AD629-EVAL [ADI]

High Common-Mode Voltage, Difference Amplifier; 高共模电压,差分放大器
AD629-EVAL
型号: AD629-EVAL
厂家: ADI    ADI
描述:

High Common-Mode Voltage, Difference Amplifier
高共模电压,差分放大器

放大器
文件: 总16页 (文件大小:533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Common-Mode Voltage,  
Difference Amplifier  
AD629  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Improved replacement for: INA117P and INA117KU  
±270 V common-mode voltage range  
Input protection to  
±±00 V common mode  
±±00 V differential mode  
21.1k  
380kΩ  
380kΩ  
380kΩ  
8
7
6
5
NC  
+V  
1
2
3
4
REF(–)  
–IN  
S
+IN  
OUTPUT  
REF(+)  
20kΩ  
–V  
S
Wide power supply range (±2.± V to ±18 V)  
±10 V output swing on ±12 V supply  
1 mA maximum power supply current  
AD629  
NC = NO CONNECT  
Figure 1.  
GENERAL DESCRIPTION  
HIGH ACCURACY DC PERFORMANCE  
3 ppm maximum gain nonlinearity (AD629B)  
20 μV/°C maximum offset drift (AD629A)  
10 μV/°C maximum offset drift (AD629B)  
10 ppm/°C maximum gain drift  
The AD629 is a difference amplifier with a very high input,  
common-mode voltage range. It is a precision device that allows  
the user to accurately measure differential signals in the  
presence of high common-mode voltages up to ±2ꢀ7 .  
The AD629 can replace costly isolation amplifiers in  
applications that do not require galvanic isolation. The device  
operates over a ±2ꢀ7 ꢁ common-mode voltage range and has  
inputs that are protected from common-mode or differential  
mode transients up to ±±77 .  
EXCELLENT AC SPECIFICATIONS  
77 dB minimum CMRR @ ±00 Hz (AD629A)  
86 dB minimum CMRR @ ±00 Hz (AD629B)  
±00 kHz bandwidth  
The AD629 has low offset, low offset drift, low gain error drift,  
low common-mode rejection drift, and excellent CMRR over a  
wide frequency range.  
APPLICATIONS  
High voltage current sensing  
Battery cell voltage monitors  
Power supply current monitors  
Motor controls  
The AD629 is available in low cost, 8-lead PDIP and 8-lead  
SOIC packages. For all packages and grades, performance is  
guaranteed over the industrial temperature range of −47°C to  
+8±°C.  
Isolation  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2mV/DIV  
60V/DIV  
–240  
–120  
0
120  
240  
20  
100  
1k  
10k 20k  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 3. Error Voltage vs. Input Common-Mode Voltage  
Figure 2. Common-Mode Rejection Ratio vs. Frequency  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1999-2007 Analog Devices, Inc. All rights reserved.  
 
AD629  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Basic Connections...................................................................... 17  
Single-Supply Operation ........................................................... 17  
System-Level Decoupling and Grounding.............................. 17  
Using a Large Sense Resistor..................................................... 11  
Output Filtering.......................................................................... 11  
Output Current and Buffering.................................................. 12  
A Gain of 19 Differential Amplifier......................................... 12  
Error Budget Analysis Example 1 ............................................ 12  
Error Budget Analysis Example 2 ............................................ 13  
Outline Dimensions....................................................................... 14  
Ordering Guide............................................................................... 1±  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Typical Performance Characteristics ............................................. ±  
Theory of Operation ........................................................................ 9  
Applications..................................................................................... 17  
REVISION HISTORY  
3/07—Rev. A to Rev. B  
Updated Format and Layout .............................................Universal  
Changes to Ordering Guide .......................................................... 1±  
3/00—Rev. 0 to Rev. A  
10/99—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
 
AD629  
SPECIFICATIONS  
TA = 2±°C, ꢁS = ±1± , unless otherwise noted.  
Table 1.  
AD629A  
Typ  
AD629B  
Typ  
Parameter  
GAIN  
Condition  
Min  
Max  
Min  
Max  
Unit  
VOUT = 1ꢀ V, RL = 2 kΩ  
Nominal Gain  
Gain Error  
Gain Nonlinearity  
1
ꢀ.ꢀ1  
4
1
3
1
ꢀ.ꢀ1  
4
1
3
V/V  
%
ppm  
ppm  
ppm/°C  
ꢀ.ꢀ5  
1ꢀ  
ꢀ.ꢀ3  
1ꢀ  
3
RL = 1ꢀ kΩ  
TA = TMIN to TMAX  
Gain vs. Temperature  
OFFSET VOLTAGE  
Offset Voltage  
1ꢀ  
1
1ꢀ  
ꢀ.2  
ꢀ.1  
ꢀ.5  
1
mV  
mV  
VS = 5 V  
vs. Temperature  
vs. Supply (PSRR)  
INPUT  
TA = TMIN to TMAX  
VS = 5 V to 15 V  
6
1ꢀꢀ  
2ꢀ  
3
11ꢀ  
1ꢀ  
μV/°C  
dB  
84  
9ꢀ  
Common-Mode Rejection Ratio  
VCM = 25ꢀ V dc  
TA = TMIN to TMAX  
VCM = 5ꢀꢀ V p-p, dc to 5ꢀꢀ Hz  
VCM = 5ꢀꢀ V p-p, dc to 1 kHz  
Common mode  
77  
73  
77  
88  
88  
86  
82  
86  
96  
9ꢀ  
dB  
dB  
dB  
dB  
V
Operating Voltage Range  
27ꢀ  
13  
27ꢀ  
13  
Differential  
V
Input Operating Impedance  
Common mode  
Differential  
2ꢀꢀ  
8ꢀꢀ  
2ꢀꢀ  
8ꢀꢀ  
kΩ  
kΩ  
OUTPUT  
Operating Voltage Range  
RL = 1ꢀ kΩ  
13  
13  
V
RL = 2 kΩ  
12.5  
12.5  
V
VS = 12 V, RL = 2 kΩ  
1ꢀ  
1ꢀ  
V
Output Short-Circuit Current  
Capacitive Load  
25  
25  
mA  
pF  
Stable operation  
1ꢀꢀꢀ  
1ꢀꢀꢀ  
DYNAMIC RESPONSE  
Small Signal –3 dB Bandwidth  
Slew Rate  
Full Power Bandwidth  
Settling Time  
5ꢀꢀ  
2.1  
28  
15  
12  
5
5ꢀꢀ  
2.1  
28  
15  
12  
5
kHz  
V/μs  
kHz  
μs  
μs  
μs  
1.7  
1.7  
VOUT = 2ꢀ V p-p  
ꢀ.ꢀ1%, VOUT = 1ꢀ V step  
ꢀ.1%, VOUT = 1ꢀ V step  
ꢀ.ꢀ1%, VCM = 1ꢀ V step, VDIFF = ꢀ V  
OUTPUT NOISE VOLTAGE  
ꢀ.ꢀ1 Hz to 1ꢀ Hz  
Spectral Density, ≥1ꢀꢀ Hz1  
15  
55ꢀ  
15  
55ꢀ  
μV p-p  
nV/√Hz  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Current  
2.5  
18  
1
2.5  
18  
1
V
mA  
mA  
VOUT = ꢀ V  
TMIN to TMAX  
ꢀ.9  
1.2  
ꢀ.9  
1.2  
TEMPERATURE RANGE  
For Specified Performance  
TA = TMIN to TMAX  
−4ꢀ  
+85  
−4ꢀ  
+85  
°C  
1 See Figure 19.  
Rev. B | Page 3 of 16  
 
AD629  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage, VS  
Internal Power Dissipation1  
18 V  
8-Lead PDIP (N)  
8-Lead SOIC (R)  
See Figure 4  
See Figure 4  
3ꢀꢀ V  
5ꢀꢀ V  
Indefinite  
–VS − ꢀ.3 V to +VS + ꢀ.3 V  
15ꢀ°C  
−55°C to +125°C  
−65°C to +15ꢀ°C  
3ꢀꢀ°C  
Input Voltage Range, Continuous  
Common-Mode and Differential, 1ꢀ sec  
Output Short-Circuit Duration  
Pin 1 and Pin 5  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 6ꢀ sec)  
2.0  
T
= 150°C  
J
8-LEAD PDIP  
1.5  
1.0  
0.5  
0
1 Specification is for device in free air:  
8-Lead PDIP, θJA = 1ꢀꢀ°C/W;  
8-Lead SOIC, θJA = 155°C/W.  
8-LEAD SOIC  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature for SOIC and PDIP  
ESD CAUTION  
Rev. B | Page 4 of 16  
 
 
 
AD629  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 2±°C, ꢁS = ±1± , unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
400  
360  
320  
280  
240  
200  
160  
120  
80  
T
= +25°C  
A
T
= +85°C  
A
T
= –40°C  
A
40  
0
100  
1k  
10k  
100k  
1M  
10M  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (Hz)  
POWER SUPPLY VOLTAGE (±V)  
Figure 5. Common-Mode Rejection Ratio vs. Frequency  
Figure 8. Common-Mode Operating Range vs. Power Supply Voltage  
R
= 2k  
2mV/DIV  
= ±18V  
R
= 10kΩ  
L
L
V
= ±18V  
S
V
S
V
= ±15V  
S
V
= ±15V  
S
V
V
= ±12V  
= ±10V  
S
V
= ±12V  
S
S
4V/DIV  
16  
4V/DIV  
16  
S
V
= ±10V  
–8  
–20 –16 –12  
–8  
–4  
0
4
8
12  
20  
–20 –16 –12  
–4  
0
4
8
12  
20  
V
(V)  
V
(V)  
OUT  
OUT  
Figure 9. Typical Gain Error Normalized @ VOUT = 0 V and Output Voltage  
Operating Range vs. Supply Voltage, RL = 2 kΩ (Curves Offset for Clarity)  
Figure 6. Typical Gain Error Normalized @ VOUT = 0 V and Output Voltage  
Operating Range vs. Supply Voltage, RL = 10 kΩ (Curves Offset for Clarity)  
R
= 1kΩ  
L
V
V
= ±5V, R = 10kΩ  
L
S
V
= ±18V  
S
V
= ±15V  
S
= ±5V, R = 2kΩ  
S
L
V
= ±5V, R = 1kΩ  
V
V
= ±12V  
S
L
S
S
1V/DIV  
16  
V
= ±2.5V, R = 1kΩ  
= ±10V  
–4  
4V/DIV  
16  
S
L
–20 –16 –12  
–8  
–4  
0
4
8
12  
20  
–20 –16 –12  
–8  
0
4
8
12  
20  
V
(V)  
V
(V)  
OUT  
OUT  
Figure 10. Typical Gain Error Normalized @ VOUT = 0 V and Output Voltage  
Operating Range vs. Supply Voltage (Curves Offset for Clarity)  
Figure 7. Typical Gain Error Normalized @ VOUT = 0 V and Output Voltage  
Operating Range vs. Supply Voltage, RL = 1 kΩ (Curves Offset for Clarity)  
Rev. B | Page 5 of 16  
 
AD629  
20µV/DIV  
40µV/DIV  
V
= ±15V  
V
= ±15V  
S
S
R
= 10kΩ  
R
= 2kΩ  
L
L
2.5V/DIV  
10  
2V/DIV  
8
–10  
–5  
0
5
–10  
–8  
–6  
–4  
–2  
0
2
4
6
10  
V
(V)  
V
(V)  
OUT  
OUT  
Figure 11. Gain Nonlinearity; VS = 15 V, RL = 10 kΩ  
Figure 14. Gain Nonlinearity; VS = 15 V, RL = 2kΩ  
14.0  
13.0  
–40°C  
+25°C  
20µV/DIV  
V
R
= ±12V  
= 10kΩ  
S
–40°C  
L
12.0  
11.0  
V = ±15V  
+85°C  
S
10.0  
9.0  
–11.5  
–12.0  
–12.5  
–13.0  
–13.5  
–40°C  
2V/DIV  
8
+25°C  
18  
+85°C  
14  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
10  
0
2
4
6
8
10  
12  
16  
20  
V
(V)  
OUT  
OUTPUT CURRENT (mA)  
Figure 15. Output Voltage Operating Range vs. Output Current; VS = 15 V  
Figure 12. Gain Nonlinearity; VS = 12 V, RL =10 kΩ  
11.5  
+85°C  
40µV/DIV  
V
R
= ±5V  
= 1kΩ  
10.5  
9.5  
–40°C  
S
–40°C  
L
8.5  
V = ±12V  
+25°C  
S
7.5  
+85°C  
6.5  
–9.0  
–9.5  
–10.0  
–10.5  
–11.0  
–40°C  
+25°C  
18  
0.6V/DIV  
2.4  
+85°C  
10  
–3.0 –2.4 –1.8 –1.2 –0.6  
0
0.6  
(V)  
1.2  
1.8  
3.0  
0
2
4
6
8
12  
14  
16  
20  
V
OUT  
OUTPUT CURRENT (mA)  
Figure 13. Gain Nonlinearity; VS = 5 V, RL = 1 kΩ  
Figure 16. Output Voltage Operating Range vs. Output Current; VS = 12 V  
Rev. B | Page 6 of 16  
 
AD629  
4.5  
3.5  
2.5  
1.5  
0.5  
+85°C  
–40°C  
+25°C  
G = +1  
–40°C  
R
C
= 2k  
= 1000pF  
L
L
+85°C  
V = ±5V  
S
+85°C  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–40°C  
+25°C  
18  
+85°C  
6
+25°C  
2
25mV/DIV  
4µs/DIV  
0
4
8
10  
12  
14  
16  
20  
OUTPUT CURRENT (mA)  
Figure 17. Output Voltage Operating Range vs. Output Current; VS = 5 V  
Figure 20. Small Signal Pulse Response  
120  
+V  
–V  
S
110  
100  
90  
G = +1  
S
R
C
= 2kΩ  
= 1000pF  
L
L
80  
70  
60  
50  
40  
30  
25mV/DIV  
4µs/DIV  
0.1  
1.0  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 18. Power Supply Rejection Ratio vs. Frequency  
Figure 21. Small Signal Pulse Response  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
G = +1  
R
C
= 2kΩ  
= 1000pF  
L
L
5V/DIV  
5µs/DIV  
0.01  
0.1  
1.0  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 19. Voltage Noise Spectral Density vs. Frequency  
Figure 22. Large Signal Pulse Response  
Rev. B | Page 7 of 16  
AD629  
5V/DIV  
0V  
5V/DIV  
+10V  
V
V
OUT  
OUT  
–10V  
0V  
OUTPUT  
ERROR  
OUTPUT  
ERROR  
1mV = 0.01%  
10µs/DIV  
1mV = 0.01%  
10µs/DIV  
1mV/DIV  
1mV/DIV  
Figure 26. Settling Time to 0.01% for 0 V to −10 V Output Step; G = −1, RL = 2kΩ  
Figure 23. Settling Time to 0.01%, for 0 V to 10 V Output Step; G = −1, RL = 2 kΩ  
300  
350  
N = 2180  
N = 2180  
300  
n 200 PCS. FROM  
10 ASSEMBLY LOTS  
n 200 PCS. FROM  
10 ASSEMBLY LOTS  
250  
250  
200  
200  
150  
100  
50  
150  
100  
50  
0
0
–150  
–900  
–600  
–300  
0
300  
600  
900  
–100  
–50  
0
50  
100  
150  
OFFSET VOLTAGE (µV)  
COMMON-MODE REJECTION RATIO (ppm)  
Figure 27. Typical Distribution of Offset Voltage; Package Option N-8  
Figure 24. Typical Distribution of Common-Mode Rejection; Package Option N-8  
400  
400  
N = 2180  
350  
N = 2180  
350  
n 200 PCS. FROM  
n 200 PCS. FROM  
10 ASSEMBLY LOTS  
300  
10 ASSEMBLY LOTS  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
–600  
0
–600  
–400  
–200  
0
200  
400  
600  
–400  
–200  
0
200  
400  
600  
+1 GAIN ERROR (ppm)  
–1 GAIN ERROR (ppm)  
Figure 28. Typical Distribution of +1 Gain Error; Package Option N-8  
Figure 25. Typical Distribution of −1 Gain Error; Package Option N-8  
Rev. B | Page 8 of 16  
AD629  
THEORY OF OPERATION  
The AD629 is a unity gain, differential-to-single-ended  
amplifier (diff amp) that can reject extremely high common-  
mode signals (in excess of 2ꢀ7 ꢁ with 1± ꢁ supplies). It consists  
of an operational amplifier (op amp) and a resistor network.  
To reduce output drift, the op amp uses super beta transistors  
in its input stage. The input offset current and its associated  
temperature coefficient contribute no appreciable output  
voltage offset or drift, which has the added benefit of reducing  
voltage noise because the corner where 1/f noise becomes  
dominant is below ± Hz. To reduce the dependence of gain  
accuracy on the op amp, the open-loop voltage gain of the op  
amp exceeds 27 million, and the PSRR exceeds 147 dB.  
To achieve high common-mode voltage range, an internal  
resistor divider (Pin 3 or Pin ±) attenuates the noninverting  
signal by a factor of 27. Other internal resistors (Pin 1, Pin 2,  
and the feedback resistor) restore the gain to provide a differential  
gain of unity. The complete transfer function equals  
21.1k  
380kΩ  
380kΩ  
380kΩ  
8
7
6
5
NC  
+V  
1
2
3
4
REF(–)  
–IN  
V
OUT = ꢁ (+IN) − ꢁ (−IN)  
S
Laser wafer trimming provides resistor matching so that  
common-mode signals are rejected while differential input  
signals are amplified.  
+IN  
OUTPUT  
REF(+)  
20kΩ  
–V  
S
AD629  
NC = NO CONNECT  
Figure 29. Functional Block Diagram  
Rev. B | Page 9 of 16  
 
AD629  
APPLICATIONS  
+V  
S
AD629  
REF (–)  
21.1k  
BASIC CONNECTIONS  
NC  
1
2
3
4
8
7
6
5
Figure 37 shows the basic connections for operating the AD629  
with a dual supply. A supply voltage of between ±3 ꢁ and ±18 ꢁ  
is applied between Pin ꢀ and Pin 4. Both supplies should be  
decoupled close to the pins using 7.1 μF capacitors. Electrolytic  
capacitors of 17 μF, also located close to the supply pins, may be  
required if low frequency noise is present on the power supply.  
While multiple amplifiers can be decoupled by a single set of  
17 μF capacitors, each in amp should have its own set of 7.1 μF  
capacitors so that the decoupling point can be located right at  
the ICs power pins.  
380k380kΩ  
–IN  
+IN  
V
+V  
0.1µF  
X
S
I
R
SHUNT  
SHUNT  
380kΩ  
V
Y
20kΩ  
–V  
S
REF (+)  
OUTPUT = V  
OUT  
– V  
REF  
NC = NO CONNECT  
V
REF  
Figure 31. Operation with a Single Supply  
+V  
S
Applying a reference voltage to REF(+) and REF(–) and  
+3V TO +18V  
NC  
AD629  
REF (–)  
21.1kΩ  
1
2
3
4
8
7
6
5
operating on a single supply reduces the input common-mode  
range of the AD629. The new input common-mode range  
depends upon the voltage at the inverting and noninverting  
inputs of the internal operational amplifier, labeled ꢁX and ꢁY  
in Figure 31. These nodes can swing to within 1 ꢁ of either rail.  
Therefore, for a (single) supply voltage of 17 , X and ꢁY can  
range between 1 ꢁ and 9 . If ꢁREF is set to ± , the permissible  
common-mode range is +8± ꢁ to –ꢀ± . The common-mode  
voltage ranges can be calculated by  
380k380kΩ  
–IN  
+IN  
(SEE  
TEXT)  
+V  
0.1µF  
S
I
R
SHUNT  
SHUNT  
380kΩ  
V
= I  
SHUNT  
× R  
SHUNT  
OUT  
20kΩ  
–V  
S
REF (+)  
(SEE  
TEXT)  
0.1µF  
NC = NO CONNECT  
–V  
S
–3V TO –18V  
Figure 30. Basic Connections  
V
CM (±) = 27 VX/VY(±) − 19 VREF  
The differential input signal, which typically results from a load  
current flowing through a small shunt resistor, is applied to  
Pin 2 and Pin 3 with the polarity shown to obtain a positive  
gain. The common-mode range on the differential input signal  
can range from −2ꢀ7 ꢁ to +2ꢀ7 , and the maximum differential  
range is ±13 . When configured as shown in Figure 37, the  
device operates as a simple gain-of-1, differential-to-single-  
ended amplifier; the output voltage being the shunt resistance  
times the shunt current. The output is measured with respect to  
Pin 1 and Pin ±.  
SYSTEM-LEVEL DECOUPLING AND GROUNDING  
The use of ground planes is recommended to minimize the  
impedance of ground returns (and therefore the size of dc  
errors). Figure 32 shows how to work with grounding in a  
mixed-signal environment, that is, with digital and analog  
signals present. To isolate low level analog signals from a noisy  
digital environment, many data acquisition components have  
separate analog and digital ground returns. All ground pins  
from mixed-signal components, such as ADCs, should return  
through a low impedance analog ground plane. Digital ground  
lines of mixed-signal converters should also be connected to the  
analog ground plane. Typically, analog and digital grounds  
should be separated; however, it is also a requirement to  
minimize the voltage difference between digital and analog  
grounds on a converter, to keep them as small as possible  
(typically <7.3 ꢁ). The increased noise, caused by the  
converter’s digital return currents flowing through the analog  
ground plane, is typically negligible. Maximum isolation  
between analog and digital is achieved by connecting the ground  
planes back at the supplies. Note that Figure 32 suggests a “star”  
ground system for the analog circuitry, with all ground lines  
being connected, in this case, to the ADCs analog ground.  
However, when ground planes are used, it is sufficient to  
connect ground pins to the nearest point on the low impedance  
ground plane.  
Pin 1 and Pin ± (REF(–) and REF(+)) should be grounded for a  
gain of unity and should be connected to the same low impedance  
ground plane. Failure to do this results in degraded common-  
mode rejection. Pin 8 is a no connect pin and should be left open.  
SINGLE-SUPPLY OPERATION  
Figure 31 shows the connections for operating the AD629 with  
a single supply. Because the output can swing to within only  
about 2 ꢁ of either rail, it is necessary to apply an offset to the  
output. This can be conveniently done by connecting REF(+)  
and REF(–) to a low impedance reference voltage (some ADCs  
provide this voltage as an output), which is capable of sinking  
current. Therefore, for a single supply of 17 , REF may be set  
to ± ꢁ for a bipolar input signal. This allows the output to swing  
±3 ꢁ around the central ± ꢁ reference voltage. Alternatively, for  
unipolar input signals, ꢁREF can be set to about 2 , allowing the  
output to swing from 2 ꢁ (for a 7 ꢁ input) to within 2 ꢁ of the  
positive rail.  
Rev. B | Page 1ꢀ of 16  
 
 
 
AD629  
ANALOG POWER  
SUPPLY  
DIGITAL  
POWER SUPPLY  
GND +5V  
Table 3 shows some sample error voltages generated by a  
common-mode voltage of 277 ꢁ dc with shunt resistors from  
27 Ω to 2777 Ω. Assuming that the shunt resistor is selected to  
use the full ±17 ꢁ output swing of the AD629, the error voltage  
becomes quite significant as RSHUNT increases.  
–5V  
+5V  
GND  
0.1µF  
0.1µF  
0.1µF 0.1µF  
1
6
14  
AGND DGND  
Table 3. Error Resulting from Large Values of RSHUNT  
(Uncompensated Circuit)  
4
7
V
DD  
V
DD  
GND  
12  
–V  
+V  
S
S
3
2
+IN  
–IN  
MICROPROCESSOR  
V
V
6
4
3
OUTPUT  
AD629  
IN1 AD7892-2  
RS (Ω)  
2ꢀ  
Error VOUT (V)  
Error Indicated (mA)  
REF(–) REF(+)  
IN2  
ꢀ.ꢀ1  
ꢀ.498  
1
ꢀ.5  
1
5
1ꢀꢀꢀ  
2ꢀꢀꢀ  
ꢀ.498  
ꢀ.5  
Figure 32. Optimal Grounding Practice for a Bipolar Supply Environment  
with Separate Analog and Digital Supplies  
POWER SUPPLY  
To measure low current or current near zero in a high common-  
mode environment, an external resistor equal to the shunt  
resistor value can be added to the low impedance side of the  
shunt resistor, as shown in Figure 34.  
+5V  
GND  
0.1µF  
0.1µF  
0.1µF  
+V  
S
7
4
AD629  
REF (–)  
V
AGND DGND  
21.1k  
DD  
+V  
–V  
S
NC  
1
2
3
4
8
7
6
5
S
V
GND  
DD  
3
2
+IN  
–IN  
V
V
6
OUTPUT  
IN1  
AD629  
MICROPROCESSOR  
R
R
380k380kΩ  
COMP  
–IN  
+IN  
ADC  
IN2  
REF(–) REF(+)  
0.1µF  
+V  
S
I
1
5
SHUNT  
SHUNT  
380kΩ  
V
OUT  
Figure 33. Optimal Ground Practice in a Single-Supply Environment  
20kΩ  
–V  
REF (+)  
S
If there is only a single power supply available, it must be shared  
by both digital and analog circuitry. Figure 33 shows how to  
minimize interference between the digital and analog circuitry.  
In this example, the ADCs reference is used to drive Pin REF(+)  
and Pin REF(–). This means that the reference must be capable  
of sourcing and sinking a current equal to ꢁCM/277 kΩ. As in  
the previous case, separate analog and digital ground planes  
should be used (reasonably thick traces can be used as an  
alternative to a digital ground plane). These ground planes  
should connect at the power supplys ground pin. Separate  
traces (or power planes) should run from the power supply to  
the supply pins of the digital and analog circuits. Ideally, each  
device should have its own power supply trace, but these can be  
shared by a number of devices, as long as a single trace is not  
used to route current to both digital and analog circuitry.  
0.1µF  
–V  
S
NC = NO CONNECT  
Figure 34. Compensating for Large Sense Resistors  
OUTPUT FILTERING  
A simple 2-pole, low-pass Butterworth filter can be implemented  
using the OP1ꢀꢀ after the AD629 to limit noise at the output, as  
shown in Figure 3±. Table 4 gives recommended component  
values for various corner frequencies, along with the peak-to-  
peak output noise for each case.  
+V  
S
AD629  
REF (–)  
21.1k  
NC  
1
2
3
4
8
7
6
5
+V  
S
C1  
0.1µF  
R1  
0.1µF  
0.1µF  
380k380kΩ  
–IN  
+IN  
+V  
S
V
OP177  
OUT  
R2  
C2  
380kΩ  
USING A LARGE SENSE RESISTOR  
20kΩ  
REF (+)  
–V  
S
Insertion of a large value shunt resistance across the input pins,  
Pin 2 and Pin 3, will imbalance the input resistor network,  
introducing a common-mode error. The magnitude of the error  
will depend on the common-mode voltage and the magnitude  
–V  
S
0.1µF  
NC = NO CONNECT  
Figure 35. Filtering of Output Noise Using a 2-Pole Butterworth Filter  
of RSHUNT  
.
Table 4. Recommended Values for 2-Pole Butterworth Filter  
Corner Frequency  
R1  
R2  
C1  
C2  
Output Noise (p-p)  
No Filter  
5ꢀ kHz  
5 kHz  
5ꢀꢀ Hz  
5ꢀ Hz  
3.2 mV  
1 mV  
ꢀ.32 mV  
1ꢀꢀ μV  
32 μV  
2.94 kΩ 1%  
2.94 kΩ 1%  
2.94 kΩ 1%  
2.7 kΩ 1ꢀ%  
1.58 kΩ 1%  
1.58 kΩ 1%  
1.58 kΩ 1%  
1.5 kΩ 1ꢀ%  
2.2 nF 1ꢀ%  
22 nF 1ꢀ%  
22ꢀ nF 1ꢀ%  
2.2 μF 2ꢀ%  
1 nF 1ꢀ%  
1ꢀ nF 1ꢀ%  
ꢀ.1 μF 1ꢀ%  
1 μF 2ꢀ%  
Rev. B | Page 11 of 16  
 
 
 
 
 
 
 
AD629  
OUTPUT CURRENT AND BUFFERING  
ERROR BUDGET ANALYSIS EXAMPLE 1  
The AD629 is designed to drive loads of 2 kꢂ to within 2 ꢁ of  
the rails but can deliver higher output currents at lower output  
voltages (see Figure 1±). If higher output current is required, the  
output of the AD629 should be buffered with a precision op amp,  
such as the OP113, as shown in Figure 36. This op amp can swing  
to within 1 ꢁ of either rail while driving a load as small as 677 ꢂ.  
In the dc application that follows, the 17 A output current from  
a device with a high common-mode voltage (such as a power  
supply or current-mode amplifier) is sensed across a 1 ꢂ shunt  
resistor (see Figure 38). The common-mode voltage is 277 ,  
and the resistor terminals are connected through a long pair of  
lead wires located in a high noise environment, for example,  
±7 Hz/67 Hz, 447 ꢁ ac power lines. The calculations in Table ±  
assume an induced noise level of 1 ꢁ at 67 Hz on the leads, in  
addition to a full-scale dc differential voltage of 17 . The error  
budget table quantifies the contribution of each error source.  
Note that the dominant error source in this example is due to  
the dc common-mode voltage.  
+V  
S
AD629  
REF (–)  
21.1k  
NC  
1
2
3
4
8
7
6
5
0.1µF  
380k380kΩ  
–IN  
+IN  
0.1µF  
0.1µF  
380kΩ  
V
OP113  
OUT  
20kΩ  
REF (+)  
–V  
S
OUTPUT  
CURRENT  
AD629  
REF (–)  
21.1k  
0.1µF  
–V  
S
10 AMPS  
200V DC  
TO GROUND  
NC  
NC = NO CONNECT  
1
2
3
4
8
7
6
5
CM  
380k380kΩ  
–IN  
+IN  
+V  
Figure 36. Output Buffering Application  
S
0.1µF  
1Ω  
SHUNT  
380kΩ  
A GAIN OF 19 DIFFERENTIAL AMPLIFIER  
V
OUT  
While low level signals can be connected directly to the –IN and  
+IN inputs of the AD629, differential input signals can also be  
connected, as shown in Figure 3ꢀ, to give a precise gain of 19.  
However, large common-mode voltages are no longer permissible.  
Cold junction compensation can be implemented using a  
temperature sensor, such as the AD±97.  
20kΩ  
REF (+)  
–V  
S
60Hz  
0.1µF  
POWER LINE  
NC = NO CONNECT  
Figure 38. Error Budget Analysis Example 1: VIN = 10 V Full-Scale,  
VCM = 200 V DC, RSHUNT = 1 Ω, 1 V p-p, 60 Hz Power-Line Interference  
+V  
S
AD629  
REF (–)  
21.1k  
NC  
1
2
3
4
8
7
6
5
THERMOCOUPLE  
380k380kΩ  
–IN  
+IN  
+V  
0.1µF  
S
380kΩ  
V
OUT  
V
REF  
20kΩ  
REF (+)  
NC = NO CONNECT  
Figure 37. A Gain of 19 Thermocouple Amplifier  
Table 5. AD629 vs. INA117 Error Budget Analysis Example 1 (VCM = 200 V dc)  
Error, ppm of FS  
Error Source  
AD629  
INA117  
AD629  
INA117  
ACCURACY, TA = 25°C  
Initial Gain Error  
(ꢀ.ꢀꢀꢀ5 × 1ꢀ)/1ꢀ V × 1ꢀ6  
(ꢀ.ꢀꢀ1 V/1ꢀ V) × 1ꢀ6  
(224 × 1ꢀ-6 × 2ꢀꢀ V)/1ꢀ V × 1ꢀ6  
(ꢀ.ꢀꢀꢀ5 × 1ꢀ)/1ꢀ V × 1ꢀ6  
(ꢀ.ꢀꢀ2 V/1ꢀ V) × 1ꢀ6  
5ꢀꢀ  
1ꢀꢀ  
448ꢀ  
5ꢀ8ꢀ  
5ꢀꢀ  
2ꢀꢀ  
1ꢀ,ꢀꢀꢀ  
1ꢀ,7ꢀꢀ  
Offset Voltage  
DC CMR (Over Temperature)  
(5ꢀꢀ × 1ꢀ-6 × 2ꢀꢀ V)/1ꢀ V × 1ꢀ6  
Total Accuracy Error  
TEMPERATURE DRIFT (85°C)  
Gain  
1ꢀ ppm/°C × 6ꢀ°C  
(2ꢀ μV/°C × 6ꢀ°C) × 1ꢀ6/1ꢀ V  
1ꢀ ppm/°C × 6ꢀ°C  
6ꢀꢀ  
12ꢀ  
72ꢀ  
6ꢀꢀ  
24ꢀ  
84ꢀ  
Offset Voltage  
(4ꢀ μV/°C × 6ꢀ°C) × 1ꢀ6/1ꢀ V  
Total Drift Error  
RESOLUTION  
Noise, Typical, ꢀ.ꢀ1 Hz to 1ꢀ Hz, μV p-p  
CMR, 6ꢀ Hz  
Nonlinearity  
15 μV/1ꢀ V × 1ꢀ6  
(141 × 1ꢀ-6 × 1 V)/1ꢀ V × 1ꢀ6  
(1ꢀ-5 × 1ꢀ V)/1ꢀ V × 1ꢀ6  
25 μV/1ꢀ V × 1ꢀ6  
2
3
(5ꢀꢀ × 1ꢀ-6 × 1 V)/1ꢀ V × 1ꢀ6  
(1ꢀ-5 × 1ꢀ V)/1ꢀ V × 1ꢀ6  
Total Resolution Error  
Total Error  
14  
5ꢀ  
1ꢀ  
1ꢀ  
26  
63  
5826  
11,6ꢀ3  
Rev. B | Page 12 of 16  
 
 
 
 
 
AD629  
ERROR BUDGET ANALYSIS EXAMPLE 2  
OUTPUT  
This application is similar to the previous example except  
that the sensed load current is from an amplifier with an ac  
common-mode component of ±177 ꢁ (frequency = ±77 Hz)  
present on the shunt (see Figure 39). All other conditions are  
the same as before. Note that the same kind of power-line  
interference can happen as detailed in Example 1. However,  
the ac common-mode component of 277 ꢁ p-p coming from  
the shunt is much larger than the interference of 1 ꢁ p-p;  
therefore, this interference component can be neglected.  
CURRENT  
AD629  
REF (–)  
21.1kΩ  
10 AMPS  
±100V AC CM  
TO GROUND  
NC  
1
2
3
4
8
7
6
5
380k380kΩ  
–IN  
+IN  
+V  
S
0.1µF  
1Ω  
SHUNT  
380kΩ  
V
OUT  
20kΩ  
REF (+)  
–V  
S
60Hz  
0.1µF  
POWER LINE  
NC = NO CONNECT  
Figure 39. Error Budget Analysis Example 2: VIN = 10 V Full-Scale,  
VCM 100 V at 500 Hz, RSHUNT =1 Ω  
=
Table 6. AD629 vs. INA117 AC Error Budget Example 2 (VCM  
=
100 V @ 500 Hz)  
INA117  
Error, ppm of FS  
Error Source  
AD629  
AD629  
INA117  
ACCURACY, TA = 25°C  
Initial Gain Error  
Offset Voltage  
(ꢀ.ꢀꢀꢀ5 × 1ꢀ)/1ꢀ V × 1ꢀ6  
(ꢀ.ꢀꢀ1 V/1ꢀ V) × 1ꢀ6  
(ꢀ.ꢀꢀꢀ5 × 1ꢀ)/1ꢀ V × 1ꢀ6  
(ꢀ.ꢀꢀ2 V/1ꢀ V) × 1ꢀ6  
5ꢀꢀ  
1ꢀꢀ  
6ꢀꢀ  
5ꢀꢀ  
2ꢀꢀ  
7ꢀꢀ  
Total Accuracy Error  
TEMPERATURE DRIFT (85°C)  
Gain  
1ꢀ ppm/°C × 6ꢀ°C  
(2ꢀ μV/°C × 6ꢀ°C) × 1ꢀ6/1ꢀ V  
1ꢀ ppm/°C × 6ꢀ°C  
6ꢀꢀ  
12ꢀ  
72ꢀ  
6ꢀꢀ  
24ꢀ  
84ꢀ  
Offset Voltage  
(4ꢀ μV/°C × 6ꢀ°C) × 1ꢀ6/1ꢀ V  
Total Drift Error  
RESOLUTION  
Noise, Typical, ꢀ.ꢀ1 Hz to 1ꢀ Hz, μV p-p  
CMR, 6ꢀ Hz  
Nonlinearity  
15 μV/1ꢀ V × 1ꢀ6  
25 μV/1ꢀ V × 1ꢀ6  
2
3
(141 × 1ꢀ-6 × 1 V)/1ꢀ V × 1ꢀ6  
(1ꢀ-5 × 1ꢀ V)/1ꢀ V × 1ꢀ6  
(141 × 1ꢀ-6 × 2ꢀꢀ V)/1ꢀ V × 1ꢀ6  
(5ꢀꢀ × 1ꢀ-6 × 1 V)/1ꢀ V × 1ꢀ6  
(1ꢀ-5 × 1ꢀ V)/1ꢀ V × 1ꢀ6  
(5ꢀꢀ × 1ꢀ-6 × 2ꢀꢀ V)/1ꢀ V × 1ꢀ6  
Total Resolution Error  
Total Error  
14  
5ꢀ  
1ꢀ  
1ꢀ  
AC CMR @ 5ꢀꢀ Hz  
282ꢀ  
2846  
4166  
1ꢀ,ꢀꢀꢀ  
1ꢀ,ꢀ63  
11,6ꢀ3  
Rev. B | Page 13 of 16  
 
 
AD629  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 40. 8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 41. 8-Lead Standard Small Outline Package [SOIC_N]  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. B | Page 14 of 16  
 
AD629  
ORDERING GUIDE  
Model  
Temperature Range  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
Package Description  
Package Option  
AD629AN  
AD629ANZ1  
AD629AR  
AD629AR-REEL  
AD629AR-REEL7  
AD629ARZ1  
AD629ARZ-RL1  
AD629ARZ-R71  
AD629BN  
8-Lead PDIP  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N, 13-Inch Tape and Reel, 2,5ꢀꢀ pieces  
8-Lead SOIC_N, 7-Inch Tape and Reel, 1,ꢀꢀꢀ pieces  
8-Lead PDIP  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD629BNZ1  
AD629BR  
8-Lead PDIP  
8-Lead SOIC_N  
AD629BR-REEL  
AD629BR-REEL7  
AD629BRZ1  
AD629BRZ-RL1  
AD629BRZ-R71  
AD629-EVAL  
8-Lead SOIC_N, 13-Inch Tape and Reel, 2,5ꢀꢀ pieces  
8-Lead SOIC_N, 7-Inch Tape and Reel, 1,ꢀꢀꢀ pieces  
8-Lead SOIC_N  
8-Lead SOIC_N, 13-Inch Tape and Reel, 2,5ꢀꢀ pieces  
8-Lead SOIC_N, 7-Inch Tape and Reel, 1,ꢀꢀꢀ pieces  
Evaluation Board  
1 Z = RoHS compliant part.  
Rev. B | Page 15 of 16  
 
 
AD629  
NOTES  
©1999-2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00783-0-2/07(B)  
Rev. B | Page 16 of 16  

相关型号:

AD629A

High Common-Mode Voltage Difference Amplifier
ADI

AD629AN

High Common-Mode Voltage Difference Amplifier
ADI

AD629ANZ

High Common-Mode Voltage, Difference Amplifier
ADI

AD629AR

High Common-Mode Voltage Difference Amplifier
ADI

AD629AR-REEL

High Common-Mode Voltage Difference Amplifier
ADI

AD629AR-REEL7

High Common-Mode Voltage Difference Amplifier
ADI

AD629ARZ

High Common-Mode Voltage, Difference Amplifier
ADI

AD629ARZ-R7

High Common-Mode Voltage, Difference Amplifier
ADI

AD629ARZ-REEL

OP-AMP, 1000uV OFFSET-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
ADI

AD629ARZ-REEL7

OP-AMP, 1000uV OFFSET-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
ADI

AD629ARZ-RL

High Common-Mode Voltage, Difference Amplifier
ADI

AD629B

High Common-Mode Voltage Difference Amplifier
ADI