AD629 [AAVID]

Very Low Distortion, Precision Difference Amplifier; 非常低的失真,精密差分放大器
AD629
型号: AD629
厂家: AAVID THERMALLOY, LLC    AAVID THERMALLOY, LLC
描述:

Very Low Distortion, Precision Difference Amplifier
非常低的失真,精密差分放大器

放大器
文件: 总16页 (文件大小:375K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Very Low Distortion,  
Precision Difference Amplifier  
AD8274  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
+V  
S
Very low distortion  
7
0.00025% THD + N (20 kHz)  
0.0015% THD + N (100 kHz)  
Drives 600 Ω loads  
12k  
12kΩ  
6kΩ  
6kΩ  
2
5
6
Excellent gain accuracy  
0.03% maximum gain error  
2 ppm/°C maximum gain drift  
Gain of ½ or 2  
3
1
AC specifications  
20 V/μs minimum slew rate  
800 ns to 0.01% settling time  
High accuracy dc performance  
83 dB minimum CMRR  
4
–V  
S
Figure 1.  
700 μV maximum offset voltage  
8-lead SOIC and MSOP packages  
Supply current: 2.6 mA maximum  
Supply range: 2.5 V to 18 V  
Table 1. Difference Amplifiers by Category  
Low  
Distortion  
High  
Voltage  
Single-Supply  
Unidirectional  
Single-Supply  
Bidirectional  
APPLICATIONS  
ADC driver  
AD8270  
AD8273  
AD8274  
AMP03  
AD628  
AD629  
AD8202  
AD8203  
AD8205  
AD8206  
AD8216  
High performance audio  
Instrumentation amplifier building blocks  
Level translators  
Automatic test equipment  
Sine/cosine encoders  
GENERAL DESCRIPTION  
The AD8274 is a difference amplifier that delivers excellent ac  
and dc performance. Built on Analog Devices, Inc., proprietary  
iPolar® process and laser-trimmed resistors, AD8274 achieves a  
breakthrough in distortion vs. current consumption and has  
excellent gain drift, gain accuracy, and CMRR.  
With no external components, the AD8274 can be configured  
as a G = ½ or G = 2 difference amplifier. For single-ended  
applications that need high gain stability or low distortion  
performance, the AD8274 can also be configured for several  
gains ranging from −2 to +3.  
Distortion in the audio band is an extremely low 0.00025%  
(112 dB) at a gain of ½ and 0.00035% (109 dB) at a gain of 2  
while driving a 600 Ω load  
The excellent distortion and dc performance of the AD8274,  
along with its high slew rate and bandwidth, make it an excellent  
ADC driver. Because of the parts high output drive, it also  
makes a very good cable driver.  
With supply voltages up to 18 V (+36 V single supply), the  
AD8274 is well suited for measuring large industrial signals.  
Additionally, the part’s resistor divider architecture allows it to  
measure voltages beyond the supplies.  
The AD8274 only requires 2.6 mA maximum supply current. It  
is specified over the industrial temperature range of −40°C to  
+85°C and is fully RoHS compliant. For the dual version, see the  
AD8273 data sheet.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2008–2011 Analog Devices, Inc. All rights reserved.  
 
AD8274  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configurations and Function Description..............................5  
Typical Performance Characteristics ..............................................6  
Theory of Operation ...................................................................... 12  
Circuit Information.................................................................... 12  
Driving the AD8274................................................................... 12  
Power Supplies............................................................................ 12  
Input Voltage Range................................................................... 12  
Configurations............................................................................ 13  
Driving Cabling.......................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
Maximum Power Dissipation ..................................................... 4  
Short-Circuit Current .................................................................. 4  
ESD Caution.................................................................................. 4  
REVISION HISTORY  
8/11—Rev. B to Rev. C  
Changes to Input Voltage Range Parameter, Table 2 ................... 3  
1/11—Rev. A to Rev. B  
Changes to Impedance/Differential Parameter, Table 2.............. 3  
Changes to Figure 17........................................................................ 8  
Updated Outline Dimensions....................................................... 15  
12/08—Rev. 0 to Rev. A  
Changes to Figure 8 and Figure 10................................................. 6  
7/08—Revision 0: Initial Version  
Rev. C | Page 2 of 16  
 
AD8274  
SPECIFICATIONS  
VS = 15 V, VREF = 0 V, TA = 25°C, RL = 2 kꢀ, unless otherwise noted.  
Table 2.  
G = ½  
Typ  
G = 2  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
Bandwidth  
Slew Rate  
20  
10  
MHz  
V/μs  
ns  
20  
20  
Settling Time to 0.1%  
10 V step on output,  
CL = 100 pF  
10 V step on output,  
CL = 100 pF  
650  
725  
750  
800  
675  
750  
775  
825  
Settling Time to 0.01%  
ns  
NOISE/DISTORTION1  
THD + Noise  
f = 1 kHz,  
0.00025  
0.00035  
%
VOUT = 10 V p-p,  
600 Ω load  
20 kHz BW  
Noise Floor, RTO2  
−106  
3.5  
−100  
7
dBu  
μV rms  
Output Voltage Noise  
(Referred to Output)  
f = 20 Hz to 20 kHz  
f = 1 kHz  
26  
52  
nV/√Hz  
GAIN  
Gain Error  
Gain Drift  
Gain Nonlinearity  
0.03  
2
0.03  
2
%
−40°C to +85°C  
VOUT = 10 V p-p,  
600 Ω load  
0.5  
2
0.5  
2
ppm/°C  
ppm  
INPUT CHARACTERISTICS  
Offset3  
vs. Temperature  
vs. Power Supply  
Common-Mode Rejection VCM  
Referred to output  
−40°C to +85°C  
VS = 2.5 V to 18 V  
150  
3
700  
5
300  
6
1100  
10  
μV  
μV/°C  
μV/V  
dB  
=
40 V,  
77  
86  
83  
92  
Ratio  
RS = 0 Ω,  
referred to input  
Input Voltage Range4  
Impedance5  
Differential  
Common Mode6  
3(−VS + 1.5)  
3(+VS − 1.5) 1.5(−VS + 1.5)  
1.5(+VS – 1.5)  
+VS − 1.5  
V
VCM = 0 V  
36  
9
9
9
kΩ  
kΩ  
OUTPUT CHARACTERISTICS  
Output Swing  
−VS + 1.5  
+VS − 1.5  
−VS + 1.5  
V
Short-Circuit Current Limit  
Sourcing  
Sinking  
90  
60  
200  
90  
60  
1200  
mA  
mA  
pF  
Capacitive Load Drive  
POWER SUPPLY  
Supply Current (per  
Amplifier)  
2.3  
2.6  
2.3  
2.6  
mA  
°C  
TEMPERATURE RANGE  
Specified Performance  
−40  
+85  
−40  
+85  
1 Includes amplifier voltage and current noise, as well as noise of internal resistors.  
2 dBu = 20 log(V rms/0.7746).  
3 Includes input bias and offset current errors.  
4 May also be limited by absolute maximum input voltage or by the output swing. See the Absolute Maximum Ratings section and Figure 8 through Figure 11 for details.  
5 Internal resistors are trimmed to be ratio matched but to have 20% absolute accuracy.  
6 Common mode is calculated by looking into both inputs. The common-mode impedance at only one input is 18 kΩ.  
Rev. C | Page 3 of 16  
 
 
AD8274  
ABSOLUTE MAXIMUM RATINGS  
MAXIMUM POWER DISSIPATION  
Table 3.  
The maximum safe power dissipation for the AD8274 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 150°C, which is the glass transition temperature,  
the properties of the plastic change. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric performance  
of the amplifiers. Exceeding a temperature of 150°C for an  
extended period may result in a loss of functionality.  
2.0  
Parameter  
Rating  
Supply Voltage  
18 V  
Maximum Voltage at Any Input Pin  
Minimum Voltage at Any Input Pin  
Storage Temperature Range  
Specified Temperature Range  
Package Glass Transition Temperature (TG)  
−VS + 40 V  
+VS – 40 V  
−65°C to +150°C  
−40°C to +85°C  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
T
MAX = 150°C  
J
1.6  
1.2  
0.8  
0.4  
0
SOIC  
θ
= 121°C/W  
JA  
MSOP  
= 135°C/W  
θ
JA  
THERMAL RESISTANCE  
The θJA values in Table 4 assume a 4-layer JEDEC standard  
board with zero airflow.  
Table 4. Thermal Resistance  
–50  
–25  
0
25  
50  
75  
100  
125  
Package Type  
8-Lead MSOP  
8-Lead SOIC  
θJA  
Unit  
°C/W  
°C/W  
AMBIENT TEMERATURE (°C)  
135  
121  
Figure 2. Maximum Power Dissipation vs. Ambient Temperature  
SHORT-CIRCUIT CURRENT  
The AD8274 has built-in, short-circuit protection that limits the  
output current (see Figure 16 for more information). While the  
short-circuit condition itself does not damage the part, the heat  
generated by the condition can cause the part to exceed its  
maximum junction temperature, with corresponding negative  
effects on reliability. Figure 2 and Figure 16, combined with  
knowledge of the parts supply voltages and ambient temperature,  
can be used to determine whether a short circuit will cause the  
part to exceed its maximum junction temperature.  
ESD CAUTION  
Rev. C | Page 4 of 16  
 
 
 
AD8274  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTION  
REF  
–IN  
1
2
3
4
8
7
6
5
NC  
+V  
REF  
–IN  
1
2
3
4
8
7
6
5
NC  
+V  
AD8274  
AD8274  
S
S
TOP VIEW  
+IN  
OUT  
+IN  
OUT  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
–V  
S
SENSE  
–V  
S
SENSE  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 4. SOIC Pin Configuration  
Figure 3. MSOP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
REF  
6 kΩ Resistor to Noninverting Terminal of Op Amp. Used as reference pin in G = ½ configuration. Used as  
positive input in G = 2 configuration.  
2
3
−IN  
+IN  
12 kΩ Resistor to Inverting Terminal of Op Amp. Used as negative input in G = ½ configuration. Connect  
to output in G = 2 configuration.  
12 kΩ Resistor to Noninverting Terminal of Op Amp. Used as positive input in G = ½ configuration. Used  
as reference pin in G = 2 configuration.  
4
5
−VS  
SENSE  
Negative Supply.  
6 kΩ Resistor to Inverting Terminal of Op Amp. Connect to output in G = ½ configuration. Used as  
negative input in G = 2 configuration.  
6
7
8
OUT  
+VS  
NC  
Output.  
Positive Supply.  
No Connect.  
Rev. C | Page 5 of 16  
 
AD8274  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 15 V, TA = 25°C, gain = ½, difference amplifier configuration, unless otherwise noted.  
30  
20  
15  
G = ½  
0V, +25V  
20  
10  
V
= ±15V  
S
5
10  
–13.5V, +11.5V  
–13.5V, –11.5V  
+13.5V, +11.5V  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
+13.5V, –11.5V  
–10  
–20  
–30  
REPRESENTATIVE SAMPLES  
0V, –25V  
0
–15  
–10  
–5  
5
10  
15  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 5. CMR vs. Temperature, Normalized at 25°C, Gain = ½  
Figure 8. Input Common-Mode Voltage vs. Output Voltage,  
Gain = ½, 15 V Supplies  
20  
150  
100  
50  
G = ½  
–3.5V, +15.8V  
15  
V
= ±5V  
S
+3.5V, +8.8V  
10  
5
V
= ±2.5V  
S
–1.0V, +6.2V  
–1.0V, –4.0V  
+1.0V, +4.2V  
0
0
–50  
–100  
–5  
+1.0, –6.0V  
–10  
–15  
–20  
–150  
–3.5V, –8.7V  
+3.5V, –15.5V  
REPRESENTATIVE SAMPLES  
–200  
–4  
–3  
–2  
–1  
0
1
2
3
4
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 6. System Offset vs. Temperature, Normalized at 25°C,  
Referred to Output, Gain = ½  
Figure 9. Input Common-Mode Voltage vs. Output Voltage,  
Gain = ½, 5 V and 2.5 V Supplies  
25  
30  
20  
0V, +20.85V  
G = 2  
20  
15  
V
= ±15V  
S
10  
10  
+13.5V, +11.5V  
–13.5V, +11.5V  
0
5
–10  
–20  
–30  
0
–5  
+13.5V, –11.5V  
–10  
–15  
–20  
–25  
–13.5V, –11.5V  
–40  
REPRESENTATIVE SAMPLES  
0V, –20.85V  
0
–50  
–50  
–15  
–10  
–5  
5
10  
15  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 10. Input Common-Mode Voltage vs. Output Voltage,  
Gain = 2, 15 V Supplies  
Figure 7. Gain Error vs. Temperature, Normalized at 25°C, Gain = ½  
Rev. C | Page 6 of 16  
 
 
AD8274  
8
6
10  
5
–3.5V, +6.9V  
G = 2  
V
= ±5V  
S
G = 2  
+3.5V, +5.2V  
4
V
= ±2.5V  
S
–1.0V, +2.7V  
0
+1.0V, +2.2V  
2
G = ½  
–5  
0
–1.0V, –2.0V  
–2  
–4  
–6  
–8  
+1.0, –2.6V  
–10  
–15  
–20  
–3.5V, –5.2V  
+3.5V, –6.9V  
–4  
–3  
–2  
–1  
0
1
2
3
4
100  
1k  
10k  
100k  
1M  
10M  
100M  
OUTPUT VOLTAGE (V)  
FREQUENCY(Hz)  
Figure 11. Input Common-Mode Voltage vs. Output Voltage,  
Gain = 2, 5 V and 2.5 V Supplies  
Figure 14. Gain vs. Frequency  
140  
120  
100  
80  
60  
40  
20  
0
POSITIVE PSRR  
GAIN = 2  
GAIN = ½  
120  
100  
80  
60  
40  
20  
0
NEGATIVE PSRR  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. Power Supply Rejection Ratio vs. Frequency,  
Gain = ½, Referred to Output  
Figure 15. Common-Mode Rejection Ratio vs. Frequency, Referred to Input  
120  
32  
28  
24  
20  
16  
12  
8
±15V SUPPLY  
100  
SOURCING  
80  
60  
40  
20  
0
–20  
±5V SUPPLY  
–40  
SINKING  
–60  
–80  
4
–100  
–40  
0
100  
–20  
0
20  
40  
60  
80  
100  
120  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 16. Short-Circuit Current vs. Temperature  
Figure 13. Maximum Output Voltage vs. Frequency  
Rev. C | Page 7 of 16  
 
 
AD8274  
+V  
S
+85°C  
+25°C  
+125°C  
C
= 100pF  
L
+V – 2  
S
–40°C  
+V – 4  
S
0
NO LOAD  
–V + 4  
S
+125°C  
+25°C  
600  
2kΩ  
–V + 2  
S
–40°C  
+85°C  
–V  
S
1µs/DIV  
200  
1k  
LOAD RESISTANCE ()  
10k  
Figure 20. Small-Signal Step Response, Gain = ½  
Figure 17. Output Voltage Swing vs. RL, VS = 15 V  
+V  
S
–40°C  
+25°C  
+V – 3  
S
+V – 6  
S
+125°C  
+85°C  
+125°C  
–V + 6  
S
+85°C  
+25°C  
–V + 3  
S
–40°C  
–V  
S
0
20  
40  
60  
80  
100  
1µs/DIV  
CURRENT (mA)  
Figure 21. Small-Signal Pulse Response with 500 pF Capacitor Load,  
Gain = 2  
Figure 18. Output Voltage vs. IOUT  
C
= 100pF  
L
NO LOAD  
600Ω  
2kΩ  
1µs/DIV  
1µs/DIV  
Figure 22. Small-Signal Pulse Response for 100 pF Capacitive Load,  
Gain = ½  
Figure 19. Small-Signal Step Response, Gain = 2  
Rev. C | Page 8 of 16  
AD8274  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5V  
5V  
15V  
2.5V  
15V  
5V  
18V  
18V  
0
200  
400  
600  
800  
1000  
1200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 26. Small-Signal Overshoot vs. Capacitive Load,  
Gain = 2, 600 Ω in Parallel with Capacitive Load  
Figure 23. Small-Signal Overshoot vs. Capacitive Load,  
Gain = ½, No Resistive Load  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5V  
5V  
15V  
18V  
0
20  
40  
60  
80  
100 120 140 160 180 200  
1µs/DIV  
CAPACITIVE LOAD (pF)  
Figure 24. Small-Signal Overshoot vs. Capacitive Load,  
Gain = ½, 600 Ω in Parallel with Capacitive Load  
Figure 27. Large-Signal Pulse Response,  
Gain = ½  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5V  
5V  
15V  
18V  
0
200  
400  
600  
800  
1000  
1200  
1µs/DIV  
CAPACITIVE LOAD (pF)  
Figure 28. Large-Signal Pulse Response,  
Gain = 2  
Figure 25. Small-Signal Overshoot vs. Capacitive Load,  
Gain = 2, No Resistive Load  
Rev. C | Page 9 of 16  
AD8274  
40  
35  
30  
25  
20  
15  
10  
5
0.1  
0.01  
22kHz FILTER  
= 10V p-p  
V
OUT  
= 600Ω  
R
L
+SR  
–SR  
0.001  
0.0001  
GAIN = 2  
GAIN = ½  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TEMPERATURE (°C)  
Figure 32. THD + N vs. Frequency, Filter = 22k Hz  
Figure 29. Slew Rate vs. Temperature  
0.1  
0.01  
10k  
1k  
V
= 10V p-p  
OUT  
GAIN = 2  
GAIN = ½  
100  
0.001  
0.0001  
GAIN = 2  
GAIN = ½  
10  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. THD + N vs. Frequency, Filter = 120 kHz  
Figure 30. Voltage Noise Density vs. Frequency, Referred to Output  
1
0.1  
GAIN = ½  
f = 1kHz  
G = 2  
R
= 2k, 100Ω  
L
0.01  
G = ½  
R
= 600Ω  
L
0.001  
0.0001  
0
5
10  
15  
20  
25  
1s/DIV  
OUTPUT AMPLITUDE (dBu)  
Figure 31. 0.1 Hz to 10 Hz Voltage Noise, RTO  
Figure 34. THD + N vs. Output Amplitude, G = ½  
Rev. C | Page 10 of 16  
AD8274  
1
0.1  
0.1  
0.01  
GAIN = 2  
f = 1kHz  
GAIN = 2  
= 10V p-p  
V
OUT  
0.01  
0.001  
R
R
R
= 600Ω  
= 2kΩ  
= 100kΩ  
L
L
L
THIRD HARMONIC ALL LOADS  
0.001  
0.0001  
0.0001  
0.00001  
SECOND HARMONIC R = 600  
L
SECOND HARMONIC R = 100k, 2kΩ  
L
0
5
10  
15  
20  
25  
10  
100  
1k  
10k  
100k  
OUTPUT AMPLITUDE (dBu)  
FREQUENCY (Hz)  
Figure 35. THD + N vs. Output Amplitude, G = 2  
Figure 37. Harmonic Distortion Products vs. Frequency, G = 2  
0.1  
GAIN = ½  
V
= 10V p-p  
OUT  
0.01  
0.001  
THIRD HARMONIC ALL LOADS  
0.0001  
0.00001  
SECOND HARMONIC R = 600Ω  
L
SECOND HARMONIC R = 100k, 2kΩ  
L
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 36. Harmonic Distortion Products vs. Frequency, G = ½  
Rev. C | Page 11 of 16  
AD8274  
THEORY OF OPERATION  
+V  
S
DRIVING THE AD8274  
7
The AD8274 is easy to drive, with all configurations presenting  
at least several kilohms (kꢀ) of input resistance. The AD8274  
should be driven with a low impedance source: for example,  
another amplifier. The gain accuracy and common-mode rejection  
of the AD8274 depend on the matching of its resistors. Even  
source resistance of a few ohms can have a substantial effect on  
these specifications.  
12k  
6kΩ  
2
5
6
12kΩ  
6kΩ  
3
1
4
–V  
S
POWER SUPPLIES  
Figure 38. Functional Block Diagram  
A stable dc voltage should be used to power the AD8274. Noise  
on the supply pins can adversely affect performance. A bypass  
capacitor of 0.1 μF should be placed between each supply pin  
and ground, as close as possible to each supply pin. A tantalum  
capacitor of 10 μF should also be used between each supply and  
ground. It can be farther away from the supply pins and, typically,  
it can be shared by other precision integrated circuits.  
CIRCUIT INFORMATION  
The AD8274 consists of a high precision, low distortion op amp  
and four trimmed resistors. These resistors can be connected to  
make a wide variety of amplifier configurations, including  
difference, noninverting, and inverting configurations. Using  
the on-chip resistors of the AD8274 provides the designer with  
several advantages over a discrete design.  
The AD8274 is specified at 15 V, but it can be used with  
unbalanced supplies, as well. For example, −VS = 0 V, +VS = 20 V.  
The difference between the two supplies must be kept below 36 V.  
DC Performance  
Much of the dc performance of op amp circuits depends on the  
accuracy of the surrounding resistors. The resistors on the AD8274  
are laid out to be tightly matched. The resistors of each part are  
laser trimmed and tested for their matching accuracy. Because  
of this trimming and testing, the AD8274 can guarantee high  
accuracy for specifications such as gain drift, common-mode  
rejection, and gain error.  
INPUT VOLTAGE RANGE  
The AD8274 can measure voltages beyond the rails. For the G = ½  
and G = 2 difference amplifier configurations, see the input voltage  
range in Table 2 for specifications.  
The AD8274 is able to measure beyond the rail because the  
internal resistors divide down the voltage before it reaches the  
internal op amp. Figure 39 shows an example of how the voltage  
division works in the difference amplifier configuration. For the  
AD8274 to measure correctly, the input voltages at the internal  
op amp must stay within 1.5 V of either supply rail.  
R2  
AC Performance  
Because feature size is much smaller in an integrated circuit than  
on a printed circuit board (PCB), the corresponding parasitics are  
also smaller. The smaller feature size helps the ac performance of  
the AD8274. For example, the positive and negative input terminals  
of the AD8274 op amp are not pinned out intentionally. By not  
connecting these nodes to the traces on the PCB, the capacitance  
remains low, resulting in both improved loop stability and  
common-mode rejection over frequency.  
(V  
)
IN+  
R1 + R2  
R4  
R3  
R1  
R2  
Production Costs  
R2  
R1 + R2  
Because one part, rather than several, is placed on the PCB, the  
board can be built more quickly.  
(V  
)
IN+  
Figure 39. Voltage Division in the Difference Amplifier Configuration  
Size  
For best long-term reliability of the part, voltages at any of the  
parts inputs (Pin 1, Pin 2, Pin 3, or Pin 5) should stay within  
+VS – 40 V to −VS + 40 V. For example, on 10 V supplies,  
input voltages should not exceed 30 V.  
The AD8274 fits a precision op amp and four resistors in one  
8-lead MSOP or SOIC package.  
Rev. C | Page 12 of 16  
 
 
AD8274  
CONFIGURATIONS  
The AD8274 can be configured in several ways; see Figure 40 to Figure 47. Because these configurations rely on the internal, matched  
resistors, all of these configurations have excellent gain accuracy and gain drift. Note that the AD8274 internal op amp is stable for noise  
gains of 1.5 and higher, so the AD8274 should not be placed in a unity-gain follower configuration.  
12kΩ  
12kΩ  
6kΩ  
12k  
6kΩ  
2
3
5
6
2
5
6
–IN  
OUT  
OUT  
6kΩ  
12kΩ  
6kΩ  
3
1
1
+IN  
+IN  
V
= ½ (V  
IN+  
V )  
IN−  
OUT  
V
= ½ V  
IN  
OUT  
Figure 44. Noninverting Amplifier, G = ½  
Figure 40. Difference Amplifier, G = ½  
6kΩ  
6kΩ  
12kΩ  
12kΩ  
6kΩ  
6kΩ  
12kΩ  
12kΩ  
5
1
2
6
5
1
2
6
–IN  
+IN  
OUT  
OUT  
3
3
+IN  
V
= 2 (V  
IN+  
V )  
IN−  
OUT  
V
= 2 V  
IN  
OUT  
Figure 41. Difference Amplifier, G = 2  
Figure 45. Noninverting Amplifier, G = 2  
12k  
6kΩ  
12k  
6kΩ  
2
5
6
2
5
6
–IN  
OUT  
OUT  
6kΩ  
6kΩ  
1
1
3
+IN  
12kΩ  
12kΩ  
3
V
= 1½ V  
IN  
OUT  
V
= –½ V  
IN  
OUT  
Figure 46. Noninverting Amplifier, G = 1.5  
Figure 42. Inverting Amplifier, G = −½  
6k  
12kΩ  
6kΩ  
12kΩ  
5
2
5
2
6
–IN  
OUT  
OUT  
6
12kΩ  
6kΩ  
3
12kΩ  
6kΩ  
1
+IN  
3
1
V
= 3 V  
OUT  
IN  
V
= –2 V  
IN  
OUT  
Figure 47. Noninverting Amplifier, G = 3  
Figure 43. Inverting Amplifier, G = −2  
Rev. C | Page 13 of 16  
 
 
 
AD8274  
DRIVING CABLING  
Because the AD8274 can drive large voltages at high output  
currents and slew rates, it makes an excellent cable driver. It is  
good practice to put a small value resistor between the AD8274  
output and cable, since capacitance in the cable can cause peaking  
or instability in the output response. A resistance of 20 Ω or higher  
is recommended.  
R 20Ω  
AD8274  
Figure 48. Driving Cabling  
Rev. C | Page 14 of 16  
 
AD8274  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 49. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 50. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
Branding  
AD8274ARZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
AD8274ARZ-R7  
AD8274ARZ-RL  
AD8274ARMZ  
AD8274ARMZ-R7  
AD8274ARMZ-RL  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP, 13" Tape and Reel  
Y1B  
Y1B  
Y1B  
1 Z = RoHS Compliant Part.  
Rev. C | Page 15 of 16  
 
AD8274  
NOTES  
©2008–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07362-0-8/11(C)  
Rev. C | Page 16 of 16  
 

相关型号:

AD629-EVAL

High Common-Mode Voltage, Difference Amplifier
ADI

AD629A

High Common-Mode Voltage Difference Amplifier
ADI

AD629AN

High Common-Mode Voltage Difference Amplifier
ADI

AD629ANZ

High Common-Mode Voltage, Difference Amplifier
ADI

AD629AR

High Common-Mode Voltage Difference Amplifier
ADI

AD629AR-REEL

High Common-Mode Voltage Difference Amplifier
ADI

AD629AR-REEL7

High Common-Mode Voltage Difference Amplifier
ADI

AD629ARZ

High Common-Mode Voltage, Difference Amplifier
ADI

AD629ARZ-R7

High Common-Mode Voltage, Difference Amplifier
ADI

AD629ARZ-REEL

OP-AMP, 1000uV OFFSET-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
ADI

AD629ARZ-REEL7

OP-AMP, 1000uV OFFSET-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
ADI

AD629ARZ-RL

High Common-Mode Voltage, Difference Amplifier
ADI