AD628ARMZ-REEL7 [ADI]

OP-AMP, 1500uV OFFSET-MAX, PDSO8, MO-187AA, MSOP-8;
AD628ARMZ-REEL7
型号: AD628ARMZ-REEL7
厂家: ADI    ADI
描述:

OP-AMP, 1500uV OFFSET-MAX, PDSO8, MO-187AA, MSOP-8

放大器 光电二极管
文件: 总21页 (文件大小:564K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Common-Mode Voltage,  
Programmable Gain Difference Amplifier  
AD628  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
R
R
EXT1  
EXT2  
High common-mode input voltage range  
120 V at VS = 1ꢀ V  
Gain range 0.1 to 100  
+V  
7
S
R
G
6
Operating temperature range: −40°C to +8ꢀ°C  
Supply voltage range  
Dual supply: 2.2ꢀ V to 18 V  
100k  
100kΩ  
10kΩ  
8
–IN  
+IN  
G = +0.1  
–IN  
+IN  
OUT  
A2  
5
–IN  
10kΩ  
Single supply: 4.ꢀ V to 36 V  
A1  
+IN  
Excellent ac and dc performance  
Offset temperature stability RTI: 10 μV/°C maximum  
Offset: 1.ꢀ V mV maximum  
1
10kΩ  
AD628  
CMRR RTI: 7ꢀ dB minimum, dc to ꢀ00 Hz, G = +1  
2
3
4
–V  
V
REF  
S
C
FILT  
APPLICATIONS  
Figure 1.  
High voltage current shunt sensing  
Programmable logic controllers  
Analog input front end signal conditioning  
+ꢀ V, +10 V, ꢀ V, 10 V, and 4 to 20 mA  
Isolation  
Sensor signal conditioning  
Power supply monitoring  
Electrohydraulic controls  
130  
120  
110  
100  
90  
V
= ±15V  
S
Motor controls  
80  
70  
GENERAL DESCRIPTION  
V
= ±2.5V  
S
60  
The AD628 is a precision difference amplifier that combines  
excellent dc performance with high common-mode rejection  
over a wide range of frequencies. When used to scale high  
voltages, it allows simple conversion of standard control  
voltages or currents for use with single-supply ADCs. A  
wideband feedback loop minimizes distortion effects due to  
capacitor charging of Σ-Δ ADCs.  
50  
40  
30  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 2. CMRR vs. Frequency of the AD628  
A reference pin (VREF) provides a dc offset for converting bipolar  
to single-sided signals. The AD628 converts +5 V, +10 V, 5 V,  
10 V, and 4 to 20 mA input signals to a single-ended output  
within the input range of single-supply ADCs.  
A precision 10 kΩ resistor connected to an external pin is  
provided for either a low-pass filter or to attenuate large  
differential input signals. A single capacitor implements a low-  
pass filter. The AD628 operates from single and dual supplies  
and is available in an 8-lead SOIC_N or an 8-lead MSOP. It  
operates over the standard industrial temperature range of  
−40°C to +85°C.  
The AD628 has an input common mode and differential mode  
operating range of 120 V. The high common mode, input  
impedance makes the device well suited for high voltage  
measurements across a shunt resistor. The inverting input of  
the buffer amplifier is available for making a remote Kelvin  
connection.  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved.  
 
IMPORTANT LINKS for the AD628*  
Last content update 10/02/2013 12:53 pm  
PARAMETRIC SELECTION TABLES  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
Symbols and Footprints  
Find Similar Products By Operating Parameters  
PRODUCT RECOMMENDATIONS & REFERENCE DESIGNS  
CN-0190: Robust, Multivoltage, High Efficiency, 25 W Universal Power  
Supply Module with 6 V to 14 V Input  
DESIGN COLLABORATION COMMUNITY  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
DOCUMENTATION  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
AN-282: Fundamentals of Sampled Data Systems  
AN-669: Effectively Applying the AD628 Precision Gain Block  
AN-244: A User’s Guide to I.C. Instrumentation Amplifiers  
AN-245: Instrumentation Amplifiers Solve Unusual Design Problems  
AN-671: Reducing RFI Rectification Errors in In-Amp Circuits  
AN-589: Ways to Optimize the Performance of a Difference Amplifier  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
CN-0190: Robust, Multivoltage, High Efficiency, 25 W Universal Power  
Supply Module with 6 V to 14 V Input  
Telephone our Customer Interaction Centers toll free:  
A Designe’'s Guide to Instrumentation Amplifiers (3rd Edition)  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
MS-2405: Simple Circuit Measures the RMS Value of an AC Power  
Line  
India:  
Russia:  
1800-419-0108  
8-800-555-45-90  
Auto-Zero Amplifiers  
High-performance Adder Uses Instrumentation Amplifiers  
Simple circuit provides precision ADC interface  
Single IC provides gains of 10 and –10  
Quality and Reliability  
Lead(Pb)-Free Data  
Input Filter Prevents Instrumentation-amp RF-Rectification Errors  
The AD8221 - Setting a New Industry Standard for Instrumentation  
Amplifiers  
SAMPLE & BUY  
AD628  
Applying Instrumentation Amplifiers Effectively: The Importance of an  
Input Ground Return  
View Price & Packaging  
Leading Inside Advertorials: Applying Instrumentation Amplifiers  
Effectively—The Importance of an Input Ground Return  
Request Evaluation Board  
Request Samples  
Check Inventory & Purchase  
Find Local Distributors  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD628  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 15  
Applications Information.............................................................. 16  
Gain Adjustment ........................................................................ 16  
Input Voltage Range................................................................... 16  
Voltage Level Conversion.......................................................... 17  
Current Loop Receiver .............................................................. 18  
Monitoring Battery Voltages..................................................... 18  
Filter Capacitor Values............................................................... 19  
Kelvin Connection ..................................................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Characteristics .............................................................. 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Test Circuits ..................................................................................... 13  
REVISION HISTORY  
4/07—Rev. F to Rev. G  
Changes to Absolute Maximum Ratings...................................... 7  
Changes to Figure 3......................................................................... 7  
Changes to Figure 26..................................................................... 13  
Changes to Figure 27..................................................................... 13  
Changes to Theory of Operation................................................. 14  
Changes to Figure 29..................................................................... 14  
Changes to Table 5......................................................................... 15  
Changes to Gain Adjustment Section......................................... 15  
Added the Input Voltage Range Section..................................... 15  
Added Figure 30 ............................................................................ 15  
Added Figure 31 ............................................................................ 15  
Changes to Voltage Level Conversion Section .......................... 16  
Changes to Figure 32..................................................................... 16  
Changes to Table 6......................................................................... 16  
Changes to Figure 33 and Figure 34............................................ 17  
Changes to Figure 35..................................................................... 18  
Changes to Kelvin Connection Section...................................... 18  
Changes to Features.......................................................................... 1  
Changes to Figure 22...................................................................... 11  
Changes to Figure 25...................................................................... 13  
Changes to Voltage Level Conversion Section............................ 17  
Changes to Monitoring Battery Voltages Section ...................... 18  
Changes to Figure 34...................................................................... 18  
Changes to Figure 35...................................................................... 19  
Updated Outline Dimensions....................................................... 20  
3/06—Rev. E to Rev. F  
Changes to Table 1............................................................................ 3  
Changes to Figure 3.......................................................................... 7  
Replaced Voltage Level Conversion Section............................... 16  
Changes to Figure 32 and Figure 33............................................. 17  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 19  
5/05—Rev. D to Rev. E  
6/03—Rev. A to Rev. B  
Changes to Table 1........................................................................... 3  
Changes to Table 2........................................................................... 5  
Changes to Figure 33.....................................................................18  
Changes to General Description ................................................... 1  
Changes to Specifications............................................................... 2  
Changes to Ordering Guide........................................................... 4  
Changes to TPCs 4, 5, and 6 .......................................................... 5  
Changes to TPC 9............................................................................ 6  
Updated Outline Dimensions...................................................... 14  
3/05—Rev. C to Rev. D  
Updated Format................................................................ Universal  
Changes to Table 1........................................................................... 3  
Changes to Table 2........................................................................... 5  
1/03—Rev. 0 to Rev. A  
Change to Ordering Guide............................................................. 4  
4/04—Rev. B to Rev. C  
Updated Format................................................................ Universal  
Changes to Specifications............................................................... 3  
11/02—Rev. 0: Initial Version  
Rev. G | Page 2 of 20  
 
AD628  
SPECIFICATIONS  
TA = 25°C, VS = 15 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = 0 V, unless otherwise noted.  
Table 1.  
AD628AR  
Typ  
AD628ARM  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DIFFERENTIAL AND OUTPUT AMPLIFIER  
Gain Equation  
Gain Range  
G = +0.1 (1 + REXT1/REXT2  
See Figure 29  
VCM = 0 V; RTI of input pins2;  
output amplifier G = +1  
)
V/V  
V/V  
mV  
0.11  
−1.5  
100  
+1.5  
0.11  
−1.5  
100  
+1.5  
Offset Voltage  
vs. Temperature  
CMRR3  
4
8
4
8
μV/°C  
dB  
RTI of input pins;  
G = +0.1 to +100  
75  
75  
500 Hz  
75  
70  
75  
70  
dB  
dB  
(μV/V)/°C  
dB  
Minimum CMRR Over Temperature −40°C to +85°C  
vs. Temperature  
1
94  
4
1
94  
4
PSRR (RTI)  
VS = 10 V to 18 V  
77  
77  
Input Voltage Range  
Common Mode  
Differential  
−120  
−120  
+120  
+120  
−120  
−120  
+120  
+120  
V
V
Dynamic Response  
Small Signal Bandwidth −3 dB  
Full Power Bandwidth  
Settling Time  
G = +0.1  
600  
5
600  
5
kHz  
kHz  
μs  
G = +0.1, to 0.01%, 100 V step  
40  
40  
Slew Rate  
0.3  
0.3  
V/μs  
Noise (RTI)  
Spectral Density  
1 kHz  
0.1 Hz to 10 Hz  
300  
15  
300  
15  
nV/√Hz  
μV p-p  
DIFFERENTIAL AMPLIFIER  
Gain  
0.1  
0.1  
V/V  
Error  
−0.1  
−1.5  
+0.01 +0.1  
−0.1  
−1.5  
+0.01 +0.1  
%
vs. Temperature  
Nonlinearity  
vs. Temperature  
Offset Voltage  
vs. Temperature  
Input Impedance  
Differential  
5
5
5
5
ppm/°C  
ppm  
ppm  
mV  
3
10  
+1.5  
8
3
10  
+1.5  
8
RTI of input pins  
μV/°C  
220  
55  
220  
55  
kΩ  
kΩ  
dB  
Common Mode  
CMRR4  
RTI of input pins;  
G = +0.1 to +100  
75  
75  
500 Hz  
75  
70  
75  
70  
dB  
dB  
Minimum CMRR Over Temperature −40°C to +85°C  
vs. Temperature  
Output Resistance  
Error  
1
10  
4
1
10  
4
(μV/V)/°C  
kΩ  
%
−0.1  
+0.1  
−0.1  
+0.1  
Rev. G | Page 3 of 20  
 
 
AD628  
AD628AR  
Typ  
AD628ARM  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
OUTPUT AMPLIFIER  
Gain Equation  
G = (1 + REXT1/REXT2  
)
V/V  
Nonlinearity  
Offset Voltage  
G = +1, VOUT = 10 V  
RTI of output amp  
0.5  
0.5  
ppm  
−0.15  
+0.15 −0.15  
+0.15 mV  
vs. Temperature  
Output Voltage Swing  
0.6  
0.6  
μV/°C  
V
V
nA  
nA  
dB  
dB  
RL = 10 kΩ  
RL = 2 kΩ  
−14.2  
−13.8  
+14.1 −14.2  
+13.6 −13.8  
3
0.5  
130  
130  
+14.1  
+13.6  
3
Bias Current  
Offset Current  
CMRR  
Open-Loop Gain  
POWER SUPPLY  
Operating Range  
Quiescent Current  
TEMPERATURE RANGE  
1.5  
0.2  
1.5  
0.2  
0.5  
VCM = 13 V  
VOUT = 13 V  
130  
130  
2.25  
18  
1.6  
+85  
2.25  
−40  
18  
1.6  
V
mA  
°C  
−40  
+85  
1 To use a lower gain, see the Gain Adjustment section.  
2 The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification.  
(0.1)(V  
)
CM  
75  
3 Error due to common mode as seen at the output: VOUT  
=
×[Output AmplifierGain] .  
10 20  
(0.1)(V  
)
CM  
75  
4 Error due to common mode as seen at the output of A1: VOUT A1=  
.
10 20  
Rev. G | Page 4 of 20  
 
AD628  
TA = 25°C, VS = 5 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = 2.5 V, unless otherwise noted.  
Table 2.  
AD628AR  
AD628ARM  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL AND OUTPUT AMPLIFIER  
Gain Equation  
Gain Range  
G = +0.1(1+ REXT1/REXT2  
See Figure 29  
VCM = 2.25 V; RTI of input pins2;  
output amplifier G = +1  
)
V/V  
V/V  
mV  
0.11  
−3.0  
100  
+3.0  
0.11  
−3.0  
100  
+3.0  
Offset Voltage  
vs. Temperature  
CMRR3  
6
15  
6
15  
μV/°C  
dB  
dB  
dB  
(μV/V)/°C  
dB  
RTI of input pins; G = +0.1 to +100  
500 Hz  
−40°C to +85°C  
75  
75  
70  
75  
75  
70  
Minimum CMRR Over Temperature  
vs. Temperature  
PSRR (RTI)  
1
94  
4
1
94  
4
VS = 4.5 V to 10 V  
77  
77  
Input Voltage Range  
Common Mode4  
Differential  
−12  
−15  
+17  
+15  
−12  
−15  
+17  
+15  
V
V
Dynamic Response  
Small Signal Bandwidth – 3 dB  
Full Power Bandwidth  
Settling Time  
G = +0.1  
440  
30  
15  
440  
30  
15  
kHz  
kHz  
μs  
G = +0.1; to 0.01%, 30 V step  
Slew Rate  
0.3  
0.3  
V/μs  
Noise (RTI)  
Spectral Density  
1 kHz  
0.1 Hz to 10 Hz  
350  
15  
350  
15  
nV/√Hz  
μV p-p  
DIFFERENTIAL AMPLIFIER  
Gain  
0.1  
0.1  
V/V  
Error  
–0.1  
−2.5  
+0.01 +0.1  
3
–0.1  
−2.5  
+0.01 +0.1  
3
%
Nonlinearity  
vs. Temperature  
Offset Voltage  
vs. Temperature  
Input Impedance  
Differential  
ppm  
ppm  
mV  
3
10  
3
10  
RTI of input pins  
+2.5  
10  
+2.5  
10  
μV/°C  
220  
55  
220  
55  
kΩ  
kΩ  
dB  
dB  
dB  
(μV/V)/°C  
kΩ  
Common Mode  
CMRR5  
RTI of input pins; G = +0.1 to +100  
500 Hz  
−40°C to +85°C  
75  
75  
70  
75  
75  
70  
Minimum CMRR Over Temperature  
vs. Temperature  
Output Resistance  
Error  
1
4
1
4
10  
10  
−0.1  
+0.1  
−0.1  
+0.1  
%
OUTPUT AMPLIFIER  
Gain Equation  
G = (1 + REXT1/REXT2  
)
V/V  
Nonlinearity  
Output Offset Voltage  
vs. Temperature  
G = +1, VOUT = 1 V to 4 V  
RTI of output amplifier  
0.5  
0.5  
ppm  
−0.15  
+0.15 −0.15  
0.6  
4.1  
4
+0.15 mV  
0.6  
4.1  
4
μV/°C  
V
V
Output Voltage Swing  
RL = 10 kΩ  
RL = 2 kΩ  
0.9  
1
0.9  
1
Bias Current  
Offset Current  
CMRR  
1.5  
0.2  
3
0.5  
1.5  
0.2  
3
0.5  
nA  
nA  
dB  
dB  
VCM = 1 V to 4 V  
VOUT = 1 V to 4 V  
130  
130  
130  
130  
Open-Loop Gain  
Rev. G | Page 5 of 20  
AD628  
AD628AR  
Typ  
AD628ARM  
Typ Max  
Parameter  
Conditions  
Min  
2.25  
−40  
Max  
Min  
2.25  
−40  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current  
TEMPERATURE RANGE  
+36  
1.6  
+36  
1.6  
V
mA  
°C  
+85  
+85  
1 To use a lower gain, see the Gain Adjustment section.  
2 The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification.  
.
(0.1)(V  
)
CM  
75  
3 Error due to common mode as seen at the output: VOUT  
=
×[Output AmplifierGain] .  
10 20  
4 Greater values of voltage are possible with greater or lesser values of VREF  
(0.1)(V  
)
CM  
75  
5 Error due to common mode as seen at the output of A1: VOUT A1=  
.
10 20  
Rev. G | Page 6 of 20  
 
AD628  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
18 V  
Internal Power Dissipation  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
See Figure 3  
120 V1  
120 V1  
Indefinite  
−65°C to +125°C  
–40°C to +85°C  
300°C  
THERMAL CHARACTERISTICS  
1.6  
T
= 150°C  
J
1 When using 12 V supplies or higher, see the Input Voltage Range section.  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
8-LEAD MSOP PACKAGE  
8-LEAD SOIC PACKAGE  
MSOP θ (JEDEC; 4-LAYER BOARD) = 132.54°C/W  
SOIC θ (JEDEC; 4-LAYER BOARD) = 154°C/W  
JA  
JA  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature  
ESD CAUTION  
Rev. G | Page 7 of 20  
 
 
 
 
AD628  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
8
7
6
5
–IN  
+V  
+IN  
AD628  
TOP VIEW  
(Not to Scale)  
–V  
S
S
V
R
G
REF  
C
OUT  
FILT  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
+IN  
−VS  
VREF  
CFILT  
OUT  
RG  
+VS  
Noninverting Input  
Negative Supply Voltage  
Reference Voltage Input  
Filter Capacitor Connection  
Amplifier Output  
Output Amplifier Inverting Input  
Positive Supply Voltage  
Inverting Input  
−IN  
Rev. G | Page 8 of 20  
 
AD628  
TYPICAL PERFORMANCE CHARACTERISTICS  
140  
120  
100  
80  
40  
8440 UNITS  
G = +0.1  
35  
30  
25  
20  
15  
10  
5
–15V  
+15V  
60  
+2.5V  
40  
20  
0
0
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
–1.6 –1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
1.6  
2.0  
INPUT OFFSET VOLTAGE (mV)  
FREQUENCY (Hz)  
Figure 8. PSRR vs. Frequency, Single and Dual Supplies  
Figure 5. Typical Distribution of Input Offset Voltage,  
VS = 15 V, SOIC_N Package  
1000  
25  
20  
15  
10  
5
8440 UNITS  
100  
0
–74  
1
10  
100  
1k  
10k  
100k  
–78  
–82  
–86  
–90  
–94  
–98 –102 –106 –110  
FREQUENCY (Hz)  
CMRR (dB)  
Figure 9. Voltage Noise Spectral Density, RTI, VS = 15 V  
Figure 6. Typical Distribution of CMRR, SOIC_N Package  
1000  
130  
120  
110  
100  
90  
V
= ±15V  
S
80  
70  
V
= ±2.5V  
S
60  
50  
40  
100  
30  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 10. Voltage Noise Spectral Density, RTI, VS = 2.5 V  
Figure 7. CMRR vs. Frequency  
Rev. G | Page 9 of 20  
 
AD628  
40  
35  
30  
25  
20  
15  
10  
5
9638 UNITS  
1s  
100  
90  
10  
0
0
0
5
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
GAIN ERROR (ppm)  
Figure 14. Typical Distribution of +1 Gain Error  
Figure 11. 0.1 Hz to 10 Hz Voltage Noise, RTI  
150  
100  
60  
50  
UPPER CMV LIMIT  
G = +100  
G = +10  
G = +1  
40  
–40°C  
+85°C  
30  
50  
0
20  
V
= 0V  
REF  
10  
+25°C  
0
–40°C  
–50  
–100  
–150  
–10  
–20  
–30  
G = +0.1  
+85°C  
LOWER CMV LIMIT  
15  
–40  
100  
0
5
10  
(±V)  
20  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
V
S
Figure 15. Common-Mode Operating Range vs.  
Power Supply Voltage for Three Temperatures  
Figure 12. Small Signal Frequency Response,  
OUT = 200 mV p-p, G = +0.1, +1, +10, and +100  
V
60  
50  
VS = ±15V  
500µV  
100  
90  
G = +100  
G = +10  
G = +1  
RL = 1k  
40  
30  
RL = 2kΩ  
RL = 10kΩ  
20  
10  
0
10  
0
–10  
–20  
–30  
–40  
G = +0.1  
4.0V  
10  
100  
1k  
10k  
100k  
1M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 16. Normalized Gain Error vs. VOUT, VS = 15 V  
Figure 13. Large Signal Frequency Response,  
OUT = 20 V p-p, G = +0.1, +1, +10, and +100  
V
Rev. G | Page 10 of 20  
AD628  
VS = ±2.5V  
100µV  
500mV  
RL = 1k  
100  
90  
100  
90  
RL = 2kΩ  
RL = 10kΩ  
10  
0
10  
0
4µs  
50mV  
500mV  
OUTPUT VOLTAGE (V)  
Figure 17. Normalized Gain Error vs. VOUT, VS = 2.5 V  
Figure 20. Small Signal Pulse Response,  
RL = 2 kΩ, CL = 0 pF, Top: Input, Bottom: Output  
4
3
2
1
0
500mV  
100  
90  
10  
0
4µs  
50mV  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 21. Small Signal Pulse Response,  
RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output  
Figure 18. Bias Current vs. Temperature Buffer  
15  
10  
5
–40°C  
–25°C  
+85°C  
100  
90  
10.0V  
+25°C  
0
–40°C  
10.0V  
–5  
–10  
–15  
–25°C  
10  
+85°C  
+25°C  
0
40µs  
0
5
10  
15  
20  
25  
OUTPUT CURRENT (mA)  
Figure 19. Output Voltage Operating Range vs. Output Current  
Figure 22. Large Signal Pulse Response,  
RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output  
Rev. G | Page 11 of 20  
AD628  
100  
90  
100  
90  
5V  
5V  
10mV  
10mV  
10  
0
10  
0
100µs  
100µs  
Figure 24. Settling Time to 0.01% 0 V to −10 V Step  
Figure 23. Settling Time to 0.01%, 0 V to 10 V Step  
Rev. G | Page 12 of 20  
AD628  
TEST CIRCUITS  
HP3589A  
SPECTRUM ANALYZER  
+V  
S
7
–IN  
10kΩ  
10kΩ  
8
+IN  
–IN  
100kΩ  
FET  
PROBE  
5
AD829  
+
OUT  
–IN  
G = +0.1  
+IN  
+IN  
1
G = +100  
100kΩ  
AD628  
10kΩ  
C
R
FILT  
V
G
REF  
3
2
4
6
–V  
S
OP177  
+
Figure 25. CMRR vs. Frequency  
SCOPE  
+V  
S
7
1 VAC  
+15V  
G = +100  
G = +100  
+IN  
10k  
10kΩ  
–IN  
8
1
+
OUT  
20Ω  
100kΩ  
5
AD829  
–IN  
–IN  
G = +0.1  
+IN  
+IN  
100kΩ  
AD628  
10kΩ  
3
2
4
FILT  
6
V
C
R
G
REF  
–V  
S
Figure 26. PSRR vs. Frequency  
Rev. G | Page 13 of 20  
 
AD628  
HP3561A  
SPECTRUM ANALYZER  
+V  
S
C
FILT  
4
7
–IN  
+IN  
10k  
10kΩ  
100kΩ  
100kΩ  
8
1
+IN  
–IN  
OUT  
5
–IN  
G = +0.1  
+IN  
AD628  
10kΩ  
3
2
6
R
V
G
REF  
10kΩ  
–V  
S
10kΩ  
Figure 27. Noise Tests  
Rev. G | Page 14 of 20  
AD628  
THEORY OF OPERATION  
The AD628 is a high common-mode voltage difference  
amplifier, combined with a user-configurable output amplifier  
(see Figure 28 and Figure 29). Differential mode voltages in  
excess of 120 V are accurately scaled by a precision 11:1 voltage  
divider at the input. A reference voltage input is available to the  
user at Pin 3 (VREF). The output common-mode voltage of the  
difference amplifier is the same as the voltage applied to the  
reference pin. If the uncommitted amplifier is configured for  
gain, connect Pin 3 to one end of the external gain resistor to  
establish the output common-mode voltage at Pin 5 (OUT).  
The uncommitted amplifier is a high open-loop gain, low offset,  
low drift op amp, with its noninverting input connected to the  
internal 10 kΩ resistor. Both inputs are accessible to the user.  
Careful layout design has resulted in exceptional common-  
mode rejection at higher frequencies. The inputs are connected  
to Pin 1 (+IN) and Pin 8 (−IN), which are adjacent to the power  
pins, Pin 2 (−VS) and Pin 7 (+VS). Because the power pins are at  
ac ground, input impedance balance and, therefore, common-  
mode rejection are preserved at higher frequencies.  
R
G
6
The output of the difference amplifier is internally connected to  
a 10 kΩ resistor trimmed to better than 0.1ꢀ absolute accuracy.  
The resistor is connected to the noninverting input of the  
output amplifier and is accessible at Pin 4 (CFILT). A capacitor  
can be connected to implement a low-pass filter, a resistor can  
be connected to further reduce the output voltage, or a clamp  
circuit can be connected to limit the output swing.  
100k  
100kΩ  
10kΩ  
G = +0.1  
8
–IN  
+IN  
–IN  
+IN  
OUT  
A2  
5
–IN  
10kΩ  
A1  
+IN  
1
10kΩ  
3
4
V
C
FILT  
REF  
Figure 28. Simplified Schematic  
C
FILT  
+V  
S
7
4
AD628  
100kΩ  
10kΩ  
8
–IN  
+IN  
G = +0.1  
–IN  
10kΩ  
A1  
+IN  
OUT  
5
A2  
+IN  
–IN  
100kΩ  
1
10kΩ  
2
3
6
–V  
V
REF  
R
S
G
R
EXT3  
R
R
EXT1  
REFERENCE  
VOLTAGE  
EXT2  
Figure 29. Circuit Connections  
Rev. G | Page 15 of 20  
 
 
 
AD628  
APPLICATIONS INFORMATION  
GAIN ADJUSTMENT  
INPUT VOLTAGE RANGE  
VREF and the supply voltage determine the common-mode  
input voltage range. The relation is expressed by  
The AD628 system gain is provided by an architecture  
consisting of two amplifiers (see Figure 29). The gain of the  
input stage is fixed at 0.1; the output buffer is user adjustable  
as GA2 = 1 + REXT1/REXT2. The system gain is then  
VCM  
11(VS+ –1.2 V) 10 VREF  
11(VS+1.2 V) 10 VREF  
(2)  
UPPER  
VCM  
LOWER  
REXT1  
REXT2  
GTOTAL = 0.1× 1+  
(1)  
where:  
VS+ is the positive supply.  
At a 2 nA maximum, the input bias current of the buffer amplifier  
is very low and any offset voltage induced at the buffer amplifier  
by its bias current may be neglected (2 nA × 10 kΩ = 20 μV).  
However, to absolutely minimize bias current effects, select  
VS− is the negative supply.  
1.2 V is the headroom needed for suitable performance.  
Equation 2 provides a general formula for calculating the  
common-mode input voltage range. However, keep the AD628  
within the maximum limits listed in Table 1 to maintain  
optimal performance. This is illustrated in Figure 30 where the  
maximum common-mode input voltage is limited to 120 V.  
Figure 31 shows the common-mode input voltage bounds for  
single-supply voltages.  
REXT1 and REXT2 so that their parallel combination is 10 kΩ. If  
practical resistor values force the parallel combination of REXT1  
and REXT2 below 10 kΩ, add a series resistor (REXT3) to make up  
for the difference. Table 5 lists several values of gain and  
corresponding resistor values.  
200  
Table 5. Nearest Standard 1% Resistor Values for  
Various Gains (see Figure 29)  
150  
100  
50  
Total Gain  
(V/V)  
A2 Gain  
(V/V)  
REXT1 (Ω)  
10 k  
20 k  
25.9 k  
49.9 k  
100 k  
200 k  
499 k  
1 M  
REXT2 (Ω)  
20 k  
18.7 k  
12.4 k  
11 k  
REXT3 (Ω)  
0.1  
0.2  
0.25  
0.5  
1
1
2
0
0
0
0
0
0
0
0
MAXIMUM INPUT COMMON-MODE  
0
2.5  
5
10  
20  
50  
100  
VOLTAGE WHEN V  
= GND  
REF  
–50  
–100  
–150  
–200  
2
5
10  
10.5 k  
10.2 k  
10.2 k  
0
2
4
6
8
10  
12  
14  
16  
To set the system gain to <0.1, create an attenuator by placing  
Resistor REXT4 from Pin 4 (CFILT) to the reference voltage. A  
divider is formed by the 10 kΩ resistor that is in series with the  
positive input of A2 and Resistor REXT4. A2 is configured for  
unity gain.  
SUPPLY VOLTAGE (±V)  
Figure 30. Input Common-Mode Voltage vs. Supply Voltage  
for Dual Supplies  
100  
80  
Using a divider and setting A2 to unity gain yields  
60  
40  
REXT4  
10 kꢁ + REXT4  
GW /DIVIDER = 0.1×  
×1  
20  
MAXIMUM INPUT COMMON-MODE  
0
–20  
–40  
–60  
–80  
VOLTAGE WHEN V  
= MIDSUPPLY  
REF  
0
2
4
6
8
10  
12  
14  
16  
SINGLE-SUPPLY VOLTAGE (V)  
Figure 31. Input Common-Mode Voltage vs.  
Supply Voltage for Single Supplies  
Rev. G | Page 16 of 20  
 
 
 
 
 
 
AD628  
The differential input voltage range is constrained to the linear  
operation of the internal amplifiers, A1 and A2. The voltage  
applied to the inputs of A1 and A2 should be between  
VS− + 1.2 V and VS+ − 1.2 V. Similarly, the outputs of A1 and A2  
should be kept between VS− + 0.9 V and VS+ − 0.9 V.  
Designing such an application can be done in a few simple  
steps, which includes the following:  
Determine the required gain. For example, if the input  
voltage must be changed from 10 V to +5 V, the gain now  
needs to be +5/+20 or +0.25.  
VOLTAGE LEVEL CONVERSION  
Determine if the circuit common-mode voltage should be  
changed. An AD7940 ADC is illustrated for this example.  
When operating from a 5 V supply, the common-mode  
voltage of the AD7940 is half the supply, or 2.5 V. If the  
AD628 reference pin and the lower terminal of the 10 kΩ  
resistor are connected to a 2.5 V voltage source, the output  
common-mode voltage is 2.5 V.  
Industrial signal conditioning and control applications typically  
require connections between remote sensors or amplifiers and  
centrally located control modules. Signal conditioners provide  
output voltages of up to 10 V full scale. However, ADCs or  
microprocessors operating on single 3.3 V to 5 V logic supplies  
are now the norm. Thus, the controller voltages require further  
reduction in amplitude and reference.  
Table 6 shows resistor and reference values for commonly used  
single-supply converter voltages. REXT3 is included as an option  
to balance the source impedance into A2. This is described in  
more detail in the Gain Adjustment section.  
Furthermore, voltage potentials between locations are seldom  
compatible, and power line peaks and surges can generate  
destructive energy between utility grids. The AD628 offers an  
ideal solution to both problems. It attenuates otherwise destruc-  
tive signal voltage peaks and surges by a factor of 10 and shifts  
the differential input signal to the desired output voltage.  
Table 6. Nearest 1% Resistor Values for Voltage Level  
Conversion Applications  
ADC  
Supply  
Desired  
Output  
Conversion from voltage-driven or current-loop systems is  
easily accomplished using the circuit shown in Figure 32. This  
shows a circuit for converting inputs of various polarities and  
amplitudes to the input of a single-supply ADC.  
Input  
VREF REXT1 REXT2  
(kΩ) kΩ)  
15 10  
Voltage (V) Voltage (V) Voltage (V) (V)  
10  
5
5
5
5
5
3
3
3
3
2.5  
2.5  
2.5  
0
2.5  
39.7 10  
39.7 10  
89.8 10  
+10  
+5  
10  
2.5  
To adjust common-mode output voltage, connect Pin 3 (VREF  
)
2.5  
0
and the lower end of the 10 kΩ resistor to the desired voltage.  
The output common-mode voltage is the same as the reference  
voltage.  
1.25  
1.25  
1.25  
1.25  
1.25 2.49 10  
5
1.25 15  
10  
10  
+10  
+5  
0
0
15  
39.7 10  
+12V  
–12V  
0.1μF  
10μF  
0.1μF  
10μF  
7
2
+V  
S
–V  
S
–IN  
8
AD628  
10kꢀ  
A1  
100kꢀ  
100kꢀ  
SERIAL DATA  
±10V  
SCLK  
4
5
6
10kꢀ  
+IN  
1
OUT  
49.9ꢀ  
AD7940  
3
SDATA  
A2  
V
5
IN  
V
CS  
GND  
2
DD  
33nF  
10kꢀ  
1
V
C
FILT  
REF  
R
G
6
3
4
10μF  
0.1μF  
R
EXT1  
15nF  
15kꢀ  
V
V
IN  
OUT  
+12V  
2
3
REF195  
4
0.1μF  
10μF  
R
EXT2  
10kꢀ  
8
5
6
2
3
AD8606  
2/2  
7
AD8606  
1/2  
1
AD628 REFERENCE VOLTAGE  
4
10kꢀ  
10kꢀ  
Figure 32. Level Shifter  
Rev. G | Page 17 of 20  
 
 
 
AD628  
CURRENT LOOP RECEIVER  
MONITORING BATTERY VOLTAGES  
Analog data transmitted on a 4 to 20 mA current loop can be  
detected with the receiver shown in Figure 33. The AD628 is an  
ideal choice for such a function because the current loop is  
driven with a compliance voltage sufficient to stabilize the loop,  
and the resultant common-mode voltage often exceeds commonly  
used supply voltages. Note that with large shunt values, a resistance  
of equal value must be inserted in series with the inverting  
input to compensate for an error at the noninverting input.  
Figure 34 illustrates how the AD628 is used to monitor a battery  
charger. Voltages approximately eight times the power supply  
voltage can be applied to the input with no damage. The resistor  
divider action is well suited for the measurement of many  
power supply applications, such as those found in battery  
chargers or similar equipment.  
For proper operation, the common-mode voltage must satisfy  
the input specifications in Table 1, as well as Equation 2.  
V
= 15V  
+15V –15V  
CM  
3
7
2
4
AD628  
10k  
249ꢀ  
100kꢀ  
1
8
10kꢀ  
0V TO 5V  
TO ADC  
5
249ꢀ  
100kꢀ  
10kꢀ  
6
I = 4 TO 20mA  
210kꢀ  
100kꢀ  
+2.5V  
9.53kꢀ  
Figure 33. Level Shifter for 4 to 20 mA Current Loop  
+5V  
nV  
(V)  
–IN  
BAT  
100k  
100kꢀ  
10kꢀ  
10kꢀ  
+IN  
–IN  
OUT  
TO ADC  
A2  
G = +0.1  
A1  
R
–IN  
+IN  
EXT1  
10kꢀ  
CHARGING  
CIRCUIT  
+1.5V  
BATTERY  
R
G
+IN  
OTHER  
BATTERIES IN  
CHARGING  
CIRCUIT  
10kꢀ  
AD628  
V
C
FILT  
REF  
–5V  
Figure 34. Battery Voltage Monitor  
Rev. G | Page 18 of 20  
 
 
 
AD628  
FILTER CAPACITOR VALUES  
KELVIN CONNECTION  
Connect a capacitor to Pin 4 (CFILT) to implement a low-pass  
filter. The capacitor value is  
In certain applications, it may be desirable to connect the  
inverting input of an amplifier to a remote reference point.  
This eliminates errors resulting in circuit losses in inter-  
connecting wiring. The AD628 is particularly suited for this  
type of connection. In Figure 35, a 10 kΩ resistor added in the  
feedback matches the source impedance of A2. This is  
described in more detail in the Gain Adjustment section.  
C = 15.9/ft (μF)  
where ft is the desired 3 dB filter frequency.  
Table 7 shows several frequencies and their closest standard  
capacitor values.  
Table 7. Capacitor Values for Various Filter Frequencies  
Frequency (Hz)  
Capacitor Value (μF)  
10  
1.5  
50  
0.33  
60  
0.27  
100  
400  
1 k  
5 k  
10 k  
0.15  
0.039  
0.015  
0.0033  
0.0015  
+V  
S
–IN  
100kꢀ  
100kꢀ  
10kꢀ  
10kꢀ  
CIRCUIT  
LOSS  
+IN  
A2  
–IN  
OUT  
G = +0.1  
A1  
–IN  
+IN  
10kꢀ  
R
G
LOAD  
+IN  
10kꢀ  
AD628  
V
REF  
C
FILT  
–V  
S
V
/2  
S
Figure 35. Kelvin Connection  
Rev. G | Page 19 of 20  
 
 
 
AD628  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 36. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
AD628AR  
Temperature Range  
−40°C to +85°C  
Description  
Package Option  
Branding  
8-Lead SOIC_N  
R-8  
AD628AR-REEL  
AD628AR-REEL7  
AD628ARZ1  
AD628ARZ-RL1  
AD628ARZ-R71  
AD628ARM  
AD628ARM-REEL  
AD628ARM-REEL7  
AD628ARMZ1  
AD628ARMZ-RL1  
AD628ARMZ-R71  
AD628-EVAL  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead SOIC_N 13" Reel  
8-Lead SOIC_N 7" Reel  
8-Lead SOIC_N  
8-Lead SOIC_N 13" Reel  
8-Lead SOIC_N 7" Reel  
8-Lead MSOP  
8-Lead MSOP 13" Reel  
8-Lead MSOP 7" Reel  
8-Lead MSOP  
8-Lead MSOP 13" Reel  
8-Lead MSOP 7" Reel  
Evaluation Board  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
JGA  
JGA  
JGA  
JGZ  
JGZ  
JGZ  
1 Z = RoHS Compliant Part.  
©2002–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02992-0-4/07(G)  
Rev. G | Page 20 of 20  
 
 
 

相关型号:

AD628ARMZ-RL

High Common-Mode Voltage, Programmable Gain Difference Amplifier
ADI

AD628ARN

Amplifier. Other
ETC

AD628ARZ

High Common-Mode Voltage, Programmable Gain Difference Amplifier
ADI

AD628ARZ-R7

High Common-Mode Voltage, Programmable Gain Difference Amplifier
ADI

AD628ARZ-REEL

OP-AMP, 1500uV OFFSET-MAX, PDSO8, MS-012AA, SOIC-8
ADI

AD628ARZ-REEL7

OP-AMP, 1500uV OFFSET-MAX, PDSO8, MS-012AA, SOIC-8
ADI

AD628ARZ-RL

High Common-Mode Voltage, Programmable Gain Difference Amplifier
ADI

AD628_06

High Common-Mode Voltage, Programmable Gain Difference Amplifier
ADI

AD628_07

High Common-Mode Voltage, Programmable Gain Difference Amplifier
ADI

AD629

High Common-Mode Voltage Difference Amplifier
ADI

AD629

Very Low Distortion, Precision Difference Amplifier
AAVID

AD629-EVAL

High Common-Mode Voltage, Difference Amplifier
ADI