (Register 0x1F) or by the SLEEP1 pin (Register 0x20) (default)  
BI-VOUT  
1
0: no control  
snooze  
1: snooze enabled when clamped by the SLEEP0 pin (Register 0x1F) or by the SLEEP1 pin (Register 0x20) (default)  
BI-VOUT  
0
0: no control  
snooze  
UNI-VOUT  
snooze  
UNI-VOUT  
snooze  
UNI-VOUT  
snooze  
UNI-VOUT  
snooze  
1: snooze enabled when clamped by the SLEEP0 pin (Register 0x1F) or by the SLEEP1 pin (Register 0x20) (default)  
3
2
1
0
0: no control  
1: snooze enabled when clamped by the SLEEP0 pin (Register 0x1F) or by SLEEP1 pin (Register 0x20) (default)  
0: no control  
1: snooze enabled when clamped by the SLEEP0 pin (Register 0x1F) or by the SLEEP1 pin (Register 0x20) (default)  
0: no control  
1: snooze enabled when clamped by the SLEEP0 pin (Register 0x1F) or by the SLEEP1 pin (Register 0x20) (default)  
0: no control  
1: snooze enabled when clamped by the SLEEP0 pin (Register 0x1F) or by the SLEEP1 pin (Register 0x20) (default)  
0: no control (default)  
1: can be clamped by the SLEEP0 pin (Register 0x1F) or clamped by the SLEEP1 pin (Register 0x20)  
0: no control (default)  
1: can be clamped by the SLEEP0 pin (Register 0x1F) or clamped by the SLEEP1 pin (Register 0x20)  
0: no control (default)  
D8  
D7  
BI-VOUT  
sleep  
3
2
1
D6  
BI-VOUT  
sleep  
D5  
BI-VOUT  
sleep  
1: can be clamped by the SLEEP0 pin (Register 0x1F) or clamped by the SLEEP1 pin (Register 0x20)  
Rev. B | Page 41 of 78  
 
 
AD7293  
Data Sheet  
Bit Number(s) Bit Name  
Description  
D4  
D3  
D2  
BI-VOUT  
sleep  
0
0: no control (default)  
1: can be clamped by the SLEEP0 pin (Register 0x1F) or clamped by the SLEEP1 pin (Register 0x20)  
0: no control (default)  
1: can be clamped by the SLEEP0 pin (Register 0x1F) or clamped by the SLEEP1 pin (Register 0x20)  
0: no control (default)  
UNI-VOUT  
sleep  
3
2
UNI-VOUT  
sleep  
1: can be clamped by the SLEEP0 pin (Register 0x1F) or clamped by the SLEEP1 pin (Register 0x20)  
D1  
D0  
UNI-VOUT  
sleep  
1
0: no control (default)  
1: can be clamped by the SLEEP0 pin (Register 0x1F) or clamped by the SLEEP1 pin (Register 0x20)  
0: no control (default)  
1: can be clamped by the SLEEP0 pin (Register 0x1F) or clamped by the SLEEP1 pin (Register 0x20)  
UNI-VOUT  
sleep  
0
Table 46. RSx+MON, Supply Monitor, BI-VOUTx Background Enable Register (Register 0x23)  
Bit Number(s)  
[D15:D12]  
D11  
Bit Name  
Reserved  
RS3+MON  
Description  
Reserved  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
0: disable background conversions (default)  
1: enable background conversions  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RS2+MON  
RS1+MON  
RS0+MON  
BI-VOUT3MON  
BI-VOUT2MON  
BI-VOUT1MON  
BI-VOUT0MON  
AVSS  
DACVDD-BI  
DACVDD-UNI  
AVDD  
Table 47. Integrator Limit and Closed-Loop (CL) Control Register (Register 0x28)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
INT_CL_LIMIT_CH3 0: no control (default)  
1: the soft closed-loop limit for the channel is enabled  
INT_CL_LIMIT_CH2 0: no control (default)  
1: the soft closed-loop limit for the channel is enabled  
INT_CL_LIMIT_CH1 0: no control (default)  
1: the soft closed-loop limit for the channel is enabled  
INT_CL_LIMIT_CH0 0: no control (default)  
1: the soft closed-loop limit for the channel is enabled  
Reserved Reserved  
D10  
D9  
D8  
[D7:D4]  
Rev. B | Page 42 of 78  
 
Data Sheet  
AD7293  
Bit Number(s) Bit Name  
Description  
D3  
D2  
D1  
D0  
Closed-Loop 3  
0: closed loop is disabled (default)  
1: closed loop is enabled  
Closed-Loop 2  
Closed-Loop 1  
Closed-Loop 0  
0: closed loop is disabled (default)  
1: closed loop is enabled  
0: closed loop is disabled (default)  
1: closed loop is enabled  
0: closed loop is disabled (default)  
1: closed loop is enabled  
Table 48. PA_ON Control Register (Register 0x29)  
Bit Number(s)  
[D15:D10]  
D9  
Bit Name  
Description  
Reserved  
Reserved  
PA_ON enable  
0: PA_ON signal is in the off state (default)  
1: PA_ON signal is in the on state  
0: no control  
D8  
PA_ON trigger  
1: AVSS/AVDD alarm or ALERT0 triggers PA_ON (default)  
Reserved  
[D7:D6]  
D5  
Reserved  
SLEEP1 snooze  
0: no control  
1: PA_ON snooze after SLEEP1 enable (default)  
0: no control  
D4  
SLEEP0 snooze  
1: PA_ON snooze after SLEEP0 enable (default)  
Reserved  
[D3:D2]  
D1  
Reserved  
PA_ON SLEEP1  
0: no control (default)  
1: PA_ON controlled by the SLEEP1 pin  
0: no control (default)  
D0  
PA_ON SLEEP0  
1: PA_ON controlled by the SLEEP0 pin  
Table 49. Ramp Time 0 to Ramp Time 3 Registers (Register 0x2A to Register 0x2D)  
Bit Number(s)  
Bit Name  
Reserved  
B6 to B0  
Description  
[D15:D7]  
Reserved  
[D6:D0]  
Ramp time bits configure the ramp time for the DACs in closed-loop mode  
0000000 = no ramp function (default)  
0000001 to 0010000 = 4 ms  
0010001 = 4.25 ms  
1111110 = 31.5 ms  
1111111 = 31.75 ms  
Table 50. Closed-Loop Fast Ramp and Integrator Time Constant Register (Register 0x2E)  
Bit Number(s) Bit Name  
Description  
D15  
CL3_FR  
0: Closed-Loop 3 fast ramp disable  
1: Closed-Loop 3 fast ramp enable (default)  
[D14:D12]  
CL3_CAP_TRIM[2:0] 000: not applicable  
001: 2.352 ms  
010: 1.218 ms  
011: 840 µs (default)  
100: 650 µs  
101: 538 µs  
110: 462 µs  
111: 408 µs  
Rev. B | Page 43 of 78  
 
AD7293  
Data Sheet  
Bit Number(s) Bit Name  
Description  
D11  
CL2_FR  
0: Closed-Loop 2 fast ramp disable  
1: Closed-Loop 2 fast ramp enable (default)  
[D10:D8]  
CL2_CAP_TRIM[2:0] 000: not applicable  
001: 2.352 ms  
010: 1.218 ms  
011: 840 µs (default)  
100: 650 µs  
101: 538 µs  
110: 462 µs  
111: 408 µs  
D7  
CL1_FR  
0: Closed-Loop 1 fast ramp disable  
1: Closed-Loop 1 fast ramp enable (default)  
[D6:D4]  
CL1_CAP_TRIM[2:0] 000: not applicable  
001: 2.352 ms  
010: 1.218 ms  
011: 840 µs (default)  
100: 650 µs  
101: 538 µs  
110: 462 µs  
111: 408 µs  
D3  
CL0_FR  
0: Closed-Loop 0 fast ramp disable  
1: Closed-Loop 0 fast ramp enable (default)  
[D2:D0]  
CL0_CAP_TRIM[2:0] 000: not applicable  
001: 2.352 ms  
010: 1.218 ms  
011: 840 µs (default)  
100: 650 µs  
101: 538 µs  
110: 462 µs  
111: 408 µs  
Table 51. Integrator Limit Active Status (INTLIMITx) and AVSS/AVDD Alarm Mask Register (Register 0x2F)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
INTLIMIT  
INTLIMIT  
INTLIMIT  
INTLIMIT  
3
2
1
0
0: no masking (default)  
1: masks alerts such that they are not visible when reading back the corresponding alert registers and/or  
if routed to ALERTx pins  
D10  
D9  
0: no masking (default)  
1: masks alerts such that they are not visible when reading back the corresponding alert registers and/or  
if routed to ALERTx pins  
0: no masking (default)  
1: masks alerts such that they are not visible when reading back the corresponding alert registers and/or  
if routed to ALERTx pins  
D8  
0: no masking (default)  
1: masks alerts such that they are not visible when reading back the corresponding alert registers and/or  
if routed to ALERTx pins  
[D7:D1]  
D0  
Reserved  
Reserved  
AVSS/AVDD alarm 0: no masking (default)  
1: masks alert  
Rev. B | Page 44 of 78  
Data Sheet  
AD7293  
Voltage Input (VINx) Sequence Register (Register 0x10)  
SEQUENCE (PAGE 0x03)  
This 16-bit register allows the user to sequence the ADC  
conversions for the four input channels in command mode.  
The sequence page contains registers that allow the user to  
sequence and read back the conversions results from selected  
channels in command mode.  
Current Sensor (ISENSEx) and Temperature Sensor (TSENSEx)  
Sequence Register (Register 0x11)  
Table 52. Sequence (Page 0x03)  
Address  
(Hex)  
Access Default  
This 16-bit register allows the user to sequence the results read  
back for the four current sense and three temperature sensor  
channels. The range for the current sense and temperature  
sense channels is fixed at 0 V to REFADC (1.25 V). However, the  
corresponding bit from the enable registers on the configuration  
page must be set to run a conversion for a temperature sensor  
or current sensor channel in command mode.  
Name  
Byte1 Type1  
Value1  
0x00  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
No op  
N/A  
1
1
2
1
1
2
2
2
N/A  
R/W  
W
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
Device ID  
Software reset  
VINx sequence  
0x00  
N/A  
R
0x0000  
0x00  
0x00  
0x0018  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R
R/W  
R/W  
R/W  
RSx+MON, Supply Monitor, and BI-VOUTx Monitor Sequence  
Register (Register 0x12)  
This 16-bit register allows the user to sequence and read back  
the ADC conversion results for the four RSx+ pins, four voltage  
supplies, and the four DAC monitor channels in command mode.  
ISENSEx and TSENSE  
sequence  
x
2
0x12  
RSx+MON, supply  
2
R/W  
0x0000  
monitor, and BI-VOUT  
monitor sequence  
x
1 N/A means not applicable.  
2 Not a physical register.  
Table 53. VINx Sequence Register (Register 0x10)  
Bit Number(s) Bit Name  
Description  
[D15:D4]  
D3  
Reserved  
VIN3  
Reserved  
1: command mode sequencing enabled  
0: command mode sequencing disabled (default)  
1: command mode sequencing enabled  
0: command mode sequencing disabled (default)  
1: command mode sequencing enabled  
0: command mode sequencing disabled (default)  
1: command mode sequencing enabled  
D2  
D1  
D0  
VIN2  
VIN1  
VIN0  
0: command mode sequencing disabled (default)  
Table 54. ISENSEx and TSENSEx Sequence Register (Register 0x11)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
ISENSE  
ISENSE  
ISENSE  
ISENSE  
3
2
1
0
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
D10  
D9  
D8  
1: command mode sequencing enabled  
Reserved  
[D7:D3]  
D2  
Reserved  
TSENSED1  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
D1  
D0  
TSENSED0  
TSENSEINT  
1: command mode sequencing enabled  
Rev. B | Page 45 of 78  
 
AD7293  
Data Sheet  
Table 55. RSx+MON, Supply Monitor, and BI-VOUTx Monitor Sequence Register (Register 0x12)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
RS3+MON  
Reserved  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RS2+MON  
RS1+MON  
RS0+MON  
BI-VOUT3MON  
BI-VOUT2MON  
BI-VOUT1MON  
BI-VOUT0MON  
AVSS  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
1: command mode sequencing enabled  
0: no control (default)  
DACVDD-BI  
DACVDD-UNI  
AVDD  
1: command mode sequencing enabled  
Rev. B | Page 46 of 78  
Data Sheet  
AD7293  
Temperature Sensor (TSENSEx) High Limit Registers  
(Register 0x20 to Register 0x22)  
HIGH LIMIT 0 (PAGE 0x04)  
Table 56. High Limit 0 (Page 0x04)  
These read/write 16-bit registers set the high limits for the three  
temperature sensor channels. The default value of these  
registers is 0xFFF0.  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x20  
0x21  
0x22  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
Table 57. Temperature Sensor High Limit Registers  
(Register 0x20 to Register 0x22)  
R
0x0000  
0x00  
0x00  
Bit Number(s)  
Bit Name  
Description  
R/W  
R/W  
R
D15  
B11  
0: −256°C  
1: 0°C (default)  
0: 0°C  
1: 128°C (default)  
0: 0°C  
1: 64°C (default)  
0: 0°C  
1: 32°C (default)  
0: 0°C  
1: 16°C (default)  
0: 0°C  
1: 8°C (default)  
0: 0°C  
Device ID  
0x0018  
0x0000  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
D14  
D13  
D12  
D11  
D10  
D9  
B10  
B9  
Software reset  
VIN0 high limit  
VIN1 high limit  
VIN2 high limit  
VIN3 high limit  
TSENSEINT high limit  
TSENSED0 high limit  
TSENSED1 high limit  
ISENSE0 high limit  
ISENSE1 high limit  
ISENSE2 high limit  
ISENSE3 high limit  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
B8  
B7  
B6  
B5  
2
2
1: 4°C (default)  
0: 0°C  
D8  
B4  
1 N/A means not applicable.  
2 Not a physical register.  
1: 2°C (default)  
0: 0°C  
D7  
B3  
VINx High Limit Registers (Register 0x10 to Register 0x13)  
1: 1°C (default)  
0: 0°C  
These read/write 16-bit registers set the high limits for the four  
input channels. The default value of these registers is 0xFFF0.  
D6  
B2  
1: 0.5°C (default)  
0: 0°C  
D5  
B1  
1: 0.25°C (default)  
0: 0°C  
D4  
B0  
1: 0.125°C (default)  
Reserved  
[D3:D0]  
Reserved  
Current Sensor (ISENSEx) High Limit Registers (Register 0x28  
to Register 0x2B)  
These read/write 16-bit registers set the high limits for the four  
current sensor channels. The default value of these registers is  
0xFFF0.  
Table 58. VINx (Register 0x10 to Register 0x13) and ISENSEx High Limit Registers (Register 0x28 to Register 0x2B)  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 47 of 78  
 
AD7293  
Data Sheet  
AVDD, DAC Supply (DACVDD-UNI/DACVDD-BI) and AVSS High  
Limit Registers (Register 0x10 to Register 0x13)  
HIGH LIMIT 1 (PAGE 0x05)  
Table 59. High Limit 1 (Page 0x05)  
These read/write 16-bit registers set the high limits for the four  
voltage supply conversions. The default value of these registers  
is 0xFFF0.  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
BI-VOUT0MON to BI-VOUT3MON High Limit Registers  
(Register 0x14 to Register 0x17)  
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
R
0x0000  
0x00  
0x00  
These registers store the high limits for the four internal inputs  
for monitoring the bipolar DAC outputs in open-loop mode or  
the integrator outputs in closed-loop mode.  
R/W  
R/W  
R
Device ID  
0x0018  
0x0000  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
RSx+MON High Limit Registers (Register 0x28 to  
Register 0x2B)  
Software reset  
AVDD high limit  
DACVDD-UNI high limit  
DACVDD-BI high limit  
AVSS high limit  
BI-VOUT0MON high limit  
BI-VOUT1MON high limit  
BI-VOUT2MON high limit  
BI-VOUT3MON high limit  
RS0+MON high limit  
RS1+MON high limit  
RS2+MON  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
These registers store the high limits for the RSx+MON monitoring  
channels.  
2
2
2
RS3+MON  
1 N/A means not applicable.  
2 Not a physical register.  
Table 60. AVDD, DAC Supply, AVSS, BI-VOUTxMON, and RSx+MON High Limit Registers (Register 0x10 to Register 0x2B)  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 48 of 78  
 
Data Sheet  
AD7293  
Temperature Sensor (TSENSEx) Low Limit Registers  
(Register 0x20 to Register 0x22)  
LOW LIMIT 0 (PAGE 0x06)  
Table 61. Low Limit 0 (Page 0x06)  
These read/write 16-bit registers set the low limits for the three  
temperature sensor channels.  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x20  
0x21  
0x22  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
Table 62. Temperature Sensor Low Limit Registers  
(Register 0x20 to Register 0x22)  
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
Bit Number(s)  
Bit Name  
Description  
0: −256°C (default)  
1: 0°C  
R
0x0000  
0x00  
0x00  
D15  
B11  
R/W  
R/W  
R
D14  
D13  
D12  
D11  
D10  
D9  
B10  
B9  
0: 0°C (default)  
1: 128°C  
Device ID  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Software reset  
VIN0 low limit  
VIN1 low limit  
VIN2 low limit  
VIN3 low limit  
TSENSEINT low limit  
TSENSED0 low limit  
TSENSED1 low limit  
ISENSE0 low limit  
ISENSE1 low limit  
ISENSE2 low limit  
ISENSE3 low limit  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0: 0°C (default)  
1: 64°C  
B8  
0: 0°C (default)  
1: 32°C  
B7  
0: 0°C (default)  
1: 16°C  
B6  
0: 0°C (default)  
1: 8°C  
B5  
0: 0°C (default)  
1: 4°C  
2
2
D8  
B4  
0: 0°C (default)  
1: 2°C  
1 N/A means not applicable.  
2 Not a physical register.  
D7  
B3  
0: 0°C (default)  
1: 1°C  
VINx Low Limit Registers (Register 0x10 to Register 0x13)  
D6  
B2  
0: 0°C (default)  
1: 0.5°C  
These read/write 16-bit registers set the low limits for the four  
input channels.  
D5  
B1  
0: 0°C (default)  
1: 0.25°C  
D4  
B0  
0: 0°C (default)  
1: 0.125°C  
[D3:D0]  
Reserved  
Reserved  
Current Sensor (ISENSEx) Low Limit Registers (Register 0x28  
to Register 0x2B)  
These read/write 16-bit registers set the low limits for the four  
current sensor channels.  
Table 63. VINx and Current Sensor Low Limit Registers (Register 0x10 to Register 0x13, and Register 0x28 to Register 0x2B)  
MSB  
D15  
B11  
LSB  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Reserved  
Rev. B | Page 49 of 78  
 
AD7293  
Data Sheet  
AVDD, DAC Supply (DACVDD-UNI/DACVDD-BI), and AVSS Low  
Limit Registers (Register 0x10 to Register 0x13)  
LOW LIMIT 1 (PAGE 0x07)  
Table 64. Low Limit 1 (Page 0x07)  
These read/write 16-bit registers set the low limits for the four  
supply channels.  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
BI-VOUT0MON to BI-VOUT3MON Low Limit Registers  
(Register 0x14 to Register 0x17)  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
These registers store the low limits from the four internal inputs  
for monitoring the bipolar DAC outputs, although the intention  
is to monitor the bipolar DAC outputs in open-loop mode or  
the integrator outputs in closed-loop mode.  
R
0x0000  
0x00  
0x00  
R/W  
R/W  
R
Device ID  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
RSx+MON Low Limit Registers (Register 0x28 to  
Register 0x2B)  
Software reset  
AVDD low limit  
DACVDD-UNI low limit  
DACVDD-BI low limit  
AVSS low limit  
BI-VOUT0MON low limit  
BI-VOUT1MON low limit  
BI-VOUT2MON low limit  
BI-VOUT3MON low limit  
RS0+MON low limit  
RS1+MON low limit  
RS2+MON low limit  
RS3+MON low limit  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
These registers store the low limits for the RSx+MON monitoring  
channels.  
2
2
2
1 N/A means not applicable.  
2 Not a physical register.  
Table 65. AVDD, DAC Supply, AVSS, BI-VOUTxMON, and RSx+MON Low Limit Registers (Register 0x10 to Register 0x2B)  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 50 of 78  
 
Data Sheet  
AD7293  
Temperature Sensor (TSENSEx) Hysteresis Registers  
(Register 0x20 to Register 0x22)  
HYSTERESIS 0 (PAGE 0x08)  
Table 66. Hysteresis 0 (Page 0x08)  
These read/write 16-bit registers set the hysteresis values for the  
three temperature sensor channels. The MSB of this register  
must be set to 1.  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x20  
0x21  
0x22  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
Table 67. Temperature Sensor Hysteresis Registers  
(Register 0x20 to Register 0x22)  
R
0x0000  
0x00  
0x00  
Bit Number(s)  
Bit Name  
Reserved  
B10  
Description  
Reserved. Must be set to 1.  
0: 0°C (default)  
1: 128°C  
R/W  
R/W  
R
D15  
D14  
Device ID  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Software reset  
VIN0 hysteresis  
VIN1 hysteresis  
VIN2 hysteresis  
VIN3 hysteresis  
TSENSEINT hysteresis  
TSENSED0 hysteresis  
TSENSED1 hysteresis  
ISENSE0 hysteresis  
ISENSE1 hysteresis  
ISENSE2 hysteresis  
ISENSE3 hysteresis  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
D13  
D12  
D11  
D10  
D9  
B9  
0: 0°C (default)  
1: 64°C  
B8  
0: 0°C (default)  
1: 32°C  
B7  
0: 0°C (default)  
1: 16°C  
B6  
0: 0°C (default)  
1: 8°C  
B5  
0: 0°C (default)  
1: 4°C  
2
2
D8  
B4  
0: 0°C (default)  
1: 2°C  
1 N/A means not applicable.  
2 Not a physical register.  
D7  
B3  
0: 0°C (default)  
1: 1°C  
VINx Hysteresis Registers (Register 0x10 to Register 0x13)  
D6  
B2  
0: 0°C (default)  
1: 0.5°C  
These read/write 16-bit registers set the hysteresis values for the  
four input channels.  
D5  
B1  
0: 0°C (default)  
1: 0.25°C  
D4  
B0  
0: 0°C (default)  
1: 0.125°C  
[D3:D0]  
Reserved  
Reserved  
Current Sensor (ISENSEx) Hysteresis Registers  
(Register 0x28 to Register 0x2B)  
These read/write 16-bit registers set the hysteresis values for the  
four current sensor channels.  
Table 68. VINx and Current Sensor Hysteresis Registers (Register 0x10 to Register 0x13, and Register 0x28 to Register 0x2B)  
MSB  
D15  
B11  
LSB  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 51 of 78  
 
 
AD7293  
Data Sheet  
AVDD, DAC Supply (DACVDD-UNI/DACVDD-BI), and AVSS  
Hysteresis Registers (Register 0x10 to Register 0x13)  
HYSTERESIS 1 (PAGE 0x09)  
Table 69. Hysteresis 1 (Page 0x09)  
These read/write 16-bit registers set the hysteresis values for the  
four supply voltage conversions.  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
BI-VOUT0MON to BI-VOUT3MON Hysteresis Registers  
(Register 0x14 to Register 0x17)  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
These read/write 16-bit registers set the hysteresis values for the  
four DAC monitoring conversions.  
R
0x0000  
0x00  
0x00  
R/W  
R/W  
R
RSx+MON Hysteresis Registers (Register 0x28 to  
Register 0x2B)  
Device ID  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
These read/write 16-bit registers set the hysteresis values for the  
four RSx+ conversions.  
Software reset  
AVDD hysteresis  
DACVDD-UNI hysteresis  
DACVDD-BI hysteresis  
AVSS hysteresis  
BI-VOUT0MON hysteresis  
BI-VOUT1MON hysteresis  
BI-VOUT2MON hysteresis  
BI-VOUT3MON hysteresis  
RS0+MON hysteresis  
RS1+MON hysteresis  
RS2+MON hysteresis  
RS3+MON hysteresis  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
2
2
2
1 N/A means not applicable.  
2 Not a physical register.  
Table 70. AVDD, DAC Supply, AVSS, BI-VOUTxMON, and RSx+MON Hysteresis Registers (Register 0x10 to Register 0x2B)  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 52 of 78  
 
 
Data Sheet  
AD7293  
Temperature Sensor (TSENSEx) Minimum Registers  
(Register 0x20 to Register 0x22)  
MINIMUM 0 (PAGE 0x0A)  
Table 71. Minimum 0 (Page 0x0A)  
These 16-bit registers store the minimum ADC conversion results  
for the relevant temperature sensor channel. The default value  
of these registers is 0xFFF0. These registers can be set back to  
their default value by writing to them (the 12-bit write value is  
not written to these registers).  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x20  
0x21  
0x22  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
R
0x0000  
0x00  
0x00  
Table 72. Temperature Sensor Minimum Registers  
(Register 0x20 to Register 0x22)  
R/W  
R/W  
R
Bit Number(s)  
Bit Name  
Description  
0: −256°C  
1: 0°C  
Device ID  
0x0018  
0x0000  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
D15  
B11  
Software reset  
VIN0 minimum  
VIN1 minimum  
VIN2 minimum  
VIN3 minimum  
TSENSEINT minimum  
TSENSED0 minimum  
TSENSED1 minimum  
ISENSE0 minimum  
ISENSE1 minimum  
ISENSE2 minimum  
ISENSE3 minimum  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
D14  
D13  
D12  
D11  
D10  
D9  
B10  
B9  
0: 0°C  
1: 128°C  
0: 0°C  
1: 64°C  
0: 0°C  
1: 32°C  
0: 0°C  
1: 16°C  
0: 0°C  
1: 8°C  
B8  
B7  
B6  
2
2
B5  
0: 0°C  
1 N/A means not applicable.  
2 Not a physical register.  
1: 4°C  
D8  
B4  
0: 0°C  
VINx Minimum Registers (Register 0x10 to Register 0x13)  
1: 2°C  
These 16-bit registers store the minimum ADC conversion  
results for the relevant input channel. The default value of these  
registers is 0xFFF0. These registers can be set back to their  
default value by writing to them (the 12-bit write value is not  
written to these registers).  
D7  
B3  
0: 0°C  
1: 1°C  
D6  
B2  
0: 0°C  
1: 0.5°C  
0: 0°C  
D5  
B1  
1: 0.25°C  
0: 0°C  
D4  
B0  
1: 0.125°C  
Reserved  
[D3:D0]  
Reserved  
Current Sensor (ISENSEx) Minimum Registers  
(Register 0x28 to Register 0x2B)  
These 16-bit registers store the minimum ADC conversion  
results for the relevant current sensor channel. The default value  
of these registers is 0xFFF0. These registers can be set back to  
their default value by writing to them (the 12-bit write value is  
not written to these registers).  
Table 73. VINx and Current Sensor Minimum Registers (Register 0x10 to Register 0x13, and Register 0x28 to Register 0x2B)  
MSB  
D15  
B11  
LSB  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 53 of 78  
 
AD7293  
Data Sheet  
AVDD, DAC Supply (DACVDD-UNI/DACVDD-BI), and AVSS  
Minimum Registers (Register 0x10 to Register 0x13)  
MINIMUM 1 (PAGE 0x0B)  
Table 74. Minimum 1 (Page 0x0B)  
These 16-bit registers store the minimum ADC conversion  
results for the relevant channels. These registers can be set back  
to their default value by writing to them.  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
BI-VOUT0MON to BI-VOUT3MON Minimum Registers  
(Register 0x14 to Register 0x17)  
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
These 16-bit registers store the minimum ADC conversion  
results for the relevant DAC monitoring channels. These  
registers can be set back to their default value by writing to  
them.  
R
0x0000  
0x00  
0x00  
R/W  
R/W  
R
Device ID  
0x0018  
0x0000  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
0xFFF0  
Software reset  
AVDD minimum  
DACVDD-UNI minimum  
DACVDD-BI minimum  
AVSS minimum  
BI-VOUT0MON minimum  
BI-VOUT1MON minimum  
BI-VOUT2MON minimum  
BI-VOUT3MON minimum  
RS0+MON minimum  
RS1+MON minimum  
RS2+MON minimum  
RS3+MON minimum  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RSx+MON Minimum Registers (Register 0x28 to  
Register 0x2B)  
These 16-bit registers store the minimum ADC conversion  
results for the relevant channels. These registers can be set back  
to their default value by writing to them.  
2
2
2
1 N/A means not applicable.  
2 Not a physical register.  
Table 75. AVDD, DAC Supply, AVSS, BI-VOUTxMON, and RSx+MON Minimum Registers (Register 0x10 to Register 0x2B)  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 54 of 78  
 
Data Sheet  
AD7293  
Temperature Sensor (TSENSEx) Maximum Registers  
(Register 0x20 to Register 0x22)  
MAXIMUM 0 (PAGE 0x0C)  
Table 76. Maximum 0 (Page 0x0C)  
These 16-bit registers store the maximum ADC conversion  
results for the relevant temperature sensor channel. These  
registers can be set back to their default value by writing to  
them (the 12-bit write value is not written to these registers).  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x20  
0x21  
0x22  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
Value1  
0x00  
No op  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
N/A  
R/W  
W
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
Table 77. Temperature Sensor Maximum Registers  
(Register 0x20 to Register 0x22)  
R
0x0000  
0x00  
0x00  
R/W  
R/W  
R
Bit  
Bit  
Number(s) Name  
Description  
0: −256°C  
1: 0°C  
Device ID  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Software reset  
VIN0 maximum  
VIN1 maximum  
VIN2 maximum  
VIN3 maximum  
TSENSEINT maximum  
TSENSED0 maximum  
TSENSED1 maximum  
ISENSE0 maximum  
ISENSE1 maximum  
ISENSE2 maximum  
ISENSE3 maximum  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0: 0°C  
1: 128°C  
0: 0°C  
1: 64°C  
0: 0°C  
1: 32°C  
0: 0°C  
1: 16°C  
0: 0°C  
1: 8°C  
2
2
0: 0°C  
1: 4°C  
1 N/A means not applicable.  
2 Not a physical register.  
D8  
0: 0°C  
1: 2°C  
VINx Maximum Registers (Register 0x10 to Register 0x13)  
These 16-bit registers store the maximum ADC conversion  
results for the relevant input channel. These registers can be set  
back to their default value by writing to them (the 12-bit write  
value is not written to these registers).  
D7  
0: 0°C  
1: 1°C  
D6  
0: 0°C  
1: 0.5°C  
0: 0°C  
1: 0.25°C  
0: 0°C  
D5  
D4  
1: 0.125°C  
[D3:D0]  
Reserved Reserved  
Current Sensor (ISENSEx) Maximum Registers  
(Register 0x28 to Register 0x2B)  
These 16-bit registers store the maximum ADC conversion  
results for the relevant current sensor channel. These registers can  
be set back to their default value by writing to them (the 12-bit  
write value is not written to these registers).  
Table 78. VINx and Current Sensor Maximum Registers (Register 0x10 to Register 0x13, and Register 0x28 to Register 0x2B)  
MSB  
D15  
B11  
LSB  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 55 of 78  
 
AD7293  
Data Sheet  
AVDD, DAC Supply (DACVDD-UNI/DACVDD-BI), and AVSS  
Maximum Registers (Register 0x10 to Register 0x13)  
MAXIMUM 1 (PAGE 0x0D)  
Table 79. Maximum 1 (Page 0x0D)  
These 16-bit registers store the maximum ADC conversion  
results for the relevant channels.  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x28  
0x29  
0x2A  
0x2B  
Name  
Byte1 Type1  
N/A  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
Value1  
0x00  
BI-VOUT0MON to BI-VOUT3MON Maximum Registers  
(Register 0x14 to Register 0x17)  
No op  
N/A  
R/W  
W
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
These 16-bit registers store the maximum ADC conversion  
results for the relevant DAC monitoring channels. These  
registers can be set back to their default value by writing to  
them.  
R
0x0000  
0x00  
0x00  
R/W  
R/W  
R
Device ID  
Software reset  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
RSx+MON Maximum Registers (Register 0x28 to  
Register 0x2B)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AVDD maximum  
DACVDD-UNI maximum  
DACVDD-BI maximum  
AVSS maximum  
BI-VOUT0MON maximum  
BI-VOUT1MON maximum  
BI-VOUT2MON maximum  
BI-VOUT3MON maximum  
RS0+MON maximum  
RS1+MON maximum  
RS2+MON maximum  
RS3+MON maximum  
These 16-bit registers store the maximum ADC conversion  
results for the relevant channels. These registers can be set back  
to their default value by writing to them.  
2
2
2
2
1 N/A means not applicable.  
2 Not a physical register.  
Table 80. AVDD, DAC Supply, AVSS, BI-VOUTxMON, and RSx+MON Maximum Registers (Register 0x10 to Register 0x2B)  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
[D3:D0]  
Reserved  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Rev. B | Page 56 of 78  
 
Data Sheet  
AD7293  
VINx Offset Registers (Register 0x10 to Register 0x13)  
OFFSET 0 (PAGE 0x0E)  
These read/write 8-bit registers store the offset values for the  
relevant input channel.  
Table 81. Offset 0 (Page 0x0E)  
Address  
Access Default  
(Hex)  
0x00  
0x01  
Name  
No op  
Page select  
pointer  
Byte1  
N/A  
1
Type1  
N/A  
Value1  
0x00  
Temperature Sensor (TSENSEx) Offset Registers  
(Register 0x20 to Register 0x22)  
R/W  
0x00  
These read/write 8-bit registers store the offset values for the  
relevant temperature sensor channel.  
0x02  
Conversion  
command2  
1
W
N/A  
Current Sensor (ISENSEx) Offset Registers (Register 0x28 to  
Register 0x2B)  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x20  
0x21  
0x22  
0x28  
0x29  
0x2A  
0x2B  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
Result  
DAC enable  
GPIO  
Device ID  
Software reset  
VIN0 offset  
VIN1 offset  
VIN2 offset  
VIN3 offset  
TSENSEINT offset  
TSENSED0 offset  
TSENSED1 offset  
ISENSE0 offset  
ISENSE1 offset  
ISENSE2 offset  
ISENSE3 offset  
UNI-VOUT0 offset  
UNI-VOUT1 offset  
UNI-VOUT2 offset  
UNI-VOUT3 offset  
BI-VOUT0 offset  
BI-VOUT1 offset  
BI-VOUT2 offset  
BI-VOUT3 offset  
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
R
0x0000  
0x00  
0x00  
R/W  
R/W  
R
These read/write 8-bit registers store the offset values for the  
relevant current sensor channel.  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Unipolar DAC (UNI-VOUTx) Offset Registers (Register 0x30  
to Register 0x33)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
These read/write registers store the offset values for the  
corresponding DAC output. If the copy bit is set to 1, writing to  
any of the DAC offset registers sets all the other unipolar DAC  
offset registers to the same value.  
Bipolar DAC (BI-VOUTx) Offset Registers (Register 0x34 to  
Register 0x37)  
These read/write registers store the offset values for the  
corresponding DAC output. If the copy bit is set to 1, writing to  
any of the DAC offset registers sets all the other bipolar DAC  
offset registers to the same value. Any write to these registers  
affects the DAC range in open-loop mode and the integrator  
limit in closed-loop mode.  
1 N/A means not applicable.  
2 Not a physical register.  
Table 82. VINx and Current Sensor Offset Registers (Register 0x10 to Register 0x13, and Register 0x28 to Register 0x2B)  
Bit Number(s) Bit Name  
Description  
0: 0 LSB (default)  
1: −128 LSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0: 0 LSB (default)  
1: 64 LSB  
0: 0 LSB (default)  
1: 32 LSB  
0: 0 LSB (default)  
1: 16 LSB  
0: 0 LSB (default)  
1: 8 LSB  
0: 0 LSB (default)  
1: 4 LSB  
0: 0 LSB (default)  
1: 2 LSB  
0: 0 LSB (default)  
1: 1 LSB  
Rev. B | Page 57 of 78  
 
 
AD7293  
Data Sheet  
Table 83. Temperature Sensor Offset Registers (Register 0x20 to Register 0x22)  
Bit Number(s) Bit Name  
Description  
0: 0°C (default)  
1: −16°C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0: 0°C (default)  
1: 8°C  
0: 0°C (default)  
1: 4°C  
0: 0°C (default)  
1: 2°C  
0: 0°C (default)  
1: 1°C  
0: 0°C (default)  
1: 0.5°C  
0: 0°C (default)  
1: 0.25°C  
0: 0°C (default)  
1: 0.125°C  
Table 84. Unipolar DAC Offset Registers (Register 0x30 to Register 0x33)  
Bit Number(s) Bit Name  
Description  
[D7:D6]  
[D5:D4]  
Reserved  
Offset  
Reserved  
00: 0 V to 5 V (default)  
01: 2.5 V to 7.5 V  
10: 5 V to 10 V  
11: 5 V to 10 V  
[D3:D2]  
D1  
Reserved  
Copy  
Reserved  
0: do not copy (default)  
1: sets all unipolar DACs to same value  
Reserved  
D0  
Reserved  
Table 85. Bipolar DAC Offset Registers (Register 0x34 to Register 0x37)  
Bit Number(s) Bit Name  
Description  
[D7:D6]  
[D5:D4]  
Reserved  
Offset  
Reserved  
00: 0 V to +5 V (default)  
01: −4 V to +1 V  
10: −5 V to 0 V  
11: 0 V to +5 V in open loop, disables upper voltage limit in closed loop  
[D3:D2]  
D1  
Reserved  
Copy  
Reserved  
0: do not copy (default)  
1: sets all bipolar DACs to same value  
Reserved  
D0  
Reserved  
Rev. B | Page 58 of 78  
 
 
Data Sheet  
AD7293  
AVDD, DAC Supply (DACVDD-UNI/DACVDD-BI), and AVSS Offset  
Registers (Register 0x10 to Register 0x13)  
OFFSET 1 (PAGE 0x0F)  
Table 86. Offset 1 (Page 0x0F)  
These read/write 8-bit registers store the offset values for the  
relevant supply voltage monitoring channels.  
Address  
Access  
Default  
Value1  
0x00  
0x00  
N/A  
(Hex)  
0x00  
0x01  
0x02  
Name  
No op  
Page select pointer  
Conversion  
command2  
Byte1 Type1  
N/A  
1
N/A  
R/W  
W
BI-VOUT0MON to BI-VOUT3MON Offset Registers (Register 0x14  
to Register 0x17)  
1
These read/write 8-bit registers store the offset values for the  
relevant DAC monitoring channels.  
0x03  
0x04  
Result  
DAC enable  
2
1
R
R/W  
0x0000  
0x00  
RSx+MON Offset Registers (Register 0x28 to Register 0x2B)  
These read/write 8-bit registers store the offset values for the  
relevant DAC monitoring channels. Note that, prior to  
conversion, the RSx+MON voltages are divided by 50.  
0x05  
0x0C  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x28  
0x29  
0x2A  
0x2B  
GPIO  
Device ID  
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
R/W  
R
0x00  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Software reset  
AVDD offset  
DACVDD-UNI offset  
DACVDD-BI offset  
AVSS offset  
BI-VOUT0MON offset  
BI-VOUT1MON offset  
BI-VOUT2MON offset  
BI-VOUT3MON offset  
RS0+MON offset  
RS1+MON offset  
RS2+MON offset  
RS3+MON offset  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1 N/A means not applicable.  
2 Not a physical register.  
Table 87. AVDD, DAC Supply, AVSS, BI-VOUTxMON, and RSx+MON Offset Registers (Register 0x10 to Register 0x2B)  
Bit Number(s) Bit Name  
Description  
0: 0 LSB (default)  
1: −128 LSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0: 0 LSB (default)  
1: 64 LSB  
0: 0 LSB (default)  
1: 32 LSB  
0: 0 LSB (default)  
1: 16 LSB  
0: 0 LSB (default)  
1: 8 LSB  
0: 0 LSB (default)  
1: 4 LSB  
0: 0 LSB (default)  
1: 2 LSB  
0: 0 LSB (default)  
1: 1 LSB  
Rev. B | Page 59 of 78  
 
AD7293  
Data Sheet  
Alert Summary (ALERTSUM) Register (Register 0x10)  
ALERT (PAGE 0x10)  
This 16-bit register stores the summary from the channel  
dedicated alert registers. If any of the bits from the corresponding  
alert register are set, the register bit is set to 1 (OR function of  
individual alert register bits). When 1 is written to any of the  
register bits, this bit is cleared, that is, removing alerts and the  
alert bits from the corresponding alert register. This write is a  
quick way to clear any alerts in the device. The upper byte  
contains the high alerts, whereas the lower byte contains the low  
alerts. This format is applicable to the individual alert registers  
as well. The default value of this register is 0x0000.  
Table 88. Alert (Page 0x10)  
Address  
Access Default  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x10  
0x12  
0x14  
0x15  
0x18  
Name  
No op  
Byte1 Type1  
N/A  
1
1
2
1
1
2
2
2
2
2
2
Value1  
0x00  
N/A  
R/W  
W
Page select pointer  
Conversion command2  
Result  
DAC enable  
GPIO  
0x00  
N/A  
R
0x0000  
0x00  
0x00  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Device ID  
Software reset  
ALERTSUM  
VINx alert  
TSENSEx alert  
ISENSEx alert  
VINx Alert Register (Register 0x12)  
This 16-bit register stores the VIN channel related high and low  
alerts. When 1 is written to any of the register bits, this bit  
clears, removing the corresponding alert.  
Temperature Sensor (TSENSEx) Alert Register (Register 0x14)  
Supply and BI-VOUTxMON  
alert  
2
This 16-bit register stores the temperature sensor related high  
and low alerts. When 1 is written to any of the register bits, this  
bit clears, removing the corresponding alert.  
0x19  
0x1A  
RSx+MON alert  
INTLIMITx and AVSS/AVDD  
alert  
2
2
R/W  
R/W  
0x0000  
0x0000  
Current Sensor (ISENSEx) Alert Register (Register 0x15)  
1 N/A means not applicable.  
2 Not a physical register.  
This 16-bit register stores the current sensor related high and  
low alerts. When 1 is written to any of the register bits, this bit  
clears, removing the corresponding alert.  
Table 89. Alert Summary (ALERTSUM) Register (Register 0x10), Bit D15 to Bit D8  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
RSx+ high  
AVDD/BI-VOUTx high  
INTLIMITx active  
AVSS/AVSS alarm  
ISENSEx high  
TSENSEx high  
Reserved  
VINx high  
Table 90. Alert Summary (ALERTSUM) Register (Register 0x10), Bit D7 to Bit D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RSx+ low  
AVDD/BI-VOUTx low  
Reserved  
ISENSEx low  
TSENSEx low  
Reserved  
VINx low  
Table 91. VINx Alert Register (Register 0x12)  
MSB  
LSB  
[D15:D12]  
D11  
D10  
D9  
D8  
[D7:D4]  
D3  
D2  
D1  
D0  
Reserved  
VIN3 high  
VIN2 high  
VIN1 v  
VIN0 high  
Reserved  
VIN3 low  
VIN2 low  
VIN1 low  
VIN0 low  
Table 92. Temperature Sensor Alert Register (Register 0x14)  
MSB  
LSB  
D0  
[D15:D11]  
D10  
D9  
D8  
[D7:D3]  
D2  
TSENSED1 low  
D1  
Reserved  
TSENSED1 high  
TSENSED0 high  
TSENSEINT high  
Reserved  
TSENSED0 low  
TSENSEINT low  
Table 93. Current Sensor Alert Register (Register 0x15)  
MSB  
LSB  
[D15:D12]  
D11  
D10  
D9  
D8  
[D7:D4]  
D3  
ISENSE3 low  
D2  
D1  
D0  
Reserved  
ISENSE3 high ISENSE2 high ISENSE1 high ISENSE0 high Reserved  
ISENSE2 low  
ISENSE1 low  
ISENSE0 low  
Rev. B | Page 60 of 78  
 
 
Data Sheet  
AD7293  
Supply and BI-VOUTxMON Alert Register (Register 0x18)  
RSx+MON Alert Register (Register 0x19)  
This 16-bit register stores the AVDD, DACVDD-UNI, DACVDD-BI  
,
This 16-bit register stores the RSx+ high and low alerts. When 1  
is written to any of the register bits, this bit clears, removing the  
corresponding alert.  
AVSS, BI-VOUTxMON high and low alerts. When 1 is written to any  
of the register bits, this bit clears, removing the corresponding  
alert.  
INTLIMITx and AVSS/AVDD Alert Register (Register 0x1A)  
This 16-bit register stores the closed-loop integrator limit active  
status and AVSS/AVDD alarm status.  
Table 94. Supply and BI-VOUTxMON Alert Register (Register 0x18), Bit D15 to Bit D8  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
BI-VOUT3MON high  
BI-VOUT2MON high  
BI-VOUT1MON high  
BI-VOUT0MON high  
AVSS high  
DACVDD-BI high  
DACVDD-UNI high  
AVDD high  
Table 95. Supply and BI-VOUTxMON Alert Register (Register 0x18), Bit D7 to Bit D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BI-VOUT3MON low  
BI-VOUT2MON low  
BI-VOUT1MON low  
BI-VOUT0MON low  
AVSS low  
DACVDD-BI low  
DACVDD-UNI low  
AVDD low  
Table 96. RSx+MON Alert Register (Register 0x19)  
MSB  
LSB  
D0  
[D15:D12] D11  
Reserved  
RS3+MON  
high  
D10  
D9  
D8  
[D7:D4]  
D3  
D2  
D1  
RS2+MON  
high  
RS1+MON  
high  
RS0+MON  
high  
Reserved RS3+MON  
low  
RS2+MON  
low  
RS1+MON  
low  
RS0+MON  
low  
Table 97. INTLIMITx and AVSS/AVDD Alert Register (Register 0x1A)  
MSB  
LSB  
[D15:D12]  
D11  
D10  
D9  
D8  
[D7:D1]  
Reserved  
D0  
Reserved  
INTLIMIT3 high  
INTLIMIT2 high  
INTLIMIT1 high  
INTLIMIT0 high  
AVSS/AVDD alarm  
Rev. B | Page 61 of 78  
 
AD7293  
Data Sheet  
VINx ALERT0 Register (Register 0x12)  
ALERT0 PIN ROUTING (PAGE 0x11)  
This 16-bit register allows routing of the VINx generated alerts  
to the ALERT0 pin.  
All the registers from this page allow routing of the alert signals  
generated by the corresponding inputs/channels to the GPIO3/  
ALERT0 pin of the device. The upper byte controls the high  
alerts routing, whereas the lower byte controls the low alerts  
routing.  
Temperature Sensor (TSENSEx) ALERT0 Register  
(Register 0x14)  
This 16-bit register allows routing of the temperature sensor  
generated alerts to the ALERT0 pin.  
Table 98. ALERT0 Pin Routing (Page 0x11)  
Address  
(Hex)  
0x00  
0x01  
0x02  
Access  
Default  
Value1  
0x00  
0x00  
N/A  
Current Sensor (ISENSEx) ALERT0 Register (Register 0x15)  
Name  
No op  
Page select pointer  
Conversion  
command2  
Result  
DAC enable  
GPIO  
Byte1 Type1  
N/A  
1
This 16-bit register allows routing of the current sensor  
generated alerts to the ALERT0 pin.  
N/A  
R/W  
W
Supply and BI-VOUTxMON ALERT0 Register (Register 0x18)  
1
This 16-bit register allows routing of the supply channels and  
the bipolar DAC monitor channels generated alerts to the  
ALERT0 pin.  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x12  
0x14  
0x15  
0x18  
2
1
1
2
2
2
2
2
2
R
0x0000  
0x00  
0x00  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
RSx+MON ALERT0 Register (Register 0x19)  
Device ID  
This 16-bit register allows routing of the RSx+MON alerts to the  
ALERT0 pin.  
Software reset  
VINx ALERT0  
TSENSEx ALERT0  
ISENSEx ALERT0  
Supply and  
BI-VOUTxMON ALERT0  
INTLIMITx and AVss/AVDD ALERT0 Register (Register 0x1A)  
This 16-bit register allows routing of the closed-loop integrator  
limit and AVSS/AVDD alerts to the ALERT0 pin.  
0x19  
0x1A  
RSx+MON ALERT0  
INTLIMITx and  
2
2
R/W  
R/W  
0x0000  
0x0000  
AVss/AVDD ALERT0  
1 N/A means not applicable.  
2 Not a physical register.  
Table 99. VINx ALERT0 Register (Register 0x12)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
VIN3 high  
Reserved  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D10  
D9  
VIN2 high  
VIN1 high  
VIN0 high  
D8  
1: high alert on the corresponding channel routes to the ALERT0 pin  
Reserved  
[D7:D4]  
D3  
Reserved  
VIN3 low  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D2  
D1  
D0  
VIN2 low  
VIN1 low  
VIN0 low  
1: low alert on the corresponding channel routes to the ALERT0 pin  
Rev. B | Page 62 of 78  
 
Data Sheet  
AD7293  
Table 100. Temperature Sensor ALERT0 Register (Register 0x14)  
Bit Number(s) Bit Name  
Description  
[D15:D11]  
D10  
Reserved  
Reserved  
TSENSED1 high  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D9  
D8  
TSENSED0 high  
TSENSEINT high  
1: high alert on the corresponding channel routes to the ALERT0 pin  
Reserved  
[D7:D3]  
D2  
Reserved  
TSENSED1 low  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D1  
D0  
TSENSED0 low  
TSENSEINT low  
1: low alert on the corresponding channel routes to the ALERT0 pin  
Table 101. Current Sensor ALERT0 Register (Register 0x15)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
ISENSE3 high  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D10  
D9  
ISENSE2 high  
ISENSE1 high  
ISENSE0 high  
D8  
1: high alert on the corresponding channel routes to the ALERT0 pin  
Reserved  
[D7:D4]  
D3  
Reserved  
ISENSE3 low  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D2  
D1  
D0  
ISENSE2 low  
ISENSE1 low  
ISENSE0 low  
1: low alert on the corresponding channel routes to the ALERT0 pin  
Rev. B | Page 63 of 78  
AD7293  
Data Sheet  
Table 102. Supply and BI-VOUTxMON ALERT0 Register (Register 0x18)  
Bit Number(s) Bit Name  
Description  
BI-VOUT3MON high 0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
BI-VOUT2MON high 0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
BI-VOUT1MON high 0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
BI-VOUT0MON high 0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
AVSS high  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
DACVDD-BI high  
DACVDD-UNI high  
AVDD high  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D8  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D7  
BI-VOUT3MON low  
BI-VOUT2MON low  
BI-VOUT1MON low  
BI-VOUT0MON low  
AVSS low  
D6  
D5  
D4  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D3  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D2  
DACVDD-BI low  
DACVDD-UNI low  
AVDD low  
D1  
D0  
1: low alert on the corresponding channel routes to the ALERT0 pin  
Rev. B | Page 64 of 78  
Data Sheet  
AD7293  
Table 103. RSx+MON ALERT0 Register (Register 0x19)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
RS3+MON high  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D10  
D9  
RS2+MON high  
RS1+MON high  
RS0+MON high  
D8  
1: high alert on the corresponding channel routes to the ALERT0 pin  
Reserved  
[D7:D4]  
D3  
Reserved  
RS3+MON low  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT0 pin  
0: no routing (default)  
D2  
D1  
D0  
RS2+MON low  
RS1+MON low  
RS0+MON low  
1: low alert on the corresponding channel routes to the ALERT0 pin  
Table 104. INTLIMITx and AVss/AVDD ALERT0 Register (Register 0x1A)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
INTLIMIT  
INTLIMIT  
INTLIMIT  
INTLIMIT  
3
2
1
0
0: no routing (default)  
1: integrator limit active status routed to the ALERT0 pin  
0: no routing (default)  
1: integrator limit active status routed to the ALERT0 pin  
0: no routing (default)  
1: integrator limit active status routed to the ALERT0 pin  
0: no routing (default)  
D10  
D9  
D8  
1: integrator limit active status routed to the ALERT0 pin  
Reserved  
[D7:D1]  
D0  
Reserved  
AVSS/AVDD  
0: no routing (default)  
1: AVSS or AVDD alarm is routed to the ALERT0 pin  
Rev. B | Page 65 of 78  
AD7293  
Data Sheet  
VINx ALERT1 Register (Register 0x12)  
ALERT1 PIN ROUTING (PAGE 0x12)  
This 16-bit register allows routing of the VINx generated alerts  
to the ALERT1 pin.  
All the registers from this page allow routing of the alert signals  
generated by the corresponding inputs/channels to the GPIO4/  
ALERT1 pin of the device. The upper byte controls the high  
alerts routing, whereas the lower byte controls the low alerts  
routing.  
Temperature Sensor (TSENSEx) ALERT1 Register  
(Register 0x14)  
This 16-bit register allows routing of the temperature sensor  
generated alerts to the ALERT1 pin.  
Table 105. ALERT1 Pin Routing (Page 0x12)  
Address  
(Hex)  
0x00  
Access  
Default  
Value1  
0x00  
Current Sensor (ISENSEx) ALERT1 Register (Register 0x15)  
Name  
No op  
Page select  
pointer  
Byte1 Type1  
N/A  
1
This 16-bit register allows routing of the current sensor  
generated alerts to the ALERT1 pin.  
N/A  
R/W  
0x01  
0x00  
Supply and BI-VOUTxMON ALERT1 Register (Register 0x18)  
0x02  
Conversion  
command2  
Result  
DAC enable  
GPIO  
Device ID  
Software reset  
VINx ALERT1  
TSENSEx ALERT1  
ISENSEx ALERT1  
Supply and  
BI-VOUTxMON  
ALERT1  
1
W
N/A  
This 16-bit register allows routing of the supply channels and  
the bipolar DAC monitor channels generated alerts to the  
ALERT1 pin.  
0x03  
0x04  
0x05  
0x0C  
0x0F  
0x12  
0x14  
0x15  
0x18  
2
1
1
2
2
2
2
2
2
R
0x0000  
0x00  
0x00  
0x0018  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
RSx+MON ALERT1 Register (Register 0x19)  
This 16-bit register allows routing of the RSx+MON alerts to the  
ALERT1 pin.  
INTLIMITx and AVSS/AVDD ALERT1 Register (Register 0x1A)  
This 16-bit register allows routing of the closed-loop integrator  
limit and AVSS/AVDD alerts to the ALERT1 pin.  
0x19  
0x1A  
RSx+MON ALERT1  
2
2
R/W  
R/W  
0x0000  
0x0000  
INTLIMITx and  
AVss/AVDD  
ALERT1  
1 N/A means not applicable.  
2 Not a physical register.  
Table 106. VINx ALERT1 Register (Register 0x12)  
Bit Number(s)  
[D15:D12]  
D11  
Bit Name  
Reserved  
VIN3 high  
Description  
Reserved  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
D10  
D9  
VIN2 high  
VIN1 high  
VIN0 high  
D8  
1: high alert on the corresponding channel routes to the ALERT1 pin  
Reserved  
[D7:D4]  
D3  
Reserved  
VIN3 low  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
D2  
D1  
D0  
VIN2 low  
VIN1 low  
VIN0 low  
1: low alert on the corresponding channel routes to the ALERT1 pin  
Rev. B | Page 66 of 78  
 
Data Sheet  
AD7293  
Table 107. Temperature Sensor ALERT1 Register (Register 0x14)  
Bit Number(s) Bit Name  
Description  
[D15:D11]  
D10  
Reserved  
Reserved  
TSENSED1 high  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin.  
0: no routing (default)  
D9  
D8  
TSENSED0 high  
TSENSEINT high  
1: high alert on the corresponding channel routes to the ALERT1 pin.  
Reserved  
[D7:D3]  
D2  
Reserved  
TSENSED1 low  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
D1  
D0  
TSENSED0 low  
TSENSEINT low  
1: low alert on the corresponding channel routes to the ALERT1 pin  
Table 108. Current Sensor ALERT1 Register (Register 0x15)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
ISENSE3 high  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
D10  
D9  
ISENSE2 high  
ISENSE1 high  
ISENSE0 high  
D8  
1: high alert on the corresponding channel routes to the ALERT1 pin  
Reserved  
[D7:D4]  
D3  
Reserved  
ISENSE3 low  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
D2  
D1  
D0  
ISENSE2 low  
ISENSE1 low  
ISENSE0 low  
1: low alert on the corresponding channel routes to the ALERT1 pin  
Table 109. Supply and BI-VOUTxMON ALERT1 Register (Register 0x18)  
Bit Number(s) Bit Name Description  
BI-VOUT3MON high 0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
BI-VOUT2MON high 0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
BI-VOUT1MON high 0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
BI-VOUT0MON high 0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
D15  
D14  
D13  
D12  
D11  
AVSS high  
1: high alert on the corresponding channel routes to the ALERT1 pin  
Rev. B | Page 67 of 78  
AD7293  
Data Sheet  
Bit Number(s) Bit Name  
Description  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DACVDD-BI high  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pi.  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
DACVDD-UNI high  
AVDD high  
BI-VOUT3MON low  
BI-VOUT2MON low  
BI-VOUT1MON low  
BI-VOUT0MON low  
AVSS low  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
DACVDD-BI low  
DACVDD-UNI low  
AVDD low  
1: low alert on the corresponding channel routes to the ALERT1 pin  
Table 110. RSx+MON ALERT1 Register (Register 0x19)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
RS3+MON high  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: high alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
D10  
D9  
RS2+MON high  
RS1+MON high  
RS0+MON high  
D8  
1: high alert on the corresponding channel routes to the ALERT1 pin  
Reserved (default)  
[D7:D4]  
D3  
Reserved  
RS3+MON low  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
1: low alert on the corresponding channel routes to the ALERT1 pin  
0: no routing (default)  
D2  
D1  
D0  
RS2+MON low  
RS1+MON low  
RS0+MON low  
1: low alert on the corresponding channel routes to the ALERT1 pin  
Rev. B | Page 68 of 78  
Data Sheet  
AD7293  
Table 111. INTLIMITx and AVss/AVDD ALERT1 Register (Register 0x1A)  
Bit Number(s) Bit Name  
Description  
[D15:D12]  
D11  
Reserved  
Reserved  
INTLIMIT  
INTLIMIT  
INTLIMIT  
INTLIMIT  
3
2
1
0
0: no routing (default)  
1: integrator limit active status routed to the ALERT1 pin  
0: no routing (default)  
1: integrator limit active status routed to the ALERT1 pin  
0: no routing (default)  
1: integrator limit active status routed to the ALERT1 pin  
0: no routing (default)  
D10  
D9  
D8  
1: integrator limit active status routed to the ALERT1 pin  
Reserved  
[D7:D1]  
D0  
Reserved  
AVSS/AVDD  
0: no routing (default)  
1: AVSS or AVDD alarm is routed to the ALERT1 pin  
Rev. B | Page 69 of 78  
AD7293  
Data Sheet  
SERIAL PORT INTERFACE  
The AD7293 SPI allows the user to configure the device for  
specific functions and operations through an internal structured  
Table 112. Address Pointer  
D7  
D6  
X1  
D5  
D4  
D3  
D2  
D1  
D0  
CS  
register space. The interface consists of four signals: , SCLK,  
R/W  
Register/page select  
DIN, and DOUT. The device is capable of interfacing within a  
range of 1.7 V to 5.5 V, which is set by the VDRIVE pin. SCLK is the  
serial clock input for the device. All data transfers on DIN or  
DOUT take place with respect to SCLK. The chip select input  
1 X means don’t care.  
Bit D5 to Bit D0 of the address pointer specify the register  
address for the read or write operation.  
CS  
pin ( ) is an active low control. For the interface to be active,  
After the address pointer, the data to be written to the device is  
supplied in bytes. The register structure of the AD7293 is page  
based and divided according to their specific functions. Some  
registers are common to all pages, whereas the rest of the  
registers are contained within a particular page. To select a  
page, write to the 8-bit page select register. When a particular  
page is selected, the user does not have to rewrite to the page  
select register every time prior to writing to a register from the  
same page. Figure 52 to Figure 54 show the read and write data  
formats for the AD7293.  
the chip select must be low. Data is clocked into the AD7293 on  
the SCLK rising edge and is loaded into the device MSB first.  
The length of each SPI frame can vary according to the command  
being sent. A no op command is available for interface flexibil-  
ity. Data is clocked out of the AD7293 on DOUT in the same  
frame as the read command, on the falling edge of SCLK,  
CS  
CS  
while  
when  
is low. The SCLK and DIN signals are ignored  
is high, and the DOUT line becomes high impedance.  
INTERFACE PROTOCOL  
When reading from or writing to the AD7293, the first byte  
contains the address pointer. Bit D7 of the address pointer is the  
read (high) and write (low) bit.  
For a register write, the read/write bit is zero, and the DOUT  
line remains high impedance. Upon completion of a read or  
write, the AD7293 is ready to accept a new register address;  
CS  
alternatively, to terminate the operation, take the  
pin high.  
CS  
0
X
PAGE SELECT[D5:D0]  
PAGE NUMBER[D7:D0]  
DIN  
DOUT  
NOTES  
1. R/W IS CLEARED WHEN WRITING TO THE PAGE SELECT REGISTER.  
2. THE ADDRESS OF THE PAGE SELECT REGISTER IS 0x01.  
3. X = DON’T CARE.  
Figure 52. Accessing a Page  
CS  
DIN  
R/W  
X
REG ADDRESS[D5:D0]  
NO OP(0x00) [D7:D0]  
DOUT[D7:D0]  
DOUT  
NOTES  
1. R/W IS SET WHEN READING FROM A REGISTER AND CLEARED WHEN  
WRITING TO A REGISTER.  
2. X = DON’T CARE.  
Figure 53. Accessing an 8-Bit Register  
CS  
DIN  
R/W  
X
REG ADDRESS[D5:D0]  
DIN[D15:D8]  
DIN[D7:D0]  
1
DOUT  
DOUT[D15:D0]  
NOTES  
1. R/W IS SET WHEN READING FROM A REGISTER AND CLEARED WHEN  
WRITING TO A REGISTER.  
2. X = DON’T CARE.  
Figure 54. Accessing a 16-Bit Register  
Rev. B | Page 70 of 78  
 
 
 
 
Data Sheet  
AD7293  
When the conversion command is received, the AD7293 uses  
the current values in the registers on the sequence page to  
determine which channel to convert on and subsequently read  
back from. The common result register is updated with the  
result of the current conversion channel, which allows the user  
to continuously read back the conversion results in command  
mode. The ADC command mode sequencer prioritizes in this  
order: VIN0 to VIN3, TSENSEINT, TSENSED0, TSENSED1, ISENSE0 to  
MODES OF OPERTION  
There are two methods of initiating a conversion on the  
AD7293: background mode and command mode.  
Background Mode (BG)  
The AD7293 can be configured to continuously convert on a  
programmable cycle of channels, making it the ideal mode of  
operation for system monitoring. These conversions take place  
in the background and are transparent to the master. Typically,  
this mode is used to automatically monitor a selection of channels  
with either the limit registers programmed to signal an out of  
range condition via the alert function or with the minimum/  
maximum recorders tracking the variation over time of a  
particular channel. Reads and writes can be performed at any  
time during this mode (the result registers contains the most  
recent conversion results).  
I
SENSE3, voltage supply monitoring, BI-VOUT0MON to BI-VOUT3MON,  
and RS0+MON to RS3+MON. The sequencer can be reset by writing  
to any of the sequence registers.  
In the example in Figure 55, to initiate the continuous conversion  
command mode, point to the sequence page and write to the  
relevant sequence registers. The ADC sequence register is  
programmed to convert on analog input channels, VIN0 to VIN2,  
in this example. The first conversion takes place when the AD7293  
enters command mode after the special command byte. Every  
subsequent conversion is initiated after the result readback  
frame, as shown in Figure 55.  
On power-up, this mode is disabled. This mode can be enabled  
by writing to the background enable bits (VINx background enable  
register; temperature sensor background enable register; current  
sensor background enable register; and the RS+MON, supply  
monitor, and BI-VOUTx background enable register) from the  
configuration page. The background conversions are active only  
Figure 56 shows another example for a command mode conver-  
sion with a fixed 24-bit SPI frame length. The first conversion is  
initiated when the device enters the command mode after the  
special command byte, which is followed by a 24-bit readback  
of the conversion result. The device exits command mode  
CS  
when  
is pulled high, that is, the interface is not active.  
is pulled low, the conversions pauses and resumes  
CS  
When  
CS  
CS  
when  
is pulled high, although the sequencer is not reset.  
from the last channel in the cycle when  
is pulled high again.  
Every subsequent conversion is initiated by reentering the  
command mode via the special command byte after which the  
user must wait long enough to allow the device to finish any  
conversions before reading back the next result.  
The user can read back the conversion results via the channel  
specific result registers.  
If a command mode conversion is requested while the background  
mode is active, the scheduled background mode conversion  
Current Sensor and Temperature Sensor Conversions  
CS  
from the cycle pauses while is low and tags onto the command  
mode conversion. Conversion is reflected in the ADC busy  
signal, which stays true for the combined duration of the  
command mode conversion and the background mode.  
Conversions on the temperature and current sensor channels  
can be enabled only via one set of registers, TSENSEx background  
enable and ISENSEx background enable, respectively, unlike the  
other channels, because the current sense and temperature  
sense amplifiers work by integrating the input voltage for a  
fixed amount of time, depending on the gain required. At the  
end of this integration period, a request is sent to the ADC for a  
conversion to be performed. The ADC deals with these requests  
in the order in which they arrive. For the other channels, the  
ADC starts converting immediately. The corresponding sequence  
register for these channels is used only to put the temperature  
and current sensor results in the command mode readback  
sequence and not to enable conversions on these channels.  
If the background conversions are enabled during the closed-  
CS  
loop mode operation, they run continuously irrespective of  
status. However, the results of the ADC conversions are only  
CS  
stored if  
is pulled high.  
The ADC background cycle prioritizes in the following order:  
VIN0 to VIN3, TSENSEINT, TSENSED0, TSENSED1, ISENSE0 to ISENSE3,  
voltage supply monitoring, BI-VOUT0MON to BI-VOUT3MON, and  
RS0+MON to RS3+MON  
.
Command Mode  
Command mode is useful for controlling the sampling instant  
on the VINx channels if an ac waveform is being converted. To  
enter this mode and initiate a conversion on a channel, the  
special command byte, 0x82, must be written to the device.  
Rev. B | Page 71 of 78  
 
AD7293  
Data Sheet  
CS  
1
8
16  
24  
SCLK  
DIN  
WRITE TO ADC SEQUENCE REGISTER  
DOUT  
BUSY  
CS  
24  
32  
40  
48  
56  
1
8
16  
SCLK  
READ FROM ADC DATA REGISTER  
PREVIOUS CONVERSION RESULT  
CONVERSION COMMAND  
DIN  
DOUT  
CONVERSION RESULT FOR V 0 D15:D0  
IN  
BUSY  
CONVERT  
IN  
V
0
CS  
16  
1
8
16  
1
8
16  
SCLK  
DIN  
CONVERSION RESULT FOR V 1 D15:D0  
IN  
CONVERSION RESULT FOR V 2 D15:D0  
IN  
DOUT  
CONVERT  
IN  
CONVERT  
BUSY  
V
1
V
2
IN  
Figure 55. Continuous Conversion Command Mode Example  
CS  
1
8
16  
24  
1
8
16  
24  
SCLK  
DIN  
0
X
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
X
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
PAGE SELECT POINTER  
SEQUENCE PAGE  
NO OP  
ADC SEQUENCE  
REGISTER WRITE  
V
3 V 2 V  
IN IN IN  
1
V 0 SELECTED  
IN  
DOUT  
CS  
1
8
16  
24  
1
8
16  
24  
SCLK  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
1
X
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIN  
NO OP  
NO OP  
CONVERSION COMMAND  
RESULT REGISTER READ  
NO OP  
NO OP  
b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0  
X
X
X
X
DOUT  
V
0 RESULT  
16  
IN  
CS  
SCLK  
DIN  
1
8
16  
24  
1
8
24  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
1
X
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NO OP  
NO OP  
CONVERSION COMMAND  
RESULT REGISTER READ  
NO OP  
b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0  
1 RESULT  
NO OP  
X
X
X
X
DOUT  
V
IN  
CS  
Figure 56. Command Mode Read Example (24-Bit Fixed Frame, Taken High After Each Conversion)  
Conversion Timing  
Current Sense and Temperature Sense Channel  
Integration Time  
Table 113 shows the approximate conversion times for each type  
of channel under nominal conditions. Note that the temperature  
and current sensor channels, when enabled, are background  
conversions that are added on in command mode because the  
integration/sense times are greater than other ADC reads.  
The internal current sense and temperature sense amplifiers  
function by integrating the input voltage for a fixed amount of  
time depending on the gain required. At the end of the integration  
period, a request is sent to the ADC for a conversion to be  
performed. The ADC deals with these requests in the order in  
which they arrive.  
Table 113. Typical Conversion Time  
Channel  
Command Mode  
Background Mode (µs)  
VINx  
0.7 µs  
2.3  
4.2  
2.3  
4.0  
ISENSE  
TSENSE  
Monitor  
x
x
Not applicable  
Not applicable  
4.0 µs  
Rev. B | Page 72 of 78  
 
 
 
Data Sheet  
AD7293  
Table 114. Current Sensor Integration Time  
Conversion and Integration Timing Example 2  
Code Gain  
Clocks  
Typical Integration Time (µs)  
In this example, in addition to the three current sense channels,  
three monitor channels are also enabled, as shown in Figure 58.  
The ADC is busy all the time; therefore, the time it takes to  
complete a cycle of conversions is the sum of all the conversion  
times: (4.2 µs × 3 + 4.0 µs × 3) = 24.6 µs.  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
6.25  
12.5  
18.75  
25  
37.5  
50  
440  
650  
860  
1070  
1490  
1910  
2750  
3590  
6950  
13670  
17.6  
26.0  
34.4  
42.8  
59.6  
76.4  
110.0  
143.6  
278.0  
546.8  
1059.2  
If the temperature sensor is also enabled, when the output of the  
temperature sensor is ready (once every 1 ms to 2 ms depending  
on which channels are selected), the ADC sequencer waits for  
its turn in the sequence before initiating a conversion on the  
particular TSENSEx channel. The combination of conversions  
increases the duration of that particular cycle from 24.6 µs to  
(24.6 µs + 2.3 µs) = 26.9 µs in this example.  
75  
100  
200  
400  
781.25 26480  
Table 115. Temperature Sensor Integration time  
Digital Filtering  
Channel  
TSENSEINT  
TSENSED0  
TSENSED1  
Clocks  
30523  
60987  
60987  
Typical Integration Time (µs)  
A digital filter is available on the ADC channels. The digital  
filter consists of a simple low-pass filter function to help reduce  
unwanted noise on dc signals. This low-pass filter has a −3 dB  
cutoff frequency of  
1220.92  
2439.48  
2439.48  
Each current sense channel has its own integrator, whereas  
there is only one integrator for all three temperature channels.  
Therefore, temperature inputs that are enabled are measured  
sequentially. This means that, for example, if all are enabled, the  
update time is (1220.92 µs + 2 × 2439.48 µs) = 6099.88 µs  
fS  
fS  
f3dB  
=
2π × 64 400  
where fS is the sample frequency. The sample frequency depends  
on the type of channel, how many other channels are enabled,  
and whether it is in background mode or command mode (for  
example, if the internal temperature sensor channel is enabled  
alone, the update period is 1220.92 µs typically, which is close to  
fS ≈ 819 Hz). If VIN0, VIN1, VIN2, and VIN3 are also enabled in  
background mode, a conversion then takes place on VIN0 every  
9.2 µs (2.3 µs × 4), meaning fS ≈ 1 ÷ 9.2 µs ≈ 108.7 kHz. To  
avoid aliasing of high frequencies at the input, use an antialias  
filter to reject input frequencies above fS/2.  
Conversion and Integration Timing Example 1  
Enable three of the current sense channels with a gain of 6.25.  
All three integrations start as soon as the enable register is  
written to. After 17.6 µs, all three voltages are ready to be  
converted by the ADC. The ISENSE0 channel is converted first,  
while the ISENSE1 channel and the ISENSE2 channel are held in the  
queue. After the ISENSE0 conversion is complete, the ISENSE  
0
amplifier is released to start a new integration, and the ADC  
moves on to convert the ISENSE1 voltage.  
The AD7293 settles into a routine, converting the three ISENSE  
x
channels, each with an update time of (17.6 µs + 4.2 µs) = 21.8 µs.  
See Figure 57 for more details.  
Rev. B | Page 73 of 78  
AD7293  
Data Sheet  
17.6µs  
4.2µs  
21.8µs  
I
x
SENSE  
ENABLE  
I
0
SENSE  
INTEGRATOR OUT  
I
0
SENSE  
READY  
I
1
SENSE  
INTEGRATOR OUT  
I
1
SENSE  
READY  
I
2
SENSE  
INTEGRATOR OUT  
I
2
SENSE  
READY  
ADC BUSY  
0
1
2
0
1
2
0
1
2
0
1
2
Figure 57. Conversation and Integration Internal Timing Example 1  
I
0
SENSE INTEGRATION  
24.6µs  
I
x
SENSE  
ENABLE  
V
x
IN  
ENABLE  
I
0
SENSE  
INTEGRATOR OUT  
I
0
SENSE CONVERSION  
I
0
SENSE  
READY  
I
1
SENSE  
INTEGRATOR OUT  
I
1
SENSE  
READY  
I
2
SENSE  
INTEGRATOR OUT  
I
2
SENSE  
READY  
ADC BUSY  
V0 V1 V2 I0 I1 I2 V0 V1 V2 I0 I1 I2 V0 V1 V2 I0 I1 I2 V0 V1 V2 I0 I1 I2  
Figure 58. Conversion and Integration Internal Timing Example 2  
Rev. B | Page 74 of 78  
 
 
Data Sheet  
AD7293  
APPLICATIONS INFORMATION  
The AD7293 contains all the functions required for general-  
purpose monitoring and control of current, voltage, and  
temperature. With its 60 V maximum common-mode range,  
the device is useful in applications where current sensing in the  
presence of a high common-mode voltage is required. Closed-  
loop mode is designed for monitoring and controlling, for  
example, the power amplifier in a cellular base station.  
the functionality of eight discrete components, providing  
considerable board area savings over discrete solutions.  
The circuit shown in Figure 59 is the typical power amplifier  
control application diagram for the AD7293. The device  
monitors and controls the overall performance of four final  
stage amplifiers. The gain control and phase adjustment of the  
driver stage are incorporated in the application and are carried  
out by the four available uncommitted outputs of the AD7293.  
The high-side current sensor measures the amount of current  
on the respective final stage amplifiers while the closed-loop  
system maintains the programmed current across the sense  
resistor. Furthermore, the PA_ON provides optional control for  
a cutoff switch on the supply. The ALERTx pins can be configured  
to trigger when current readings are more than a specified limit  
and the RF input signal can be switched off by the ALERTx pin.  
The alert feature can also be routed internally to clamp the DAC  
outputs and turn off the power.  
BASE STATION POWER AMPLIFIER CONTROL  
The AD7293 is used in a signal chain to achieve the optimal  
bias conditioning for enhancement mode or depletion mode  
power amplifiers. The main factors influencing the bias  
conditions are temperature, supply voltage, gate voltage drift,  
and general processing parameters. The overall performance of  
a power amplifier configuration is determined by the inherent  
trade-offs required in efficiency, gain, and linearity. The high  
level of integration as well as the intelligent features offered by  
the AD7293 allows the use of a single chip to dynamically  
control the drain bias current to maintain a constant value over  
temperature and time, thus significantly improving the overall  
performance of the power amplifier. The AD7293 incorporates  
By measuring the transmitted (Tx) power and the received (Rx)  
power, the device can dynamically change the drivers and PA  
signal to optimize performance.  
Rev. B | Page 75 of 78  
 
 
AD7293  
Data Sheet  
V
PP  
REF  
V
V
REFIN  
ADC REFOUT  
PAV  
DD  
PRECISION  
2.5V  
REFERENCE  
PMOS  
CONTROL  
BI-V  
BI-V  
BI-V  
BI-V  
0
OUT MON  
PA_ON  
RS3+  
1
OUT MON  
2
OUT MON  
3
R
OUT MON  
1
×
SENSE  
RFOUT  
RS3–  
2
DACV  
DD-BI  
BI-V  
3
2
2.5V  
RFIN  
OUT  
1.25V  
BIPOLAR  
DAC  
GaN  
FILTER  
+
+
+
+
DACV  
DD-UNI  
RS2+  
RS2–  
AV  
SS  
DD  
R
SENSE  
RFOUT  
AV  
BI-V  
OUT  
RFIN  
BIPOLAR  
DAC  
GaN  
FILTER  
V
0
IN  
Tx POWER  
MONITOR  
RS1+  
AD7293  
V
V
1
2
R
IN  
SENSE  
RFOUT  
RFOUT  
RS1–  
BI-V  
Rx POWER  
MONITOR  
IN  
1
0
RFIN  
OUT  
BIPOLAR  
DAC  
GaN  
FILTER  
V
3
MUX  
IN  
RS0+  
RS0–  
R
CONTROL  
LOGIC  
SENSE  
D0+  
BI-V  
1
1
OUT  
RFIN  
BIPOLAR  
DAC  
GaN  
FILTER  
D0–  
D1+  
UNI-V  
UNI-V  
UNI-V  
0
1
GAIN  
OUT  
OUT  
OUT  
UNIPOLAR  
DAC  
CONTROL  
GAIN  
UNIPOLAR  
DAC  
CONTROL  
D1–  
2
3
GAIN  
UNIPOLAR  
DAC  
CONTROL  
ALERT AND LIMIT  
REGISTERS  
UNI-V  
GAIN  
OUT  
0
UNIPOLAR  
DAC  
CONTROL  
V
V
DRIVE  
DAC  
CLAMP  
SPI  
INTERFACE  
RESET  
LOGIC  
DIGITALI/Os  
CLAMP  
DV  
DD  
CONTROL  
V
1
CLAMP  
Figure 59. Typical Power Amplifier Control Application  
The AD7293 was designed for depletion mode power amplifier  
biasing. Bipolar DAC outputs enable negative voltage biasing of  
the gate on the depletion mode device. A closed-loop mode  
combined with a low temperature drift reference ensures that  
the loop is steady over temperature.  
DEPLETION MODE AMPLIFIER BIASING AND  
PROTECTION  
Depletion mode devices (for example, gallium nitride (GaN) or  
gallium arsenide (GaAs)) require temperature compensated  
gate biasing voltages similar to enhancement mode devices (for  
example, laterally diffused metal oxide semiconductor (LDMOS))  
to maintain constant quiescent drain current with temperature.  
The most important consideration for a depletion mode device  
is the biasing sequence. If the gate of a depletion mode device is  
at 0 V and the drain voltage is applied, the device may be  
damaged by drawing excessive current. It is also likely that a  
device may become potentially unstable at lower drain source  
voltages. Therefore, decreasing the gate voltage to less than the  
pinch off voltage while the drain voltage is being powered on  
and off is necessary.  
The AD7293 works to ensure that instability or destruction of  
the depletion mode device is avoided. A PA_ON signal allows  
the user the option to control an external PMOS switch to turn  
on and off the drain current. This signal is set to the off state on  
power-up. Because depletion mode devices require a negative  
bias to remain at an acceptable level, and bipolar DACs transmit  
on the AVSS supply for proper operation, PA_ON can be triggered  
when AVSS exceeds an acceptable level.  
In the event of an AVDD voltage supply failure, the bipolar DACs  
clamp to the AVSS supply (−5 V), which ensures that the PA  
Rev. B | Page 76 of 78  
 
 
Data Sheet  
AD7293  
threshold voltage is not exceeded in the event of AVDD voltage  
supply failure.  
To optimize the loop response from this point, the RS, τI, τG, and  
τS values can be adjusted (see Table 116).  
The on-chip bipolar DAC clamping circuitry ensures that the  
four bipolar outputs are set to their clamp value on power-up,  
and the DACs can be triggered to clamp by the external SLEEPx  
pins at any stage by the user.  
Table 116. RS, τI, τG, and τS Adjustment Values  
Parameter Benefit of Increasing  
Benefit of Decreasing  
RS  
Setpoint resolution  
increased, improved  
dynamic range, and  
faster settling  
Reduced overshoot,  
reduced power  
dissipation, and allows  
The voltage monitoring of the supply voltages can help to  
quickly detect any system issues. The bipolar DAC output  
monitoring can be useful in closed-loop mode to sense the  
voltage output controlling the PA gate. Monitoring of the RSx+  
pins voltages helps in detecting issues on the high side of the  
sense resistor.  
higher τG and τS  
τI  
Reduced overshoot,  
Faster settling  
allows higher τG and τS  
τG  
τS  
Reduced noise from  
current control loop  
Reduced overshoot,  
allows lower τI  
Improved filtering of  
disturbances at current  
sense input  
Reduced overshoot,  
allows lower τI  
To adhere to radio standards, it may be necessary to control the  
rate at which the PA gain changes. A ramp register is available  
that allows the user to control the slew rate of the DAC in  
closed-loop mode. Additionally, a closed-loop sequence is  
provided in the Closed-Loop Sequencing section to ensure the  
protection of the power amplifier from an overvoltage.  
When setting τG, do not exceed the maximum load capacitance  
specification (10 nF when RG = 0 Ω, and 1 µF when RG = 5 Ω).  
Include the PA gate capacitance in the calculation.  
AD7293  
V
PP  
LOOP COMPONENT SELECTION  
To select the loop component, use the following conditions:  
RS ≤ 0.2/IDS(MAX)  
RSx+  
RSx–  
τS  
R
S
RS τI/(52.5 µs × gm(MAX)  
)
τI  
τG τI/(25 × gm(MAX) × RS)  
τS ≤ (1/10) × τG  
DAC  
BI-V  
x
τG  
OUT  
Figure 60. Loop Component Selection and Filtering  
where:  
RS is the value of the current sense resistor in ohms.  
DS(MAX) is the PA drain current at the maximum required PA  
I
gain in amperes.  
τI is the integrator time constant (default value = 840 μs) in  
seconds.  
gm(MAX) is the PA transconductance at the maximum required PA  
gain in Siemens.  
τG is the gate filter time constant in seconds.  
τS is the current sense filter time constant in seconds.  
Rev. B | Page 77 of 78  
 
 
AD7293  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
8.10  
0.30  
0.25  
0.20  
8.00 SQ  
7.90  
PIN 1  
INDICATOR  
PIN 1  
43  
56  
INDIC AT  
OR AREA OPTIONS  
(SEE DETAIL A)  
42  
1
0.50  
BSC  
*
5.90  
EXPOSED  
PAD  
5.80 SQ  
5.70  
29  
14  
28  
15  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
6.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WLLD-2  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 61. 56-Lead Lead Frame Chip Scale Package [LFCSP],  
8 mm × 8 mm Body and 0.75 mm Package Height  
(CP-56-8)  
Dimensions Shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option  
AD7293BCPZ  
AD7293BCPZ-RL  
EVAL-AD7293SDZ  
EVAL-SDP-CB1Z  
−40°C to +125°C  
−40°C to +125°C  
56-Lead Lead Frame Chip Scale Package [LFCSP]  
56-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Control Board  
CP-56-8  
CP-56-8  
Controller Board  
1 Z = RoHS Compliant Part.  
©2016–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13016-0-1/18(B)  
Rev. B | Page 78 of 78  
 
 

相关型号:

AD7293BCPZ

12-Bit Power Amplifier Current Controller with ADC, DACs, Temperature and Current Sensors
ADI

AD7293BCPZ-RL

12-Bit Power Amplifier Current Controller
ADI

AD7294

12-Bit, Multichannel, DAC/ADC Temperature Sensor and Current Sense for Monitor and Control Applications
ADI

AD7294-2BSUZ

SPECIALTY ANALOG CIRCUIT
ADI

AD7294-2BSUZ-RL

12-Bit Monitor and Control System with Multichannel ADC, DACs, Temperature Sensor, and Current Sense
ADI

AD7294BCPZ

12-Bit Monitor and Control System with Multichannel
ADI

AD7294BCPZRL

12-Bit Monitor and Control System with Multichannel ADC, DACs, Temperature Sensor, and Current Sense
ADI

AD7294BSUZ

12-Bit Monitor and Control System with Multichannel
ADI

AD7294BSUZRL

12-Bit Monitor and Control System with Multichannel
ADI

AD7294_17

12-Bit Monitor and Control System with Multichannel
ADI

AD7298

8-Channel, 1MSPS, 12-Bit SAR ADC with Temperature Sensor
ADI

AD7298-1

8-Channel, 1 MSPS, 10-Bit SAR ADC
ADI